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Abstract

In a work by Raz (J. ACM and FOCS 16), it was proved that any algorithm for parity
learning on n bits requires either Ω(n2) bits of classical memory or an exponential number
(in n) of random samples. A line of recent works continued that research direction and showed
that for a large collection of classical learning tasks, either super-linear classical memory size or
super-polynomially many samples are needed. All these works consider learning algorithms as
classical branching programs, which perform classical computation within bounded memory.

However, these results do not capture all physical computational models, remarkably,
quantum computers and the use of quantum memory. It leaves the possibility that a small piece
of quantum memory could significantly reduce the need for classical memory or samples and thus
completely change the nature of the classical learning task. Despite the recent research on the
necessity of quantum memory for intrinsic quantum learning problems like shadow tomography
and purity testing, the role of quantum memory in classical learning tasks remains obscure.

In this work, we study classical learning tasks in the presence of quantum memory. We
prove that any quantum algorithm with both, classical memory and quantum memory, for
parity learning on n bits, requires either Ω(n2) bits of classical memory or Ω(n) bits of quantum
memory or an exponential number of samples. In other words, the memory-sample lower bound
for parity learning remains qualitatively the same, even if the learning algorithm can use, in
addition to the classical memory, a quantum memory of size cn (for some constant c > 0).

Our result is more general and applies to many other classical learning tasks. Following
previous works, we represent by the matrix M : A ×X → {−1, 1} the following learning task.
An unknown x is sampled uniformly at random from a concept class X, and a learning algorithm
tries to uncover x by seeing streaming of random samples (ai, bi = M(ai, x)) where for every i,
ai ∈ A is chosen uniformly at random. Assume that k, ℓ, r are integers such that any submatrix
of M of at least 2−k · |A| rows and at least 2−ℓ · |X| columns, has a bias of at most 2−r. We
prove that any algorithm with classical and quantum hybrid memory for the learning problem
corresponding to M needs either (1) Ω(k · ℓ) bits of classical memory, or (2) Ω(r) qubits of
quantum memory, or (3) 2Ω(r) random samples, to achieve a success probability at least 2−O(r).

Our results refute the possibility that a small amount of quantum memory significantly
reduces the size of classical memory needed for efficient learning on these problems. Our results
also imply improved security of several existing cryptographical protocols in the bounded-storage
model (protocols that are based on parity learning on n bits), proving that security holds even
in the presence of a quantum adversary with at most cn2 bits of classical memory and cn bits
of quantum memory (for some constant c > 0).
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1 Introduction

Memory plays an important role in learning. Starting from the seminal works by Shamir [Sha14]
and Steinhardt, Valiant and Wager [SVW16], a sequence of works initiates and deepens the study
of lower bounds for learning under memory constraints. Steinhardt, Valiant, and Wager [SVW16]
conjectured that in order to learn an unknown n-bit string from samples of random-subset parity,
an algorithm needs either memory-size quadratic in n or exponentially many random samples (also
in n). This conjecture was later on proved by Raz [Raz18], showing for the first time that for some
learning problems, super-linear memory size is required for efficient learning. This result was then
generalized to a broad class of learning problems [KRT17, Raz17, MM18, BGY18, GRT18, SSV19,
GKR20, GKLR21].

Although we have a comprehensive understanding of the (in)feasibility of learning under
limitations on particular computation resource (memory), the previous works mentioned above do
not capture all physical computational models; most notably, quantum computation and the power
of quantum memory. Many researchers believe that large-scale quantum computers will eventually
become viable. Recent experiments demonstrated quantum advantages, for example [AAB+19],
and suggested that there are possibly no fundamental barriers to achieving quantum memory and
quantum computers. Questions on the role of quantummemory in learning were proposed byWright
in the context of general state tomography [Wri16] and by Aaronson for shadow tomography [Aar18].
A line of works [HHJ+16, BCL20, HKP20, CCHL22, ACQ22, CLO22] pioneer the idea and show
either polynomial or exponential separations for learning with/without quantum memory, but all
for intrinsic quantum learning tasks like state tomography, shadow tomography and purity testing.

In light of the above, it is appealing to consider classical learning tasks in the presence
of quantum memory, as well as hybrid classical-quantum memory. A direct implication of all
aforementioned classical results only gives trivial results. As k qubits of memory can always be
efficiently simulated by ∼ 2k classical bits, we can only conclude (say, for parity learning) that
either ∼ 2 log n-qubit quantum memory or exponentially many samples are needed. Prior to our
work, it could have been the case that even if only a very small size quantum memory was available,
it might have significantly reduced the need for classical memory and led to an efficient learning
algorithm.

In this work, we prove memory-sample lower bounds in the presence of hybrid memory for a
wide collection of classical learning problems. As in [Raz17, GRT18], we will represent a learning
problem by a matrix M : A×X → {−1, 1} whose columns correspond to concepts in the concept
class X and rows correspond to random samples. In the learning task, an unknown concept x ∈ X
is sampled uniformly at random and each random sample is given as (ai, bi) = (ai,M(ai, x)) for a
uniformly picked ai ∈ A. The learner’s goal is to uncover x. In [GRT18], it is proved that when
the underlying matrix M is a (k, ℓ)-L2 two source extractor1 with error 2−r, a learning algorithm
requires either Ω(k · ℓ) bits of memory or 2Ω(r) samples to achieve a success probability at least
2−O(r) for the learning task.

1.1 Our Results

In this work, we model a quantum learning algorithm as a program with hybrid memory consisting
of q qubits of quantum memory and m bits of classical memory. At each stage, a random sample
(ai, bi = M(ai, x)) is given to the algorithm. The quantum learning algorithm applies an arbitrary
quantum channel to the hybrid memory, controlled by the random sample. Although the channel

1Roughly speaking, this means that every submatrix M ′ of M with number of rows at least 2−k|A| and number
of columns at least 2−ℓ|X| has a relative bias at most 2−r.
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can be arbitrary, we impose the outcome to be a hybrid classical-quantum state of at most q qubits
and m bits. We stress that there is no limitation on the complexity of the quantum channel (and
this only makes our results stronger as we are proving here lower bounds for such algorithms).

With the above model, we give the following main theorem.

Theorem 1 (Main Theorem, Informal). Let M : A×X → {−1, 1} be a matrix. If M is a (k, ℓ)-L2

two source extractor with error 2−r, a quantum learning algorithm requires either

1. Ω(k · ℓ) bits of classical memory; or,

2. Ω(r) qubits of quantum memory; or,

3. 2Ω(r) samples,

to succeed with a probability of at least 2−O(r) in the corresponding learning task.

Our main theorem implies that for many learning problems, the availability of a quantum
memory of size up to Ω(r), does not reduce the size of classical memory or the number of samples
that are needed. As coherent quantum memory is challenging for near-term intermediate-scale
quantum computers and is probably expensive even if and when quantum computers are widely
viable, the impact of quantum memory is further limited for these learning problems.

To make the theorem more precise, let us take parity learning as an example. The above
theorem says that a quantum learning algorithm needs either Ω(n2) bits of memory, or Ω(n) qubits
of quantum memory, to conduct efficient learning; otherwise, it requires 2Ω(n) random samples. At
first glance, it seems that the constraint on quantum memory is trivial: if the target is to learn an n-
bit unknown secret, a linear amount of memory always seems necessary to store the secret. However,
noticing that our main theorem applies to quantum learning algorithms with hybrid memory and
rules out algorithms with n2/1000 bits and n/1000 qubits of hybrid memory for parity learning,
the main theorem yields non-trivial and compelling memory-sample lower bounds. Note also that
our results (and previous results) are valid even if the goal is to output only one bit of the secret.
Currently, we do not know whether our main theorem is tight. For parity learning, we are not
aware of any quantum learning algorithm that uses only O(n) qubits of quantum memory. We
leave closing the gap as a fascinating open question.

The main theorem naturally applies to other learning problems considered in [GRT18], including
learning sparse parities, learning from sparse linear equations, and many others. We do not present
an exhaustive list here but refer the readers to [GRT18] for more details.

Along the way, we propose a new approach for proving the classical memory-sample lower
bounds. We call this approach, the “badness levels” method. The approach is technically equivalent
to the previous approach in [Raz17, GRT18] but is conceptually simpler to work with and we are
able to lift it to the quantum case.

We note that proving a linear lower bound on the size of the quantum memory, without classical
memory, is significantly simpler (but to the best of our knowledge such a proof has not appeared
prior to our work). We present such a proof in Appendix C. In Appendix C, we state and prove
Theorem 3 that shows a simpler proof for a linear lower bound on the quantum-memory size
(without classical memory). While Theorem 3 is qualitatively weaker than our main result in
most cases, as it only gives a lower bound for programs with only quantum memory but without
a (possibly quadratic) classical memory, Theorem 3 is technically incomparable and is stated in
terms of quantum extractors, rather than classical extractors. Additionally, the proof of Theorem 3
is significantly simpler than the proof of our main theorem.
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Implications to Cryptography in the Bounded-Storage Model. Since learning theory and
cryptography can be viewed as two sides of the same coin, our theorem also lifts the security of
many existing cryptographical protocols in the bounded-storage model (protocols that are based
on parity learning) to the quantum setting. To our best knowledge, these are the first proofs of
classical cryptographical protocols being secure against space-bounded quantum attackers.2 We
elaborate more below.

Cryptography in the (classical) bounded storage model was first proposed by Maurer [Mau92].
In such a model, no computational assumption is needed. Honest execution is performed through
a long streaming sequence of bits. Eavesdroppers have bounded storage and limited capability
of storing conversations, thus cannot break the protocol. A line of works [CM97, AR99, ADR02,
DR02, DM02, Lu02, DM04, MSTS04, HN06, DQW21, DQW22, . . . ] builds efficient and secure
protocols for key agreement, oblivious transfer, bit commitment and time stamping in that model.

Based on the memory-sample lower bounds for parity learning of n bits, [Raz18] suggested
an encryption scheme in the bounded-storage model. Guan and Zhandry [GZ19] proposed key
agreement, oblivious transfer and bit commitment with improved rounds and better correctness,
against attackers with up to O(n2) bits of memory. Following a similar idea, Liu and
Vusirikala [LV21] showed that semi-honest multiparty computation could be achieved against
attackers with up to O(n2) bits of memory. More recently, Dodis, Quach, and Wichs [DQW22]
considered message authentication in the bounded storage model based on parity learning. Our
result on parity learning gives a direct lift on all the results above. When the cryptographic
protocols are based on parity learning of n bits (often treated as a security parameter), our result
shows that security holds even in the presence of a quantum adversary with at most O(n2) bits of
classical memory and O(n) qubits of quantum memory.

Despite many previous works on cryptography in the quantum bounded storage model [DFR+07,
DFSS07, Sch07, DFSS08, WW08, PMLA13, BY21], they all rely on streaming quantum states. Our
memory-sample lower bounds give for the first time a rich class of classical cryptographical schemes
(key agreement, oblivious transfer, and bit commitment) secure against space-bounded quantum
attackers.

2 Proof Overview

2.1 Recap of Proofs for Classical Lower Bounds

Since our proof builds on the previous line of works on classical memory-sample lower bounds for
learning, specifically, on the proof technique of [Raz17, GRT18], we provide a brief review of these
proofs, using parity learning [Raz18] as an example. In below, M(a, x) denotes the inner product
of a and x in F2.

Consider a classical branching program that tries to learn an unknown and uniformly random
x ∈ {0, 1}n from samples (a, b), where a ∈ {0, 1}n is uniformly random and b = M(a, x).
We can associate every state v of the branching program with a distribution PX|v over {0, 1}n,
indicating the distribution of x conditioned on reaching that state. At the initial state, without any
information about x, the distribution is uniform (which has the smallest possible ℓ2-norm). Along
a computational path on the branching program, the distribution PX|v evolves and eventually gets
concentrated (with large ℓ2-norms) in order to output x correctly. Therefore, during the evolution,
PX|v should at some stage have mildly large ℓ2-norms (2εn times larger than uniform for some

2On the other hand, there are known examples of classically-secure bounded-storage protocols that are breakable
with an exponentially smaller amount of quantum memory. [GKK+08].
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small constant ε > 0). If we set such a distribution as a target, the distribution is hard to achieve
with random samples. Only with 2−Ω(n) probability, the branching program can make significant
progress towards the target; while most of the time a sample just splits the distributions (both the
current and the target distribution) into two even parts, and that does not help much in getting
closer to the target distribution (with large ℓ2 norm).

To put it more rigorously, we examine the evolution of the inner product

⟨PX|v, P ⟩ =
∑

x∈{0,1}n
PX|v(x) · P (x)

between the distribution PX|v on the current state v, and a target distribution P . Receiving a
sample (a, b) implies that M(a, x) = b, hence only the part of PX|v supported on such x proceeds.

