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Abstract

Carmosino et al. (2016) demonstrated that natural proofs of circuit lower bounds imply
algorithms for learning circuits with membership queries over the uniform distribution. Indeed,
they exercised this implication to obtain a quasi-polynomial time learning algorithm for AC0[p]
circuits, for any prime p, by leveraging the existing natural proofs from Razborov (1987) and
Smolensky (1987). This achievement raises a logical question: can existing natural proofs be
adapted into learning algorithms that utilize random examples and learn over unknown, arbitrary
example distributions?

In this work, we show that natural circuit lower bounds proven by specific communication
complexity arguments (e.g., Nisan (1994)) witness a “yes” answer to this question, under the
one limitation of average-case learning. Our primary technical contribution demonstrates a
connection between the complexity of learning a concept class in the average-case, and the
randomized communication complexity of an evaluation game associated with the class. We
apply this finding to derive polynomial time average-case PAC-learning algorithms that use only
random examples from arbitrary and unknown distributions, for any concept class that may be
evaluated by (for instance) a majority vote of linear threshold functions.

Additionally, our work contributes to a better understanding of the optimal parameters
in XOR lemmas for communication complexity. We address a question posed by Viola and
Wigderson (2007) by demonstrating that certain enhancements of parameters in their XOR
lemmas are false, assuming the existence of one-way functions.

∗Most of this work was completed while the author was visiting the Simons Institute for the theory of computing.
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1 Introduction

The theory of computation reveals profound connections between cryptography, computational learn-
ing, and complexity. For instance, Razborov and Rudich [RR97] introduced natural proofs of circuit
lower bounds. Informally, a natural proof of a lower bound for a circuit class Λ encodes an efficient
algorithm that can be used to distinguish between the truth tables of easy boolean functions (those
with small Λ-circuit complexity), and random boolean functions. Razborov and Rudich observed
such algorithms as features of many circuit lower bound proofs, and then used this observation to
explain the lack of progress on one of the fundamental problems in complexity theory: whether NP is
contained in P/poly. Specifically, Razborov and Rudich showed that the widely-believed existence of
cryptographic pseudorandom functions (PRFs) excludes natural proofs as a well-founded approach
to NP vs. P/poly.

Carmosino et al. [CIKK16] strengthened the result of [RR97] by demonstrating that hypothesized
natural proofs of circuit lower bounds for Λ imply algorithms for learning Λ-circuits with membership
queries over the uniform distribution (provided that Λ is a sufficiently strong circuit class). Yet,
arguably the most significant achievement of [CIKK16] was the transformation of the existing natural
proofs of lower bounds for AC0[p] circuits, for any prime p [Raz87, Smo87], into an unconditional
learning algorithm for AC0[p] circuits.1 Going forward, we refer to this algorithm as the CIKK
algorithm.

Since the discovery of the CIKK algorithm, whether the learning from natural proofs paradigm
can be extended to Valiant’s original PAC-learning model [Val84] has remained an open problem
(recently highlighted for instance in [GK23]). In Valiant’s original model, learning algorithms are
forced to utilize random examples, and learn over unknown example distributions.

Question 1. Which existing natural circuit lower bounds, if any, can be transformed into
efficient learning algorithms in Valiant’s original PAC model?

Aside theoretical interest in complexity and learning theory, Question 1 is motivated by the prospect
of implicitly extending the nonexistence of PRFs in low circuit classes (derived from [Raz87, Smo87,
RR97, CIKK16]) to the nonexistence of weak PRFs.2 Low complexity weak PRFs are used in a
variety of important cryptographic applications such as symmetric-key encryption and message
authentication (see e.g. [BCG+21] for more commentary).

In this work, we address Question 1 by showing that natural circuit lower bounds proved by certain
communication complexity arguments (e.g. Nisan’s lower bounds for depth-2 circuits of majority gates
[Nis93]) imply PAC-learning algorithms, under the sole constraint that PAC-learning is on average,
with respect to a target distribution over concepts. Key to obtaining our result is the discovery of
a relationship between the computational complexity of average-case PAC-learning a concept class,
and the randomized communication complexity of an evaluation game associated with the concept
class.

As a second application of this relationship, we obtain insights to a seemingly unrelated question
studied by Viola and Wigderson [VW07]:

Question 2. What are the best possible parameters within XOR lemmas for 2-party
communication complexity?

Towards answering Question 2, we prove the impossibility of various tighter-than-before XOR lem-
mas, under cryptographic assumptions. The tighter the XOR lemma, the weaker the cryptographic
assumption needs to be; our assumptions range from security of the famous XOR-MAJ weak PRF
candidate of Blum et al. [BFKL93], to refutation of standard one-way functions.

1All circuit classes are standard, and defined in Section 2.4.
2A weak PRF is a PRF that is only required to be secure if the adversary can inspect uniformly random points, as

opposed to to chosen points (see Section 2.3 for formal definitions).
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1.1 Average-Case PAC-Learning and Evaluation Games

The main technical contribution of this work is the relationship between the computational complexity
of average-case learning a concept class, and the randomized communication complexity of the
evaluation game associated with the class. We now describe this evaluation game.

For any boolean concept class C, we fix a corresponding evaluation function Φ : {0, 1}∗×{0, 1}∗ →
{−1, 1}. The first input to the evaluation function is a representation πf of a concept f , and the
second is an input to the concept x. The evaluation function is defined so that Φ(πf , x) = f(x) for
every f and x.

The 2-party communication game G associated with a concept class and corresponding evaluation
function is thus as follows. Party one is given the representation πf of f , and party two is given
the input x. The two parties communicate until they are ready to output a value b, and win the
game if b = Φ(πf , x) = f(x). We say that the boolean concept class C is evaluated by a 2-party
communication protocol with cost c if the two parties can communicate at most c bits before winning
G. The definition of G can easily be extended to γ-biased randomized communication protocols,
where the two parties need only to win G with probability 1/2+γ over the choice of a shared random
string.3

Denote by Ex(f, ρ) an example oracle that returns labelled examples ⟨x, f(x)⟩ for x ∼ ρ, where
ρ is an example distribution. Let µ be an efficiently samplable target distribution over string represen-
tations of concepts f ∈ C. Informally, we prove that for any µ, there exists a learning algorithm that,
for any (not necessarily efficiently samplable) example distribution ρ, PAC-learns a large probability
mass of concepts f ∈ C using access to Ex(f, ρ). The computational complexity of the learning
algorithm is exponential in the cost of G associated with C. More formally:

Theorem 1.1 (Average-case PAC-learning — efficient evaluation games). Suppose C is evaluated by a
2-party randomized communication protocol with cost c and bias γ, and fix an efficiently samplable
target distribution µ. Then, there exists a learning algorithm A such that, for any ε, δ, η > 0,

Pr
πf∼µ

[
Pr
A

[
∀ρ : Pr

x∼ρ

[
h(x) ̸= f(x) : h← AEx(f,ρ)(ε, δ, η)

]
≤ ε

]
≥ 1− δ

]
≥ 1− η (1)

where A runs in time polynomial in |πf |, ε−1, δ−1, η−1, γ−1 and 2c.

We give an overview of the proof of this theorem in Section 1.3. We emphasize that the learning
algorithm implicit in this theorem is totally robust to example distributions ρ, which need not be
known to the algorithm or be efficiently samplable. This contrasts with other recent formalizations of
average-case learning, such as heuristic PAC-learning (heurPAC-learning) [Nan21], where the order
of quantifiers is different. In heurPAC-learning, it is only required that, for each ρ, a large (possibly
different) probability mass of the concept class is learned. Therefore our notion of average-case
learning is stronger. In Section 1.6, we further discuss the relation to heurPAC-learning, as well as
the average-case learning model of [BFKL93].

1.2 Using Theorem 1.1 to Learn from Nisan’s Circuit Lower Bounds

Consider the following template for proving a circuit lower bound. Identify a function f : {0, 1}n ×
{0, 1}n → {0, 1}, which requires high 2-party communication complexity (in Yao’s standard model,
for example). Then, identify a circuit class C such that for every g ∈ C, g is computable by a low-cost
2-party communication protocols. Finally, conclude that f requires large C-circuits (see Section 2
for essential definitions of 2-party communication complexity, and [KN96] for further reference). To
provide an example, let f(x, y) = IP2(x, y) =

∑n
i=1 xiyi mod 2 be the inner product mod 2 function.

It is known that IP2 requires Ω(n) bits to be transmitted in any randomized communication complexity
3Similar evaluation games were considered in for instance [KNR99, FX14].
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protocol; therefore, as shown by [Nis93], since MAJ ◦ THR circuits are computed by bounded-error
randomized communication complexity protocols with cost O(log n), IP2 must require MAJ ◦ THR
circuits of exponential size. This lower bound remains one of the strongest known — as of now it is
still not ruled out that NEXP ⊆ THR ◦ THR. In fact, proving NEXP is not contained in THR ◦ THR
is considered a “major frontier” in complexity theory [Che18].

