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Abstract

In a streaming algorithm, Bob receives an input x ∈ {0, 1}n via a stream and must compute
a function f in low space. However, this function may be fragile to errors in the input stream.
In this work, we investigate what happens when the input stream is corrupted. Our main result
is an encoding of the incoming stream so that Bob is still able to compute any such function f
in low space when a constant fraction of the stream is corrupted.

More precisely, we describe an encoding function enc(x) of length poly(n) so that for any
streaming algorithm A that on input x computes f(x) in space s, there is an explicit streaming
algorithm B that computes f(x) in space s · polylog(n) as long as there were not more than
1
4 − ε fraction of (adversarial) errors in the input stream enc(x).
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1 Introduction

In a streaming algorithm, Bob witnesses a stream of bits x1, . . . , xn, and he wishes to compute a
function f(x1, . . . , xn). The goal is to do this in space significantly less than that necessary to store
the entire stream.

However, streaming algorithms are very rigid when it comes to errors in the stream. For instance,
corruption of even one bit of the stream can change the value of the parity function, an index
function, or the result of a decision tree. In this work, we study what happens when the stream
itself is corrupted. In particular, we ask if it’s possible to convert a given streaming algorithm into
one that is robust to errors in the stream.

In order to protect the output against corruption to the stream, the sender, Alice, encodes her
message as enc(x) and sends Bob enc(x) bit-by-bit. Then, using the stream enc(x), Bob has to
compute f(x) in low space.

Of course, if Alice knows the function f that Bob wishes to compute, this all is very simple:
she can simply compute f(x) ∈ {0, 1} and send Bob f(x) using e.g. the repetition code.1 What we
actually desire is for the encoding enc(x) to be agnostic to the function that Bob wishes to compute:
the encoding enc(x) must work for a broad class of functions.

As an example, consider the case where f(x) = fy(x) = x · y mod 2 for some y ∈ {0, 1}n. In
the noiseless setting, Alice can simply send x bit by bit to Bob, and after receiving each bit Bob
adds xi · yi to a running sum. Bob only needs to track i and the running sum modulo 2, which is
in total log n+ 1 bits of space.

However, when there are any errors in the input stream x, the value fy(x) Bob computes may be
wrong. If Alice instead uses a generic large distance error-correcting code to encode x, the stream’s
information is now protected against error but the issue is that Bob must receive and store all of
the received word in order to decode, which is far too much space. Even if Alice sends a locally
decodable code, which has the property that to determine a single bit of x one only needs to track
a few random bits of the codeword, it is not clear how Bob can decode all n bits without Ω(n)
storage.

In this work, we investigate whether such an encoding enc(x) exists that allows Bob to compute
f(x) in low space, regardless of which function f Bob wishes to compute.

Our main result is a scheme that protects any streaming algorithm against noise in the incoming
stream. More precisely, we give an encoding enc(x) of length O(n4+δ) such that any streaming
algorithm running in s space on the noiseless stream can be converted to one running in s·polylog(n)
space on the encoded stream. It is correct with high probability whenever at most 1

4 − ε of the
stream was corrupted. In the specific case where Bob’s function is a linear function such as dot
product, our encoding can be made to have length O(n2+δ).

1.1 Our Results

Our main result is a noise-resilient conversion for deterministic streaming algorithms.

Theorem 1.1. Fix ε, δ > 0. There is a function enc : X ⊆ {0, 1}n → {0, 1}m where m = Oε(n
4+δ)

and an explicit transformation B such that the following holds: For any deterministic algorithm A
that takes as input x ∈ X ⊆ {0, 1}n as a stream, runs in space s and time t, and outputs A(x), the
algorithm BA = B(A) takes as input z ∈ {0, 1}m as a stream, runs in space s ·Oε

(
(log n)O(1/δ)

)
and

1In fact, she could have just sent Bob f(x) instead of x in the noiseless version as well.
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time m · Oε,δ

(
1 + t

n2

)
, and satisfies that whenever ∆(z, enc(x)) <

(
1
4 − ε

)
·m then BA(z) outputs

A(x) with probability ≥ 1− 2Oε(log
2 n).

In other words, given an algorithm A that accepts a stream of length n and uses s space, we
demonstrate a noise resilient algorithm B(A) computing A that uses s · polylog(n) space. The
transformation enc of the stream x from the sender is independent of A and has length O(n4+δ).

A priori, it is not obvious that there is any low-memory noise resilient transformation of the
algorithm A even with an arbitrary blow-up in communication. For example, if the sender were to
encode their message using an arbitrary error-correcting code, the receiver would need to store the
entire message in memory in order to decode it before applying the algorithm A. Our result shows
that not only does this low-memory transformation exist, but that it can be done efficiently (both
with respect to communication complexity and computational complexity).

Linear Streaming Algorithms. In the above transformation, the length of the resulting stream
is O(n4+δ) for any δ > 0. In the specific case where the streaming algorithm is linear, we construct
a scheme where the stream length is only quadratic, namely O(n2+δ). The key property of linear
streaming algorithms that we will be leveraging is that they can be computed in pieces in any order,
and later computations do not depend on the results of previous ones.

Definition 1.2. [Linear Streaming Algorithms] A linear streaming algorithm A : {0, 1}n → Fq

is described by a list of functions gi : {0, 1} → Fq for i ∈ [n], and computes the value A(x) =
g1(x1) + . . . + gn(xn) (where addition is over Fq) by tracking the partial sum g1(x1) + . . . + gi(xi)
upon receiving the i’th bit.

Note, for example, that every linear function on codomain {0, 1}n admits a linear streaming
algorithm. We note that linear streaming algorithms capture a large class of interesting functions,
including linear sketching algorithms (see for example [CM05, CCFC04, AGM12, JL84]). For linear
streaming algorithms, we show the following result.

Theorem 1.3. Fix ε, δ > 0. There is a function enc : X ⊆ {0, 1}n → {0, 1}m where m = Oε(n
2+δ)

and an explicit transformation B such that the following holds: For any linear streaming algorithm
A that takes as input x ∈ X ⊆ {0, 1}n as a stream, runs in space s and time t, and outputs A(x), the
algorithm BA = B(A) takes as input z ∈ {0, 1}m as a stream, runs in space s ·Oε((log n)

O(1/δ)) and
time m · Oε,δ

(
1 + t

n2

)
, and satisfies that whenever ∆(z, enc(x)) <

(
1
4 − ε

)
·m then BA(z) outputs

A(x) with probability ≥ 1− 2Oε(log
2 n).

Randomized Algorithms. We remark that our transformations in Theorems 1.1 and 1.3 are
only for deterministic algorithms. However, this easily implies the result for algorithms A that pre-
sample all of their randomness (that is, algorithms that fix their randomness before receiving any
bits of x, at which point they are deterministic for the remainder of the algorithm). Such algorithms
can be viewed as sampling from a distribution over deterministic algorithms. Our transformation
can then be applied to the ensuing deterministic algorithm, thus correctly computing the function
A with high probability while being resilient to noise.

We remark that this notion of randomized algorithms whose only access to randomness is pre-
sampled at the start of computation is quite general: randomized algorithms that sample its ran-
domness online can often be converted to protocols where the randomness is pre-sampled, see
e.g. [Nis90].
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Non-Binary Input Alphabets. Our main theorems are stated for the setting where the input
stream is binary. We remark that this assumption is without loss of generality: a larger alphabet
stream can be converted to a binary one by assigning each alphabet symbol to a unique binary
string.

1.2 Open Questions

Our work opens up many interesting questions. We list a few below.
First, in the case of linear streaming algorithms, Theorem 1.3 gives a scheme where the input

stream is length O(n2+δ). We conjecture that even in the simple case where A is a linear function
over F2, a communication complexity of at least Ω̃(n2) is necessary to make the computation noise
resilient and still low-memory. This would imply that Theorem 1.3 is essentially tight.

Open Question 1.1. Does there exist ε > 0 and a function enc : {0, 1}n → {0, 1}m with m =
O(n2−δ) for some δ > 0 such that the following holds? For any linear function f : {0, 1}n → {0, 1},
there exists an algorithm B that uses polylog(n) bits of space with the guarantee that for every input
z ∈ {0, 1}m with ∆(z, enc(x)) < ε, B outputs f(z) with probability > 2

3 .

It would be interesting to disprove even the existence of a positive rate (O(n) length) encoding
enc that admits a noise resilient transformation for all streaming algorithms with polylog(n) space
overhead. More specifically, we ask what the optimal length of such an encoding is (recall that our
transformation for general algorithms requires a quartic encoding length).

Open Question 1.2. What is the optimal exponent β such that there exists an encoding enc(x) :
{0, 1}n → {0, 1}m and ε > 0 where m = O(nβ), such that for any streaming algorithm A that runs in
space s, there exists a streaming algorithm B that reads z ∈ {0, 1}m and runs in space s · polylog(n),
with the property that whenever ∆(z, enc(x)) < ε, B outputs A(x) with probability > 2

3?

Finally, we present an open question about the space blow-up incurred by our algorithm. The
space blow-up of the algorithms in our paper is polylog(n). Most deterministic algorithms require
at least logarithmic space (for example, even to just count the number of bits in the input), so a
polylog(n) blow-up is not that large. However, some algorithms avoid this. For example, consider
the following streaming problem.

Definition 1.4 (Index Problem). The stream is the list of pairs in order (i, yi) for some hidden
string y ∈ {0, 1}n. The solver has a target index j and wants to output yj.

There is a deterministic algorithm that accomplishes this task in O(log log(n)) bits of space.2

However, our transformation would increase the space to polylog(n), which is an exponential blow-
up in the space complexity. We ask whether this blow-up is necessary.

