Depth-3 Circuits for Inner Product

Mika Göös
EPFL, Switzerland
Ziyi Guan \square
EPFL, Switzerland
Tiberiu Mosnoi \square
EPFL, Switzerland

Abstract

What is the Σ_{3}^{2}-circuit complexity (depth 3, bottom-fanin 2) of the $2 n$-bit inner product function? The complexity is known to be exponential $2^{\alpha_{n} n}$ for some $\alpha_{n}=\Omega(1)$. We show that the limiting constant $\alpha:=\lim \sup \alpha_{n}$ satisfies $$
0.847 \ldots \leq \alpha \leq 0.965 \ldots
$$

Determining α is one of the seemingly-simplest open problems about depth-3 circuits. The question was recently raised by Golovnev, Kulikov, and Williams (ITCS 2021) and Frankl, Gryaznov, and Talebanfard (ITCS 2022), who observed that $\alpha \in[0.5,1]$. To obtain our improved bounds, we analyse a covering LP that captures the Σ_{3}^{2}-complexity up to polynomial factors. In particular, our lower bound is proved by constructing a feasible solution to the dual LP.

2012 ACM Subject Classification Theory of computation \rightarrow Circuit complexity
Keywords and phrases Circuit complexity, inner product

1 Introduction

A Σ_{3}-circuit is an unbounded-fanin depth-3 boolean circuit with an \vee-gate at the top. That is, the circuit computes an OR of CNFs. A foremost open problem in circuit complexity is to prove a lower bound of $2^{\omega(\sqrt{n})}$ on the Σ_{3}-circuit complexity of an explicit n-bit boolean function. Current techniques can prove at best a bound of $2^{\Omega(\sqrt{n})}$ [7, §11].

For the more restricted class of Σ_{3}^{k}-circuits that have fanin k at the bottom (that is, ORs of k-CNFs), we can hope for improved bounds. For example, the famous satisfiability coding lemma [14] implies that the n-bit parity function has Σ_{3}^{k}-circuit complexity at least $2^{n / k}$ and this is tight up to polynomial factors (for constant k). Even stronger, for $k=2$, Paturi, Saks, and Zane [12] exhibit a function with near-maximal Σ_{3}^{2}-complexity $2^{n-o(n)}$. No such near-maximal lower bounds are currently known for $k=3$.

Inner product. A natural function whose Σ_{3}^{k}-complexity remains unknown (up to poly (n) factors) is the inner product function IP_{n}, defined on $2 n$-bit inputs $(x, y) \in\left(\{0,1\}^{n}\right)^{2}$ by

$$
\operatorname{IP}_{n}(x, y):=\langle x, y\rangle \bmod 2
$$

Recently, Golovnev, Kulikov, and Williams [2] asked to determine the \sum_{3}^{k}-complexity of IP_{n} in case $k=3$. Curiously enough, Frankl, Gryaznov, and Talebanfard [1] point out that the problem is nontrivial already in case $k=2$, and they obtained partial results towards resolving it. It has been known that the Σ_{3}^{2}-complexity of IP_{n} is between $2^{n / 2}$ and $2^{n}[14,2]$.

1.1 Our result

Our main result is to prove improved upper and lower bounds for inner product.

- Theorem 1 (Main result). Write the Σ_{3}^{2}-complexity of IP_{n} as $2^{\alpha_{n} n}$ for some $\alpha_{n} \geq 0$. Then

$$
\alpha:=\lim \sup \alpha_{n} \in[0.847 \ldots, 0.965 \ldots]
$$

It remains an intriguing problem to determine α precisely. It is surprising (for us, at least) that neither of the previous bounds $\alpha \in[0.5,1]$ were tight, especially because the problem is seemingly one of the simplest open questions about depth-3 circuits.

Studying exact exponents of Σ_{3}^{k}-circuit complexities is a relatively unexplored research direction, and we believe it could foster the development of new lower bound techniques. In particular, a major motivation for this comes from depth reduction results. For example, in case $k=16$, Golovnev, Kulikov, and Williams [2] have shown that proving nearmaximal $2^{n-o(n)}$ bounds for Σ_{3}^{16}-circuits would already yield new improved lower bounds for unrestricted (unbounded depth) circuits. Their result extends classical connections discovered by Valiant [15]; see also the monograph [16, §3].