This circuit lower bound method is natural (in the sense of [RR97]), as noted briefly in [Raz00].
This fact was also leveraged in [Vio15], where it was used to obtain impossibility of pseudorandom
functions in AC0 with a few MAJ-gates. Our next theorem uses Theorem 1.1 to transform the expo-
nential circuit lower bounds of [Nis93] into polynomial time average-case PAC-learning algorithms,
rather than just pseudorandom function distinguishers:

Theorem 1.2 (Average-case PAC-learning — from Nisan’s lower bounds). Any concept class with a
corresponding evaluation function contained in either of the following function classes is average-case
PAC-learnable (in the sense of Theorem 1.1) in polynomial time.

• MAJ ◦ THR.

• Constant depth decision trees with linear threshold queries at the nodes.

These learning algorithms follow from Theorem 1.1 since, as indicated in Nisan’s lower bounds, every
function in each class has a randomized communication protocol of cost O(log n) and large bias. We
can also obtain quasi-polynomial time learning algorithms for concept classes with more complex
evaluation functions, like a majority vote of polylogarithmic-depth decision trees with threshold
nodes, by a similar argument.

Considering circuit classes by the complexity of their evaluation function is necessarily weaker than
the learning-theoretic standard of considering the complexity of concepts directly; any concept class C
evaluated by the scheme Φ ∈ C means that C ⊆ C.4 Measuring complexity of concepts by complexity
of their evaluation scheme often arises when studying average-case learning (see e.g. [BFKL93] and
more recently [Nan21]). In general, it is an open problem to characterize which concepts can be
evaluated by circuit classes below NC. However, we know that MAJ ◦ THR is capable of adding n
n-bit integers [SR94], and computing any polynomial size DNF or CNF [She09].

1.3 Proof Idea of Theorem 1.1

We will now overview the ideas behind the proof of Theorem 1.1. The most important tool we use
is the 2-party norm of a function, R2(f), which is defined to be the expected product of a function
computed on a list of correlated inputs.

Definition 1.1 (2-party norm). For f : ({0, 1}n)2 → {−1, 1}, the 2-party norm of f is defined as

R2(f) := E
x0
1,x

0
2,x

1
1,x

1
2∼{0,1}n

 ∏
ε1,ε2∈{0,1}

f(xε11 , x
ε2
2 )

 (2)

The 2-party norm is a special case of the k-party norm (sometimes called the cube-measure),
which was introduced by [BNS92] for obtaining lower bounds in k-party Number-on-Forehead com-
munication complexity.

The crucial property about R2(f) is that, up to parameters, it upper bounds the correlation of
f with functions computable by 2-party communication protocols. Implicit in all three of [CT93,
Raz00, VW07] (who showed a related theorem in the more general k-party case), is the following
bound:

4For classes admitting self-evaluation (e.g. NC,P), these coincide, but not necessarily for lower circuit classes.
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Theorem 1.3 (The correlation bound — [CT93, Raz00, VW07]). For every function f : ({0, 1}n)2 →
{−1, 1},

Cor(f,Π[2, c]) ≤ 2c ·R2(f)
1/4 (3)

Equation (3) indicates that 2−4c · γ4 ≤ R2(f), where γ is the bias of a randomized communication
protocol for f with cost c (e.g., γ = 1/4 if the randomized protocol succeeds with probability 3/4).

The construction of the learning algorithm of Theorem 1.1 uses the lower bound on R2(f)
to distinguish structure from randomness. In other words, hypothetically consider functions f :
({0, 1}n)2 → {−1, 1} such that the quantity 2−4c · γ4 is relatively large (greater than 1/poly(n),
say). Such functions can be distinguished from uniformly random functions, by taking a random
sample from the distribution over the value inside the expectation in (3). This follows from the fact
that R2(ψ) for a uniformly random function ψ : ({0, 1}n)2 → {−1, 1} is bounded from above by a
negligible function of n.

Using this idea, we have the following proof outline. First, we can try to prove a “distinguisher-
to-predictor” lemma, in the style of [Yao82], in order to obtain a weak randomized predictor for f
(a weak predictor requires accuracy of a prediction for an unseen example to be only slightly more
accurate than a coin toss). Second, we could apply standard averaging arguments to construct a weak
PAC-learning algorithm. Finally, we could apply celebrated boosting results from learning theory
[Sch90, DW+00] to produce a full-blown PAC-learning algorithm.

However, this proof outline remains incomplete. First, the 2-party norm of the function is the
expectation of a product of correlated inputs, so we have not given any way of using independent
random examples. Second, we have said nothing of how to handle arbitrary example distributions
(the inputs to f on the right hand side of (3) should be uniformly random). We handle both of these
problems simultaneously, roughly by thinking of f as the evaluation of representations of concepts,
not the concept itself.

First, let us describe how f should be viewed. There are two inputs to f , x1 and x2. Without
loss of generality, identify x1 as a random string for sampling the target distribution µ over C, and
identify x2 as a random string for sampling the example distribution ρ, with |x1| = |x2| = m. Let
z = ρ(x2) be an input to the concept g represented by πg = µ(x1). Next, fix an evaluation function
Φ, which is the map that takes as input the concept representation πg, plus the input z, and outputs
Φ(πg, z) = g(z) = y. As a function of x1, x2, we can thus write the process of generating a labelled
example as ⟨ρ(x2),Φ(µ(x1), ρ(x2))⟩ = ⟨z, g(z)⟩ = ⟨z, y⟩. We let f(x1, x2) = Φ(µ(x1), ρ(x2)). This
allows us to write:

R2(f) = E
x0
1,x

0
2,x

1
1,x

1
2

[
v(x01, x

0
2, x

1
1, x

1
2)
]

for v(x01, x
0
2, x

1
1, x

1
2) :=

∏
ε1,ε2∈{0,1}

Φ(µ(xε11 ), ρ(xε22 ))

Now, we describe how we construct a weak randomized predictor which only uses random examples
from an arbitrary ρ. At the core, we will use the example oracle to sample a single instance of
v(x01, x

0
2, x

1
1, x

1
2), over uniformly random x01, x

0
2, x

1
1, x

1
2 ∈ {0, 1}m. To see the significance of this,

observe that by definition v(x01, x02, x11, x12) has expected value R2(f). Hence, the process of sampling
this value distinguishes examples labelled by uniformly random functions from examples labelled
by concepts sampled according to µ — as long as µ is supported on C that is evaluated by an
efficient 2-party communication protocol. This claim is justified because whenever it is possible to
win the evaluation game G associated with C with high bias and low communication, Theorem 1.3
implies that R2(f) is large. In other words, R2(f) is guaranteed to be large whenever it is possible to
efficiently (probabilistically) communicate the evaluation function Φ (because this implies winning G
with good bias). At this point, we use a simple hybrid argument to construct a randomized prediction
algorithm for examples sampled according to ρ.

It remains to verify that the randomized prediction algorithm can actually sample v(x01, x02, x11, x12),
using only access to Ex(g, ρ), where g is the concept sampled according to the target distribution
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µ. To see this, observe that the distribution over v(x01, x02, x11, x12) is identical to the distribution over
g(z1)g(z2)h(z1)h(z2), for ⟨z1, g(z1)⟩, ⟨z2, g(z2)⟩ ∼ Ex(g, ρ), and h ∼ µ. The value h(z1)h(z2) can
be computed because h(z1) and h(z2) can be queried, since h is sampled locally by the algorithm.
Therefore, we only need Ex(g, ρ).

We also need to verify that ρ need not be efficiently samplable. To argue this this, we observe
that communicating parties participating in G have unbounded computational power. This means
that, even if ρ is an arbitrary distribution, there is no effect on the communication cost of G. Indeed,
the process of sampling ρ can be viewed as a local pre-processing step in the protocol for party two.
Therefore, R2(f) does not decrease when ρ is arbitrary.

1.4 Comparison to CIKK Algorithm

Let us compare the techniques behind the learning algorithm of Theorem 1.1 to the CIKK algorithm.
The CIKK algorithm is based on the observation that the output of the Nisan-Wigderson [NW94]
pseudorandom generator on seed z, x = NWf (z), can be viewed as the truth table of a function with
circuit complexity related to that of the “hard function” f . Recall that the ith bit of x is defined
to be the value f(z|Si

), where Si is the ith “Nisan-Wigderson design” and z|Si
is a projection of

the seed onto the bits indexed by the set Si. Therefore, if f ∈ AC0[p] then x is the truth table of a
function gz ∈ AC0[p]. This follows because for any seed z, the Nisan-Wigderson designs that specify
the inputs to f can be computed in AC0[p]. That is, the projection of z to z|Si

can be computed by
an AC0[p] circuit, given i as input.