Open Question 1.3. Does there exist ε > 0, a function enc : {0, 1}n → {0, 1}m, and a list of
algorithms B1 . . . Bn such that the following holds? For all i ∈ [n] and for every input z ∈ {0, 1}m
with ∆(z, enc(y)) < ε, the algorithm Bi runs in space polyloglog(n) and outputs yi with probability
> 2

3 .
3

2The algorithm to do this is as follows. Upon receiving the pair (i, yi) in a stream, Bob checks if i = j in log log n
bits of space (by checking if each bit in the binary representation of i and j are equal), which can be done because
both i and j are length logn. Then, if i = j, he outputs yi.

3We remark that in the noiseless protocol, the stream itself is not the target vector y; it is x(y) := (1, y1) . . . (n, yn).
In the previous discussion, we had been describing enc as a function of the noiseless stream x, but here it is simpler
to think of it as a function of the target vector y (although either definition is fine).
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1.3 Related Works

Streaming Algorithms. The study of streaming algorithms began with the work Morris [Mor78]
on approximate counting; a rigorous analysis was given later in [Fla85]. Later works introduced
other classic problems in streaming, including heavy hitters [CCFC02], ℓp approximation [AMS96,
MW10, IW05], and finding a nonzero entry in a vector (for turnstile algorithms) [MW10].

Many works, for example [GKLR21, CZ16, MWOC21], consider the problem of processing noisy
data sets using streaming algorithms. [GKLR21] shows a memory lower bound for learning a parity
function with noisy samples of random linear equations.

However, this type of noise is quite different from our treatment. In these problems, noise is
inherent in the way samples are generated, whereas we are investigating noise that occurs in the
communication process.

Error Correcting Codes. Our result can be viewed through the lens of low-space noise resilient
one-way communication.

Noise resilient one-way communication, in other words, error correction [Sha48, Ham50], is one
of the most well-studied problems in computer science. One specific line of works related to our
result is that of locally decodable codes. Locally decodable codes [Y+12] can be viewed as a low-time
and low-space version of error-correcting codes, where the goal is to learn a single bit of the original
message. By constrast, for us, the decoder must be able to piece together any function of the input
that is noiselessly computable in low space, with the tradeoff that the decoder accesses the entire
encoding via a stream rather than via query access. Local decodable codes have been constructed
in a variety of different parameter regimes, including constant query [Efr09, DGY11] and near 1
rate [KSY14]. In our work, we will use Reed-Muller codes [Mul54, Ree54] that achieve polylog(n)
query complexity and slightly super-linear block length.

Another line of works related to ours is that of streaming algorithms for local testing of
codes [RU10, MRU11]. However, this direction was rendered moot by the recent discovery of
locally testable codes with constant rate, distance, and locality [DEL+22].

Coding for Interactive Communication. The analogue of noise resilient one-way commu-
nication in the interactive setting, where Alice and Bob have inputs x, y and engage in a pro-
tocol to compute some f(x, y) while being resilient to error, comprises the study of coding for
interactive communication. Interactive coding was studied starting with the seminal works of
Schulman [Sch92, Sch93, Sch96] and continuing in a prolific sequence of followup works, includ-
ing [BR11, Bra12, BK12, BN13, Hae14, BE14, DHM+15, GHK+16, GH17, EGH16, GH13, GI18,
EKS20, GZ22a, GZ22b]. We refer the reader to an excellent survey by Gelles [Gel17] for an extensive
list of related work.

The recent work of [EHK+23] studies the space complexity of interactive coding schemes. Their
main result is an interactive coding scheme that preserves the space complexity of the original
noiseless protocol up to a log(n) factor, where n is the length of the protocol. Their result can be
viewed as the interactive analogue of ours, where their noiseless and noise resilient protocols are
both interactive. We remark that their techniques are quite different than ours and do not apply to
our setting, however, since their approach crucially relies on the communication of feedback from
Bob to Alice.
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2 Overview of Techniques

Consider the task of computing a linear function f(x) =
∑

i∈[n] gi(xi). In a noiseless setting, one
can compute f(x) by tracking the partial sum

∑
1≤i≤n′ gi(xi) and updating it with gn′+1(xn′+1)

upon receiving the (n′ + 1)’th bit of x.
As a first attempt to create a noise resilient version of this algorithm, one might consider the

input stream enc(x) = LDC(x), where LDC is a locally decodable code. In short, a locally decodable
code is a noise resilient encoding of x such that in order to decode any specific bit of x, say xi,
the decoder simply has to read polylog(n) (randomized) bits of LDC(x). In a streaming setting,
the decoder can record only these polylog(n) bits into memory, then run the decoding algorithm to
determine xi after all such query bits have been seen.

However, it’s not clear that this local decoding property extends to arbitrary linear functions.4

If we attempt to simultaneously decode all bits xi from LDC(x) using a separate query set Qi for
each index, the issue is that we will need to track Ω(n) queries simultaneously since we cannot
ensure that the local decoding for any index finishes before another: the query sets Qi are typically
randomized so that any bit of the codeword is equally likely to belong to the query set for any
particular index.

A second attempt is to send LDC(x) n times, with the intent that Bob locally decodes xi in the
i’th LDC(x) and computes f(x) by tracking the partial sum

∑
1≤i≤n′ gi(xi) at the end of the i’th

chunk. Now, the only space requirements are the space required to store this partial sum and the
space required to locally decode xi in each LDC(x), which is polylog(n). However, the adversary can
simply corrupt the first LDC(x) so that Bob mis-decodes x1, thereby corrupting his final output,
and ultimately, this approach is not so different from just sending the bits x1 . . . xn in order.

What Bob would like to do is randomize which xi he is computing from a given copy of LDC(x)
so that the adversary does not know. This crucially uses the property that LDC’s allow Bob to
decode any xi not known to the encoder or adversary. Then, if he computes each xi many times
and takes the majority, he will learn xi correctly with high probability, regardless of the adversary’s
corruption process. Since the adversary does not know in advance which chunks Bob is computing
xi in, she cannot target corruptions towards a specific xi. However, this runs into an issue with
the amount of space Bob requires. Since he computes each xi many times throughout the protocol
and only takes the majority when he has finished these computations, he needs to track his current
guess for its value through (almost) the entire protocol. When each xi was computed only once, Bob
could just add gi(xi) to the running sum, but now he needs to track each xi individually between
the first and last time he queries it, for a total of Ω(n) bits of space.

The crux of our construction is an organized system for aggregating decoding attempts in space
much smaller than storing all n attempts simultaneously.

A recursive computation. Let r = polylog(n). Suppose that we already know how to compute
linear functions on inputs of size n/r in space sn/r, that is resilient to εn/r fraction of errors in the
stream of Mn/r copies of LDC(x). We will use this to build a scheme for computing linear functions
on inputs of size n. Note that the base case is given by computing linear functions on a single bit,
which can be done by local decoding on a single LDC(x).

4The smallest local decodable code we know of that supports local decoding to any arbitrary linear function is an
extension of the Hadamard code, which has block length exponential in n. This will not be a satisfactory solution
for us because (a) we would like encodings that are efficiently computable, and (b) keeping track of which bit of the
stream one is receiving takes n memory.
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To compute f(x) =
∑

i∈[n] gi(xi), we just need to compute f1(x) =
∑

i∈[n/r] gi(xi), f2(x) =∑
i∈[n/r+1,2n/r] gi(xi), . . . , fr(x) =

∑
i∈[n−n/r+1,n] gi(xi). Each sub-computation can individually

be done with the guarantee that if < εn/r fraction of the stream is corrupted, then the function is
computed correctly.

Consider a stream consisting of ℓ · r ·Mn/r copies of LDC(x) (you can think of ℓ = log2 n). We
split up this stream into ℓ chunks each consisting of r blocks of Mn/r LDC(x)’s. In each of the ℓ
chunks, we will assign the r blocks of Mn/r LDC’s to the computation of a random permutation of
f1(x), . . . , fr(x). Throughout the algorithm, we will keep track of all the outputs from each of the
ℓ sub-computations for each of f1(x), . . . , fr(x). At the end, we can take a majority vote for each
of the fj(x). We illustrate the recursion process in Figure 1.

f

f1 f2 fr. . .

f

fπ1(1) fπ1(2) fπ1(r) fπℓ(1) fπℓ(2) fπℓ(r)

. . .
. . . . . .

ℓ

Figure 1: In our transformation, each sub-function is computed ℓ times instead of 1, and in each of
the ℓ chunks, the sub-functions fi are computed in according to a random permutation π.

Because of the way we’ve randomly assigned blocks to f1, . . . , fr, the adversary cannot concen-
trate her attack on the computation of any specific fi. More precisely, we can show that the amount
of error present in the blocks corresponding to the computation of fk is (roughly) proportional to
the total error present. Then, as long as at least half the blocks corresponding to fk have < εn/r
fraction of errors, we have that the majority vote for each of f1, . . . , fr will be correct. In total, this
means that our algorithm for computing f(x) is resilient to εn/r

2 fraction of errors.
Unfortunately, this factor of 2 loss in the error resilience in each iteration of the recursion will

prove to be problematic, as we can no longer guarantee a positive error resilience when n gets large.

Decoding with confidences. In the above analysis, our worst case error distribution was that
where just under one-half of the chunks have εn/r error while the rest are error-free. In this case,
the chunks with εn/r error will produce a wrong output, while the error-free ones will produce a
correct output.

However, we notice that in certain local decoding constructions (for us, we will use a Reed-Muller
code), one can actually obtain an estimate of how much error there was in the codeword based on
the inconsistency of the queries. In particular, in chunks where there were εn/r errors, even though
we will obtain a wrong answer, we can also see that there were a lot of errors in the codeword, and
thereby be less sure of the obtained answer.

This motivates our definition of local decoding with confidences: in addition to outputting an
answer, the decoding algorithm should also output a confidence c ∈ [0, 1] indicating how confident
it is that the answer is correct. A confidence of 0 indicates that it’s not sure at all: the fraction of
errors seen was near the threshold ε1; whereas a confidence of 1 indicates that it’s quite sure: either
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the answer is right and no errors occurred, or at least 2ε1 errors were required to obtain a wrong
answer with confidence 1. Another way to view the confidence is as an estimate of how much error
was present in the total codeword (how far the actual error is from ε1).