1.2 Overview of techniques

To obtain our improved bounds on α in Theorem 1-both upper and lower bounds-we study a fractional covering problem, formulated as a linear program (LP), that captures the Σ_{3}^{2}-circuit complexity up to poly (n) factors.

To our knowledge, LPs have not been widely employed in analysing depth-3 circuits. They are, however, routinely used to prove strong lower bounds in the related area of communication complexity [9]. Many such LP-based methods are catalogued by Jain and Klauck [6]. Moreover, Lee and Shraibman [10] give a monograph-length treatment on how to use LP duality to prove communication lower bounds. In one of the earliest examples, Karchmer, Kushilevitz, and Nisan [8] characterised nondeterministic communication complexity via a fractional covering problem. The formulation we use is a straightforward adaptation of this for depth-3 circuits. A similar formulation also appeared in the work of Hirahara [4] that connects depth- 3 complexity with one-sided CNF approximations.

Covering LP. The size of a Σ_{3}^{2}-circuit is determined (up to $O\left(n^{2}\right)$ factors) by the fanin of the top \vee-gate. Suppose a circuit with top-fanin m computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$. We can view the circuit as expressing the set of 1 -inputs $f^{-1}(1)$ as a union of m sets,

$$
\begin{equation*}
f^{-1}(1)=\bigcup_{i \in[m]} \phi_{i}^{-1}(1) \tag{1}
\end{equation*}
$$

where each $\phi_{i}^{-1}(1)$ is the set of inputs accepted by a 2-CNF formula ϕ_{i}. The least top-fanin needed to compute f is then captured by the optimal integer solutions to the following covering LP. In this LP, we assign a fractional weight $w_{\phi} \in[0,1]$ for each 2-CNF ϕ that is consistent with f, meaning that $\phi(x) \leq f(x)$ for every input $x \in\{0,1\}^{n}$. We let Φ denote the set of all 2-CNFs consistent with f.

$$
\begin{array}{rll}
\min & \sum_{\phi \in \Phi} w_{\phi} & \\
\text { subject to } & \sum_{\phi \in \Phi} w_{\phi} \phi(x) \geq 1, & \forall x \in f^{-1}(1) \tag{LP}\\
& w_{\phi} \in[0,1], & \forall \phi \in \Phi
\end{array}
$$

A classic result of Lovász [11] says that the integrality gap of a covering LP is small.

Lemma 2 (Lovász [11]). Let Opt and Opt ${ }^{\mathbb{Z}}$ denote the value of (LP) optimised over fractional solutions ($w_{\phi} \in[0,1]$) and integral solutions ($w_{\phi} \in\{0,1\}$), respectively. Then

$$
\mathrm{Opt} \leq \mathrm{Opt}^{\mathbb{Z}} \leq O(n) \cdot \mathrm{Opt}
$$

Consequently, to determine the Σ_{3}^{2}-complexity of $f=\mathrm{IP}_{n}$ we only need to solve the fractional (LP). We will use the (LP) in Section 2 to construct circuits for IP_{n} that witness the upper bound $\alpha \leq 0.965 \ldots$

Dual LP. A common method to prove a depth-3 lower bound is to estimate the number of accepting inputs for any consistent CNF, say, by $\max _{\phi \in \Phi}\left|\phi^{-1}(1)\right| \leq C$, and then conclude that the top-fanin must be at least $\left|f^{-1}(1)\right| / C$. Such arguments are standard in the top-down circuit lower bound literature $[3,14,12,13,5]$.

An important generalisation of this method is to first choose a hard distribution \mathcal{D} over the 1 -inputs $f^{-1}(1)$ and then measure the size of $\phi^{-1}(1)$ relative to \mathcal{D}. If we can show $\max _{\phi \in \Phi} \operatorname{Pr}_{x \sim \mathcal{D}}[\phi(x)=1] \leq p$, then the top-fanin must be at least $1 / p$. Indeed, the following optimisation problem captures the best lower bound provable with this method.

$$
\begin{array}{rll}
\max & 1 / p & \\
\text { subject to } & \sum_{x \in f^{-1}(1)} \mathcal{D}(x) \phi(x) \leq p, & \forall \phi \in \Phi \tag{DualLP}\\
& \sum_{x \in f^{-1}(1)} \mathcal{D}(x)=1, & \\
& \mathcal{D}(x) \in[0,1], & \forall x \in f^{-1}(1)
\end{array}
$$