If this part is close to 1
2 probability, we say that a divides PX|v evenly. Denoting the new distribution

as P
(a,b)
X|v , after proper normalization the new inner product is

⟨P (a,b)
X|v , P ⟩ =

∑
x∈{0,1}n
M(a,x)=b

PX|v(x) · P (x)

/ ∑
x∈{0,1}n
M(a,x)=b

PX|v(x). (1)

Ideally, both PX|v and the point-wise product vector PX|v · P should have reasonably small ℓ2-
norms. Due to the extractor property of M , most of a ∈ {0, 1}n should divide both vectors evenly,
and thus the denominator is close to 1

2 while the enumerator is close to 1
2⟨PX|v, P ⟩. That means,

given a uniformly random a, we get limited progress on the inner product. On the other hand,
from ⟨U,P ⟩ = 2−n with uniform distribution U to ⟨P, P ⟩ = 22εn ·2−n, the branching program needs
to make multiple steps of progression. Therefore it happens with an extremely small probability.

To ensure that the above statement goes smoothly, we require the following properties for every
state v in the branching program:

• The ℓ2-norm
∥∥PX|v

∥∥
2
is small.

• The ℓ2-norm
∥∥PX|v · P

∥∥
2
is small, which is implied when the ℓ∞-norm

∥∥PX|v
∥∥
∞ is small.

• The denominator in Eq. (1) is bounded away from 0 for every sample (a, b).

These properties do not hold by themselves. Instead, we execute a truncation procedure on the
branching program before choosing a target distribution. More specifically, the branching program
is modified so that it stops whenever it:

• (ℓ2 truncation): Reaches a state v with large
∥∥PX|v

∥∥
2
;

• (ℓ∞ truncation): Reaches a state v with large PX|v(x) when the unknown concept is x;

• (Sample truncation): Or, for the next sample (a, b), a does not divide PX|v evenly.

It turns out that after ℓ2 truncation, the other two truncation steps add 2−Ω(n) error in each stage
of the branching program. Therefore the proof boils down to proving a 2−Ω(n2) bound on the
probability of reaching a state with large

∥∥PX|v
∥∥
2
, from which by a standard union bound, we can

prove the memory-sample lower bounds for parity learning: either 2Ω(n) samples or Ω(n2) bits of
memory are necessary.
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2.2 Badness Levels

As mentioned above, to bound the probability of reaching a state with a large ℓ2-norm, the basic
idea is to fix its distribution as the target distribution P , and bound the increment of the inner
product ⟨PX|v, P ⟩. This was done in [Raz17, GRT18] by designing a potential function that tracks

the average of ⟨PX|v, P ⟩k for some k = Θ(n), where the average is over states v in the same stage
of the branching program. Here we propose another approach using the concept of badness levels.
Although it is technically equivalent to the potential function approach in the classical case, it is
more pliable and easier to be adapted to the quantum case. We view this approach as a separate
contribution of our work.

We first define a bad event to be a pair (v, a) of the state v and the upcoming part of the
sample a, such that ⟨PX|v, P ⟩ ≥ 2−n, and for one of the two possible outcomes b,∑

x∈{0,1}n
M(a,x)=b

PX|v(x) · P (x) ≥
(
1

2
+ 2−δn

)
· ⟨PX|v, P ⟩ (2)

with some small constant δ. In other words, the inner product ⟨PX|v, P ⟩ is large enough, while
not being divided evenly by a. From Eq. (1) we know that the inner product gets at most roughly
doubled through a bad event. In contrast, in the good case, the inner product either gets a mere
(1 + 2−δn) multiplicative factor or is already smaller than the baseline 2−n. Also, the extractor
property of M ensures that for every state v, over uniformly random a, the bad event happens with
at most 2−Ω(n) probability.

Now, the badness level β(v) of a state v keeps track of how many times the computational path
went through bad events before reaching v.3 The above observations on the bad events imply that
(omitting the smaller factors):

• For every state v, ⟨PX|v, P ⟩ is bounded by 2β(v) · 2−n;

• Heading to the next stage, β(v) increases by 1 with probability 2−Ω(n).

Therefore at each stage, the total weight of states with badness level β is at most 2−Ω(βn). Thus
any state with ⟨PX|v, P ⟩ ≥ 22εn · 2−n must have 2−Ω(n2) probability.

2.3 Obstacles for Proving Quantum Lower Bounds

In this section, we present an attempt to prove the same 2Ω(n)-sample or Ω(n2)-quantum-memory
lower bound for the pure quantum case. Along the way we identify some obstacles to proving
memory-sample lower bounds for quantum learning algorithms, and in the next section we show
how to overcome these obstacles while proving lower bounds for hybrid learning algorithms, with
quadratic-size classical-memory and linear-size quantum-memory.

Following the same framework as the above described proof for the classical case, we first need
to transfer all the notions to a quantum algorithms:

• The state v is a quantum state in the Hilbert space of quantum memory;

• The distribution PX|v is still well-defined: It is the distribution of x when the quantum
memory is measured to v (see Section 3.4 and Eq. (3));

3For now we think of β(v) as a natural number. In the actual proof, β(v) is a distribution on natural numbers, as
for different computational paths reaching the same state, the count of bad events can be different.
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• We are still able to implement ℓ2 truncation: If PX|v has large ℓ2-norm, project the entire

system to the orthogonal subspace v⊥ of v and repeat, until there is no such state v (see
Section 4.1 for details).

• We are also able to implement sample truncation, in a similar manner to ℓ2 truncation. As
the criteria here depends on a, we separately create a copy of the current system for each a,
truncate the states v using projection when PX|v is not evenly divided by a in each copy, and
then merge them back together. We prove that the error introduced by this truncation is
small.

Here comes the first major obstacle: ℓ∞ truncation. In the classical case, ℓ∞ truncation is
implemented for each individual x, in contrast to ℓ2 truncation where the states are removed
altogether. Relying on the fact that it is already known that the ℓ2 norm of the distribution is
small, using Markov inequality, one can prove that the error introduced by the ℓ∞ truncation is
small.

However, when we try to emulate the classical implementation of ℓ∞ truncation with quantum
truncation, that is, to only project to v⊥ the system conditioned on the specific x where PX|v(x)
is large, instead of for every x, it may lead to huge changes to the distributions PX|u on states u
non-orthogonal to v. The following example illustrates such a scenario:

Example. Consider a quantum learning algorithm, and assume that at some stage of the
computation, for each x ∈ {0, 1}n, the quantum memory is in some pure state v(x). We pick
each v(x) uniformly at random in a Hilbert space of dimension d ≈ 2n/2 and consider a typical
configuration of v(x). Now the ℓ2-norms are bounded for every quantum state v: the worst ones
happen when v = v(x) for some x, where ∥PX|v(x)∥2 is typically around d ·2−n, close to the ℓ2-norm
of uniform distribution. However, those worst distributions also have ℓ∞-norms close to d · 2−n,
which is much larger than the ℓ∞-norm of the uniform distribution, and needs to be truncated. But
truncating v(x) off for x means that x is completely erased, and we end up removing everything.

Moving on, we fix a target state v with a target distribution PX|v which exceeds the ℓ2-norm

threshold, and the goal is again to prove a 2−Ω(n2) amplitude bound on v. The bad event should
still be defined as a pair (v, a) satisfying Eq. (2), with v now being a quantum state. We then run
into the second major obstacle: it is not clear how to define badness levels.

If we define the badness level β(v) for each state v individually by examining the bad events over
the historical states, then it is not clear how to measure the total weight of a badness level β. In
the classical case, we simply define the total weight as the total probability of states with badness
level β. But here in the quantum case, it turns out that such a definition either depends on the
choice of basis, which might have large increment in each stage, or completely fails to imply the
desired amplitude bound on the target state.

The other choice is to have a more operational definition of badness levels, and it is indeed
tempting to define β as another register whose updates are controlled by the quantum memory.
The problem with such definitions is that the bad event (Eq. (2)) is not linear in v. Therefore an
operational definition of badness level, which is a linear operator, inevitably introduces error that
escalates fast with the number of stages.

2.4 Hybrid Memory Lower Bounds with Small Quantum Memory

The obstacles in the previous section are for proving quadratic quantum memory lower bound. We
note that proving linear quantum memory lower bound (without classical memory) is not hard:
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the proof can be entirely information theoretical, as with very limited memory, say, 1
2n qubits, the

information gained from each sample is exponentially small, despite the memory being quantum.
We present such a proof in Appendix C.

The lower bounds that we prove here are with hybrid memory: To learn parity with both
classical and quantum memory, an algorithm needs either 2Ω(n) samples, or Ω(n2) classical memory,
or Ω(n) quantum memory (Theorem 1). We now describe how we overcome the previously
mentioned obstacles.

ℓ∞ Truncation. When there is only small quantum memory and no classical memory, the
treatment for ℓ∞ truncation is straightforward. We remove all quantum states v with distributions
of large ℓ∞-norm, by projecting the system to the orthogonal subspace v⊥, just like the process of
ℓ2 truncation. As the overall distribution on x is uniform, any state v with ∥PX|v∥∞ ≥ 2δn · 2−n

must have weight at most 2−δn. Therefore, as long as the dimension of the Hilbert space is much
smaller than δn, the error introduced in this truncation is small. 4

With classical memory in presence, the actual ℓ∞ truncation step (see Section 4.2, Step 2) is
more complicated. We first apply the original classical ℓ∞ truncation on the classical memory W .
Now that ∥PX|w∥∞ is bounded for each classical memory state w, we can remove the quantum
states v with large ∥PX|v,w∥∞ by projection as stated above. Since the classical ℓ∞ truncation
depends on x, it could change the distributions PX|v,w. However, as in the classical case, PX|w will
not change a lot. Thus, wherever PX|v,w changes drastically, it must have a small weight and can
also be removed by projection. This removal corresponds to truncation by Gt in Section 4.2.

Badness Levels. Interestingly, we are able to avoid the problems of defining the badness level
on quantum memory altogether, by keeping it a property on the classical memory only. To do so
we need to alter the definition of a bad event: it is now a pair (w, a) of classical memory state w
and sample a, such that there exists some quantum memory state v with PX|v,w satisfying Eq. (2).

For each fixed classical memory state w, we still need to ensure that bad events happen with a
small probability. We prove it (Lemma 5.2) by showing that, if there are many different samples a,
each associated with some quantum state va satisfying Eq. (2), then there is some quantum state v
that simultaneously satisfies Eq. (2) with most of such a (which is impossible because of the
extractor property). This is ultimately due to the continuous nature of Eq. (2): Under some proper
congruent transformation, Eq. (2) becomes a simple threshold inequality on quadratic forms over v.
Now if it is satisfied by some va, it is going to be satisfied by most v for a much smaller threshold
parameter δ, and hence the existence of a simultaneously satisfying v.5 In this argument, we use
Lemma 3.1, which is derived from the anti-concentration bound for Gaussian quadratic forms, and
crucially relies on the fact that the dimension is at most 2εn for some small ε.

Another technical problem is that to use the extractor property, we need to ensure that
⟨PX|v,w, P ⟩ ≥ 2−n for the simultaneously satisfying v. Thus, what we do in Lemma 5.2 is to
first conceptually remove the parts where ⟨PX|v,w, P ⟩ is too small, using projection similarly to the
truncation steps. After the removal, we are left with a subspace V ′ where ⟨PX|v,w, P ⟩ is always
lower bounded, and we show that for every state v that satisfies Eq. (2), the inequality is still close
to being satisfied after projecting v onto V ′. Therefore we could still apply the above argument
and find a simultaneously satisfying v within the subspace.

4The example in the previous section that shows the infeasibility of treating ℓ∞ truncation the same way as ℓ2
truncation does not work here, as it requires n/2 qubits of memory while here we have a smaller memory size.

5We note that the error bound for sample truncation (Lemma 4.12) is also proved using this argument.
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3 Preliminaries

3.1 Vectors and Matrices

For a vector v ∈ Cd and p ∈ [1,∞], we define the ℓp norm of v as

∥v∥p =

(
d∑

i=1

|vi|p
)1/p

.

For two vectors u, v ∈ Cd, define their inner product as ⟨u, v⟩ = u†v =
∑d

i=1 uivi. So ∥v∥22 = ⟨v, v⟩.
We also view every distribution P over a set X as a non-negative real vector with ∥P∥1 = 1.

We specifically use Dirac notation to denote unit vectors, |v⟩ ∈ Cd implies that ∥|v⟩∥2 = 1. For
a non-zero vector u ∈ Cd, let |v⟩ ∼ u be the normalization of u, that is, |v⟩ = u/∥u∥2.

For every vector v ∈ Cd, let Diag v ∈ Cd×d be the diagonal matrix whose diagonal entries
represent v. Conversely, for every square matrix M , let diagM be the vector consisting of the
diagonal entries of M . For a matrix (or generally a linear operator) M , we use ∥M∥Tr and ∥M∥2
to denote its trace norm and spectral norm respectively, that is,∥∥M∥∥

Tr
= Tr

[√
MM †

]
,
∥∥M∥∥

2
= max

v ̸=0
∥Mv∥2/∥v∥2.

For an Hermitian M ∈ Cd×d, we say it is a positive semi-definite operator if for every v ∈ Cd,
v†Mv ≥ 0. A (partial) density operator is a positive semi-definite operator with its trace being 1
(or at most 1, respectively).