Now, when we perform the recursive step to obtain a noise resilient algorithm for f from
f1, . . . , fr, in addition to recording the outputted answer from each chunk, we will also record
the associated confidence. Suppose that the ℓ answers and confidences obtained for fk were
(q̂(1), ĉ(1)), . . . , (q̂(ℓ), ĉ(ℓ)). Then, the weighted majority vote of these answers is defined to be the q̂
with the largest total confidence. We can show that as long as the cumulative fractional error cn is
at most cn/r, we’re guaranteed that the correct answer has more the highest total confidence.

We remark that one does not have to store all ℓ pairs (q̂(j), ĉ(j)). Rather, we can keep track of
a most likely q and associated confidence c. To update (q, c) with a new pair (q̂, ĉ), one can update
c by ±ĉ (+ĉ if q̂ = q, and −ĉ otherwise). If the resulting confidence c is less than 0, then it means
that the answer q̂ is supported by less overall error, so we set our most likely q to be q̂ and flip the
sign of c.

Now, we analyze the space and communication complexity of the resulting algorithm. The space
required is simply sn/r, the space required to do a size n/r sub-computation, plus the space required
to store a pair (q, c) for each of f1, . . . , fr. Overall, this means that for each layer of the recursion,
we are only gaining an additive factor of r · (|q| + |c|) space overhead, so the total space overhead
is at most polylogarithmic in n. As for the size of the resulting stream, we see that the number of
LDC(x)’s is ≈ (r · ℓ)logr n,5 which is polynomial in n.

Computing non-linear functions. Our algorithm so far has only captured functions f that are
splittable into r sub-computations whose computations do not depend on each other. However, for
a general function, this may not be the case. Indeed, for many functions, the computations must
be done sequentially, where later computations can only be done once earlier computations have
finished. We may split a general function f into r sub-functions where q1 := f1(x[1 : n/r], ∅) is the
state of the algorithm after n/r bits of the stream, q2 := f2(x[n/r+1 : 2n/r], q1) is the state of the
algorithm after receiving the next n/r bits of the stream, and so on. The difference from the linear
function case is that to compute fj , we must have the correct output of fj−1.

In order to handle such sequential computations, we modify our above algorithm as follows. In
the recursive layer computing f from functions f1, . . . , fr, we always compute fj from the starting
state qj−1 which is our current best guess for the output of fj−1. This value of qj−1 may not always
be correct, in which case the computation done for fj will be doomed.

As with our algorithm for linear functions, after every chunk, we update the most likely state qj
and confidence cj for the sub-function that was computed in that chunk. However, when a state qj
changes, this also means that computations done for fj+1 . . . fn were based on wrong information.
In the case of linear functions, the computations are independent so this does not matter, but for
sequential functions, we have to discard the guesses qj+1 . . . qn. Formally, we set these states to ∅
and set the corresponding confidences all to 0.

Because each sub-function qj is only computed usefully when qj−1 is correct and also the value
of qj is frequently discarded, it is less clear that over many iterations the qj ’s will converge to the
correct values. Nevertheless, we prove in Section 6 that over enough iterations, the guesses qj will
eventually all be correct as long as there are not too many errors in the stream.

5In our actual protocol, we will repeat the procedure log2 n times and take a final majority vote, so the number
of LDC(x)’s used will be (r · ℓ)logr n · log2 n.
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Outline. The rest of this paper is organized as follows. In Section 3, we start with some prelim-
inary theorems about error-correcting codes. In Section 4, we define our notion of local decoding
with confidences and prove that Reed-Muller codes satisfy this property. Then, in Sections 5 and 6,
we present our noise resilient streaming algorithms for linear and general (sequential) functions,
respectively.

3 Preliminaries

Notation.

• The function log is in base 2 unless otherwise specified.

• The set [n] denotes the integers 1 . . . n.

• We use x[i : j] to denote the i’th to j’th bits of x inclusive. We use x(i : j] to refer to the
(i+ 1)’th to j’th bit inclusive.

• We use e as a variable rather than the universal constant e.

3.1 Error-Correcting Codes

We begin with some results about error-correcting codes. The first is the existence of a relative
distance 1

2 binary code.

Theorem 3.1. [GS00] For all ϵ > 0, there exists an explicit error-correcting code ECCϵ = {ECCϵ,n :
{0, 1}n → {0, 1}m}n∈N with relative distance 1

2 − ϵ and m = Oϵ(n), and a polyϵ(n)-time decoding
algorithm DECϵ : {0, 1}m → {0, 1}n, such that for any x ∈ {0, 1}n and w ∈ {0, 1}m satisfying
∆(ECCε(x), w) <

(
1
4 −

ε
4

)
·m, it holds that x = DECε(w).

Our second theorem is about the efficient decoding of Reed-Solomon codes [RS60].

Theorem 3.2 (Berlekamp-Welch; see e.g. [GS92]). Given a collection of tuples (α1, v1), . . . , (αn, vn)
where αi, vi ∈ Fq and a parameter d ≤ n, there is an algorithm running in poly(n, log q) time that
outputs a polynomial g(α) ∈ Fq[α] of degree at most d−1 such that ∆((g(αi))i∈[n], (vi)i∈[n]) <

n−d+1
2 .

Finally, we recall generalized minimum distance decoding, which allows us to decode concate-
nated codes efficiently.

Theorem 3.3 (GMD Decoding [For66, Gur06]). Given two codes, Nouter : {0, 1}k → Σn of distance
1− εouter with decoding time Touter, and Ninner : Σ→ {0, 1}m of distance 1

2 − εinner with decoding
time Dinner, there is an algorithm running in time poly(Dinner, Dinner) that on input w ∈ {0, 1}n·m

outputs x ∈ {0, 1}k such that ∆(w,Nouter ◦Ninner(x)) <
(1−εouter)(

1
2
−εinner)

2 .

4 Locally Decoding with Confidences

We now recall the definition of locally decodable codes. For us, besides just correctness of local
decoding when the distance to a codeword is small, we require that the decoder output a confidence
indicating how much error it witnessed (less error means higher confidence).
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Theorem 4.1. (Locally Decodable Code) For any ε > 0 and d = d(n) = log1/δ n, there is a code
LDC : {0, 1}n → {0, 1}N(n) where N(n) = Oε(n

1+δ) that satisfies the following properties:

• Distance: For any x ̸= y ∈ {0, 1}n, it holds that ∆(LDC(x), LDC(y)) ≥
(
1
2 − ε

)
·N .

• Locally Decoding with Confidence: For any index i ∈ [n] and any word w ∈ {0, 1}N , there
exists a randomized algorithm Di that reads Q = Oε(log

2/δ n) bits of w, runs in Oε(n
O(1/δ))

time, and outputs a bit x̂i along with confidence conf ∈ [0, 1], satisfying that

– For any x ∈ {0, 1}n such that ∆(w, LDC(x)) =
(
1
4 − 2ε− e

)
· N where e ≥ 0, it holds

that
x̂i = xi and conf > e

with probability at least 1− exp
(
− log2 n

)
.

– For any x ∈ {0, 1}n such that ∆(w, LDC(x)) =
(
1
4 − 2ε+ e

)
· N where e > 0, it holds

that
x̂i = xi or conf < e

with probability at least 1− exp
(
− log2 n

)
.

Furthermore, the confidence conf can be represented as a rational number with denominator
4Q.

Proof. The locally decodable code that we will be using is the concatenation of two codes. The
outer code Couter is a Reed-Muller code of m = logd n-variate polynomials over F = Fq of degree
d−1 where q ∈ [2d/ε, 4d/ε] is a power of 2. Couter has dimension dm = n and block length Nouter =
qm < (4d/ε)m = n ·

(
4
ε

)m
= n1+δ·log(4/ε)/ log logn = Oε(n

1+δ/2). The inner code Cinner is a binary
code of relative distance 1

2 −
ε
2 (see Theorem 3.1) with block length Ninner = Oε(log q) = oε(n

δ/2).
Thus, the block length of the concatenated code C is N = Nouter · Ninner = Oε(n

1+δ). We will
index the bits of the concatenated code by pairs (v, j) where v ∈ Fm and j ∈ [Ninner]. We remark
that the outer code Couter is systematic.

By the Schwartz-Zippel lemma [Sch80, Zip79], the distance of the outer code is ≥ (q − d+ 1) ·
qm−1 ≥

(
1− ε

2

)
·Nouter. So the relative distance of the concatenated code is ≥

(
1− ε

2

)
·
(
1
2 −

ε
2

)
≥

1
2 − ε.