The CIKK algorithm proceeds by operationalizing a hybrid argument to obtain a next-bit predictor
for some random bit in x, assuming a distinguisher for x.5 For a distinguisher, the CIKK algorithm
uses the [Raz87, Smo87] natural proofs against AC0[p], and they convert the next-bit predictor into
a full-blown weak PAC-learning algorithm by puncturing the seed z at indices contained in Si, where
i is the random hybrid index. By using a pre-processing stage, the learning algorithm computes all
possible z|Sj

for all j, consistent with the punctured seed z. The algorithm makes oracle queries for
all these points, and memorizes the result inside a lookup table. This way, the learning algorithm
can print a hypothesis circuit that essentially computes the next-bit predictor on its input — a
uniformly random challenge point w. Importantly, the pre-processing step prepares the hypothesis
circuit for any seed z “completed” with w. This is necessary because the relevant queries depend on
the challenge point w. Though the queries specified by the CIKK algorithm are randomized, they
are not uniformly distributed.

The method described so far is enough to at least obtain a weak PAC-learning algorithm for
AC0[p], with membership queries over the uniform distribution. Carmosino et al. further show that
it is possible to obtain a learning algorithm with just inverse polynomial error with respect to the
uniform distribution by composing the weak learner with a suitable hardness amplification procedure.

We can now see how our algorithm differs at a few important technical checkpoints, and how this
leads to some gains and some concessions on the qualities of the learning algorithm.

• We do not require membership queries. In our algorithm, membership queries are circumvented
by instead making membership queries to the evaluation function, rather than the actual concept.
The queries to the evaluation function are simulated using random examples of the concept
obtained via the example oracle, and sample access to the target distribution µ. One important
reason this is possible is because of the way the 2-party norm is defined: it is the expected
product of the four possible evaluations of two pairs of independently sampled random concepts
and example inputs. This is in contrast to the CIKK algorithm, which requires membership
queries because of the complex correlations in the construction of the queries arising from
the Nisan-Wigderson designs. It is unclear how queries arising from Nisan-Wigderson designs

5Essentially the same technique occurs in the proof of the main theorem of [NW94].
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could be simulated using only random examples of a concept, even if we consider average-case
learning and evaluation functions.

• We obtain strong learning for arbitrary example distributions. Our algorithm learns over
arbitrary example distributions. We believe this is the apparent power of one of our main
technical innovations: viewing the complexity of learning through the lens of the communication
complexity of the evaluation game G of the concept class. When considering complexity this
way, evidently we get sampling of ρ “for free,” as it is a computation that can be processed
“locally” by one (computationally unbounded) communicating party participating in G. On the
other hand, the CIKK algorithm uses the Razborov-Smolensky distinguishers for AC0[p]-circuit
complexity. This seems inherently incapable of handling arbitrary example distributions, since
it would blow-up the circuit complexity of the string which is given to the Razborov-Smolensky
distinguisher. As a related note, our learning algorithm employs learning-theoretic boosting
algorithms, unlike CIKK (which uses hardness amplification over the uniform distribution). This
is an added benefit of obtaining weak learning with respect to arbitrary example distributions.

• We only obtain learning for super-efficiently evaluated concepts. Interestingly, our techniques
unconditionally cannot imply efficient learning algorithms for concept classes with evaluation
function classes a bit higher than MAJ ◦ THR, like THR ◦ THR. This is because THR ◦ THR
is known to contain functions requiring ω(polylog(n)) randomized communication cost (see
e.g. [BVdW07]). Hence it is not learnable in quasi-polynomial time using our method. This is
major difference with the CIKK algorithm, which uses natural proofs in the most general sense,
which at the moment cannot be ruled out unconditionally. In a related way, our technique also
unconditionally cannot apply to efficient learning algorithms for AC0[p], as the CIKK algorithm
does, because of known nΩ(1) randomized communication complexity lower bounds for this
class (see e.g. [BH12] against AC0 or [VW07] against AC0[p]).

• We only obtain average-case learning. Because our algorithm needs to sample independent
concept representations according to µ, our techniques are inherently average-case. On the
other hand, the CIKK algorithm handles worst-case learning.

1.5 Conditional Answers to a Question of Viola and Wigderson

It is simple to see that the algorithm of Theorem 1.1 relies on the correlation bound (Theorem 1.3)
of [CT93, Raz00, VW07] to correctly distinguish structure from randomness. Therefore, it stands
to reason that — if we can improve this bound — then we can obtain better learning algorithms.
Specifically, consider the following “improved” bound as an example

Cor(f,Π[2, c]) ≤ c100 ·R2(f)
1/4 (4)

Is (4) true? What implications would follow from (4)? Surprisingly, very little is known about this
and related questions.

The question of [VW07]. Let the m-wise direct XOR of a function f : ({0, 1}n)2 → {−1, 1} be
f×m : (({0, 1}n)2)m → {−1, 1} for f×m(x1, · · ·xm) =

∏m
i=1 f(xi). Viola and Wigderson [VW07]

showed an XOR lemma for communication protocols, stated as follows for the 2-party case (they
showed a general version for k-party Number-on-Forehead communication).

Theorem 1.4 (XOR lemma — [VW07]). Let f : ({0, 1}n)2 → {−1, 1} be a function of correlation at
most ε with any 2-party communication protocol with cost 2. Then the correlation of f×m with any
2-party communication protocol with cost c is bounded from above by 2c · εm/4.
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Regarding this theorem, the question posed by [VW07] was whether the exponential dependency
on the parameter c is the best possible, or if it can even be removed completely (see section 3.2.1
of [VW07] for more commentary). The dependency on c is clearly attributed to communication
complexity proof techniques of [VW07] as well as many prior works such as [BNS92].

The question of [VW07] is tightly related to the question of improving the correlation bound. In
fact, improving the 2c factor in the correlation bound directly suffices to improve the 2c factor in
the XOR lemma (implicit in [VW07]). The other direction is not as straightforward, but is “morally”
true for our purposes.

Viola and Wigderson were unable to answer their question, except for showing a counterexample
to the “ideal” relationship in the 2-party case. Namely, a counterexample for going from correlation
ε to correlation εm, for 2 parties communicating c = 2 bits.

The final contributions of this paper are to show several consequences of certain answers to the
[VW07] question. We prove the following informally stated facts about the dependency on c (see
Section 4 for the formal statements):

Theorem 1.5 (Not much tighter XOR lemmas — informally stated). With respect to either Theo-
rem 1.3 or Theorem 1.4:

• Improving the 2c factor to 2c
1/2

implies the XOR-MAJ weak PRF candidate of [BFKL93] can
be predicted in polynomial time.

• Improving the 2c factor to 2c
o(1)

implies subexponentially secure one-way functions do not exist.

• Improving the 2c factor to poly(c) implies one-way functions do not exist.

The XOR-MAJ weak pseudo-random function refers to the well known distribution designed by
[BFKL93]. This is an example of a long-standing hard O(log n)-juntas learning problem. The problem
is defined formally in Section 4.

To give some intuition, a sketch of the proof of the third bullet of Theorem 1.5 follows.

Proof idea. Consider a polynomial time computable pseudorandom function F(s;x), which takes as
input a seed s ∈ {0, 1}m(n) and an input x ∈ {0, 1}n, and outputs a value in {−1, 1}. In this case, F
can be thought of as a fixed polynomial size circuit which evaluates a function specified by s, F(s; ·),
on input x. Now, assume that for any function f : ({0, 1}n)2 → {−1, 1}, there exists a polynomial
p such that Cor(f,Π[2, c]) ≤ p(c) ·R2(f)

1/4 (i.e., Theorem 1.3 is improved as specified by the third
bullet). Under this assumption, there exists an oracle algorithm that distinguishes F from a uniformly
random function roughly as follows (by standard equivalences in cryptography [GGM86, HILL99],
this suffices to invert any one-way function).

• Sample uniformly random s′ ∈ {0, 1}m(n), x, x′ ∈ {0, 1}n

• Query oracle at x, x′, and compute F(s′;x),F(s′;x′)

• Print v = F(s;x) · F(s;x′) · F(s′;x) · F(s′;x′)

We then claim that the expected value printed by this procedure is roughly 0 when given oracle
access to a random function, while bounded below by 1/q(n) for some polynomial q. This follows
from the fact that Cor(F(s; ·),Π[2,m(n)]) = 1, and therefore R2(F) ≥ 1/(p(m(n)))4. Finally, the
observation that E [v] = R2(F) concludes the sketch.