Viewing a Learning Problem as a Matrix

Let M : A × X → {−1, 1} be a matrix. The matrix M corresponds to the following learning
problem. There is an unknown element x ∈ X that was chosen uniformly at random. A learner
tries to learn x from samples (a, b), where a ∈ A is chosen uniformly at random and b = M(a, x).
That is, the learning algorithm is given a stream of samples, (a1, b1), (a2, b2), . . ., where each at is
uniformly distributed and for every t, bt = M(at, x). For each a ∈ A, we use Ma : X → {−1, 1} to
denote the vector corresponding to the a-th row of M .

Extractors

A matrix M : A×X → {−1, 1} with n = log2 |X | is a (k, ℓ)-L2 extractor with error 2−r, if for every
distribution P over X with ∥P∥2 ≤ 2ℓ · 2−n/2, there are at most 2−k · |A| rows a ∈ A such that

|⟨Ma, P ⟩| ≥ 2−r.

3.2 Anti-Concentration Bound for Quadratic Form on Unit Vectors

Lemma 3.1. There exists an absolute constant c such that following holds. Let σ be a Hermitian
operator over the Hilbert space V = Cd, and let v be a uniformly random unit vector in V. Then
for every ε > 0, we have

Pr

[
|v†σv| ≤ ε∥σ∥2

d

]
≤ c

√
ε+ e−d.

Proof. Let g = (g1, . . . , gd) ∼ N (0, 1)d be standard Gaussians. Notice that ∥g∥22 follows χ2
d-

distribution, and |g†σg|/∥g∥22 is equidistributed as |v†σv|. Therefore by union bound we have

Pr
v

[
|v†σv| ≤ ε∥σ∥2

d

]
= Pr

g

[
|g†σg| ≤ ε∥σ∥2 ·

∥g∥22
d

]
≤ Pr

g

[
|g†σg| ≤ 5ε∥σ∥2

]
+ Pr

g

[
∥g∥22 ≥ 5d

]
.
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For the first term, notice that Var[g†σg] = 2Tr[σ2] (see e.g. [RS08, Chapter 5]) which is no smaller
than 2∥σ∥22. Therefore, by Carbery–Wright inequality [CW01], there exists an absolute constant c
such that

Pr
[
|g†σg| ≤ 5ε∥σ∥2

]
≤ Pr

[
|g†σg| ≤ 4εVar[g†σg]1/2

]
≤ c

√
ε.

For the second term, the standard Laurent-Massart bound on χ2-distrbitions [LM00] gives:

Pr
[
∥g∥22 ≥ 5d

]
≤ e−d.

3.3 Multipartite Quantum Systems

The state of q qubits can be represented in a Hilbert space V = (C2)⊗q = C2q . In a product of m
Hilbert spaces V[m] = V1 ⊗ · · · ⊗ Vm, a multipartite partial system V1, . . . , Vm is represented by a
partial density operator ρV[m]

. For a subset I ⊆ [m] of indices, the subsystem on {Vi}i∈I (or VI for

short) is defined by tracing out j /∈ I, that is,

ρVI
= TrVj /∈I

[ρV[m]
].

Now for any two disjoint subsets I, J ⊂ [m], given some |vJ⟩ ∈ VJ =
⊗

j∈J Vj , the conditional
system on VI is defined as

ρVI |vJ =
(
IVI

⊗ ⟨vJ |
)
ρVI∪J

(
IVI

⊗ |vJ⟩
)
,

which is a partial density operator on VI . Note that the trace

Tr
[
ρVI |vJ

]
= ⟨vJ |ρVJ

|vJ⟩

only depends on the system ρ and |vJ⟩, while being independent of the choice of I.
Another simple fact that will be repeatedly used later on is that for an orthogonal basis B of

VJ , we have

ρVI
= TrVJ

[ρVI∪J
] =

∑
|vJ ⟩∈B

ρVI |vJ .

3.4 Classical-Quantum Systems

In the underlying space V1 ⊗ · · · ⊗ Vm of the multipartite system, we say Vi is classical if there is a
fixed orthogonal basis Bi of Vi, such that for every multipartite system ρV[m]

, every pair of distinct

|vi⟩ ≠ |v′i⟩ ∈ Bi and every two states |v⟩, |v′⟩ ∈
⊗

j ̸=i Vj , we have

⟨vi, v|ρV[m]
|v′i, v′⟩ = 0.

Without loss of generality, in the rest of the work we always assume Bi is the set of computational
basis states. We also identify Vi with the discrete set Bi, and remove the Dirac brackets when we
talk about the classical elements in Vi. In this case every multipartite system ρV[m]

can be written

as a direct sum
ρV[m]

=
⊕
vi∈Vi

ρV[m]\{i}|vi .

The reader may find this direct sum viewpoint easier to handle in some later scenarios.
When VI is classical, conditioned on any |vJ⟩ ∈ VJ with J disjoint from I, the system ρVI |vJ

is represented as a diagonal matrix on VI . If Tr[ρVI |vJ ] > 0, it induces a distribution over the
computation basis states of VI , defined as

P ρ
VI |vJ = diag ρVI |vJ/Tr[ρVI |vJ ]. (3)
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In the rest of this paper, whenever we use this notation P ρ
VI |vJ , it is always implicitly assumed that

Tr[ρVI |vJ ] > 0 and the distribution exists.
In this work we typically consider the following scenario: There is a quantum memory register

V ranging in the Hilbert space V, and a classical memory register W ranging in the set of memory
states W, along with some classical information X ∈ X (later in the work, it is the concept to be
learned) that is correlated with V and W . We will make use of the following fact:

Claim 3.2. Let ρXVW be a classical-quantum system over classical X,W and quantum V . For
every w ∈ W, P ρ

X|w is a convex combination of P ρ
X|v,w for some {|v⟩} ⊆ V.

Proof. Let B be an orthogonal basis of V, so that we have (from the end of last section)

ρX|w =
∑
|v⟩∈B

ρX|v,w.

Therefore P ρ
X|w is a linear combination of P ρ

X|v,w for |v⟩ ∈ B, with non-negative coefficients. Since
they are all distributions, it must be a convex combination.

Characterization of operators over classical-quantum hybrid systems. Now we identify
all possible operators on the classical-quantum hybrid memory space V ⊗ W. A priori to the
assumption that W is classical, we think of a quantum channel operating on the system as working
on the underlying space V⊗C|W|. Now we denote TV⊗W to be the set of all such quantum channels
Φ that satisfy the following: for every classical-quantum system ρVW in V ⊗W, W is still classical
in Φ(ρVW ). That is, for every two states |v⟩, |v′⟩ ∈ V and every pair of distinct w,w′ ∈ W, we have

⟨v, w|Φ(ρVW )|v′, w′⟩ = 0.

Note that not all channels in TV⊗W are physically realizable. For instance, with one-bit classical
memory and no quantum memory, the channel(

a c
c b

)
7→
(

a ic
−ic b

)
is not a classical operator. However, since we are constrained to classical quantum systems, this
channel is effectively equivalent to an identity channel on one-bit classical memory. Generally
speaking, every channel in TV⊗W is equivalent to a channel controlled by W that maps V to
V ⊗W. Below, we prove this observation and use it to show the following claim:

Claim 3.3. Let ρXVW be a classical-quantum system over classical X,W and quantum V . Let
Φ ∈ TV⊗W , and we use Φ(ρ) to denote the system after applying Φ to VW and identity to X.

Then for every |v⟩ ∈ V and w ∈ W, P
Φ(ρ)
X|v,w is a convex combination of P ρ

X|v′,w′ for some {|v′⟩} ⊆ V
and {w′} ⊆ W.

One difference between Claim 3.2 and Claim 3.3 is that in Claim 3.3 it is not always possible

to write P
Φ(ρ)
X|v,w as a convex combination of P ρ

X|v′,w′ for |v′⟩ from an orthogonal basis of V. But it
is always possible in Claim 3.2. Although the difference does not matter in this work, we mention
it here for clarity.

Proof. Since Φ ∈ TV⊗W , the following channel is functionally equivalent to Φ for classical-quantum
systems:

Φ′ : ρ →
∑
w∈W

Φ(ρV |w ⊗ |w⟩⟨w|).
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The physical meaning of Φ′ is to measure W under the computational basis (which should not
change the functionality we care about) and apply Φ.

By defining the channel Φw(·) := Φ(· ⊗ |w⟩⟨w|), the above can be alternatively written as:

Φ′ : ρ →
∑
w∈W

Φw(ρV |w).

Now consider the Kraus representation of each Φw, that is, a finite set of linear operators
Ew,k : V → V ⊗W such that

Φw(ρV |w) =
∑
k

Ew,kρV |wE
†
w,k,

∑
k

E†
w,kEw,k = IV .

We can write

Φ(ρ)X|v,w = Φ′(ρ)X|v,w = (IX ⊗ ⟨v, w|)Φ′(ρ)(IX ⊗ |v, w⟩)

=
∑
w′∈W

∑
k

(IX ⊗ ⟨v, w|Ew′,k)ρXV |w′(IX ⊗ E†
w′,k|v, w⟩)

=
∑
w′∈W

∑
k

∥∥E†
w′,k|v, w⟩

∥∥
2
· ρX|v′,w′

where in each term of the summation, |v′⟩ ∼ E†
w′,k|v, w⟩. Similar to the arguments in Claim 3.2,

P
Φ(ρ)
X|v,w is a convex combination of P ρ

X|v′,w′ .

3.5 Branching Program with Hybrid Memory

For a learning problem that corresponds to the matrix M , a branching program of hybrid memory
with m-bit classical memory, q-qubit quantum memory and length T is specified as follows.

At each stage 0 ≤ t ≤ T , the memory state of the branching program is described as a

classical-quantum system ρ
(t)
VW over quantum memory space V = (C2)⊗q and classical memory

space W = {0, 1}m. The memory state evolves based on the samples that the branching program
receives, and therefore depends on the unknown element x ∈R X . We can then interpret the overall
systems over XVW , in which X consists of an unknown concept x, resulting in a classical-quantum

system ρ
(t)
XVW . It always holds that the distribution of x is uniform, i.e.,

ρ
(t)
X = TrVW [ρ

(t)
XVW ] =

1

2n
IX .

Initially the memory VW is independent of X and can be arbitrarily initialized. We assume that

ρ
(0)
XVW =

1

2n
IX ⊗ 1

2q
IV ⊗ 1

2m
IW .

At each stage 0 ≤ t < T , the branching program receives a sample (a, b), where a ∈R A and
b = M(a, x), and applies an operation Φt,a,b ∈ TV⊗W over its memory state. Thus the evolution of
the entire system can be written as

ρ
(t+1)
XVW = E

a∈RA

[∑
x∈X

|x⟩⟨x| ⊗ Φt,a,M(a,x)

(
ρ
(t)
VW |x

)]
.

Finally, at stage t = T , a measurement over the computational bases is applied on ρ
(T )
VW , and

the branching program outputs an element x̃ ∈ X as a function of the measurement result
(v, w) ∈ {0, 1}q+m. The success probability of the program is the probability that x̃ = x which can
be formulated as ∑

x∈X ,v∈{0,1}q ,w∈W
x̃(v,w)=x

⟨x, v, w|ρ(T )
XVW |x, v, w⟩.
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4 Main Result

Theorem 2. Let X ,A be two finite sets with n = log2 |X |. Let M : A×X → {−1, 1} be a matrix
which is a (k′, ℓ′)-L2 extractor with error 2−r′ for sufficiently large k′, ℓ′ and r′, where ℓ′ ≤ n. Let

r = min

{
1

4
r′,

1

26
ℓ′ +

1

6
,
1

2
(k′ − 1)

}
.

Let ρ be a branching program for the learning problem corresponding to M , described by classical-

quantum systems ρ
(t)
XVW , with q-qubit quantum memory V , m-bit classical memory W and length

T . If m ≤ 1
44(k

′ − 1)ℓ′, q ≤ r − 7 and T ≤ 2r−2, the success probability of ρ is at most O(2q−r).

From now on we let k = k′ − 1 and ℓ = 1
5(ℓ

′ − 13r− 2). Then we have the following inequalities
to be used later:

q + r + 1− r′ ≤ −2r. (4)

2ℓ+ 9r − n ≤ −r. (5)

(k − r)ℓ ≥ 2m+ 4r + 1. (6)

We leave a detailed calculation for the above inequalities in Appendix A.

4.1 Truncated Classical-Quantum Systems

Here we describe how to truncate a partial classical-quantum system ρXVW according to some
property G(v, w) of desire on ρX|v,w. The goal is to remove the parts of ρXVW where G is not
satisfied. We execute the following procedure:

1. Maintain a partial system ρ′XVW initialized as ρXVW , and subspaces Vw ⊆ V initialized as V
for each w ∈ W.

2. Pick w ∈ W and |v⟩ ∈ Vw such that Tr[ρ′X|v,w] > 0 and G(v, w) is false.

3. Change the partial system ρ′XVW into the following system by projection:(
IX ⊗ (IVW − |v, w⟩⟨v, w|)

)
ρ′XVW

(
IX ⊗ (IVW − |v, w⟩⟨v, w|)

)
,

and change Vw to its subspace orthogonal to |v⟩, that is

{|v′⟩ ∈ Vw | ⟨v|v′⟩ = 0}.