The decoding algorithm is as follows. Suppose we want the i’th index of x which is located at
v0 ∈ Fm in the outer code. Then, we do the following k = 10 log2 n/ϵ2 times: Pick a random degree-
2 polynomial p(λ) = v0+ v1λ+ v2λ

2 by sampling v1, v2 ← Fm. Then, we query all bits of w located
at (p(λ), j) for λ ∈ F\{0}, j ∈ [Ninner] (we denote these collection of values by w|p). This means
that Q = k · (q− 1) = Oε(log

2/ε). By Theorem 3.3 (combined with Theorems 3.1 and 3.2), one can
in poly(q log q) = Oε(n

O(1/δ)) time find the unique degree 2d− 2 polynomial h ∈ F[λ] such that the
distance between w|p and the Cinner encodings of h(λ) is at most (q− 2d+1) ·

(
1
2 −

ε
2

)
·Ninner/2 ≥(

1
2 − ε

)
· Qk . Then, the decoding algorithm outputs x̂i set to be the majority of all the values of h(0)

among the k iterations (where if such a polynomial h of distance (q − 2d + 1) ·
(
1
2 −

ε
2

)
· Ninner/2

doesn’t exist, we say that h(0) evaluates to 0).
The confidence conf is calculated as follows. For each of the k polynomials p, we let ∆h

p be the
distance of the queried bits from the Cinner encodings of h(λ). If h(0) = x̂i, we set ∆p = ∆h

p , and
otherwise we set ∆p = (q − 2d + 1) · 12 −

ε
2) · Ninner/2 −∆h

p . This gives us an estimate ∆p of the
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amount of error present in w conditioned on the output guess x̂i being the actual value of p(0). In
particular, ∆p ≤ ∆(w|p, LDC(x)|p). Then, we set conf := 1

4 −
∑

p∆p/Q.
We now discuss why the local decoding properties hold. First, suppose x ∈ {0, 1}n satisfies that

∆(w, LDC(x)) ≤
(
1
4 − 2ε

)
·N . Then,

Pr

[
x̂i ̸= xi or conf ≤ 1

4
− 2ε− ∆(w, LDC(x))

N

]
≤ Pr [x̂i ̸= xi] + Pr

[∑
p

∆p ≥
(
∆(w, LDC(x))

N
+ 2ε

)
·Q

∣∣∣∣∣ x̂i = xi

]
≤ e−ε2k/10,

where we’ve used the following two inequalities:

• By Proposition 2.7 in [Yek12], the probability that for any of the k polynomials p it holds
that p(0) ̸= xi is

≤ 4(∆−∆2)

(q − 1) ·
(
(1− ε) ·

(
1
2 −

ε
2

)
− 2∆

)2 ≤ 1

ε(q − 1)
≤ 1

log1/δ n

when ∆ := ∆(c,LDC(x))
N ≤ 1

4 − 2ε. Then, by the Chernoff bound,

Pr[x̂i ̸= xi] ≤ Pr

[
# [p : p(0) ̸= xi] ≥

k

2

]
≤ e−k/10.

• Given that x̂i = xi, we have that ∆p ≤ ∆(w|p, LDC(x)|p), so that E[∆p] ≤ ∆(w,LDC(x))
N · Qk . By

Hoeffding’s inequality,

Pr

[∑
p

∆p ≥
(
∆(w, LDC(x))

N
+ 2ε

)
·Q

]
< e−8ε2·k.

Second, suppose x ∈ {0, 1}n satisfies that ∆(w, LDC(x)) >
(
1
4 − 2ε

)
·N . Then,

Pr

[
x̂i ̸= xi and conf ≤ ∆(w, LDC(x))

N
−
(
1

4
− 2ε

)]
≤ Pr

[
conf ≤ ∆(w, LDC(x))

N
−
(
1

4
− 2ε

) ∣∣∣∣∣ x̂i ̸= xi

]

= Pr

[∑
p

∆p ≥
(
1

2
− 2ε− ∆(w, LDC(x))

N

)
·Q

∣∣∣∣∣ x̂i ̸= xi

]
.

Note that since x̂i ̸= xi, and the restriction of LDC(x)|p to any polynomial p is a code of distance
≥ (q− 2d+1) ·

(
1
2 −

ε
2

)
·Ninner ≥

(
1
2 − ε

)
· Qk . Thus, if Γp denotes the actual amount of corruptions

to the points of LDC(x)|p, then Γp +∆p ≥
(
1
2 − ε

)
· Qk . The above inequality is then

≤ Pr

[∑
p

Γp ≥
(
∆(w, LDC(x))

N
+ ε

)
·Q

]
.
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Since E[Γp] =
∆(w,LDC(x))

N · Qk , by Hoeffding’s Inequality,

Pr

[∑
p

Γp ≥
(
∆(w, LDC(x))

N
+ ε

)
·Q

]
≤ e−2ε2·k.

5 Noise Resilient Streaming for Linear Algorithms

Our first result is a noise resilient conversion for linear streaming algorithms A. We begin by
recalling the definition of a linear streaming algorithm.

Definition 1.2. [Linear Streaming Algorithms] A linear streaming algorithm A : {0, 1}n → Fq

is described by a list of functions gi : {0, 1} → Fq for i ∈ [n], and computes the value A(x) =
g1(x1) + . . . + gn(xn) (where addition is over Fq) by tracking the partial sum g1(x1) + . . . + gi(xi)
upon receiving the i’th bit.

For such algorithms, we describe a noise resilient conversion that incurs quadratic blow-up in
communication complexity.

Theorem 1.3. Fix ε, δ > 0. There is a function enc : X ⊆ {0, 1}n → {0, 1}m where m = Oε(n
2+δ)

and an explicit transformation B such that the following holds: For any linear streaming algorithm
A that takes as input x ∈ X ⊆ {0, 1}n as a stream, runs in space s and time t, and outputs A(x), the
algorithm BA = B(A) takes as input z ∈ {0, 1}m as a stream, runs in space s ·Oε((log n)

O(1/δ)) and
time m · Oε,δ

(
1 + t

n2

)
, and satisfies that whenever ∆(z, enc(x)) <

(
1
4 − ε

)
·m then BA(z) outputs

A(x) with probability ≥ 1− 2Oε(log
2 n).

5.1 Statement of Algorithm

Let ε > 0. Throughout the section let r = log1/δ n and define ℓ := log2 n. We also assume for
simplicity that logr n is an integer. We will also assume that n > max {exp(exp(8δ/ε)), exp(1/ε)}
is sufficiently large, so that also ℓ < n.

We begin by specifying the encoding enc(x) that Alice sends in the stream.

Definition 5.1 (enc(x)). Let LDC(x) be a locally decodable code with N(n) = |LDC(x)| = Oε(n
1+δ)

and query complexity Q = Oε(log
2/δ n) satisfying the guarantees of Theorem 4.1 for ε/8. Then

Alice sends enc(x) := LDC(x)log
2 n·Mn where Mn = (r · ℓ)logr n (that is, enc(n) is log2 n ·Mn copies

of LDC(x)). In particular, m = |enc(x)| = (r · ℓ)logr n · log2 n ·N(n) = Oε(n
2+4δ).

Throughout this section, we use the notation Ai,j(x) to denote the quantity g(xi+1)+. . .+gj(xj).
Then, A(x) = A0,n(x). We define Nj−i := (r · ℓ)logr(j−i) ·N(n) which, as we’ll see in the description
below, represent the number of bits read by the algorithm to approximate Ai,j(x).

We describe Bob’s streaming algorithm BA := B(A). Before stating it formally, we provide a
high-level description.

11



Description: Let z be the incoming stream that Bob receives. At a high level, the algorithm BA

runs by generating many guesses for A(x) along with confidences indicating how likely that guess
was correct (depending on how much error is witnessed while generating the guess). At the end,
the guess that has the most cumulative confidence is outputted.

For i, j where j − i is an integer power of r, we define the algorithm estA(i, j) that takes in two
input two indices i, j ∈ [n]. It reads Nj−i many bits of z after which it outputs a guess for Ai,j(x)
along with a confidence. In particular, estA(0, n) outputs a guess for A(x) along with a confidence.
By running estA(0, n) many times and aggregating the guesses weighted by the confidences, we
obtain a final output.

To compute estA(i, j), we break down the interval (i : j] into r subintervals (i0 : i1], (i1 :
i2], . . . , (ir−1 : ir] where ia = i+a· j−i

r . We then recursively formulate guesses for each A (x (ia−1 : ia])
over many iterations by calling estA(ia−1, ia) each many times. The choice of a in each iteration
must be randomized, so that the adversary cannot attack any single choice of a. More specifically,
we will split up the Nj−i length input stream into ℓ chunks, each of length Nj−i/ℓ bits. Each
chunk is split into r sections, each of size Nj−i/(ℓ · r) = N(j−i)/r. In each chunk, we pick a
random permutation (π1, π2, . . . , πr) of [r]. In the a’th section of the chunk, we will compute on the
subproblem corresponding to interval (iπa−1 : iπa ] by calling estA (iπa−1, iπa).

Whenever a recursive call to estA (ia−1, ia) is completed, outputting (q̂, ĉ), then: if qa = q̂ then
the confidence ca is increased by ĉ, and if qa ̸= q̂ then the confidence ca is decreased by ĉ. If the
confidence ca becomes negative, then we are more sure that the correct state is q̂ rather than qa:
then qa is replaced by q̂ and the confidence is negated (so that it’s positive).
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Algorithm 1 Bob’s Noise Resilient Algorithm BA

1: input n ∈ N and stream z ∈ {0, 1}m.
2: function estA(i, j) ▷compute the state of A starting at state q between steps i and j
3: if j = i+ 1 then
4: Read the next |LDC(x)| bits of the stream y.
5: Using Theorem 4.1 compute guess b̂ for x[j] and confidence ĉ in Oε

(
(log n)O(1/δ)

)
bits of

space.
6: return gi(b̂), c.
7: else
8: Let i0 = i, i1 = i+ j−i

r , i2 = i+ 2(j−i)
r , . . . , ir = j.

9: Initialize a list of pairs (q1, c1), . . . (qr, cr) each to (∅, 0). ▷cumulative best guesses and
confidences

10: for ℓ iterations do
11: Let π1 . . . πr be a random permutation of [r].
12: for a ∈ [r] do
13: Compute (q̂, ĉ)← estA(iπa−1, iπa).
14: if q̂ = qπa then ▷update the confidence on estA(iπa , iπj+1, qπa−1)
15: cπa ← cπa + ĉ
16: else
17: cπa ← cπa − ĉ
18: if cπa < 0 then ▷if the guess changes, flip its confidence
19: qπa ← q̂ and cπa ← −cπa .
20: return q1 + . . .+ qr,min(c1 . . . cr)/ℓ

21:
22: Initialize a pair (q, c) to (∅, 0).
23: for log2 n iterations do ▷amplification step
24: Let (q̂, ĉ)← estA(0, n)
25: if q̂ = q then
26: c← c+ ĉ
27: else
28: c← c− ĉ
29: if c < 0 then
30: q ← q̂ and c← −c.
31: output q. ▷output A(x)

5.2 Proof of Theorem 1.3

We begin by proving the stated claims about the communication, time, and space complexities, and
then proceed to prove correctness.