1.6 Further Related Work

We discuss further related work, including other learning algorithms, average-case learning models,
related techniques, and known relationships between communication complexity and learning.
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Learning functions of halfspaces: positive and negative results. Learning intersections of halfs-
paces (i.e., linear threshold functions) was considered by [KOS04]. Using Fourier-analytic techniques,
[KOS04] showed a polynomial time learning algorithm for any function of a constant number of
halfspaces with respect to the uniform distribution over examples. Additionally, [KOS04] gave a
quasi-polynomial time algorithm for learning any Boolean function of a polylogarithmic number of
bounded-weights linear threshold functions, under any distribution over examples. Our unconditional
learning results (Theorem 1.2) are at the moment similar but incomparable; we get polynomial
time average-case learning of concepts evaluated by functions of linear threshold functions over any
distribution (while [KOS04] gets worst-case learning directly of concepts, but only the uniform dis-
tribution). However, we also get learning for concepts evaluated by functions of adaptively chosen
linear threshold functions (i.e., decision trees with THR nodes). Finally, comparing with the quasi-
polynomial time algorithm of [KOS04], we get average-case learning without any restriction on the
weights of the linear threshold functions (with the same caveats as before).

Our average-case learning algorithm for the MAJ ◦ THR evaluation class complements hardness
of worst-case PAC-learning results for the same concept class. For example, [FGKP06] proved that
MAJ ◦THR is hard to PAC-learn, based on the Ajtai-Dwork cryptosystem [AD97] (and the error-free
version by [GGH97]). The proof goes by showing that [GGH97] cryptosystem has the property that,
for every key, the decryption algorithm can be implemented by a MAJ ◦ THR-circuit. This is weaker
than showing that the decryption algorithm can be expressed as a MAJ ◦ THR-computable function
of the key and ciphertext. The latter would correspond to our notion of complexity by evaluation
class. This dichotomy illustrates key differences in considering complexity of concepts by evaluation
vs. directly.

More average-case learning. Nanashima [Nan21] introduced a theory of heuristic PAC-learning
(heurPAC), in part by proposing a unified average-case learning model. A crucial difference between
heurPAC-learning and the average-case PAC-learning in this work is in the order of quantifiers that
govern the relationship between the learning algorithm, the example distribution, and the target
distribution. In this work, our version of average-case learning essentially demonstrates that a large
mass of the concept class is learnable over any example distribution. On the other hand, heurPAC-
learning only demonstrates that for each example distribution, a (possibly different) mass of the
concept class is learnable. This distinction is of crucial importance for correctly applying classical
boosting algorithms in our work, which do not fit in a black-box way with heurPAC-learning. In the
heurPAC model, [Nan21] obtained a polynomial time algorithm for learning O(log n)-juntas. This
algorithm is incomparable to our algorithms. For one, O(log n)-juntas are not known to be evaluated
by any of the evaluation classes that we obtain polynomial time learning for. However, our learning
model is more strict because of the quantifier differences described above. Lastly, we handle arbitrary
example distributions and polynomial time samplable target distributions (while the algorithm for
O(log n)-juntas in [Nan21] only handles the uniform distribution for each).

In comparison to the seminal work of [BFKL93], the average-case learning in this work also differs
on the order of quantifiers. In the definition of the average-case prediction considered by [BFKL93],
both the target distribution µ and the example distribution ρ are fixed. This means that there can
be a different prediction algorithm, for each pair of µ and ρ. The average-case learning in this work
constructs a single learning algorithm for every ρ, after fixing µ.

Related techniques. Constructing efficient average-case PAC-learning algorithms for P/poly using
only random examples from hypothesized natural lower bounds for boolean circuits of size 2Ω(n) has
been understood previously (e.g., implicitly in [NY15, Nan21]). However, these average-case learning
algorithms are in the weaker heurPAC-learning model, where the example distribution is fixed (and
needs to be efficiently samplable). Also, crucial techniques such as the Goldreich-Goldwasser-Micali
PRF construction [GGM86] that are available in the setting of learning P/poly do not work for
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learning lower circuit classes. In particular, unconditional average-case learning from existing natural
proofs had not been shown possible.

Other learning/communication relationships. Many other relationships between learning theory
and communication complexity have been studied. Some notable examples include [KNR99, LS09,
FX14, KLMY19] (also see the references therein). All of these works study relationships between
communication complexity and notions of learning complexity, such as sample complexity [KNR99,
KLMY19], differentially private sample complexity [FX14], margin complexity [LS09], VC dimension
[KNR99, FX14] and Littlestone dimension [FX14]. These works are all incomparable to ours, as
they do not directly study relationships between communication complexity and the computational
complexity of learning.

2 Preliminaries

2.1 Average-Case PAC-Learning Model

Representation and Evaluation of Concept Classes. Let C = {Cn}n∈N be a boolean concept class
(i.e., a set of boolean functions). We designate a representation scheme for C.6 A representation
scheme for C is a sequence of pairs {(Πn, En)}n∈N, where Πn ⊆ {0, 1}s(n) and En : Πn → Cn is an
onto mapping from bitstrings to functions.

We define efficient evaluation of concepts by their representation schemes as follows:

Definition 2.1 (Evaluated representation scheme). We say that a representation scheme (Π, E) can
be evaluated by a uniform circuit family Φ = {Φn}n∈N if every Φn, which takes as input πf ∈ Πn ⊆
{0, 1}s(n), x ∈ {0, 1}n (s(n) + n bits total), outputs Φn(πf , x) = Φn(πf )(x) = f(x).

The object Φ is call the evaluation function. To capture it succinctly, we define a notion of
representable concept classes.

Definition 2.2 (Representable concept class). We say that a concept class is s(n)-representable by Φ
if the concept class has a representation scheme that can be evaluated by a Φ with s(n) + n input bits
total.

Average-Case PAC-Learning. To ease notation, we define the set In := {0, 1}n. Let Un denote the
uniform distribution over In. For some boolean function f : In → {0, 1}, and a distribution ensemble
ρ = {ρn}n∈N, with each ρn over In, we denote by Ex(f, ρ) an example oracle that on invocation
returns a labelled example pair ⟨x, f(x)⟩ where x ∼ ρn.

Fix a distribution ensemble µ = {µn}n∈N over a s(n)-representable concept class C.

Definition 2.3 (Average-case PAC-learning). We say that C is average-case PAC-learnable with respect
to µ if there exists an algorithm A such that, for any n ∈ N, ε, δ, η > 0,

Pr
πf∼µn

[
Pr
A

[
∀ρ : Pr

x∼ρn

[
h(x) ̸= f(x) : h← AEx(f,ρ)(n, ε, δ, η)

]
≤ ε

]
≥ 1− δ

]
≥ 1− η (5)

When A runs in time poly(n, s(n), ε−1, δ−1, η−1), A is considered an efficient average-case PAC-
learning algorithm.

6This is standard, and our formalisms resemble strongly that of (for example) [BFKL93], [Nan21].
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2.2 2-Party Communication Complexity and Norms

In the following, we discuss boolean functions f : In → {−1, 1}. Here we identify −1 with False and
1 with True.

Communication Models, Norms, and Bounds. The 2-party communication model is the following.
There are 2 parties, each having unbounded computational power, who try to collectively compute
a function. The input to the function is separated into 2 segments, and the ith party sees the ith
segment. The parties can send each other direct messages.

Each party may transmit messages according to a fixed protocol. The protocol determines, for
every sequence of bits transmitted up to that point (the transcript), whether the protocol is finished
(as a function of the transcript), or if (and which) party writes next (as a function of the transcript)
and what that party transmits (as a function of the transcript and the input of that party). Finally,
the last bit transmitted is the output of the protocol, which is a value in {−1, 1}. The complexity
measure of the protocol is the total number of bits transmitted by the parties.

Definition 2.4 (Π[2, c] class). Π[2, c] is defined to be the class of functions f : (In)2 → {−1, 1} that
can be computed by a 2-party communication protocol with complexity c.

Another communication model is randomized communications.

Definition 2.5 (Randomized Π[2, c]). The randomized 2-party communication model allows the protocol
to depend on random bits. Therefore, we allow the protocol to err in its output. The probability of
error of a randomized protocol is ε if for every input to the function f , the protocol errs in outputs
with probability at most ε. We denote by rΠ[2, c, γ] the class of 2-party randomized protocols that
transmit at most c bits and err with probability at most 1/2− γ.

For the sake of simplicity, this paper uses only the public coin version of randomized communication
complexity. Namely the parties all share a string of random bits.

A model more relaxed than randomized communication is distributional communication.

Definition 2.6 (Distributional Π[2, c]). The distributional 2-party communication model allows the
protocol to err on certain inputs. Fix a distribution ρ over (In)2. A function f : (In)2 → {−1, 1} is
in dΠ[2, c, ρ, γ] if there exists a communication protocol p ∈ Π[2, c] such that

E
(x1,x2)∼ρ

[p(x1, x2) · f(x1, x2)] ≥ 2γ

Distributional communication complexity can be thought of as correlation.