4. Repeat from step 2 until there is no such w and |v⟩. Denote the final system as ρ
|G
XVW .

In step 2 we pick w and |v⟩ arbitrarily as long as it satisfies the requirements, however we could
always think of it as iterating over w ∈ W and processing each ρXV |w separately. The choices of

|v⟩ for each w do affect the final system ρ
|G
XVW ; Yet as we will see later, these choices are irrelevant

to our proof.
Below, we give two useful lemmas on truncated systems.

Lemma 4.1. For every |v⟩ ∈ V and w ∈ W such that Tr[ρ
|G
X|v,w] > 0, there exists |v′⟩ in the

remaining subspace Vw such that

P ρ|G

X|v,w = P ρ
X|v′,w = P ρ|G

X|v′,w.
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Proof. It suffices to prove the lemma with one round of the truncation procedure executed. Suppose
the |v1, w1⟩ is picked in step 2, resulting in the partial system

ρ′XVW =
(
IX ⊗ (IVW − |v1, w1⟩⟨v1, w1|)

)
ρXVW

(
IX ⊗ (IVW − |v1, w1⟩⟨v1, w1|)

)
.

We can write

ρ′X|v,w =
(
IX ⊗ ⟨v, w|

)
ρ′XVW

(
IX ⊗ |v, w⟩

)
=
(
IX ⊗ (⟨v, w| − ⟨v, w|v1, w1⟩⟨v1, w1|)

)
ρXVW

(
IX ⊗ (|v, w⟩ − |v1, w1⟩⟨v1, w1|v, w⟩)

)
.

• If w ̸= w1, then
ρ′X|v,w =

(
IX ⊗ ⟨v, w|

)
ρXVW

(
IX ⊗ |v, w⟩

)
= ρX|v,w.

And the lemma holds directly by choosing |v′⟩ = |v⟩.

• If w = w1, then with ⟨v1, w1|v, w⟩ = ⟨v1|v⟩ = λ, we have

ρ′X|v,w =
(
IX ⊗ (⟨v| − λ⟨v1|)⟨w|

)
ρXVW

(
IX ⊗ (|v⟩ − λ|v1⟩)|w⟩

)
.

By the fact that Tr[ρ
|G
X|v,w] > 0, we must have |v⟩ ≠ |v1⟩. Therefore if we let |v′⟩ ∼ |v⟩−λ|v1⟩,

which is the normalized projection of |v⟩ onto the orthogonal subspace of |v1⟩, the above

equality implies that P ρ′

X|v,w = P ρ
X|v′,w. Meanwhile, since ⟨v1|v′⟩ = 0 we have ρ′X|v′,w = ρX|v′,w,

which completes the proof.

A direct corollary of the above lemma is that if G(v, w) only depends on the distribution P ρ
X|v,w,

then G(v, w) holds for every |v⟩ ∈ V and w ∈ W in the truncated system ρ
|G
XVW , even when |v⟩ is

not in the remaining subspace Vw.
Our second lemma is based on the following fact that bounds the trace distance of a partial

system and its projection, whose proof can be found in the Appendix B.

Proposition 4.2. For every partial system ρ and projection operator Π on ρ, we have∥∥ρ−ΠρΠ
∥∥2
Tr

≤ 4Tr[ρ]2 − 4Tr[Πρ]2.

Lemma 4.3. For each w ∈ W , let |v1⟩, . . . , |vd⟩ be the states picked in step 2 within Vw. Then∥∥ρXV |w − ρ
|G
XV |w

∥∥
Tr

≤ 3
d∑

i=1

√
Tr[ρX|vi,w]Tr[ρXV |w].

Proof. In Proposition 4.2, take ρ to be ρXV |w, and Π to be

IX ⊗
d∏

i=1

(IV − |vi⟩⟨vi|) = IX ⊗

(
IV −

d∑
i=1

|vi⟩⟨vi|

)
.

Then ΠρΠ = ρ
|G
XV |w and Tr[Πρ] = Tr[ρXV |w]−

∑d
i=1Tr[ρX|vi,w]. Therefore we have∥∥ρXV |w − ρ

|G
XV |w

∥∥
Tr

≤
√
4Tr[ρ]2 − 4Tr[Πρ]2

≤
√
8(Tr[ρ]− Tr[Πρ])Tr[ρ]

=

√√√√8

d∑
i=1

Tr[ρX|vi,w]Tr[ρXV |w]

≤ 3
d∑

i=1

√
Tr[ρX|vi,w]Tr[ρXV |w].
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Since Tr[ρXV |w] ≤ 1 always holds, by summing over all w ∈ W we get the following corollary:

Corollary 4.4. Let |v1, w1⟩, . . . , |vd, wd⟩ be all of the memory states picked in step 2. Then

∥∥ρXVW − ρ
|G
XVW

∥∥
Tr

≤ 3
d∑

i=1

√
Tr[ρX|vi,wi

].

4.2 Truncated Branching Program

The properties that we desire for the partial system ρXVW consist of three parts:

• Small L2 norm: Let G2(v, w) be the property that∥∥P ρ
X|v,w

∥∥
2
≤ 2ℓ · 2−n/2.

• Small L∞ norm: Let G∞(v, w) be the property that∥∥P ρ
X|v,w

∥∥
∞ ≤ 22ℓ+9r · 2−n.

• Even division: For every a ∈ A, let Ga(v, w) be the property that

|⟨Ma, P
ρ
X|v,w⟩| ≤ 2−r.

Now we define the truncated branching program, by specifying the truncated partial classical-

quantum system τ
(t)
XVW for each stage t. Initially let τ

(0)
XVW = ρ

(0)
XVW . For each stage 0 ≤ t ≤ T , the

truncation consists of three ingredients (below we ignore the superscripts on P for convenience):

1. Remove parts where
∥∥PX|v,w

∥∥
2
is large. That is, let τ

(t,⋆)
XVW = τ

(t)|G2

XVW .

2. Remove parts where
∥∥PX|v,w

∥∥
∞ is large. This is done by two steps.

- First, let g ∈ {0, 1}X⊗W be an indicator vector such that g(x,w) = 1 if and only if

Tr[τ
(t,⋆)
X|w ] > 0 and P τ (t,⋆)

X|w (x) ≤ 22ℓ+5r · 2−n.

Let τ
(t,◦)
XVW = (gg† ⊗ IV )τ

(t,⋆)
XVW (gg† ⊗ IV ), where gg† is the projection operator acting on

X ⊗W.

- To make sure that the distributions did not change a lot after the projection gg†, for
each 0 ≤ t < T , let Gt(v, w) be the property that

Tr[τ
(t,◦)
X|v,w] ≥ (1− 2−r)Tr[τ

(t,⋆)
X|v,w].

Let τ
(t,∞)
XVW = τ

(t,◦)|G∞∧Gt

XVW .

3. For each a ∈ A, remove (only for this a) parts where PX|v,w is not evenly divided by a. That

is, for each a ∈ A, let τ
(t,a)
XVW = τ

(t,∞)|Ga

XVW .

Then, if t < T , for each a ∈R A we evolve the system by applying the sample operations Φt,a,b as

the original branching program on τ
(t,a)
XVW , so that we have

τ
(t+1)
XVW = E

a∈RA

[∑
x∈X

|x⟩⟨x| ⊗ Φt,a,M(a,x)

(
τ
(t,a)
VW |x

)]
.
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4.3 Bounding the Truncation Difference

In order to show that the success probability of the original branching program ρ(t) is low, the plan
is to prove an upper bound on the success probability of the truncated branching program τ (t), and
bound the difference between the two probabilities.

Here we bound the difference by the trace distance between the two systems ρ
(t)
XVW and τ

(t)
XVW .

We will show that the contribution to the trace distance from each one of the truncation ingredients
is small, and in addition the evolution preserves the trace distance.

4.3.1 Truncation by G2

Lemma 4.5. For every 0 ≤ t ≤ T , |v⟩ ∈ V and w ∈ W such that G2(v, w) is violated (that is,∥∥P τ (t)

X|v,w
∥∥
2
> 2ℓ · 2−n/2), we must have Tr[τ

(t)
X|v,w] < 2−2m · 2−4r.

The lemma says, for any direction |v, w⟩ picked by the truncation procedure, the weight will be
small and the truncation will not change the state significantly.

Proof. This is our main technical lemma and we defer the proof to Section 5.

Since there are at most 2q+m such directions picked in the truncation procedure, we conclude
the following corollary.

Corollary 4.6. For every 0 ≤ t ≤ T , we have
∥∥τ (t,⋆)XVW − τ

(t)
XVW

∥∥
Tr

≤ 3 · 2q−2r.

Proof. Recall that τ
(t,⋆)
XVW = τ

(t)|G2

XVW . Since dim(V ⊗ W) = 2q+m, the truncation lasts for at most

2q+m rounds. Since in every round the picked |v, w⟩ has Tr[τ (t)X|v,w] < 2−2m · 2−4r, by Corollary 4.4
we have ∥∥τ (t,⋆)XVW − τ

(t)
XVW

∥∥
Tr

≤ 3 · 2q+m ·
√
2−2m · 2−4r = 3 · 2q−2r.

4.3.2 Truncation by G∞

Lemma 4.7. For every 0 ≤ t ≤ T and w ∈ W we have∑
x∈X

g(x,w)=0

P τ (t,⋆)

X|w (x) ≤ 2−5r.

Proof. By Claim 3.2, P τ (t,⋆)

X|w is a convex combination of P τ (t,⋆)

X|v,w. From Lemma 4.1 we know that

G2(P
τ (t,⋆)

X|v,w) holds for every |v⟩ and w, and thus by convexity of ℓ2-norms we know that G2(P
τ (t,⋆)

X|w )
also holds. That means

E
x∼P τ(t,⋆)

X|w

[
P τ (t,⋆)

X|w (x)
]
=
∥∥P τ (t,⋆)

X|w
∥∥2
2
≤ 22ℓ · 2−n.

Therefore, by Markov’s inequality we have∑
x∈X

g(x,w)=0

P τ (t,⋆)

X|w (x) = Pr
x∼P τ(t,⋆)

X|w

[
P τ (t,⋆)

X|w (x) > 22ℓ+5r · 2−n
]
≤ 2−5r.

Corollary 4.8. For every 0 ≤ t ≤ T and every w ∈ W, we have τ
(t,◦)
XV |w ≤ τ

(t,⋆)
XV |w, and

Tr[τ
(t,◦)
XV |w] ≥ (1− 2−5r) · Tr[τ (t,⋆)XV |w].

Moreover, we have
∥∥τ (t,◦)XVW − τ

(t,⋆)
XVW

∥∥
Tr

≤ 2−5r.
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Proof. Since X and W are both classical and τ
(t,◦)
XVW = (gg† ⊗ IV )τ

(t,⋆)
XVW (gg† ⊗ IV ), we have

τ
(t,⋆)
XV |w − τ

(t,◦)
XV |w =

∑
x∈X

g(x,w)=0

|x⟩⟨x| ⊗ τ
(t,⋆)
V |x,w,

which is positive semi-definite. Recalling that (Equation (3))

Tr[τ
(t,⋆)
V |x,w] = ⟨x,w|τ (t,⋆)XW |x,w⟩ = diag τ

(t,⋆)
X|w (x) = P τ (t,⋆)

X|w (x)Tr[τ
(t,⋆)
X|w ],

we have

Tr[τ
(t,⋆)
XV |w]− Tr[τ

(t,◦)
XV |w] =

∑
x∈X

g(x,w)=0

Tr[τ
(t,⋆)
V |x,w] =

∑
x∈X

g(x,w)=0

P τ (t,⋆)

X|w (x) · Tr[τ (t,⋆)X|w ] ≤ 2−5r · Tr[τ (t,⋆)X|w ].

And therefore, as τ
(t,◦)
XVW − τ

(t,⋆)
XVW is positive semi-definite, we have∥∥τ (t,◦)XVW − τ

(t,⋆)
XVW

∥∥
Tr

=
∑
w∈W

Tr[τ
(t,⋆)
XV |w]− Tr[τ

(t,◦)
XV |w] ≤ 2−5r

∑
w∈W

Tr[τ
(t,⋆)
X|w ] ≤ 2−5r.

Lemma 4.9. For every 0 ≤ t ≤ T , |v⟩ ∈ V and w ∈ W such that G∞(v, w) is violated (that is,∥∥P τ (t,◦)

X|v,w
∥∥
∞ > 22ℓ+9r · 2−n) or Gt(v, w) is violated (that is, Tr[τ

(t,◦)
X|v,w] < (1 − 2−r)Tr[τ

(t,⋆)
X|v,w]), we

must have Tr[τ
(t,◦)
X|v,w] < 2 · 2−4r · Tr[τ (t,◦)X|w ].

Proof. If G∞(v, w) is violated, let x ∈ X be the one such that P τ (t,◦)

X|v,w(x) > 22ℓ+9r ·2−n. If g(x,w) = 0

then P τ (t,◦)

X|w (x) = 0, while if g(x,w) = 1 then by Corollary 4.8,

P τ (t,◦)

X|w (x) ≤
Tr[τ

(t,⋆)
X|w ]

Tr[τ
(t,◦)
X|w ]

· 22ℓ+5r · 2−n ≤ (1− 2−5r)−1 · 22ℓ+5r · 2−n.