5.2.1 Algorithmic Complexity

We’ve already shown by Definition 5.1 that the length of the encoding enc(x) is m = Oε(n
2+4δ).

We begin by proving the computational complexity claim.

Lemma 5.2. If A runs in time t, Algorithm 2 runs in time m ·Oε,δ

(
1 + t

n2

)
.
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Proof. Notice that each function gi(xi) is computed exactly log2 n·Mn

n times throughout the protocol.
(To see this, one can show inductively that 1

j−i fraction of the LDC(x)’s in the computation of A(i, j)
are used towards the decoding of each xk, k ∈ (i, j].) Other than that, one must decode of each
of the log2 n ·Mn copies of LDC(x) throughout the stream, each of which takes N(n) + polylog(n)
time to read and decode (see Theorem 4.1). This gives a total computation time of log2 n ·M(n) ·(
N(n) + polylog(r) + t

n

)
= Oε,δ

(
m ·

(
1 + t

n2

))
.

Next, we show that Algorithm 1 satisfies the required space guarantees. We’ll first show that
the confidences c can be stored in Oδ(log n) bits.

Lemma 5.3. For any i, j, q where j − i is a power of r, let (q̂, ĉ) := estA(i, j). It holds that ĉ can
be computed and stored as a fraction (c1, c2) = c1/c2 where c1 ≤ c2 = (j − i)logr ℓ · 4Q.

Proof. We show this by induction on j − i for j − i ≤ n. For the base case where j − i = 1, this
statement holds by Theorem 4.1 since c2 = 4Q.

Assume the statement holds for all q′ and j′ − i′ < j − i where j′ − i′ is a power of r. In the
computation of estA(i, j), for a ∈ r, each value of ca is ultimately the sum of ≤ ℓ values outputted by
the function estA(ia−1, ia). Since ia−ia−1

r = j−i
r , we can use the induction hypothesis to write each

value as a fraction with denominator
(
j−i
r

)logr ℓ ·4Q. Then, each ca/ℓ is a fraction with denominator

(
j − i

r

)logr ℓ

· 4Q · ℓ = ℓlogr
j−i
r · 4Q · ℓ = ℓlogr(j−i) · 4Q = (j − i)logr ℓ · 4Q,

and so the output confidence mina∈[r]{ca/ℓ} can be written with denominator c2 = (j − i)logr ℓ ·
4Q.

Now, we return to showing that Algorithm 1 satisfies the required space guarantees.

Lemma 5.4. Algorithm 1 uses s ·Oε

(
(log n)O(1/δ)

)
bits of space.

Proof. Define α = α(n) = Oε(log
O(1/δ) n) to be the runtime and thus an upper bound on the space

required in the local decoding with confidence of LDC(x) as given in Theorem 4.1. We claim the
computation of estA(0, n) takes α + s + logr n · r · (s+Oε,δ(log n)) bits of storage. We show by
induction on j − i (where j − i is a power of r that the computation of estA(i, j) requires at most
α+ s+ logr(j − i) · r · (s+Oε,δ(log n)) bits of space.

The base case holds because when j − i = 1 because then only α+ s space is required.
For the inductive step, the computation of estA(i, j) requires ℓ computations of estA(ia−1, ia)

for each a ∈ [r]. By the inductive hypothesis, each such computation takes α + s + logr

(
j−i
r

)
·

r · (s+Oε,δ(log n)) bits of space. Each such computation is done in series, and between iterations
only the pairs {(qa, ca)}a∈[r] are tracked. Each qa is a state of size s. Each ca is the sum of ≤ ℓ
confidences that are the output of computation estA(ia−1, ia). By Lemma 6.3 the output confidence

of estA(ia−1, ia) is a fraction ≤ 1 with denominator
(
j−i
r

)logr ℓ · 4Q, so ca can be represented

in 2 log2

(
ℓ ·
(
j−i
r

)logr ℓ · 4Q) < Oε,δ(log2 n) bits. Moreover, in each chunk, we must compute a
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permutation of r, which takes at most r log2 r = r · oδ(log n) bits. In total, this takes

≤
[
α+ s+ logr

(
j − i

r

)
· r · (s+Oε,δ(log n))

]
+ r · (s+Oε,δ(log n))

= α+ s+ logr (j − i) · r · (s+Oε,δ(log n))

bits of space, as desired.
Finally, the amplification part of Algorithm 2 requires log2 n iterations. Between iterations, we

are only storing a pair (q, c). This increases the number of bits required by at most s+Oε,δ(log n).
In total, the total space needed throughout the entire algorithm is

< s · log1/δ+1 n+Oε,δ(log
1/δ+2 n) + α < s ·Oε

(
(log n)O(1/δ)

)
bits.

5.2.2 Correctness

We now show correctness. Formally, correctness is shown by the following lemma.

Lemma 5.5. When at most 1
4 − ε fraction of the stream enc(x) is corrupted, Algorithm 1 outputs

A(x) with probability ≥ 1− exp (−ε2 log2 n/32).

We prove the following statement which will easily imply Lemma 5.5. For a given i, j and associ-
ated string that is read by the algorithm in the computation, let the random variable (q(i, j), c(i, j))
denote the state and confidence after the computation estA(i, j). We define the signed confidence,
denoted c±(i, j), to be defined as +c(i, j) if q(i, j) = Ai,j(x) and −c(i, j) otherwise. For intuition,
the more positive c±(i, j) is, the more correct with higher confidence the output (q(i, j), c(i, j)) is,
whereas the more negative c±(i, j) is, the more q(i, j) is incorrect with high confidence. So, c±(i, j)
gives us a scaled measure of how correct the output of estA(i, j) is.

Lemma 5.6. For any 0 ≤ i < j ≤ n and e ∈ R, given ≤ 1
4−

ε
4−

ε
4 ·

log(j−i)
logn −e fraction of corruptions

in the bits read by the computation of estA(i, j), we have E[c±(i, j)] > e.

We defer the proof to Section 5.2.3 and return to the proof of Lemma 5.5.

Proof of Lemma 5.5. In the special case where i = 0, j = n and there are ≤ 1
4 −

ε
2 − e < 1

4 −
ε
4 −

ε
4 ·

log(j−i)
r − e errors (where the inequality follows because log n < ε · r), by Lemma 5.6 we have that

E[c±(0, n)] > e.
Then, the final amplification step of the protocol computes the pair (q(0, n), c(0, n)) for log2 n

times, where in each chunk i we denote the fraction of error to be
(
1
4 −

ε
2 − ei

)
, where

∑
i ei ≥

ε log2 n
2

since we assumed the total error was ≤ 1
4 − ε. Also, the protocol outputs A(x) if and only if∑

i c
±
i (0, n) (denoting the value of c±(0, n) in the i’th chunk) is positive. By Azuma’s inequality,

Pr

[∑
i

c±i (0, n) > 0

]
≥ Pr

[∑
i

(
c±i (0, n)− ei

)
> −ε log2 n

2

]
≥ 1− exp

(
−ε2 log2 n

32

)
.

Combining Lemmas 5.2, 5.4, and 5.5, this concludes the proof of Theorem 1.3.
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5.2.3 Proof of Lemma 5.6

We prove Lemma 5.6 by induction on j − i. We’ll show the statement assuming it holds for
j′ − i′ < j − i (where j′ − i′ is a power of r).

We begin with the base case of j − i = 1. In this case, the algorithm simply reads (a cor-
rupted version of) LDC(x), and by Theorem 4.1, it holds that E[c±(i, j)] > e since there is at most(
1
4 −

ε
4 − e

)
error.

We start with some useful notation. In the computation of estA(i, j), we say that the output
of the computation of estA(ia−1, ia) in the b’th chunk is (q̂a,b, ĉa,b). We define the signed confidence
ĉ±a,b to be the confidence ĉa,b signed by whether the guess q̂a,b is correct: that is,

ĉ±a,b :=

{
ĉa,b q̂a,b = Aia−1,ia(x)

−ĉa,b q̂a,b ̸= Aia−1,ia(x).

The cumulative best guess and confidence for Aia−1,ia(x) after all ℓ chunks is denoted by (qa, ca).
We let q0 = ∅. We define a cumulative signed confidence c±a as follows:

c±a :=

{
ca qa = Aia−1,ia(x)

−ca qa ̸= Aia−1,ia(x).

We show a lower bound on the cumulative signed confidence at the end of all ℓ chunks c±a that
holds with high probability.

Lemma 5.7. Let a ∈ [r] index the r intervals (ia−1, ia] in the computation of estA(i, j). Let
each of the ℓ chunks in the computation be indexed by b ∈ [ℓ] and suppose chunk b has(

1
4 −

ε
4 −

ε
4 ·

log j−i
r

logn − eb

)
fraction of corruption. Then, for all a ∈ [r], with probability ≥ 1 −

exp
(
− log2 n

8

)
it holds that c±a >

∑
b≤ℓ eb −

ℓ
logn .

Proof. We first show that for all a, it holds that c±a ≥
∑

b≤ℓ ĉ
±
a,b. To see this, define c±a,b to be the

value of ca at the end of chunk b if qa is correct at the end of chunk b, and otherwise, −ca, so that
c±a = c±a,ℓ. Then, c±a,b − c±a,b−1 ≥ ĉ±a,b, which implies that c±a ≥

∑
b≤ℓ ĉ

±
a,b.

Consider the sequence
{
Xb :=

∑
d≤b

(
ĉ±a,d − ed

)}
b∈[ℓ]

. Because E
[
ĉ±a,b

]
> eb by induction on

induction on j − i, the sequence {Xb}b∈[ℓ] is a submartingale. It also holds that |ĉ±a,b − eb| ≤ 2.
Then, by Azuma’s inequality, it holds that

Pr

c±a >
∑
b≤ℓ

eb −
ℓ

log n

 ≥ Pr

[
Xℓ > −

ℓ

log n

]
> 1− exp

(
− log2 n

8

)
.