Definition 2.7 (Boolean function correlation). Define Cor(f,Λ) := maxh∈Λ |E [f(x) · h(x)] |, where x
is sampled uniformly at random from the domain.

When we want to measure correlation between two function classes, we have it defined as follows:

Definition 2.8 (Boolean function correlation). Define Cor(C,Λ) := minf∈C maxh∈Λ |E [f(x) · h(x)] |,
where x is sampled uniformly at random from the domain.

When ρ is the uniform distribution, f ∈ dΠ[2, c, ρ, γ] is equivalent to Cor(f,Π[2, c]) ≥ 2γ.
A simple fact is that for any distribution ρ, f ∈ rΠ[2, c, γ] implies that f ∈ dΠ[2, c, ρ, γ]. Therefore,

f ∈ rΠ[2, c, γ] implies that Cor(f,Π[2, c]) ≥ 2γ.
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Definition 2.9 (2-party norm). For f : (In)2 → {−1, 1}, the 2-party norm of f is defined as

R2(f) := E
x0
1,x

0
2,x

1
1,x

1
2∼In

 ∏
ε1,ε2∈{0,1}

f(xε11 , x
ε2
2 )

 (6)

The 2-party norm is a special case of the k-party norm (sometimes called the cube-measure),
which was introduced by [BNS92] for obtaining lower bounds in k-party Number-on-Forehead com-
munication complexity.

The crucial property about R2(f) is that, up to parameters, it upper bounds the correlation of
f with functions computable by 2-party communication protocols. Implicit in all three of [CT93,
Raz00, VW07] (who showed a related theorem in the more general k-party case), is the following
bound:

Theorem 2.1 (The correlation bound — [CT93, Raz00, VW07]). For every function f : (In)2 →
{−1, 1},

Cor(f,Π[2, c]) ≤ 2c ·R2(f)
1/4 (7)

An immediate corollary of this bound is:

Theorem 2.2. For every function f : (In)2 → {−1, 1}, such that f ∈ rΠ[2, c, γ],

γ ≤ 2c ·R2(f)
1/4 (8)

2.3 Cryptography

We define weak and strong pseudorandom functions.

Definition 2.10 (Weak and Strong PRFs). Let λ be a security parameter, and n = n(λ), κ = κ(λ)
for polynomially bounded functions n, κ. Consider a pair of algorithms F : Iκ × In → I1,KeyGen :
{1}λ → Iκ. KeyGen is a polynomial time sampling algorithm that given input parameter λ in unary
and access to random coins z ∈ Ipoly(λ) outputs a key k ∈ Iκ. F is a polynomial time algorithm that
given a key k and input x ∈ In, outputs a value F(k, x) = v ∈ I1. For t = t(λ), ε = ε(λ), we say that
(F,KeyGen) is a (t, ε)-weak PRF if, for every size t oracle circuit C,∣∣∣∣ Pr

k∼KeyGen(1λ)

[
CEx(F(k,·),Un) = 1

]
− Pr

r

[
CEx(r,Un) = 1

]∣∣∣∣ ≤ ε(λ)
where r : In → I1 is a uniformly random function.

Additionally, we say that (F,KeyGen) is a (t, ε)-PRF if, for every size t oracle circuit C,∣∣∣∣ Pr
k∼KeyGen(1λ)

[
CF(k,·) = 1

]
− Pr

r
[Cr = 1]

∣∣∣∣ ≤ ε(λ)
where r : In → I1 is a uniformly random function.

When t, ε = 2log
c(n) for some constant c > 1, we say that (F,KeyGen) has quasipolynomial security.

When t, ε = 2λ
δ

for some constant δ ∈ (0, 1), we say that (F,KeyGen) has subexponential security.
To measure the complexity of weak and strong PRFs, we say that (F,KeyGen) is evaluated by a

uniform circuit class Λ, if F(k, x) ∈ Λ. This notion of complexity differs somewhat from the standard
case of fixed key complexity (where for every k,F(k, ·) ∈ Λ), even though they coincide for evaluation
classes that admit self-evaluation such as P or NC. However, we remark that in this definition we
still allow polynomial time pre-processing inside KeyGen.
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2.4 Circuit Classes and Other Computational Classes

We will consider various circuit classes with different bases (all appearing previously in the literature).
AC0 is the class of constant depth, polynomial size, unbounded fan-in AND/OR/NOT circuits. AC0[p] is
the class of constant depth, polynomial size, unbounded fan-in AND/OR/NOT/MODp circuits, where
p ∈ N is a prime number. TC0 is the class of constant-depth, polynomial size, unbounded fan-in
circuits of THR gates, where a THR gate is a linear threshold function t(x1, · · ·xm) :=

∑m
i=1 wixi ≥? θ,

which outputs 1 if and only if the sum of the inputs weighted by w1, · · ·wm exceeds a threshold θ.
When the weights are fixed to be 1 and θ = m/2, we call it a MAJ gate. An XOR gate takes the sum
modulo 2 of its inputs.

Many circuit classes considered are of the form C ◦ C′ for circuit classes C, C′. The composed class
C ◦C′ denotes the class of C-circuits with inputs as the outputs of functions from C′. For example, the
class THR ◦THR (a.k.a. depth-2 TC0). Alternatively, MAJ ◦THR is the class of circuits consisting of
a MAJ gate composed with a bottom layer of THR gates. The class AC0 ◦MOD2 denotes the circuit
class AC0 with a single layer of XOR gates at the bottom.

A decision tree is a binary tree where each node contains a query of the form what is xi? and
each branch is labelled by 0/1, corresponding to the answer of the query. A decision tree computes a
function by performing adaptive queries in this manner until reaching a leaf, which has no outgoing
branches. The decision tree has depth d if the longest path from root to leaf is length d. A decision
tree with G-nodes is a decision tree with nodes labelled by queries g ∈ G. For example, the decision
tree may have THR-nodes.

3 Average-Case PAC-Learning from Efficient Evaluation Games

In this section, we will prove Theorem 1.1: we will show average-case PAC-learning algorithms for
concept classes that have simple associated evaluation games.

3.1 Evaluation Games

Definition 3.1 (2-party randomized evaluation game). With respect to concept class C that is s(n)-
representable by Φ, the 2-party evaluation game G[C,Φ, n] is the following:

• Party 1 gets as input a representation πf ∈ {0, 1}s(n) for some concept f ∈ Cn.

• Party 2 gets as input a string x ∈ {0, 1}n.

• The parties may access a shared random string to aid in communication.

• The object of the game is for the parties to output the value Φn(πf , x) = f(x), using as few bits
of communication as possible.

We say that G[C,Φ, n] ∈ rΠ[2, c, γ] if the parties can communicate at most c bits (for any choice
of shared random string), and win the game with probability 1/2+γ (over the choice of shared random
strings).

Other definitions. We direct the reader to Section 2 for the necessary definitions of communication
complexity, and the average-case PAC-learning model.

3.2 Weak Learning

Towards Theorem 1.1, we will start by first obtaining a weak learning algorithm, which only requires
prediction accuracy marginally better than a coin toss. We are going to construct the weak learning
dependent on some generic lower bound on the R2 norm of a function. Unconditional weak learning
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will follow then from known bounds (stated in Section 2.2). We start with the generic theorem as it
will be technically useful in the later stages of this paper.

Notation. In the following, we discuss boolean functions f : In → {−1, 1}, and denote by Un the
uniform distribution over In. Let C = {Cn}n∈N be a boolean concept class that is s(n)-representable
by the evaluation function Φ = {Φn}n∈N. For shorthand, we will write c := c(n), γ := γ(n), to denote
number of bits of communication and protocol bias in rΠ[2, c, γ], which are dependent on n, the input
length of concepts in the class. Also, in the rest of the paper we will streamline notation by eliding
the subscripts on distributions coming from ensembles indexed by n ∈ N.

Theorem 3.1. Suppose G[C,Φ, n] ∈ rΠ[2, c, γ], and fix a time t(n) samplable distribution µ over
concepts representations of f ∈ C. Further assume that there is a function β : N× R→ R such that
R2(f) ≥ β(c, γ). Then, there exists an algorithm A such that, for any n ∈ N, δ, η > 0,

Pr
πf∼µ

[
Pr
A

[
∀ρ : Pr

x∼ρ

[
h(x) ̸= f(x) : h← AEx(f,ρ)(n, δ, η)

]
≤ 1

2
− Ω(β(c, γ))

]
≥ 1− δ

]
≥ 1− η

A runs in time poly(n, t(n), s(n), β(c, γ)−1, δ−1).