Hence we always have

Tr[τ
(t,◦)
X|v,w] ≤

P τ (t,◦)

X|w (x)

P τ (t,◦)
X|v,w(x)

· Tr[τ (t,◦)X|w ] ≤ 2 · 2−4r · Tr[τ (t,◦)X|w ],

where the first inequality comes from the fact that τ
(t,◦)
X|w ≥ τ

(t,◦)
X|v,w and Equation (3).

If Gt(v, w) is violated, since we know from Corollary 4.8 that∣∣∣Tr[τ (t,◦)X|v,w]− Tr[τ
(t,⋆)
X|v,w]

∣∣∣ ≤ ∥∥τ (t,◦)XV |w − τ
(t,⋆)
XV |w

∥∥
Tr

≤ 2−5r · Tr[τ (t,⋆)XV |w]

≤ 2−5r · (1− 2−5r)−1 · Tr[τ (t,◦)XV |w],

therefore from Tr[τ
(t,◦)
X|v,w] < (1− 2−r)Tr[τ

(t,⋆)
X|v,w] we deduce that

Tr[τ
(t,◦)
X|v,w] < (2r − 1) ·

(
Tr[τ

(t,⋆)
X|v,w]− Tr[τ

(t,◦)
X|v,w]

)
≤ (2r − 1) · 2−5r · (1− 2−5r)−1 · Tr[τ (t,◦)XV |w]

< 2 · 2−4r · Tr[τ (t,◦)X|w ].

Corollary 4.10. For every 0 ≤ t ≤ T , we have
∥∥τ (t,∞)

XVW − τ
(t,◦)
XVW

∥∥
Tr

≤ 5 · 2q−2r.

Proof. Recall that τ
(t,∞)
XVW = τ

(t,◦)|G∞∧Gt

XVW . For each w ∈ W, the truncation picks at most dimV = 2q

states |v, w⟩, each with Tr[τ
(t,◦)
X|v,w] < 2 · 2−4r · Tr[τ (t,◦)X|w ]. Therefore by applying Lemma 4.3 for each

w ∈ W, we have ∥∥τ (t,∞)
XVW − τ

(t,◦)
XVW

∥∥
Tr

≤ 3 ·
∑
w∈W

2q ·
√
2 · 2−4r · Tr[τ (t,◦)X|w ] ≤ 5 · 2q−2r.
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4.3.3 Truncation by Ga

Notice that in the truncation step from τ (t,⋆) to τ (t,◦), the distribution P τ (t,⋆)

X|v,w might change and
not satisfy G2 anymore. However, with the truncation by Gt, any such distribution that changes
too much is eliminated, and we have the following guarantee.

Lemma 4.11. For every 0 ≤ t ≤ T , |v⟩ ∈ V and w ∈ W, we have∥∥P τ (t,∞)

X|v,w
∥∥
2
≤ (1− 2−r)−1 · 2ℓ · 2−n/2.

Proof. By Lemma 4.1, there exists |v′⟩ ∈ V such that P τ (t,∞)

X|v,w = P τ (t,∞)

X|v′,w = P τ (t,◦)

X|v′,w. The truncation

by Gt ensures that Tr[τ
(t,◦)
X|v′,w] ≥ (1− 2−r)Tr[τ

(t,⋆)
X|v′,w], and therefore

∥∥P τ (t,∞)

X|v,w
∥∥
2
=
∥∥P τ (t,◦)

X|v′,w
∥∥
2
=

∥∥diag τ (t,◦)X|v′,w
∥∥
2

Tr[τ
(t,◦)
X|v′,w]

≤

∥∥diag τ (t,⋆)X|v′,w
∥∥
2

(1− 2−r)Tr[τ
(t,⋆)
X|v′,w]

≤ (1− 2−r)−1 · 2ℓ · 2−n/2.

Lemma 4.12. For every partial classical-quantum system τXV over X ⊗ V such that
∥∥P τ

X|v
∥∥
2
≤

2ℓ
′ · 2−n/2 holds for every |v⟩ ∈ V, we have

Pr
a∈RA

[
∃|v⟩ ∈ V, |⟨Ma, P

τ
X|v⟩| ≥ 2−r

]
≤ 2−2r.

Proof. Notice that we can think of τV = TrX [τXV ] to be IV . This is because we can first assume
that τV is full rank (otherwise change V to its subspace and the conclusion in this lemma still
holds), and if we have diagonalization Q†τV Q = IV for some non-singular Q, then consider the new
system

τ ′XV = (IX ⊗Q†)τXV (IX ⊗Q),

and the set of distributions {P τ
X|v} and {P τ ′

X|v} over |v⟩ ∈ V are the same, since P τ ′

X|v = P τ
X|v′ for

|v′⟩ ∼ Q|v⟩. With τV = IV we have Tr[τX|v] = 1 for every |v⟩ ∈ V, and thus P τ
X|v = diag τX|v.

Let A′ ⊆ A be the set of a ∈ A such that there exists |v⟩ ∈ V with |⟨Ma, P
τ
X|v⟩| ≥ 2−r. For

each a ∈ A′, let
σa = TrX [(DiagMa ⊗ IV )τXV ]

which is a Hermitian operator on V. There exists |v⟩ ∈ V such that

|⟨v|σa|v⟩| = |⟨Ma, diag τX|v⟩| = |⟨Ma, P
τ
X|v⟩| ≥ 2−r,

which means that ∥σa∥2 ≥ 2−r. Now let |u⟩ be a uniformly random unit vector in V, and by
Lemma 3.1 we know that for some absolute constant c,

Pr
|u⟩

[
|⟨u|σa|u⟩| ≥ 2−r′

]
≥ 1− 2(q+r−r′)/2c− e−2q ≥ 1− 2−rc− e−1 ≥ 1/2.

The second last inequality comes from Eq. (4), while the last inequality is because of the assumption
that r is sufficiently large.

Since the above holds for every a ∈ A′, it implies that Pra∈A′,|u⟩[|⟨u|σa|u⟩| ≥ 2−r′ ] is at least

1/2. It means that there exists some |u⟩ ∈ V such that |⟨u|σa|u⟩| ≥ 2−r′ for at least half of a ∈ A′.
On the other hand, since M is a (k′, ℓ′)-extractor with error 2−r′ , and

∥∥P τ
X|u
∥∥
2
≤ 2ℓ

′ · 2−n/2, there

are at most 2−k′ fraction of a ∈ A such that |⟨u|σa|u⟩| = |⟨Ma, P
τ
X|u⟩| ≥ 2−r′ . That means

Pr
a∈RA

[
a ∈ A′] ≤ 2 · 2−k′ ≤ 2−2r.

Here k′ − 1 ≥ 2r, by the definition of r.
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Corollary 4.13. For every 0 ≤ t ≤ T , we have E
a∈RA

∥∥τ (t,a)XVW − τ
(t,∞)
XVW

∥∥
Tr

≤ 2−2r.

Proof. For each w ∈ W, the partial system τ
(t,∞)
XV |w satisfies the condition of Lemma 4.12 since for

every |v⟩ ∈ V, ∥∥P τ (t,∞)

X|v,w
∥∥
2
≤ (1− 2−r)−1 · 2ℓ · 2−n/2 ≤ 2ℓ

′ · 2−n/2.

Notice that for each a ∈ A such that there does not exist |v⟩ ∈ V with |⟨Ma, P
τ (t,∞)

X|v,w ⟩| ≥ 2−r (that

is, when Ga(v, w) holds for every |v⟩ ∈ V), the sub system τ
(t,∞)
XV |w is not touched in the truncation

by Ga and we have τ
(t,a)
XV |w = τ

(t,∞)
XV |w. Therefore

E
a∈RA

∥∥τ (t,a)XVW − τ
(t,∞)
XVW

∥∥
Tr

=
∑
w∈W

E
a∈RA

∥∥τ (t,a)XV |w − τ
(t,∞)
XV |w

∥∥
Tr

≤
∑
w∈W

Pr
a∈RA

[
∃|v⟩ ∈ V, |⟨Ma, P

τ (t,∞)

X|v,w ⟩| ≥ 2−r
]
· Tr[τ (t,∞)

XV |w]

≤ 2−2r ·
∑
w∈W

Tr[τ
(t,∞)
XV |w] ≤ 2−2r.

4.3.4 Evolution preserves trace distance

Lemma 4.14. For every 0 ≤ t < T , we have
∥∥τ (t+1)

XVW − ρ
(t+1)
XVW

∥∥
Tr

≤ E
a∈RA

∥∥τ (t,a)XVW − ρ
(t)
XVW

∥∥
Tr
.

Proof. Recall that

ρ
(t+1)
XVW = E

a∈RA

[∑
x∈X

|x⟩⟨x| ⊗ Φt,a,M(a,x)

(
ρ
(t)
VW |x

)]
,

τ
(t+1)
XVW = E

a∈RA

[∑
x∈X

|x⟩⟨x| ⊗ Φt,a,M(a,x)

(
τ
(t,a)
VW |x

)]
.

Therefore by triangle inequality and contractivity of quantum channels under trace norms,∥∥τ (t+1)
XVW − ρ

(t+1)
XVW

∥∥
Tr

≤ E
a∈RA

∥∥∥∥∥∑
x∈X

|x⟩⟨x| ⊗
(
Φt,a,M(a,x)

(
τ
(t,a)
VW |x

)
− Φt,a,M(a,x)

(
ρ
(t)
VW |x

))∥∥∥∥∥
Tr

= E
a∈RA

∑
x∈X

∥∥∥Φt,a,M(a,x)

(
τ
(t,a)
VW |x

)
− Φt,a,M(a,x)

(
ρ
(t)
VW |x

)∥∥∥
Tr

≤ E
a∈RA

∑
x∈X

∥∥τ (t,a)VW |x − ρ
(t)
VW |x

∥∥
Tr

= E
a∈RA

∥∥τ (t,a)XVW − ρ
(t)
XVW

∥∥
Tr
.

4.4 Proof of Theorem 2

Proof. First, combining Corollaries 4.6, 4.8, 4.10 and 4.13 and Lemma 4.14 we have∥∥τ (t+1)
XVW − ρ

(t+1)
XVW

∥∥
Tr

≤
∥∥τ (t)XVW − ρ

(t)
XVW

∥∥
Tr

+ 8 · 2q−2r + 2−5r + 2−2r.

Since τ
(0)
XVW = ρ

(0)
XVW , by triangle inequality we know that

∥∥τ (T )
XVW − ρ

(T )
XVW

∥∥
Tr

≤ T · 10 · 2q−2r ≤
10 · 2q−r, and thus ∥∥τ (T,∞)

XVW − ρ
(T )
XVW

∥∥
Tr

≤ 10 · 2q−r + 8 · 2q−2r + 2−5r.
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This bounds the difference between the measurement probabilities of τ
(T,∞)
XVW and ρ

(T )
XVW under any

measurement, specifically the difference between the success probability of the branching program
ρ and the following value on τ :∑

x∈X ,v∈{0,1}q ,w∈W
x̃(v,w)=x

⟨x, v, w|τ (T,∞)
XVW |x, v, w⟩ =

∑
v∈{0,1}q ,w∈W

Tr[τ
(T,∞)
X|v,w ] · P τ (T,∞)

X|v,w (x̃(v, w)).

Since
∥∥P τ (T,∞)

X|v,w
∥∥
∞ ≤ 22ℓ+9r ·2−n and Tr[τ

(T,∞)
XVW ] ≤ 1, the above value is at most 22ℓ+9r ·2−n. Therefore

the success probability of the branching program ρ is at most (recall that 2ℓ+ 9r − n ≤ −r)

10 · 2q−r + 8 · 2q−2r + 2−5r + 22ℓ+9r · 2−n = O(2q−r).

5 Proof of Lemma 4.5

The first step towards proving Lemma 4.5 is to analyze how P τ (t)

X|v,w evolves according to the rule

τ
(t+1)
XVW = E

a∈RA

[∑
x∈X

|x⟩⟨x| ⊗ Φt,a,M(a,x)

(
τ
(t,a)
VW |x

)]
.

We introduce the following notations. For every a ∈ A and b ∈ {−1, 1}, let

1a,b =
1

2
(⃗1 + b ·Ma),

which is a 0-1 vector that indicates whether M(a, x) = b. Let

τ
(t,a,b)
XVW = (Diag1a,b ⊗ IVW )τ

(t,a)
XVW , (7)

so that we can write

τ
(t+1)
XVW = E

a∈RA

[
(IX ⊗ Φt,a,1)

(
τ
(t,a,1)
XVW

)
+ (IX ⊗ Φt,a,−1)

(
τ
(t,a,−1)
XVW

)]
. (8)

Thus Claim 3.3 implies that P τ (t+1)

X|v,w is a convex combination of P τ (t,a,b)

X|v′,w′ for some a, b, w′ and |v′⟩.

5.1 Target Distribution and Badness

Before considering the target distribution, let us first establish that the ℓ2-norms of P τ (t)

X|v,w cannot
be too large:

Lemma 5.1. For every 0 ≤ t ≤ T , |v⟩ ∈ V, w ∈ W, we have∥∥P τ (t)

X|v,w
∥∥
2
≤ 4 · 2ℓ · 2−n/2.