Now, we need a way to reconcile the values of e and eb. Recall that from the statement of
Lemma 5.6 that e is defined to be such that there is

(
1
4 −

ε
4 −

ε
4 ·

log j−i
logn − e

)
fraction of error in
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the bits read by estA(i, j). In Lemma 5.7, chunk b had
(

1
4 −

ε
4 −

ε
4 ·

log j−i
r

logn − eb

)
fraction of error.

This means that the total fraction of error is equal to

1

4
− ε

4
− ε

4
· log(j − i)

log n
− e =

1

ℓ

∑
b≤ℓ

(
1

4
− ε

4
− ε

4
·
log j−i

r

log n
− eb

)

=⇒ e =
1

ℓ
·
∑
b≤ℓ

eb −
ε

4
· log r
log n

.

Next, we show that the cumulative signed confidence is larger than proportional to e at the end
of each of the ℓ chunks.

Lemma 5.8. With probability at least 1− 1
n , it holds that for all a ∈ [r] that c±a

ℓ > e+ 1
logn .

Proof. Using Lemma 5.7 with a union bound, it holds with probability at least

1−
∑

1≤a≤r

exp

(
− log2 n

8

)
≥ 1− r · exp

(
− log2 n

8

)
≥ 1− 1

n

that

c±a
ℓ

>

∑
b≤ℓ eb −

ℓ
logn

ℓ
≥ e+

ε

4
· log r
log n

− 1

log n
≥ e+

1

log n

since for sufficiently large n it holds that ε
4 · log r > 2.

We return to the computation of E[c±(i, j)]. Note that

c±(i, j) =

{
+mina∈[r]{ caℓ } q(i, j) = Ai,j(x)

−mina∈[r]{ caℓ } q(i, j) ̸= Ai,j(x).

Define the event E to be the event where c±a
ℓ > e+ 1

logn for all a ∈ [r]. By Lemma 5.8, E holds
with probability at least 1− 1

n . We split the proof of Lemma 5.6 based on whether e+ 1
logn ≥ 0.

If e + 1
logn ≥ 0, then whenever E holds we have that for all a we have c±a > 0 and thus

q(i, j) = Ai,j(x). Therefore,

E[c±(i, j)] ≥ E

[
min
a∈[r]

{ca
ℓ

} ∣∣∣∣∣E
]
· Pr[E] + (min value of c±(i, j)) · (1− Pr[E])

>

(
e+

1

log n

)(
1− 1

n

)
+ (−1) · 1

n

= e+
n− e log n− 1− log n

n log n

> e.
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If e + 1
logn < 0, then if q(i, j) = Ai,j(x), then E[c±(i, j)] ≥ 0 > e + 1

logn ≥ e. Otherwise, there

is at least one value of a for which qa is incorrect. Conditioned on E, it holds that c±a
ℓ > e + 1

logn .
Since qa is incorrect it holds that c±a = −ca, implying that ca

ℓ < −e− 1
logn . As such,

E[c±(i, j)] ≥ E

[
−min

a∈[r]

{ca
ℓ

} ∣∣∣∣∣E
]
· Pr[E] + (min value of c±(i, j)) · (1− Pr[E])

>

(
e+

1

log n

)(
1− 1

n

)
+ (−1) · 1

n

= e+
n− e log n− 1− log n

n log n

> e.

This concludes the proof of Lemma 5.6.

6 Noise Resilient Streaming for General Algorithms

We now consider general streaming algorithms, whose computational may be sequential in nature.
Our main result is a noise resilient conversion for deterministic streaming algorithms A. Compared
to our scheme for linear algorithms from Section 5, the length of our encoding is larger: n4+δ

compared to n2+δ.

Theorem 1.1. Fix ε, δ > 0. There is a function enc : X ⊆ {0, 1}n → {0, 1}m where m = Oε(n
4+δ)

and an explicit transformation B such that the following holds: For any deterministic algorithm A
that takes as input x ∈ X ⊆ {0, 1}n as a stream, runs in space s and time t, and outputs A(x), the
algorithm BA = B(A) takes as input z ∈ {0, 1}m as a stream, runs in space s ·Oε

(
(log n)O(1/δ)

)
and

time m · Oε,δ

(
1 + t

n2

)
, and satisfies that whenever ∆(z, enc(x)) <

(
1
4 − ε

)
·m then BA(z) outputs

A(x) with probability ≥ 1− 2Oε(log
2 n).

Throughout this section, we use the notation

A(q, x̂) ∈ {0, 1}s

to denote the state of algorithm A when starting with the state q ∈ {0, 1}s and executing on x̂
received in a stream. By definition, there is an explicit algorithm that computes A(q, x̂) in s space.
We also use the shorthand A(x̂) to denote A(∅, x̂). Notice that A(x) = A(∅, x) is simply the output
state of the stream.

6.1 Statement of Algorithm

Let ε > 0. Throughout the section let r = log1/δ n and define ℓ := r2 log4 n. We also assume for
simplicity that logr n is an integer. We will also assume that n > max {exp(exp(8δ/ε)), exp(1/ε)}
is sufficiently large, so that also ℓ < n.

We begin by specifying the encoding enc(x) that Alice sends in the stream.

Definition 6.1 (enc(x)). Let LDC(x) be a locally decodable code with N(n) = |LDC(x)| = Oε(n
1+δ)

and query complexity Q = Oε(log
2/δ n) satisfying the guarantees of Theorem 4.1 for ε/8. Then

Alice sends enc(x) := LDC(x)log
2 n·Mn where Mn = (r · ℓ)logr n (that is, enc(n) is log2 n ·Mn copies

of LDC(x)). In particular, m = |enc(x)| = (r · ℓ)logr n · log2 n ·N(n) = Oε(n
4+6δ).
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Next, we describe Bob’s streaming algorithm BA := B(A). Before stating it formally, we provide
a high-level description.

Description: Let z be the incoming stream that Bob receives. At a high level, the algorithm BA

runs by generating many guesses for A(x) along with confidences indicating how likely that guess
was correct (depending on how much error is witnessed while generating the guess). At the end,
the guess that has the most cumulative confidence is outputted.

For i, j where j − i is an integer power of r, we define the algorithm estA(i, j, q) that has the
following syntax:

• estA(i, j, q) takes as input two indices i, j ∈ [n] along with a state q ∈ {0, 1}s which represents
a guess for the state of A(q, x(i : j]).

• It reads Nj−i := (r · ℓ)logr(j−i) · N(n) many bits of z after which it outputs a guess for
A(q, x(i : j]) along with a confidence.

In particular, estA(0, n, q) outputs a guess for A(x) along with a confidence. By running estA(0, n, q)
many times and aggregating the guesses weighted by the confidences, we obtain a final output.

At a high level, to compute estA(i, j, q), we break down the interval (i : j] into r subintervals
(i0 : i1], (i1 : i2], . . . , (ir−1 : ir] where ia = i+ a · j−i

r . We then recursively formulate guesses for each
A (x (1 : ia]) over many iterations by calling estA (ia−1, ia, qa−1) for some state qa−1. The choice of
a in each iteration must be randomized, so that the adversary cannot attack any single choice of a.
More specifically, we will split up the Nj−i length input stream into ℓ chunks, each of length Nj−i/ℓ
bits. Each chunk is split into r sections, each of size Nj−i/(ℓ · r) = N(j−i)/r. In each chunk, we pick
a random permutation (π1, π2, . . . , πr) of [r]. In the a’th section of the chunk, we will compute on
the subproblem corresponding to interval (iπa−1 : iπa ] by calling estA (iπa−1, iπa , qπa−1).

Note that as the algorithm A is computed sequentially, computing a guess for A (x [1 : ia])
requires having a starting state qa−1 for A (x [1 : ia−1]). Thus, throughout the entire computation,
we will keep track of the best guess and associated confidence for each of the r states A (x [1 : ia]),
denoted (qa, ca) and all initialized to (∅, 0).

These pairs (qa, ca) are maintained as follows. Whenever a recursive call to estA (ia−1, ia, qa−1)
is completed, outputting (q̂, ĉ), then: if qa = q̂ then the confidence ca is increased by ĉ, and if qa ̸= q̂
then the confidence ca is decreased by ĉ. If the confidence ca becomes negative, then we are more
sure that the correct state is q̂ rather than qa: then qa is replaced by q̂ and the confidence is negated
(so that it’s positive). In this last case where qa is replaced, we have no more reason to believe that
further computations of qa′ , a′ > a, are correct since they all depended on qa, so we erase all such
pairs (qa′ , ca′) and reset them to (∅, 0). A key point in our analysis is to understand why this does
not cause the error probability to accumulate.
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Algorithm 2 Bob’s Noise Resilient Algorithm BA

1: input n ∈ N and stream z ∈ {0, 1}m.
2: function estA(i, j, q) ▷compute the state of A starting at state q between steps i and j
3: if j = i+ 1 then
4: Read the next |LDC(x)| bits of the stream y.
5: Using Theorem 4.1 compute guess b̂ for x[j] and confidence ĉ in s ·Oε

(
(log n)O(1/δ)

)
bits

of space.
6: return A(q, b̂), c.
7: else
8: Let i0 = i, i1 = i+ j−i

r , i2 = i+ 2(j−i)
r , . . . , ir = j.

9: Initialize a list of pairs (q1, c1), . . . (qr, cr) each to (∅, 0). ▷cumulative best guesses and
confidences

10: for ℓ iterations do
11: Let π1 . . . πr be a random permutation of [r].
12: Set (q′1, c

′
1) = (q1, c1), . . . (q

′
r, c

′
r) = (qr, cr).

13: for a ∈ [r] do
14: Compute (q̂, ĉ)← estA(iπa−1, iπa , q

′
πa−1) where q′0 := q.