Proof. To construct A, we will follow three steps:

1. Construct a weak randomized predictor L.

2. Argue that many good non-uniform but deterministic predictors exist, by fixing coins and
samples for L.

3. Construct a deterministic predictor by sampling and then testing enough non-uniform predic-
tors.

Steps 2 and 3 follow from standard techniques (i.e., “constructive averaging”).

Claim 3.1 (Weak randomized predictor). Under the conditions of Theorem 3.3, there exists a ran-
domized algorithm L, running in time poly(n, t(n), s(n), β(c, γ)−1, δ−1, η−1), such that for any n ∈
N, δ, η > 0, the following equation is satisfied:

Pr
πf∼µ

[
Pr
L

[
∀ρ : Pr

z∼ρ

[
LEx(f,ρ)(z, n, δ, η) ̸= f(z)

]
≤ 1

2
− Ω(β(c, γ))

]
≥ 1− δ

]
≥ 1− η (9)

Proof of Claim 3.1. See the randomized predictor L in Figure 1. Recall that Φn is the evaluation
algorithm for the concept class C. To reduce notation, we do not write the subscript of the Φn.

Consider the distributionM over 2× 2 matrices

C =

[
Φ(πf , z) Φ(πf , w)
Φ(πg, z) Φ(πg, w)

]
where πf , πg ∼ µ and z, w ∼ ρ. We now claim that, under the conditions of Theorem 3.1, this
distribution is efficiently distinguishable from the distribution R over random 2× 2 matrices,

R =

[
r00 r01
r10 r11

]
To see this, observe that the distribution over C is identical to the following distribution over 2× 2
matrices

D =

[
Φ(µ(x), ρ(y)) Φ(µ(x), ρ(y′))
Φ(µ(x′), ρ(y)) Φ(µ(x′), ρ(y′))

]
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Algorithm 1 LEx(f,ρ)

1: Input: z ∈ In, n ∈ N, δ, η > 0
2: Pick uniformly random values b1, b2 ∈ {0, 1}.
3: Pick uniformly random values r00, r01, r10, r11 ∈ {−1, 1}
4: Sample πg ∼ µ.
5: Sample (w, y) ∼ Ex(f, ρ).
6: if b1 = b2 = 0 then
7: v ←

∏
i,j∈{0,1} rij

8: if b1 = 0, b2 = 1 then
9: v ← y · r00 ·

∏
i,j∈{0,1} rij

10: if b1 = 1, b2 = 0 then
11: v ← Φ(πg, w) · Φ(πg, z) ·

∏
j∈{0,1} r1j

12: if b1 = 1, b2 = 1 then
13: v ← y · Φ(πg, w) · Φ(πg, z) · r11
14: b← rb1b2
15: Output b · v

Figure 1: Randomized predictor L. Observe that L needs to sample a concept representation πg from µ. This
is, in a nutshell, the reason that we obtain average-case learning, and µ must also be fixed (i.e., known to L).

for x, x′, y, y′ being uniformly random strings. We can assume that without loss of generality that
x, x′, y, y′ are all the same length, by defaulting to the maximum necessary length for sampling
µ, ρ (and padding the shorter strings with useless random bits). Therefore, identifying ξ(x, y) :=
Φ(µ(x), ρ(y)), we can now see that

R2(ξ) = E
πf ,πg
z,w

 ∏
i,j∈{0,1}

Cij


It now readily follows that when G[C,Φ, n] ∈ rΠ[2, c, γ] (which is true by assumption), then

R2(ξ) = E
πf ,πg
z,w

 ∏
i,j∈{0,1}

Cij

 ≥ β(c, γ) (10)

This is justified by the fact that party one can locally compute the mapping µ(x), while party two can
compute ρ(y), and then they can play a winning communication game with c bits of communication
and bias γ to complete a c-bit randomized protocol for ξ with bias γ.

On the other hand,

E
R

 ∏
i,j∈{0,1}

Rij

 = 0

Now that we have established this, we may proceed by a hybrid argument. Define the neighboring
hybrid distributions H1, H2, H3, H4, H5 over 2× 2 matrices, as in Figure 2.

It then follows that for random hybrid neighbors Hi, Hi+1 (i ∈ [4]),

E
i∼[4]

 E
H′∼Hi+1

 ∏
k,j∈{0,1}

H ′
kj = 1

− E
H∼Hi

 ∏
k,j∈{0,1}

Hkj = 1

 ≥ β(c, γ)/4 (11)
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H1 = R

H2 =

{
Ckℓ when k = 0, ℓ = 0

Rkℓ otherwise

H3 =

{
Ckℓ when k = 0, ℓ ≤ 1

Rkℓ otherwise

H4 =

{
Ckℓ when k = 0 or ℓ ≤ 0

Rkℓ otherwise

H5 =M

Figure 2: Hybrid sequence.

To ease notation, let D(H) =
∏

k,j∈{0,1}Hkj , and let Vi denote the event that D(Hi) = 1.
Intuitively, the function D stands for “distinguisher,” and can be thought of as such.

We continue by observing that, by definition, the value stored as v in L (Algorithm 1) is D(Hi) for
a random i ∈ [4]. Hence, the output of L, which is written as D(Hi) · b, is interpreted as a prediction,
where b = rb1b2 is the “guess bit.” Note that, the string b1b2 is the binary representation of i.

Now, conditioning on correctness of this guess bit, we have that for all ρ, and probabilities taken
over z ∼ ρ, f ∼ µ and the randomness of L:

Pr
[
LEx(f,ρ)(z, n, δ, η) = f(z)

]
= Pr

[
LEx(f,ρ)(z, n, δ, η) = f(z) | b = f(z)

]
· Pr[b = f(z)]

+ Pr
[
LEx(f,ρ)(z, n, δ, η) = f(z) | b ̸= f(z)

]
· Pr[b ̸= f(z)]

=
1

2

(
Pr[b ·D(Hi) = f(z) | b = f(z)]

+ Pr[b ·D(Hi) = f(z) | b ̸= f(z)]
)

Indeed, when Vi is unsatisfied, this means that the output of L is b. The case analysis follows:

Pr[LEx(f,ρ)(z, n, δ, η) = f(z)] =
1

2

(
Pr[Vi | b = f(z)] + Pr[¬Vi | b ̸= f(z)]

)
=

1

2
+

1

2

(
Pr[Vi | b = f(z)]− Pr[Vi | b ̸= f(z)]

)

By conditioning, we know that:

Pr[Vi] =
1

2
Pr[Vi | b = f(z)] +

1

2
Pr[Vi | b ̸= f(z)]

rearranging the terms, we get:

1

2
Pr[Vi | b ̸= f(z)] = Pr[Vi]−

1

2
Pr[Vi | b = f(z)]

We thus conclude:

Pr[LEx(f,ρ)(z, n, δ, η) = f(z)] =
1

2
+ Pr[Vi | b = f(z)]︸ ︷︷ ︸

(α)

−Pr[Vi]︸ ︷︷ ︸
(β)
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Algorithm 2 AEx(f,ρ)

1: Input: n ∈ N, δ ∈ (0, 1]
2: Sample m (sufficiently many) candidate circuits, using oracle access to Ex(f, ρ) as needed.
3: Sample t (sufficiently many) additional random examples from Ex(f, ρ).
4: for each sampled circuit Ci, do
5: Compute using random examples: αi ← Cor(f, Ci)
6: output the circuit with largest α value.

Figure 3: Algorithm for sampling and testing candidate predictors.

The term (α) corresponds to the case that L computes the 2-party norm on a sample from Hi+i

(i.e., the product of the entries of a matrix sampled from Hi+i), while term (β) is the case that L
computes the 2-party norm on a sample from Hi (the product of the entries of a matrix sampled
from Hi). Thus, by equation (11),

Pr[LEx(f,ρ)(z, n, δ, η) = f(z)] =
1

2
+ (1− Pr[D(Hi+1) = 1]− (1− Pr[D(Hi) = 1])

≥ 1

2
+ β(c, γ)/8

Having established Claim 3.1, we now convert the randomized algorithm LEx(f,ρ) into a non-
uniform learning algorithm by averaging. Let LEx(f,ρ)

inp,i (z; r) denote the Algorithm 1 where the random
hybrid choice is fixed to be i, and the input parameters inp = (n, δ, η) are hard-wired in, and the
random bits r for computing other randomized aspects of the algorithm is treated as input. This
allows us to consider the algorithm as a deterministic mapping of random bits and examples from
Ex(f, ρ) to a circuit that weakly agrees with f . By a standard averaging argument, we obtain:

Claim 3.2 (Averaging, see lemma A.11 of [AB09]).