Proof. When t = 0 the statement is clearly true as P τ (0)

X|v,w is always uniform.
Now assume t > 0. By Lemma 4.1 and Lemma 4.11 we know that∥∥P τ (t−1,a)

X|v′,w′

∥∥
2
≤ (1− 2−r)−1 · 2ℓ · 2−n/2

for every w′ ∈ W, |v′⟩ ∈ V and a ∈ A, as τ
(t−1,a)
XVW is truncated from τ

(t−1,∞)
XVW . Since Ga(P

τ (t−1,a)

X|v′,w′ ) is
true, meaning that the distribution is evenly divided by a, we further have∥∥P τ (t−1,a,b)

X|v′,w′

∥∥
2
=

∥∥1a,b · P τ (t−1,a)

X|v′,w′

∥∥
2∥∥1a,b · P τ (t−1,a)

X|v′,w′

∥∥
1

≤ 2(1− 2−r)−1 ·
∥∥P τ (t−1,a)

X|v′,w′

∥∥
2
≤ 4 · 2ℓ · 2−n/2.

Since P τ (t)

X|v,w is a convex combination of P τ (t−1,a,b)

X|v′,w′ , by convexity its ℓ2-norm is bounded by

4 · 2ℓ · 2−n/2.
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From now on we use P to denote a fixed target distribution (which we will later choose to be
the distribution in Lemma 4.5), such that

2ℓ · 2−n/2 ≤ ∥P∥2 ≤ 4 · 2ℓ · 2−n/2.

We want to bound the progress of ⟨P τ (t)

X|v,w, P ⟩, which starts off as 2−n at t = 0, and becomes at

least 22ℓ · 2−n when P τ (t)

X|v,w = P . Note that by Cauchy-Schwarz we always have

⟨P τ (t)

X|v,w, P ⟩ ≤
∥∥P τ (t)

X|v,w
∥∥
2

∥∥P∥∥
2
≤ 16 · 22ℓ · 2−n. (9)

In order to bound the progress, we introduce some new notations. For any superscript (such as
(t, a)) on the partial systems, we use σXVW to denote τXVW (DiagP ⊗ IVW ). Notice that

Tr[σX|v,w] = Tr[τX|v,w DiagP ] = Tr[τX|v,w] · ⟨P
τ
X|v,w, P ⟩.

Similarly, P σ
X|v,w can be deduced from P τ

X|v,w via

P σ
X|v,w(x) =

Tr[τX|v,w]

Tr[σX|v,w]
· P τ

X|v,w(x) · P (x) =
P τ
X|v,w(x) · P (x)

⟨P τ
X|v,w, P ⟩

. (10)

Therefore we can bound the ℓ2 norm of P σ
X|v,w as∥∥P σ

X|v,w
∥∥
2
≤ 1

⟨P τ
X|v,w, P ⟩

·
∥∥P τ

X|v,w
∥∥
∞ ·
∥∥P∥∥

2
.

Now we can identity the places where ⟨P τ (t)

X|v,w, P ⟩ increases by a lot, which happens when the

inner product is not evenly divided by some a ∈ A (we will see the reason in the analysis later).
Formally, at stage 0 ≤ t < T , we say (w, a) is bad if

∃|v⟩ ∈ V, s.t. |⟨Ma, P
σ(t,a)

X|v,w⟩| > 2−r and ⟨P τ (t,a)

X|v,w, P ⟩ ≥ 1

2
· 2−n. (11)

Lemma 5.2. For every 0 ≤ t < T and w ∈ W, we have

Pr
a∈RA

[(w, a) is bad] ≤ 2−k.

Proof. Since τ
(t,a)
XVW is truncated from τ

(t,∞)
XVW , Lemma 4.1 shows that for every |v⟩ ∈ V, w ∈ W and

a ∈ A there is |v′⟩ ∈ V such that

P τ (t,a)

X|v,w = P τ (t,∞)

X|v′,w

and by Eq. (10) it also implies that

P σ(t,a)

X|v,w = P σ(t,∞)

X|v′,w.

Now fix some w ∈ W, and let A′ ⊆ A be the set of of a ∈ A such that

∃|v⟩ ∈ V, s.t. |⟨Ma, P
σ(t,∞)

X|v,w ⟩| > 2−r and ⟨P τ (t,∞)

X|v,w , P ⟩ ≥ 1

2
· 2−n.

Then A′ contains all a such that (w, a) is bad, and our goal is to bound the fraction of A′ in A.
In the rest of the proof we temporarily omit the super script and write τ (t,∞) and σ(t,∞) simply

as τ and σ. For the same reason as in Lemma 4.12 we can assume that τV |w = IV , and thus

⟨v|σV |w|v⟩ = Tr[σX|v,w] = ⟨P τ
X|v,w, P ⟩, and Tr[σXV |w] = ⟨P τ

X|w, P ⟩ ≤ 16 · 22ℓ · 2−n.

where the last inequality is by Lemma 4.11 and Cauchy-Schwarz, in the same way as Eq. (9).
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Suppose that we have diagonalization σV |w = U †DU , where U is unitary and D is diagonal and

non-negative. Let V ′ ⊆ V be the subspace spanned by U †|e⟩ over the computational basis vectors
|e⟩ ∈ V such that ⟨e|D|e⟩ ≥ 2−4r · 2−2ℓ · 2−n. So for every |v⟩ ∈ V ′ we have

⟨P τ
X|v,w, P ⟩ = Tr[σX|v,w] ≥ 2−4r · 2−2ℓ · 2−n.

We claim that for every a ∈ A′, there exists |v⟩ ∈ V ′ such that |⟨Ma, P
σ
X|v,w⟩| >

1
2 ·2

−r. To prove

the claim, let Π be the projection operator from V to V ′, and then (IX ⊗ Π)σXV |w(IX ⊗ Π) can

be conceptually seen as a truncated partial system σ
|G
XV |w where G(v, w) holds when Tr[σX|v,w] ≥

2−4r−2ℓ · 2−n for the fixed w. By Lemma 4.3 we have∥∥σ|G
XV |w − σXV |w

∥∥
Tr

≤ 3 · 2q ·
√
2−4r−2ℓ−n · Tr[σXV |w] ≤ 12 · 2q−2r · 2−n.

Since a ∈ A′, assume for |u⟩ ∈ V we have |⟨Ma, P
σ
X|u,w⟩| > 2−r and Tr[σX|u,w] = ⟨P τ

X|u,w, P ⟩ ≥
1
2 · 2−n. Let |v⟩ ∼ Π|u⟩, then we have

∥∥P σ
X|u,w − P σ

X|v,w
∥∥
1
=
∥∥P σ

X|u,w − P σ|G

X|u,w
∥∥
1
≤

∥∥∥∥∥∥
σX|u,w

Tr[σX|u,w]
−

σ
|G
X|u,w

Tr[σ
|G
X|u,w]

∥∥∥∥∥∥
Tr

≤

∥∥∥∥∥∥
σX|u,w

Tr[σX|u,w]
−

σ
|G
X|u,w

Tr[σX|u,w]

∥∥∥∥∥∥
Tr

+

∥∥∥∥∥∥
σ
|G
X|u,w

Tr[σX|u,w]
−

σ
|G
X|u,w

Tr[σ
|G
X|u,w]

∥∥∥∥∥∥
Tr

=

∥∥∥∥∥∥
σX|u,w

Tr[σX|u,w]
−

σ
|G
X|u,w

Tr[σX|u,w]

∥∥∥∥∥∥
Tr

+

∣∣∣∣∣∣ 1

Tr[σX|u,w]
− 1

Tr[σ
|G
X|u,w]

∣∣∣∣∣∣ · Tr[σ|G
X|u,w]

=

∥∥σX|u,w − σ
|G
X|u,w

∥∥
Tr

Tr[σX|u,w]
+

∣∣∣Tr[σ|G
X|u,w]− Tr[σX|u,w]

∣∣∣
Tr[σX|u,w]

≤
2
∥∥σX|u,w − σ

|G
X|u,w

∥∥
Tr

Tr[σX|u,w]
≤

2
∥∥σXV |w − σ

|G
XV |w

∥∥
Tr

Tr[σX|u,w]
≤ 48 · 2q−2r ≤ 1

2
· 2−r,

where the last step is due to q ≤ r − 7. Thus

|⟨Ma, P
σ
X|v,w⟩| ≥ |⟨Ma, P

σ
X|u,w⟩| −

∥∥P σ
X|u,w − P σ

X|v,w
∥∥
1
>

1

2
· 2−r.

Similarly to the proof for Lemma 4.12, for each a ∈ A′ let

πa = TrX [(DiagMa ⊗ U †D−1/2U) · σXV |w · (IX ⊗ U †D−1/2U)]

which is a Hermitian operator on V. For each |v⟩ ∈ V, let |v′⟩ ∼ U †D1/2U |v⟩. Recall that
σV |w = U †DU , and therefore

P σ
X|v,w =

diag (IX ⊗ ⟨v|)σXV |w(IX ⊗ |v⟩)
⟨v|σV |w|v⟩

=
diag (IX ⊗ ⟨v′|U †D−1/2U)σXV |w(IX ⊗ U †D−1/2U |v′⟩)

⟨v′|U †D−1/2UσV |wU
†D−1/2U |v′⟩

= diag (IX ⊗ ⟨v′|U †D−1/2U)σXV |w(IX ⊗ U †D−1/2U |v′⟩).
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And that means

⟨v′|πa|v′⟩ =
〈
Ma, diag (IX ⊗ ⟨v′|U †D−1/2U)σXV |w(IX ⊗ U †D−1/2U |v′⟩)

〉
= ⟨Ma, P

σ
X|v,w⟩.

We showed above that there exists |v⟩ ∈ V ′, and thus |v′⟩ ∈ V ′ such that

|⟨v′|πa|v′⟩| =
∣∣∣⟨Ma, P

σ
X|v,w⟩

∣∣∣ ≥ 1

2
· 2−r,

which means that for ΠπaΠ, the restriction of πa on V ′, we have ∥ΠπaΠ∥2 ≥ 1
2 · 2

−r. Now consider
a uniformly random unit vector |v′⟩ in V ′, and by Lemma 3.1 we know that for some absolute
constant c,

Pr
|v⟩′

[
|⟨v′|σa|v′⟩| ≥ 2−r′

]
≥ 1− 2(q+r+1−r′)/2c− e−2q ≥ 1− 2−rc− e−1 ≥ 1

2
.

Therefore, for the random vector |v⟩ ∼ U †D−1/2U |v′⟩ where |v′⟩ is uniform in V ′, we conclude that

Pr
|v⟩

[
|⟨Ma, P

σ
X|v,w⟩| ≥ 2−r′

]
≥ 1

2
.

On the other hand, as |v′⟩ ∈ V ′, it also holds that |v⟩ ∈ V ′, therefore ⟨P τ
X|v,w, P ⟩ ≥ 2−4r · 2−2ℓ · 2−n

is always true. Thus there exists a |v⟩ ∈ V that simultaneously satisfies

⟨P τ
X|v,w, P ⟩ ≥ 2−4r · 2−2ℓ · 2−n and |⟨Ma, P

σ
X|v,w⟩| ≥ 2−r′

for at least 1/2 of a ∈ A′. Since∥∥P σ
X|v,w

∥∥
2
≤ 1

⟨P τ
X|v,w, P ⟩

·
∥∥P τ

X|v,w
∥∥
∞ ·
∥∥P∥∥

2
≤ 4 · 25ℓ+13r · 2−n/2 = 2ℓ

′ · 2−n/2,

and M is a (k′, ℓ′)-extractor with error 2−r′ , there are at most 2−k′ fraction of a ∈ A such that
|⟨Ma, P

σ
X|v′,w⟩| ≥ 2−r′ , which means that

Pr
a∈RA

[(w, a) is bad] ≤ Pr
a∈RA

[a ∈ A′] ≤ 2 · 2−k′ = 2−k.

5.2 Badness Levels

At stage t, for each classical memory state w ∈ W we count how many times the path to it has
been bad, which is a random variable depending on the previous random choices of a ∈ A. This is
stored in another classical register B, which we call badness level and takes values β ∈ {0, . . . , T}.
It is initially set to be 0, that is, we let

τ
(0)
XVWB = τ

(0)
XVW ⊗ |0⟩⟨0|B.

We ensure that the distribution of B always only depends on W and is independent of X and V
conditioned on W , using the following updating rules on the combined system τXVWB for each
stage 0 ≤ t < T :

• The truncation steps are executed independently of B. Therefore, for each a ∈ A we let

τ
(t,a)
XVWB =

∑
w∈W

τ
(t,a)
XV |w ⊗ |w⟩⟨w| ⊗DiagP τ (t)

B|w. (12)
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• The value of B updates before the evolution step, where for each a ∈ A and b ∈ {−1, 1} we
let

τ
(t,a,b)
XVWB = (Diag1a,b ⊗ IV ⊗ Ua)τ

(t,a)
XVWB(IXV ⊗ U †

a).