15: if q̂ = q′πa
then ▷update the confidence on estA(iπa , iπj+1, qπa−1)

16: cπa ← c′πa
+ ĉ

17: else
18: cπa ← c′πa

− ĉ
19: if cπa < 0 then ▷if the guess changes, reset its confidence
20: qπa ← q̂ and cπa ← −cπa .
21: if some qa was changed from its value at the beginning of the chunk then
22: For all i > a, set (qi, ci)← (∅, 0). ▷reset state and confidence for states with i > a

23: return qr,min(c1 . . . cr)/ℓ

24:
25: Initialize a pair (q, c) to (∅, 0).
26: for log2 n iterations do ▷amplification step
27: Let (q̂, ĉ)← estA(0, n, ∅)
28: if q̂ = q then
29: c← c+ ĉ
30: else
31: c← c− ĉ
32: if c < 0 then
33: q ← q̂ and c← −c.
34: output q. ▷output A(x)

6.2 Proof of Theorem 1.1

The proofs that the algorithm satisfies the required space, computational and communication guar-
antees are essentially the same as in Section 5, but we reproduce them for completeness. The proof
of correctness is somewhat more complicated but also follows the same general outline.
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6.2.1 Algorithmic Complexity

We begin by proving the stated claims about communication, time, and space complexities. We’ve
already shown by Definition 6.1 that the length of the encoding enc(x) is m = Oε(n

4+6δ). We thus
proceed by proving the computational complexity claim.

Lemma 6.2. If A runs in time t, Algorithm 2 runs in time m ·Oε,δ

(
1 + t

n2

)
.

Proof. Notice that each step A(qi−1, x[i]) is computed exactly log2 n·Mn

n times throughout the pro-
tocol. (To see this, one can show inductively that 1

j−i fraction of the LDC(x)’s in the computation
of A(i, j, q) are used towards the decoding of xk for each k ∈ (i, j].) Other than that, one must
decode of each of the log2 n · Mn copies of LDC(x) throughout the stream, each of which takes
N(n)+polylog(n) time to read and decode (see Theorem 4.1). This gives a total computation time
of log2 n ·M(n) ·

(
N(n) + polylog(r) + t

n

)
= Oε,δ

(
m ·

(
1 + t

n2

))
.

Next, we show that Algorithm 2 satisfies the required space guarantees. We’ll first show that
the confidences c can be stored in Oδ(log n) bits.

Lemma 6.3. For any i, j, q where j − i is a power of r, let (q̂, ĉ) := estA(i, j, q). It holds that ĉ can
be computed and stored as a fraction (c1, c2) = c1/c2 where c1 ≤ c2 = (j − i)logr ℓ · 4Q.

Proof. We show this by induction on j − i for j − i ≤ n. For the base case where j − i = 1, this
statement holds by Theorem 4.1 since c2 = 4Q.

Assume the statement holds for all q′ and j′ − i′ < j − i where j′ − i′ is a power of r. In
the computation of estA(i, j, q), for a ∈ r, each value of ca is ultimately the sum of ≤ ℓ values
outputted by the function estA(ia−1, ia). Since ia−ia−1

r = j−i
r , we can use the induction hypothesis

to write each value as a fraction with denominator
(
j−i
r

)logr ℓ · 4Q. Then, each ca/ℓ is a fraction
with denominator(

j − i

r

)logr ℓ

· 4Q · ℓ = ℓlogr
j−i
r · 4Q · ℓ = ℓlogr(j−i) · 4Q = (j − i)logr ℓ · 4Q,

and so the output confidence mina∈[r]{ca/ℓ} can be written with denominator c2 = (j − i)logr ℓ ·
4Q.

Now, we return to showing that Algorithm 2 satisfies the required space guarantees.

Lemma 6.4. Algorithm 2 uses s ·Oε

(
(log n)O(1/δ)

)
bits of space.

Proof. Define α = α(n) = Oε(log
O(1/δ) n) to be the runtime and thus an upper bound on the space

required in the local decoding with confidence of LDC(x) as given in Theorem 4.1. We claim the
computation of estA(0, n, ∅) takes α + s + logr n · r · (s+Oε,δ(log n)) bits of storage. We show by
induction on j − i (where j − i is a power of r that the computation of estA(i, j, q) requires at most
α+ s+ logr(j − i) · r · (s+Oε,δ(log n)) bits of space.

The base case holds because when j − i = 1 because then only α+ s space is required.
For the inductive step, the computation of estA(i, j, q) requires ℓ computations of

estA(ia−1, ia, qa−1) for each a ∈ [r]. By the inductive hypothesis, each such computation takes
α+ s+ logr

(
j−i
r

)
· r · (s+Oε,δ(log n)) bits of space. Each such computation is done in series, and
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between iterations only the pairs {(qa, ca)}a∈[r] are tracked. Each qa is a state of size s. Each ca is
the sum of ≤ ℓ confidences that are the output of computation estA(ia−1, ia, qa−1). By Lemma 6.3

the output confidence of estA(ia−1, ia, qa−1) is a fraction ≤ 1 with denominator
(
j−i
r

)logr ℓ · 4Q, so

ca can be represented in 2 log2

(
ℓ ·
(
j−i
r

)logr ℓ · 4Q) < Oε,δ(log2 n) bits. Moreover, in each chunk,

we must compute a permutation of r, which takes at most r log2 r = r · oδ(log n) bits. In total, this
takes

≤
[
α+ s+ logr

(
j − i

r

)
· r · (s+Oε,δ(log n))

]
+ r · (s+Oε,δ(log n))

= α+ s+ logr (j − i) · r · (s+Oε,δ(log n))

bits of space, as desired.
Finally, the amplification part of Algorithm 2 requires log2 n iterations. Between iterations, we

are only storing a pair (q, c). This increases the number of bits required by at most s+Oε,δ(log n).
In total, the total space needed throughout the entire algorithm is

< s · log1/δ+1 n+Oε,δ(log
1/δ+2 n) + α < s ·Oε

(
(log n)O(1/δ)

)
bits.

6.2.2 Correctness

Next, we show correctness. Formally, correctness is shown by the following lemma.

Lemma 6.5. When at most 1
4 − ε fraction of the stream enc(x) is corrupted, Algorithm 2 outputs

A(x) with probability ≥ 1− exp (−ε2 log2 n/32).

We prove the following statement which will easily imply Lemma 6.5. For a given i, j, q
and associated string that is read by the algorithm in the computation, let the random variable
(q(i, j, q), c(i, j, q)) denote the state and confidence after the computation estA(i, j, q). We define
the signed confidence, denoted c±(i, j, q), to be defined as +c(i, j, q) if q(i, j, q) = A(q, x(i : j]) and
−c(i, j, q) otherwise. For intuition, the more positive c±(i, j, q) is, the more correct with higher con-
fidence the output (q(i, j, q), c(i, j, q)) is, whereas the more negative c±(i, j, q) is, the more q(i, j, q)
is incorrect with high confidence. So, c±(i, j, q) gives us a scaled measure of how correct the output
of estA(i, j, q) is.

Lemma 6.6. For any 0 ≤ i < j ≤ n, q ∈ {0, 1}s, and e ∈ R, given ≤ 1
4 −

ε
4 −

ε
4 ·

log(j−i)
logn − e fraction

of corruptions in the bits read by the computation of estA(i, j, q), we have E[c±(i, j, q)] > e.

We defer the proof to Section 6.2.3 and return to the proof of Lemma 6.5.

Proof of Lemma 6.5. In the special case where i = 0, j = n, q = ∅ and there are ≤ 1
4 −

ε
2 − e <

1
4 −

ε
4 −

ε
4 ·

log(j−i)
r − e errors (where the inequality follows because log n < ε · r), by Lemma 6.6 we

have that E[c±(0, n, ∅)] > e.
Then, the final amplification step of the protocol computes the pair (q(0, n, ∅), c(0, n, ∅)) for

log2 n times, where in each chunk i we denote the fraction of error to be
(
1
4 −

ε
2 − ei

)
, where
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∑
i ei ≥

ε log2 n
2 since we assumed the total error was ≤ 1

4 −ε. Also, the protocol outputs A(x) if and
only if

∑
i c

±
i (0, n, ∅) (denoting the value of c±(0, n, ∅) in the i’th chunk) is positive. By Azuma’s

inequality,

Pr

[∑
i

c±i (0, n, ∅) > 0

]
≥ Pr

[∑
i

(
c±i (0, n, ∅)− ei

)
> −ε log2 n

2

]
≥ 1− exp

(
−ε2 log2 n

32

)
.

Combining Lemmas 6.2, 6.4, and 6.5, this concludes the proof of Theorem 1.1.

6.2.3 Proof of Lemma 6.6

We remark that this section constitutes the main difference in the analysis of Algorithm 1 and
Algorithm 2. In Algorithm 1, the recursive calls to estA(ia−1, ia) can be computed in any order,
and so c±(i, j) is easy to analyze and converges quickly. In Algorithm 2, the recursive call to
estA(ia−1, ia, qa−1) has no hope of providing any useful information until qa−1 is correct, and so in
this algorithm, the quantity c±(i, j, q) requires a more careful analysis, and ultimately converges
slower.

We prove Lemma 6.6 by induction on j − i. We’ll show the statement for a specific value of
(i, j, q) where j − i is a power of r assuming it holds for any (i′, j′, q′) where j′ − i′ < j − i (and
j′ − i′ is a power of r).

We begin with the base case of j − i = 1. In this case, the algorithm simply reads (a corrupted
version of) LDC(x), and by Theorem 4.1, it holds that E[c±(i, j, q)] > e since there is at most(
1
4 −

ε
4 − e

)
error.

Now, suppose we are in the computation of estA(i, j, q). We start with some useful notation.
We say that a state q′a is correct when it is equal to the state produced by the algorithm A

starting at q and executing steps i to ia (as defined in Line 8 of the algorithm). That is, it is equal
to A(q, x(i : ia]). We note that this is different from requiring only estA(ia−1, ia, qa−1) to be done
correctly from the starting state qa−1.