Pr
r

[
Pr
z∼ρ

[
L

Ex(f,ρ)
inp,i (z; r) = f(z) | r

]
>

1

2
+
β(c, γ)

32

]
> β(c, γ)/4

Taking hybrid index i and r uniformly at random, we obtain “good” choices with good probability.
Therefore such a circuit is efficiently found by randomized trial-and-error; we sample many candidate
predictors in parallel and then compare each to the concept by checking random examples. By a
standard application of Chernoff bounds, sufficiently many examples will be enough to check that a
circuit with good enough accuracy is indeed good enough, with high probability.

Claim 3.3 (Without proof). With probability 1 − δ, A (Algorithm 2 in Figure 3) outputs a “good”
circuit that correctly classifies 1/2 + Ω(β(c, γ)) fraction of points, where t,m are quantities that are
polynomially bounded as a function of β(c, γ) and log(δ−1).

From the above claims it now follows, from a Markov argument, that:

Pr
πf∼µ

[
Pr
A

[
∀ρ : Pr

z∼ρ

[
h(z) ̸= f(z) : h← AEx(f,ρ)(n, δ)

]
≤ 1

2
− Ω(β(c, γ))

]
≥ 1− δ/η

]
≥ 1− η

This concludes the proof of Theorem 3.1.
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Remark. Using the 2-party norm as we do is a universal distinguisher; namely it distinguishes any
f ∈ rΠ[2, c, γ] from a random function (using the lower bound of β(c, γ)). Therefore it holds that for
arbitrary choice of distribution ρ, we obtain the desired guarantee. Indeed, the choice of ρ can be
adversarial with respect to f ∼ µ, and it never needs to be known by A.

3.2.1 Replacing the Generic Bound

We can now replace the generic bound for R2(f) with the known bound, R2(f) ≥ (2−cγ)4 (see
Theorem 2.2). Thus, we obtain the following more concrete implication.

Theorem 3.2. Suppose G[C,Φ, n] ∈ rΠ[2, c, γ], and fix a time t(n) samplable distribution µ over
concepts representations of f ∈ C. Then, there exists an algorithm A such that, for any n ∈ N, δ, η > 0,

Pr
πf∼µ

[
Pr
A

[
∀ρ : Pr

x∼ρ

[
h(x) ̸= f(x) : h← AEx(f,ρ)(n, δ)

]
≤ 1

2
− Ω((γ2−c)4)

]
≥ 1− δ

]
≥ 1− η

A runs in time poly(n, t(n), s(n), γ−12c, δ−1).

3.3 Strong Learning

Celebrated results of computational learning theory, indicate that efficient weak and strong PAC-
learning are equivalent [Sch90] (in the “filtering” setting, this is shown by e.g. [DW+00]). Thus,
Theorem 3.1 is enough prove Theorem 1.1. Recall that C = {Cn}n∈N is a boolean concept class that
is s(n)-representable by the evaluation function Φ = {Φn}n∈N.

Theorem 3.3 (Theorem 1.1, restated). Suppose G[C,Φ, n] ∈ rΠ[2, c, γ], and fix a time t(n) samplable
distribution µ over concepts representations of f ∈ C. Then, there exists an algorithm A such that,
for any n ∈ N, ε, δ > 0,

Pr
πf∼µ

[
Pr
A

[
∀ρ : Pr

x∼ρ

[
h(x) ̸= f(x) : h← AEx(f,ρ)(n, ε, δ, η)

]
≤ ε

]
≥ 1− δ

]
≥ 1− η (12)

A runs in time poly(n, t(n), s(n), γ−12c, ε−1, δ−1, η−1).

Proof. We combine the equivalence of weak and strong PAC-learning [Sch90, DW+00] with Theo-
rem 3.1 to conclude the desired expression. Note that, importantly, our average-case weak learner
works for all ρ after taking the probability over f ∼ µ and the randomness of A. If the quantifiers
were in another order, then we could not guarantee boosting since there would be no guarantee that
the same set of functions f ∈ C could be learned.

3.4 Unconditional Learning

In this section, we will apply Theorem 3.3 to concrete settings, to obtain (quasi-)polynomial time
average-case PAC-learning algorithms. Theorem 3.4 restates Theorem 1.2 and adds item (3).

Theorem 3.4 (Average-case PAC-learning — Theorem 1.2 restated). Let C be a concept class that is
poly(n)-representable by Φ. Then, if Φ is contained in either of the following evaluation classes, then
C is efficiently average-case PAC-learnable with respect to any fixed polynomial time samplable µ:

(1) MAJ ◦ THR.

(2) DT[O(1),THR]. That is, constant depth decision trees with THR-nodes.

If Φ is contained in the following evaluation class, then C is average-case PAC-learnable in quasipoly-
nomial time with respect to any fixed quasipolynomial time samplable µ:
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(3) MAJ ◦ DT[polylog(n),THR]. That is, a quasi-polynomial fan-in majority vote of polylogarithmic
depth decision trees with THR-nodes.

To prove Theorem 3.4, we use a theorem credited to Nisan from [Nis93].

Theorem 3.5 ([Nis93]). MAJ◦THR ⊆ rΠ[2, O(log(n)), 1/poly(n)]. DT[d,THR] ⊆ rΠ[2, d·O(log(n)), 1/6].

Sketch. The statement follows from combining a few arguments in [Nis93].
First, Nisan proves that a single THR gate is contained in rΠ[2, O(log(n)), 1/2 − 1/poly(n)]

(Thm 1a.). Then, he shows that any depth d = O(1) decision tree with node queries computed by
f ∈ rΠ[2, O(log(n)), 1/2 − 1/poly(n)] is contained in rΠ[2, O(log(n)), 1/6] (Lemma 4). Therefore
DT[O(1),THR] ∈ rΠ[2, O(log(n)), 1/6].

Second, Nisan shows that the majority vote of any f ∈ rΠ[2, O(log(n)), 1/2 − 1/poly(n)] is
contained in rΠ[2, O(log(n)), 1/poly(n)] (Lemma 5).

Therefore we get that MAJ ◦ THR ∈ rΠ[2, O(log(n)), 1/poly(n)].

Proof of Theorem 3.4. 1 We will establish that each evaluation class has a good randomized commu-
nication protocol, as this implies that G[C,Φ, n] does as well, whenever Φ is in the evaluation class.
This is enough to conclude by Theorem 3.3.

• (1) and (2) follow from Theorem 3.5 and then invoking Theorem 3.3.

• For (3) we have that by Theorem 3.5, DT[polylog(n),THR] ∈ rΠ[2,polylog(n), 1/6]. Then, by
standard error reduction of randomized protocols, we get

DT[polylog(n),THR] ∈ rΠ[2,polylog(n), 1/2− 1/poly(n)]

This means that by Theorem 3.5, MAJ ◦ DT[polylog(n),THR] ∈ rΠ[2,polylog(n), 1/poly(n)].
Theorem 3.3 then gives (3).

4 Implications of Tighter Correlation Bounds and XOR Lemmas

In this section, we will step back from considering what learning algorithms we can unconditionally
obtain, and consider what learning algorithms we can conditionally obtain.

The learning algorithm in the previous section depends crucially on the lower bound for the
2-party norm. We constructed the learning algorithms based on the generic bound, and instantiated
concrete algorithms based on Theorem 2.2 (Section 3). For the reader’s convenience, we restate the
concrete bounds:

(2−c · Cor(f,Π[2, c]))4 ≤ R2(f) (Theorem 2.1)

and analogously (for f ∈ rΠ[2, c, γ])

(2−c · γ)4 ≤ R2(f) (Theorem 2.2)

Indeed, it should follow that if we can shrink the 2c factor inside (Theorem 2.1) in particular
(since (Theorem 2.2) follows), we could obtain efficient learning algorithms for even more complex
functions. The rest of this section will explore this possibility — what are the implications of reducing
the dependency on c in (Theorem 2.1)?
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4.1 On Small Improvements on the 2c Factor

We will first show that improving the correlation bound even slightly will imply break-through
learning algorithms for the notorious learning O(log n)-juntas problem (c.f. [Blu03]).

One well-known example of a learning O(log n)-juntas problem is the XOR-MAJ (quasi-polynomial
security) weak PRF candidate of [BFKL93] (see Section 2.3 for a definition of weak PRFs). [BFKL93]
claimed 30 years ago that “any method that could even weakly predict [in polynomial time] such
functions over a uniform distribution would require profoundly new ideas.” At the moment, there is
still essentially no reason to believe that such methods will soon be developed.

Definition 4.1 ([BFKL93] XOR-MAJ weak PRF candidate). The XOR-MAJ weak PRF candidate is
the pair of algorithms (XM,XMKeyGen) defined as follows.

• XMKeyGen(1n) outputs the key k = (A,B) ⊆ [n], consisting of uniformly random disjoint sets
A,B ∈ [n] of size log n each. k = (A,B) can be considered a bitstring of length 2 log2(n).