Here Ua is a permutation operator, depending on τ
(t,a)
XVW , acting on W ⊗{0, . . . , T} such that

Ua|w⟩|β⟩ =
{

|w⟩|(β + 1)mod(T + 1)⟩ if (w, a) is bad,
|w⟩|β⟩ otherwise.

• For the evolution step, we apply the channels Φt,a,b on the memories W and V to get

τ
(t+1)
XVWB = E

a∈RA

[
(IX ⊗ Φt,a,1 ⊗ IB)

(
τ
(t,a,1)
XVWB

)
+ (IX ⊗ Φt,a,−1 ⊗ IB)

(
τ
(t,a,−1)
XVWB

)]
.

Notice that the evolution step might introduce dependencies between X,V and B. However, such
dependencies are eliminated later due to how we handle the truncation steps (12), and thus do not
affect our proof.

We can check that the combined partial system τ
(t)
XVWB defined above is consistent with the

partial system τ
(t)
XVW that we discussed in previous sections, in the sense that TrB[τ

(t)
XVWB] = τ

(t)
XVW

always holds:

• For the truncation step, it is straightforward to check that

TrB[τ
(t,a)
XVWB] =

∑
w∈W

τ
(t,a)
XV |w ⊗ |w⟩⟨w| = τ

(t,a)
XVW .

• The permutation operator Ua acts on W as identity since

TrB

[
Ua|w, β⟩⟨w, β|U †

a

]
= |w⟩⟨w|.

Recalling Eq. (7) that τ
(t,a,b)
XVW = (Diag1a,b ⊗ IV )τ

(t,a)
XVW , we have TrB[τ

(t,a,b)
XVWB] = τ

(t,a,b)
XVW .

• The evolution step can be checked directly from the formula without B (Eq. (8)):

τ
(t+1)
XVW = E

a∈RA

[
(IX ⊗ Φt,a,1)

(
τ
(t,a,1)
XVW

)
+ (IX ⊗ Φt,a,−1)

(
τ
(t,a,−1)
XVW

)]
.

So all previously proved properties about τ
(t)
XVW are preserved. In addition, we prove the following

two properties about badness levels.

Lemma 5.3. For every 0 ≤ t ≤ T , |v⟩ ∈ V and w ∈ W, we have

⟨P τ (t)

X|v,w, P ⟩ ≤
T∑

β=0

P τ (t)

B|w(β) · 2
β · 2−n · (1− 2−r)−3t.

Proof. We prove it by induction on t. For t = 0 the lemma is true as ⟨P τ (t)

X|v,w, P ⟩ = 2−n and

P τ (t)

B|w(0) = 1.
Suppose the lemma holds true for some t < T . By a similar argument as in Lemma 4.11 and

applying Lemma 4.1 multiple times, we know that for every |v⟩ ∈ V, w ∈ W and a ∈ A, there exists
|v′⟩and |v′′⟩ ∈ V such that

⟨P τ (t,a)

X|v,w, P ⟩ = ⟨P τ (t,◦)

X|v′,w, P ⟩ ≤ (1− 2−r)−1⟨P τ (t,⋆)

X|v′,w, P ⟩ = (1− 2−r)−1⟨P τ (t)

X|v′′,w, P ⟩,
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and therefore

⟨P τ (t,a)

X|v,w, P ⟩ ≤
T∑

β=0

P τ (t)

B|w(β) · 2
β · 2−n · (1− 2−r)−3t−1. (13)

Also, the truncation step by Ga implies that |⟨Ma, P
τ (t,a)

X|v,w⟩| ≤ 2−r. That is, for both b ∈ {−1, 1},

1− 2−r ≤ 2
∥∥1a,b · P τ (t,a)

X|v,w
∥∥
1
≤ 1 + 2−r.

Therefore we have, unconditionally

⟨P τ (t,a,b)

X|v,w , P ⟩ =
⟨1a,b · P τ (t,a)

X|v,w, P ⟩∥∥1a,b · P τ (t,a)

X|v,w
∥∥
1

≤ 2(1− 2−r)−1 · ⟨P τ (t,a)

X|v,w, P ⟩. (14)

When the inner product is evenly divided, i.e. |⟨Ma, P
σ(t,a)

X|v,w⟩| ≤ 2−r, we further have

⟨1a,b · P τ (t,a)

X|v,w, P ⟩ ≤ 1

2
(1 + 2−r)⟨P τ (t,a)

X|v,w, P ⟩ ≤ 1

2
(1− 2−r)−1⟨P τ (t,a)

X|v,w, P ⟩,

which means that

⟨P τ (t,a,b)

X|v,w , P ⟩ =
⟨1a,b · P τ (t,a)

X|v,w, P ⟩∥∥1a,b · P τ (t,a)

X|v,w
∥∥
1

≤ (1− 2−r)−2 · ⟨P τ (t,a)

X|v,w, P ⟩. (15)

Now there are three cases to discuss:

• If (w, a) is bad, we have P τ (t,a,b)

B|w (β) = P τ (t)

B|w(β − 1) for every β > 0. Notice that P τ (t)

B|w(T ) = 0

as t < T , and thus Eq. (13) and Eq. (14) imply that

⟨P τ (t,a,b)

X|v,w , P ⟩ ≤
T−1∑
β=0

P τ (t)

B|w(β) · 2
β+1 · 2−n · (1− 2−r)−3t−2

≤
T∑

β=0

P τ (t,a,b)

B|w (β) · 2β · 2−n · (1− 2−r)−3(t+1).

• If (w, a) is not bad and |⟨Ma, P
σ(t,a)

X|v,w⟩| ≤ 2−r, we have P τ (t,a,b)

B|w (β) = P τ (t)

B|w(β) for every β ≥ 0.

Then Eq. (13) and Eq. (15) imply that

⟨P τ (t,a,b)

X|v,w , P ⟩ ≤
T∑

β=0

P τ (t)

B|w(β) · 2
β · 2−n · (1− 2−r)−3t−3

=
T∑

β=0

P τ (t,a,b)

B|w (β) · 2β · 2−n · (1− 2−r)−3(t+1).

• If (w, a) is not bad and |⟨Ma, P
σ(t,a)

X|v,w⟩| > 2−r, by the definition of badness (11) we must have

⟨P τ (t,a)

X|v,w, P ⟩ < 1
2 · 2−n. Thus by Eq. (14),

⟨P τ (t,a,b)

X|v,w , P ⟩ < (1− 2−r)−1 · 2−n ≤
T∑

β=0

P τ (t,a,b)

B|w (β) · 2β · 2−n · (1− 2−r)−3(t+1).
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The last inequality follows from
∑T

β=0 P
τ (t,a,b)

B|w (β) · 2β · 2−n · (1− 2−r)−3(t+1) ≥ 2−n(1− 2−r)−3(t+1).
Hence we obtain the same conclusion from all three cases.

For the evolution step, since B is classical we can view X and B as a whole and apply Claim 3.3
on P τ (t+1)

XB|v,w, which asserts that P τ (t+1)

XB|v,w is a convex combination of P τ (t,a,b)

XB|v′,w′ for some a, b, w′ and

|v′⟩. Then by linearity we conclude that 6

⟨P τ (t+1)

X|v,w , P ⟩ ≤
T∑

β=0

P τ (t+1)

B|w (β) · 2β · 2−n · (1− 2−r)−3(t+1).

Lemma 5.4. For every 0 ≤ β ≤ t ≤ T we have

⟨β|τ (t)B |β⟩ ≤ 2−kβ

(
t

β

)
.

Proof. We prove it by induction on t. For t = 0 the lemma holds as τ
(0)
B = |0⟩⟨0|B. Also notice

that the lemma is trivially true for every t when β = 0.
Now suppose the lemma holds for some t. By definition we have

τ
(t+1)
B = E

a∈RA
[τ

(t,a,1)
B + τ

(t,a,−1)
B ] = E

a∈RA
TrW [Uaτ

(t,a)
WB U †

a ].

Therefore
⟨β|τ (t+1)

B |β⟩ =
∑
w∈W

E
a∈RA

[
⟨w, β|Uaτ

(t,a)
WB U †

a |w, β⟩
]
.

By Lemma 5.2 we know that for every w ∈ W, the probability that (w, a) is bad for a ∈R A is at
most 2−k. In other words, for every β > 0,

U †
a |w, β⟩ =

{
|w, β⟩, w.p. ≥ 1− 2−k

|w, β − 1⟩, w.p. ≤ 2−k

where the probability is taken over the random choice of a. It means that

⟨β|τ (t+1)
B |β⟩ ≤

∑
w∈W

⟨w, β|τ (t,a)WB |w, β⟩+ 2−k
∑
w∈W

⟨w, β − 1|τ (t,a)WB |w, β − 1⟩

= ⟨β|τ (t,a)B |β⟩+ 2−k · ⟨β − 1|τ (t,a)B |β − 1⟩.

Notice that

τ
(t,a)
B =

∑
w∈W

Tr[τ
(t,a)
XV |w] ·DiagP τ (t)

B|w ≤
∑
w∈W

Tr[τ
(t)
XV |w] ·DiagP τ (t)

B|w = τ
(t)
B ,

and thus we conclude that

⟨β|τ (t+1)
B |β⟩ ≤ ⟨β|τ (t)B |β⟩+ 2−k · ⟨β − 1|τ (t)B |β − 1⟩

≤ 2−kβ

(
t

β

)
+ 2−k · 2−k(β−1)

(
t

β − 1

)
= 2−kβ

(
t+ 1

β

)
.

With the lemmas above in hand, we can finally prove Lemma 4.5.

6It should be noted that in τ (t+1), X and B are not independent. (In τ (t,a,b) they are independent (conditioned
on v′, w′)). Nevertheless, independence of X,B (in τ (t+1)) is not needed or used here and we can conclude the final
inequality by linearity by taking the corresponding convex combination of all inequalities.
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Proof for Lemma 4.5. For the target distribution P = P τ (t)

X|v,w we have ⟨P τ (t)

X|v,w, P ⟩ > 22ℓ · 2−n, so
by Lemma 5.3,

T∑
β=0

P τ (t)

B|w(β) · 2
β · (1− 2−r)−3t > 22ℓ.

Since t ≤ T ≤ 2r−2, we have (1− 2−r)−3t ≤ 2, and thus

T∑
β=ℓ

P τ (t)

B|w(β) · 2
β >

1

2

22ℓ − 2 ·
ℓ−1∑
β=0

2β

 > 2ℓ.

On the other hand, for every β ≥ ℓ, by Lemma 5.4,

Tr[τ
(t)
B|w] · P

τ (t)

B|w(β) ≤ ⟨β|τ (t)B |β⟩ ≤ (2−kt)β < 2−(k−r)β,

and thus by Eq. (6),

Tr[τ
(t)
X|v,w] ≤ Tr[τ

(t)
B|w] < 2−ℓ

T∑
β=ℓ

2−(k−r)β · 2β ≤ 2 · 2−(k−r)ℓ ≤ 2−2m · 2−4r.
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A Bounding Parameters for Theorem 2

Proof. For Equation (4), since r ≤ r′/4 by the definition of r and q ≤ r − 7, we have:

q + r + 1− r′ ≤ q + r + 1− 4r ≤ −2r − 6 ≤ −2r.

For Equation (5), we use the fact that ℓ = 1
5(ℓ

′ − 13r − 2), therefore

2ℓ+ 9r − n =
2

5
(ℓ′ − 13r − 2) + 9r − n

=
2

5
ℓ′ +

19

5
r − 4

5
− n.

Solving the inequality 2
5ℓ

′+ 19
5 r−

4
5−n ≤ −r (together with the fact that ℓ′ ≤ n) gives us r ≤ 1

8ℓ
′+ 1

6 ,
which follows since r ≤ 1

26ℓ
′ + 1

6 by definition.
For Equation (6), as r ≤ 1

26ℓ
′ + 1

6 , r ≤ 1
2(k

′ − 1) and k = k′ − 1,

k − r ≥ k − (k′ − 1)/2 = (k′ − 1)/2,

ℓ =
1

5
(ℓ′ − 13r − 2) ≥ 1

5

(
ℓ′ − ℓ′

2
− 13

6
− 2

)
>

1

10
ℓ′ − 1.

When ℓ′ is sufficiently large, we have 1
10ℓ

′ − 1 > 1
11ℓ

′ + 5. Thereby, using the fact that
m ≤ (k′ − 1)ℓ′/44:

(k − r)ℓ ≥ 1

2
(k′ − 1)

(
1

11
ℓ′ + 5

)
=

1

22
(k′ − 1)ℓ′ +

5

2
(k′ − 1)

≥ 2m+ 5r

≥ 2m+ 4r + 1.

B Proof for Proposition 4.2

We first state a variant of Fuchs-van de Graaf inequality [FvdG99] on fidelity, defined for two partial
density operators ρ and σ as

F (ρ, σ) = Tr

[√√
ρσ

√
ρ

]
.

Lemma B.1. Let ρ, σ be two semi-definite operators. Assume Tr[ρ] ≥ Tr[σ]. Then

1

2

∥∥ρ− σ
∥∥
Tr

≤
√

1

4
(Tr[ρ] + Tr[σ])2 − F (ρ, σ) ≤

√
Tr[ρ]2 − F (ρ, σ).