In the computation of estA(i, j, q), we say that the output of the computation of
estA(ia−1, ia, qa−1) in the b’th chunk is (q̂a,b, ĉa,b). We define the signed confidence ĉ±a,b to be the
confidence ĉa,b signed by whether the guess q̂a,b is correct: that is,

ĉ±a,b :=

{
ĉa,b q̂a,b is correct
−ĉa,b q̂a,b is incorrect.

The cumulative best guess and confidence for A(q, x(i : ia]) after chunk b, as initialized in Line 9,
are denoted by (qa,b, ca,b). We let q0,b = ∅. We can define a cumulative signed confidence c±a,b as
follows:

c±a,b :=

{
ca,b qa,b is correct
−ca,b qa,b is incorrect.

We first show that c±a,b is correct proportional to
∑

d≤b ed assuming that qa−1,b is correct.

Lemma 6.7. Let a ∈ [r] index the r intervals (ia−1, ia] in the computation of estA(i, j, q).
Let each of the ℓ chunks in the computation be indexed by b ∈ [ℓ] and suppose chunk b has
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(
1
4 −

ε
4 −

ε
4 ·

log j−i
r

logn − eb

)
fraction of corruption. Then, for all a ∈ [r], with probability ≥ 1 −

aℓ2 exp
(
− log2 n

32

)
it holds for all b ∈ [ℓ] that either c±a,b >

∑
d≤b ed −

aℓ
r logn or qa−1,b is incorrect.

Proof. We use induction on a. Let us prove the statement for a assuming it is true for a− 1. Our
base case is a = 0, and it holds that q0,b is correct (meaning equal to q) for all b ∈ [ℓ].

Fix some chunk b. For d ≤ b, we define the altered confidence ĉalta,d to be the signed confidence,
with a caveat for when qa−1,d−1 is incorrect, as follows:

ĉalta,d :=

{
1 qa−1,d−1 is incorrect
c±a,b qa−1,d−1 is correct.

Then, for any 0 ≤ b′ < b, the sequence
{
Xb′,d :=

∑
b′<d′≤d

(
ĉalta,d′ − ed′

)}
b′<d≤b

is a submartingale.

To see this, we have that E
[
ĉalta,d

]
≥ E

[
ĉ±a,d

]
> ed, where the last inequality was by induction on

induction on j − i. Furthermore, |c±a,d − ed| ≤ 2. Then, by Azuma’s inequality,

Pr

[
Xb′,b ≤ −

ℓ

2r log n

]
≤ exp

(
− ℓ2

32r2 log2 n(b− b′)

)
≤ exp

(
− ℓ

32r2 log2 n

)
= exp

(
− log2 n

32

)
.

recalling that ℓ = r2 log4 n. By a union bound,

Pr

[
Xb′,b > −

ℓ

2r log n
∀ 0 ≤ b′ < b

]
≥ 1− ℓ · exp

(
− log2 n

32

)
. (1)

Now, we return to proving the lemma statement. We have to prove that the statement holds
simultaneously for all b ∈ [ℓ] with high probability.

By the inductive hypothesis, Equation (1), and a union bound, we have that with probability
≥ 1 − (a − 1)ℓ2 · exp

(
− log2 n

32

)
− ℓ · ℓ · exp

(
− log2 n

32

)
= 1 − aℓ2 · exp

(
− log2 n

32

)
, the following two

conditions simultaneously hold:

1. for all d for which
∑

d′≤d ed′ ≥
(a−1)ℓ

r it holds that c±a−1,d > 0, or in other words qa−1,d is
correct, and

2. for all b ∈ [ℓ], it holds that Xb′,b > − ℓ
2r logn ∀ 0 ≤ b′ < b.

Assume for now that we are not within this failure probability. For any chunk b, let b∗ be the last
chunk ≤ b in which qa−1,d changed values. If qa−1,b∗ is incorrect, then the lemma is proven, because
qa−1,b = qa−1,b∗ is also incorrect. So assume that qa−1,b∗ is correct.

If b∗ = b then c±a,b = 0 since (qa,b, ca,b) was reset to (∅, 0). Moreover, because qa−1,b−1 has to be

incorrect, we have that
∑

d<b ed < (a−1)ℓ
r by assumption 1. Then, we have that

c±a,b = 0 >
(a− 1)ℓ

r log n
+ 1− aℓ

r log n
≥
∑
d<b

ed + eb −
aℓ

r log n
=
∑
d≤b

ed −
aℓ

r log n
,

as desired, where the first inequality follows because ℓ = r2 log4 n > r log n.
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Otherwise, b∗ < b. Then, since qa−1,b∗ is correct, the value of qa−1,b∗−1 in chunk b∗ − 1 was
incorrect, and so

∑
d<b∗ ed ≤

(a−1)ℓ
r logn by assumption 1. Since qa−1,d is correct for all b∗ ≤ d < b, we

have that ĉalta,d = ĉ±a,d for all b∗ < d ≤ b. Moreover, c±a,b ≥
∑

b∗<d≤b ĉ
±
a,d. To see this, notice that for

all b, it holds that c±a,b − c±a,b−1 ≥ ĉ±a,b. Then,

c±a,b ≥
∑

b∗<d≤b

ĉ±a,d =
∑

b∗<d≤b

ĉalta,d = Xb∗,b +
∑

b∗<d≤b

ed.

Therefore, by Equation (1),

c±a,b = Xb∗,b +
∑

b∗<d≤b

ed

> − ℓ

2r log n
+
∑
d≤b

ed − eb∗ −
∑
d<b∗

ed

> − ℓ

2r log n
+
∑
d≤b

ed − 1− (a− 1)ℓ

r log n

>
∑
d≤b

ed −
aℓ

r log n
.

This holds for all b ∈ [ℓ], as desired.

We now take b = ℓ in Lemma 6.7. First, we need a way to reconcile the values of e and
eb. Recall that from the statement of Lemma 6.6 that e is defined to be such that there is(
1
4 −

ε
4 −

ε
4 ·

log j−i
logn − e

)
fraction of error in the bits read by estA(i, j, q). In Lemma 6.7, chunk

b had
(

1
4 −

ε
4 −

ε
4 ·

log j−i
r

logn − eb

)
fraction of error. This means that the total fraction of error is

equal to

1

4
− ε

4
− ε

4
· log(j − i)

log n
− e =

1

ℓ

∑
b≤ℓ

(
1

4
− ε

4
− ε

4
·
log j−i

r

log n
− eb

)

=⇒ e =
1

ℓ
·
∑
b≤ℓ

eb −
ε

4
· log r
log n

.

Lemma 6.8. With probability at least 1− 1
n , it holds that for all a ∈ [r] where qa−1,ℓ is correct that

c±a,ℓ
ℓ > e+ 1

logn .

Proof. By Lemma 6.7, using a union bound, it holds with probability at least

1−
∑

1≤a≤r

aℓ2 exp

(
− log2 n

32

)
≥ 1− r2ℓ2 exp

(
− log2 n

32

)

≥ 1− ℓ3 exp

(
− log2 n

32

)
≥ 1− 1

n
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(because ℓ < n) that for all values of a where qa−1,ℓ is correct, we have

c±a,ℓ
ℓ

>

∑
d≤ℓ ed −

aℓ
r logn

ℓ

≥ e+
ε

4
· log r
log n

− 1

log n

≥ e+
1

log n

since for sufficiently large n, we have that ε
4 · log r > 2.

We return to the computation of E[c±(i, j, q)]. Note that

c±(i, j, q) =

{
+mina∈[r]{

ca,ℓ
ℓ } qr is correct

−mina∈[r]{
ca,ℓ
ℓ } qr is incorrect.

We split the proof of Lemma 6.6 based on whether e+ 1
logn ≥ 0.

If e + 1
logn ≥ 0, define the event E to be the event where

c±a,ℓ
ℓ > e + 1

logn for all a ∈ [r]. We
show that E holds with probability at least 1− 1

n . This is due to Lemma 6.8, which says that with

probability ≥ 1− 1
n , simultaneously for all a ∈ [r] if qa−1,ℓ is correct then

c±a,ℓ
ℓ > e+ 1

n ≥ 0. Let E be
the event that this holds. Then, since q0,ℓ = q is correct by definition, it follows that qa,ℓ is correct

for all a ∈ [r]. Since qa−1,ℓ is correct for all a ∈ [r], it holds that
c±a,ℓ
ℓ > e+ 1

n also. Therefore,

E[c±(i, j, q)] ≥ E

[
min
a∈[r]

{ca,ℓ
ℓ

} ∣∣∣∣∣E
]
· Pr[E] + (min value of c±(i, j, q)) · (1− Pr[E])

>

(
e+

1

log n

)(
1− 1

n

)
+ (−1) · 1

n

= e+
n− e log n− 1− log n

n log n

> e.

If e + 1
logn < 0, then if qr,ℓ is correct, then E[c±(i, j, q)] ≥ 0 > e + 1

logn ≥ e. Otherwise, qr,ℓ is

incorrect. By Lemma 6.8, with probability ≥ 1− 1
n , it holds that

c±a,ℓ
ℓ > e+ 1

logn for all a as long as
qa−1,ℓ is correct. Let the event this occurs be E. If qr,ℓ is incorrect, there is a smallest a > 0 such

that qa,ℓ is incorrect (note that q0,ℓ = 0 is always correct), for which it holds that
c±a,ℓ
ℓ > e + 1

logn

given E. Since qa,ℓ is incorrect it holds that c±a,ℓ = −ca,ℓ, implying that ca,ℓ
ℓ < −e− 1

logn . As such,

E[c±(i, j, q)] ≥ E

[
−min

a∈[r]

{ca,ℓ
ℓ

} ∣∣∣∣∣E
]
· Pr[E] + (min value of c±(i, j, q)) · (1− Pr[E])

>

(
e+

1

log n

)(
1− 1

n

)
+ (−1) · 1

n

= e+
n− e log n− 1− log n

n log n

> e.
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This concludes the proof of Lemma 6.6.
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