• XM(k, x) takes as input the key and a string x ∈ In. XM(k, x) is defined by

XM(k, x) = XOR(XOR(x|A),MAJ(x|B))

Here, x|S is the projection of a string x ∈ In to the coordinates indicated by a set S ⊆ [n].

Let CXM denote the set {XM(k, x) : ∀k in the keyspace}. We can now see that, viewing CXM as a
concept class, it is 2 log2(n)-representable by XM. The 2 log2(n) bits correspond to the indices of the
relevant variables of the instance. Furthermore, XMKeyGen effectively defines a target distribution
over CXM.

Theorem 4.1. Suppose that, for every f , it is the case that (2−c1/2 · Cor(f,Π[2, c]))4 ≤ R2(f). Then
CXM is efficiently average-case PAC-learnable with respect to XMKeyGen.

Proof. If for every f, (2−c1/2 · Cor(f,Π[2, c]))4 ≤ R2(f), then when f ∈ rΠ[2, c, γ], it follows that
(2−c1/2 · γ)4 ≤ R2(f). This is true because f ∈ rΠ[2, c, γ] means f has a distributional protocol with
respect to the uniform distribution with cost of c bits and bias γ, so Cor(f,Π[2, c]) ≥ γ.

Now, observe that G[CXM,XM, n] ∈ rΠ[2, O(log2 n), 1/2]. Here, XM is the evaluation function.
This is because the party holding the representation can just send the 2 log2 n bits to the party
holding the input, who then evaluates on the input. In fact, this protocol is deterministic; it has
γ = 1/2 (no error). Finally, let β(c, γ) = (2−c1/2 · γ)4 = O(2−4c1/2). The proof is completed by
applying Theorem 3.3.

4.1.1 Improving Viola and Wigderson’s XOR Lemma

Viola and Wigderson [VW07] used Theorem 2.1 to show an XOR lemma for communication protocols
(for the special case of 2-party communication [Sha01] did similarly).

Define the m-wise direct XOR of f : (In)2 → {−1, 1} as f×m : ((In)2)m → {−1, 1} for
f×m(x11, x

2
1, · · · , xm, x2m) =

∏m
i=1 f(x

1
i , x

2
i ).

Theorem 4.2 ([VW07] XOR lemma; k = 2 case). Let f : (In)2 → {−1, 1} be a function such that
Cor(f,Π[2, 2]) ≤ ε. Then Cor(f×m,Π[2, c]) ≤ 2c · εm/4.

A question from [VW07]. Regarding this theorem, the main question posed by [VW07] was whether
the parameters of the XOR lemma are the best possible. In particular, they asked if the 2c factor
can be eliminated. They were unable to answer the question, except for showing a counterexample
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to the “ideal” relationship. Namely, going from correlation ε to correlation εm, for k = 2 parties
communicating c = 2 bits.

Also in the k = 2 case, we will now prove that a small improvement on the 2c factor in Theorem 4.2
implies XOR-MAJ is predictable. In other words, we show that based on the security of the XOR-MAJ
weak PRF, there exists a counterexample to the below improvement of Theorem 4.2.

(i) For all m ∈ N and functions f satisfying Cor(f,Π[2, 2]) ≤ ε, we have that Cor(f×m,Π[2, c]) ≤
2c

1/2 · εm/4.

Theorem 4.3. Suppose that the XOR-MAJ weak PRF candidate has quasi-polynomial security. Then
for every m ∈ N, there exists f such that Cor(f,Π[2, 2]) ≤ ε, while Cor(f×m,Π[2, c]) > 2c

1/2 ·R2(f)
4.

Proof of Theorem 4.3. We prove the contrapositive. Suppose there exists m such that for all f ,

Cor(f,Π[2, 2]) ≤ ε =⇒ Cor(f×m,Π[2, c]) ≤ 2c
1/2

· εm/4

Theorem 2.1 implies that for any f we may set ε = 4R2(f)
1/4. Therefore, it follows that

Cor(f×m,Π[2, c]) ≤ 2c
1/2

· 4R2(f
×m)1/16 (13)

(13) uses the fact that Rk is multiplicative over the direct XOR (see [VW07] fact 3.7). This implies
that

(2−c1/2−2 · Cor(f×m,Π[2, c]))16 ≤ R2(f
×m) (14)

What we have in (14) is essentially an improvement of the correlation bound for any function of
the form f×m.

Putting this on hold, let C×m
XM = {f×m : f ∈ CXM}. It is the case that C×m

XM is m log2(n)-
representable by XM×m. To see this, observe that to represent f×m ∈ C×m

XM , we need m instances of
a key k ∼ XMKeyGen.

By the same argument as in Theorem 4.1, we can thus conclude that G[C×m
XM ,XM

×m, n] ∈
rΠ[2,m log2 n, 1/2]. Therefore, using the improved bound in (14), we can again apply Theorem 3.3 to
get that C×m

XM is average-case PAC-learnable with respect to µ, where µ is defined as m independent
samples of the XMKeyGen distribution. Finally, by observing that one can easily reduce distinguishing
the XOR-MAJ weak PRF to learning C×m

XM with respect to µ, this learning algorithm violates the
pseudo-randomness of the XOR-MAJ weak PRF.

4.2 Conditional Impossibility of Dramatic Improvements for 2c Factor

In this section, we will prove that more dramatic improvement of the 2c term in the correlation
bound and/or the [VW07] XOR lemma is impossible under standard cryptographic assumptions.

4.2.1 Improving the Correlation Bound

Theorem 4.4. Consider the following bounds, for every f ,

(2−co(1) · Cor(f,Π[k, c]))4 ≤ R2(f) (i)

(1/poly(c) · Cor(f,Π[k, c]))4 ≤ R2(f) (ii)

(i) implies that subexponentially secure one-way functions do not exist, and (ii) implies one-way
functions do not exist.
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Proof. Our argument is basically analogous to proof of Theorem 4.1. By Theorem 3.1, we can replace
the generic bound β(c, γ) by (i) ((ii) analogously), and then obtain a learning algorithm that weakly
predicts any polynomial size circuit, in sub-subexponential time (polynomial, for (ii)). Therefore, by
invoking generic equivalences of one-way functions and pseudorandom functions [GGM86, HILL99],
this refutes the existence of subexponentially secure one-way functions and normal one-way functions,
respectively.

4.2.2 Improving the XOR Lemma

We can continue the study of the question of [VW07]; we use one-way functions to obtain counterex-
amples to dramatic improvements of the XOR lemma.

Theorem 4.5 (XOR lemma counterexamples from one-way functions). .

(1) Suppose that a subexponentially secure one-way function exists. Then for every m ∈ N, there
exists a function f , and constant τ > 0 such that Cor(f,Π[2, 2]) ≤ ε, while Cor(f×m,Π[2, c]) >
2c

τ ·R2(f)
1/4.

(2) Suppose that one-way functions exist. Then for every m ∈ N, there exists a function f such that
for every polynomial p : N→ N, Cor(f,Π[2, 2]) ≤ ε, while Cor(f×m,Π[2, c]) > p(c) ·R2(f)

1/4.

Proof. We prove the statement for (2), as (1) is exactly analogous. We prove (2) similarly to
Theorem 4.3 by considering the contrapositive.

Suppose that there exists m ∈ N, such that for all functions f , there exists a polynomial q, such
that Cor(f,Π[2, 2]) ≤ ε implies that Cor(f×m,Π[2, c]) ≤ q(c) · εm/4. Then, Theorem 2.1 implies that
for any f we may set ε = 4R2(f)

1/4. Therefore, it follows that there exists m such that

Cor(f×m,Π[2, c]) ≤ q(c) · 4R2(f
×m)1/16 (15)

This implies that there is q′ such that

1/q′(c) · Cor(f×m,Π[2, c])16 ≤ R2(f
×m) (16)

(15) uses the fact that Rk is multiplicative over the direct XOR (see [VW07] fact 3.7). Thus,
what we have in (16), is essentially an improvement of the correlation bound for any function of the
form f×m.

Fix any concept class and evaluation scheme C,Φ, and let C×m,Φ×m be the naturally cor-
responding m-wise XOR concept class and evaluation function. Now consider that even when
c = mn, if G[C×m,Φ×m, n] ∈ rΠ[2, c, γ], then γ16/q′(c) ≤ R2(f

×m). But for any concept class C,
G[C×m,Φ×m, n] ∈ rΠ[2, c, 1/2] trivially. This means there exists polynomial q′′ such that 1/q′′(c) ≤
R2(f

×m).
Together with the observation that refuting existence of pseudorandom functions of the form

f×m with suffices to refute one-way functions, we can apply Theorem 4.4 to conclude the proof.
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