Notice that when Tr[ρ] = Tr[σ] = 1, the above inequality is the original Fuchs-van de Graaf
inequality.
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Proof. Let u and v be purifications of ρ and σ, that is, u, v ∈ H ⊗ HA with ρ = TrA[uu
†] and

σ = TrA[vv
†], where H is the ambient space of ρ and σ, and HA is some finite-dimensional Hilbert

space.
Let U be a unitary that diagonalizes uu† − vv†, that is there is a diagonal matrix Λ ∈ Cd×d

such that uu† − vv† = UΛU †. Let p, q ∈ Rd
≥0 be the diagonal of U †uu†U and U †vv†U respectively.

We have

u†u = Tr[U †uu†U ] =
∑
x∈[d]

p(x),

v†v = Tr[U †vv†U ] =
∑
x∈[d]

q(x),

∥∥uu† − vv†
∥∥
Tr

=
∥∥Λ∥∥

Tr
=
∑
x∈[d]

|p(x)− q(x)|,

|⟨u, v⟩| = |⟨U †u, U †v⟩| ≤
∑
x∈[d]

√
p(x)q(x).

Therefore, by Cauchy-Schwarz inequality,

∥∥uu† − vv†
∥∥2
Tr

=

∑
x∈[d]

|p(x)− q(x)|

2

=

∑
x∈[d]

∣∣∣√p(x)−
√
q(x)

∣∣∣ · ∣∣∣√p(x) +
√
q(x)

∣∣∣
2

≤

∑
x∈[d]

∣∣∣√p(x)−
√
q(x)

∣∣∣2
∑

x∈[d]

∣∣∣√p(x) +
√
q(x)

∣∣∣2


=

∑
x∈[d]

p(x) +
∑
x∈[d]

q(x)

2

− 4

∑
x∈[d]

√
p(x)q(x)

2

≤
(
u†u+ v†v

)2
− 4|⟨u, v⟩|2.

Notice that
∥∥ρ − σ

∥∥
Tr

≤
∥∥uu† − vv†

∥∥
Tr
, Tr[ρ] = u†u and Tr[σ] = v†v. By Uhlmann’s theorem

[Uhl76], we can also choose u and v such that F (ρ, σ) = |⟨u, v⟩|2. Plugging them into the above
inequality concludes the proof.

Now we are ready to prove Proposition 4.2

Proof for Proposition 4.2. By Fuchs-van de Graaf inequality, it suffices to prove the following bound
on fidelity:

F (ρ,ΠρΠ) ≥ Tr[Πρ]2.

Let u be a purification of ρXV , that is, ρ = TrA[uu
†] for some Hilbert space HA. Then

(
Π⊗ IA

)
u

is a purification of ΠρΠ. By Uhlmann’s theorem we have

F (ρ,ΠρΠ) ≥
∣∣∣u†(Π⊗ IA

)
u
∣∣∣2 = Tr

[(
Π⊗ IA

)
uu†
]2

= Tr
[
Π · TrA[uu†]

]2
= Tr[Πρ]2.
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C Linear Quantum Memory Lower Bound

In this appendix, we prove Theorem 3 that shows a simpler proof for a linear quantum-memory
lower bound (without classical memory). While Theorem 3 is qualitatively weaker than our main
results in most cases, as it only gives a lower bound for programs with a linear-size quantum memory
but without a (possibly quadratic) classical memory, Theorem 3 is technically incomparable to the
main results, as it’s stated in terms of quantum extractors and the bound on the quantum-memory
size depends on a different parameter of the extractor. Additionally, the proof of Theorem 3 is
significantly simpler than the proof of our main theorem.

We first define the quantum extractor property that we need, which is a simplified version of
the ones considered in [KK12]. Given a matrix M : A × X → {−1, 1}, consider two independent
sources A and X uniformly distributed over A and X respectively. Suppose there is some quantum
register V whose state depends on A and X, and they together form a classical-quantum system

ρAXV =
⊕

a∈A,x∈X
ρV |a,x,

where ρV |a,x is the state of V when A = a and X = x. For any function f on A×X, we say that

V depends only on f(A,X) if for any a, a′ ∈ A and x, x′ ∈ X , whenever f(a, x) = f(a′, x′) we have
ρV |a,x = ρV |a′,x′ . In particular, V depending only on A is equivalent to V being independent of X,
or ρXV = ρX ⊗ ρV .

We say that M is an X-strong (q, r)-quantum extractor, if for every classical-quantum system
ρAXV , as above, with the q-qubit quantum subsystem V that depends only on A, it holds that∥∥∥ρM(A,X)XV − U ⊗ ρX ⊗ ρV

∥∥∥
Tr

≤ 2−r.

Here U =

(
1/2 0
0 1/2

)
is the uniform operator over one bit, and ρM(A,X)XV is the classical-quantum

system constructed by adding a new classical register storing the value of M(A,X) and tracing
out A. In other words,

ρM(A,X)XV =
⊕

b∈{−1,1},x∈X

∑
a∈A

M(a,x)=b

ρV |a,x.

Notice that if we choose V to be trivial, the above inequality immediately implies that
|E[M(A,X)]| ≤ 2−r.

As an example, the results in [KK12] imply that the inner product function on n bits, where
A = X = Fn

2 and
M(a, x) = (−1)a·x,

is an X-strong (k, n− k)-quantum extractor for every 2 ≤ k ≤ n.
In this section we prove the following theorem:

Theorem 3. Let X ,A be two finite sets with n = log2 |X |. Let M : A×X → {−1, 1} be a matrix
which is a X-strong (q, r)-quantum extractor. Let ρ be a branching program for the learning problem

corresponding to M , described by classical-quantum systems ρ
(t)
XV , with q/2-qubit quantum memory

V and length T , and without classical memory. Then the success probability of ρ is at most

2−n + 8T
√
n+ q · 2−r/4.

To prove the theorem, we first need to define the following measure of dependency:
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Definition. Let ρXV be a classical-quantum system over classical X and quantum V . The
dependency of V on X in ρXV is defined as

ξρ(X;V ) = min
τV

∥∥ρXV − ρX ⊗ τV
∥∥
Tr

where τV is taken over all density operators on V . Notice that in this definition taking τV = ρV is
almost optimal as we have∥∥ρXV − ρX ⊗ ρV

∥∥
Tr

≤
∥∥ρXV − ρX ⊗ τV

∥∥
Tr

+
∥∥ρV − τV

∥∥
Tr

≤ 2
∥∥ρXV − ρX ⊗ τV

∥∥
Tr
. (16)

We also consider the quantum mutual information between X and V in ρXV , defined as

Iρ (X;V ) = S(ρX) + S(ρV )− S(ρXV ) = S (ρXV ∥ ρX ⊗ ρV ) ,

where S(·) denotes the von Neumann entropy, and S(· ∥ ·) denotes quantum relative entropy. When
V consists of q qubits, we have the following relationship between our dependency measure and
quantum mutual information:

Lemma C.1.
1

2
ξρ(X;V )2 ≤ Iρ (X;V ) ≤ q · ξρ(X;V ) + 2

√
ξρ(X;V ).

Proof. On one hand, using the inequality on quantum relative entropy and trace distance (see e.g.
[OP04, Theorem 1.15]), we have

Iρ (X;V ) = S (ρXV ∥ ρX ⊗ ρV ) ≥
1

2

∥∥ρXV − ρX ⊗ ρV
∥∥2
Tr

≥ 1

2
ξρ(X;V )2.

On the other hand, Fannes-Audenaert inequality [Aud07] tells us that for every x ∈ X , the difference
between the von Neumann entropies of any two states ρ and τ on V is bounded by

|S(ρ)− S(τ)| ≤ q · 1
2

∥∥ρ− τ
∥∥
Tr

+ h

(
1

2

∥∥ρ− τ
∥∥
Tr

)
where h(ϵ) = −ϵ log2 ϵ − (1 − ϵ) log2(1 − ϵ) is the binary entropy function. Since the state of V
conditioned on X = x is ρV |x/Pr[X = x] = 2nρV |x, we have

Iρ (X;V ) = E
x∼X

[
S(ρV )− S(2nρV |x)

]
≤ 1

2
q · E

x∼X

∥∥ρV − 2nρV |x
∥∥
Tr

+ E
x∼X

h

(
1

2

∥∥ρV − 2nρV |x
∥∥
Tr

)
≤ 1

2
q ·
∥∥ρXV − ρX ⊗ ρV

∥∥
Tr

+ h

(
1

2

∥∥ρXV − ρX ⊗ ρV
∥∥
Tr

)
≤ 1

2
q ·
∥∥ρXV − ρX ⊗ ρV

∥∥
Tr

+
√
2
∥∥ρXV − ρX ⊗ ρV

∥∥
Tr
,

as h is concave and h(ϵ) ≤ 2
√
ϵ. Now let τV be the optimal density operator in the definition of

ξρ(X;V ). Plugging in Eq. (16), we conclude that

Iρ (X;V ) ≤ q · ξρ(X;V ) + 2
√
ξρ(X;V ).

Lemma C.2. For every classical-quantum system ρAXV with the q-qubit quantum subsystem V
that depends only on A, we have

Iρ (X;M(A,X), V ) ≤ 2(n+ q) · 2−r/2.
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Proof. Since Iρ (X;V ) = 0, it suffices to bound Iρ (X;M(A,X) | V ) ≤ Iρ (M(A,X);X,V ). To
bound the later, we first notice that since M is a strong (q, r)-quantum extractor,

ξρ(M(A,X);X,V ) ≤
∥∥∥ρM(A,X)XV − ρM(A,X) ⊗ ρX ⊗ ρV

∥∥∥
Tr

≤
∥∥∥ρM(A,X)XV − U ⊗ ρX ⊗ ρV

∥∥∥
Tr

+ |E[M(A,X)]|

≤ 2 · 2−r.

As the total dimension of X and V is 2n+q, by Lemma C.1 we have

Iρ (X;M(A,X), V ) ≤ Iρ (M(A,X);X,V )

≤ (n+ q) · ξρ(M(A,X);X,V ) + 2
√
ξρ(M(A,X);X,V )

≤ 5(n+ q) · 2−r/2.

Lemma C.3. For every classical-quantum system ρAXV with q/2-qubit quantum subsystem V that
depends only on A and M(A,X), we have

ξρ(X;V ) ≤ 4
√
n+ q · 2−r/4.

Proof. Let W = ρa,0 ⊗ ρa,1, where ρa,b is the density matrix of V when A = a and M(A,X) = b.
Then W is a q-bit quantum system that depends only on A. Since V can be decided from M(A,X)
and W , we have

ξρ(X;V )2 ≤ 2Iρ (X;V ) ≤ 2Iρ (X;M(A,X)),W ) ≤ 10(n+ q) · 2−r/2.

We are now ready to prove Theorem 3. Let Φt,a,b be the quantum channel applied on V at

stage t with sample (a, b), and recall that the evolution of the system ρ
(t)
XV can be expressed as

ρ
(t+1)
XV = E

a∼A

[∑
x∈X

|x⟩⟨x| ⊗ Φt,a,M(a,x)

(
ρ
(t)
V |x
)]

.

Proof of Theorem 3. We are going to bound the increment of ξt, which is the shorthand for
ξρ

(t)
(X;V ). For now let us focus on some stage t, and let τ be the density operator that minimizes

ξt =
∥∥ρ(t)XV − ρ

(t)
X ⊗ τ

∥∥
Tr
. Notice that ρ

(t)
X = ρX = 2−nIX for every t.

Since τ is a fixed quantum state, we can prepare τ and apply ΦA,M(A,X) on τ to obtain a new
quantum register V ′, which depends only on A and M(A,X). Notice that

ρXV ′ = E
a∼A

[∑
x∈X

|x⟩⟨x| ⊗ Φt,a,M(a,x)(τ)

]
,

and therefore similarly to Lemma 4.14 (that evolution does not increase trace distance), we can
show that ∥∥∥ρ(t+1)

XV − ρXV ′

∥∥∥
Tr

≤ E
a∼A

∑
x∈X

∥∥∥Φt,a,M(a,x)

(
ρ
(t)
V |x
)
− Φt,a,M(a,x)(τ)

∥∥∥
Tr

≤
∑
x∈X

∥∥ρ(t)V |x − τ
∥∥
Tr

≤
∥∥∥ρ(t)XV − ρX ⊗ τ

∥∥∥
Tr

= ξt.
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Hence we have

ξt+1 ≤
∥∥∥ρ(t+1)

XV − ρX ⊗ ρV ′

∥∥∥
Tr

≤
∥∥∥ρ(t+1)

XV − ρXV ′

∥∥∥
Tr

+
∥∥ρXV ′ − ρX ⊗ ρV ′

∥∥
Tr

≤ ξt + 2ξρ(X;V ′)

≤ ξt + 8
√
n+ q · 2−r/4.

Since ξ0 = 0, we conclude that
ξT ≤ 8T

√
n+ q · 2−r/4.

This value bounds the difference of the success probability of ρ, and that of a quantum branching
program whose memory is independent of X. The later is clearly at most 2−n, which finishes the
proof.
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