This program is not written in standard LP format as we are seemingly optimising a nonlinear function. However, it is equivalent ${ }^{1}$ to $\max \sum_{x} A(x)$ s.t. $\sum_{x} A(x) \phi(x) \leq 1$ and $A(x) \geq 0$, which is the canonical dual to (LP). Hence, by strong duality, we can always prove a tight lower bound (up to polynomial factors) on depth-3 complexity by finding the right hard distribution \mathcal{D}.

Hard distribution for IP. What hard distribution \mathcal{D} should we choose to prove a strong lower bound for IP_{n} ? If we choose \mathcal{D} to be the uniform distribution over $\operatorname{IP}_{n}^{-1}(1)$, then prior work [1, Thm 28] showed that this only yields the bound $\alpha \geq \log \frac{4}{3}=0.415 \ldots$. If we choose \mathcal{D} by sampling a pair $\left(x, 1^{n}\right)$ where x is uniform random in $\{0,1\}^{n}$, then we have effectively reduced IP_{n} to n-bit parity and we obtain $\alpha \geq 0.5$ [2], which is tight for parity.

To get our improved lower bound on α, we analyse a more general distribution.
(Section 3) We consider a distribution where the $2 n$ input bits are iid, that is, \mathcal{D} is the binomial distribution with some parameter $p \in(0,1)$. (Note that while \mathcal{D} is not supported on $\mathrm{IP}_{n}^{-1}(1)$ it does place a constant probability mass on it.) We prove a structure lemma for consistent 2-CNFs and characterise those that have the highest acceptance probability under \mathcal{D}. Optimising the choice of p, we will obtain $\alpha \geq \log \frac{9}{5}=0.847 \ldots$.

[^0]
1.3 Discussion and open problems

The challenge in proving a better lower bound in Theorem 1 is that our techniques rely heavily on the hard distribution having independence between the n coordinates. One way we could try to improve the lower bound is to consider a slightly more general coordinate-wise iid distribution. That is, we choose a distribution μ over one coordinate pair $\left(x_{i}, y_{i}\right) \in\{0,1\}^{2}$ and then define a product distribution by $\mathcal{D}:=\mu^{n}:=\mu \times \cdots \times \mu$. We carried out this approach (using computer-aided calculations) only to find out that we get no improvement this way: the hardest \mathcal{D} is still the bit-wise iid that we consider in Section 3. A candidate for the absolute hardest distribution (not necessarily coordinate-wise iid) is merely a symmetric distribution that is invariant under permuting the n coordinates. We leave it as an open problem to analyse such non-iid distributions.

Another open problem that could be amenable to an LP-based attack is to determine the Σ_{3}^{k}-circuit complexity of inner product in case $k=3$, as was originally asked by Golovnev, Kulikov, and Williams [2]. The best lower bound known is $2^{n / 3}$ [14], and one could hope to show an improved lower bound even relative to an iid distribution. Here the obvious challenge is that 3-CNFs are notoriously much more difficult (even NP-hard) to analyse than 2 -CNFs. Our overall approach in this paper is still applicable even for $k>2$. Namely, one needs to "merely" prove an analogue of our structure lemma (Lemma 7) for k-CNFs.

2 Upper bound

In this section, we prove the upper bound $\alpha \leq 0.965 \ldots$ as claimed in Theorem 1. The circuit will be constructed in two parts. To explain this, we denote, for an input $(x, y) \in\{0,1\}^{2 n}$ and a 2 -bit pattern $s \in\{0,1\}^{2}$, the fraction of occurrences of this pattern by

$$
p_{s}(x, y):=\frac{1}{n}\left|\left\{i \in[n]:\left(x_{i}, y_{i}\right)=s\right\}\right| .
$$

We use one Σ_{3}^{2}-circuit to accept every input $(x, y) \in \operatorname{IP}_{n}^{-1}(1)$ with $p_{11}(x, y) \leq p$ where p is a carefully chosen threshold, and another Σ_{3}^{2}-circuit to accept those inputs with $p_{11}(x, y) \geq p$.

The following two lemmas (proved in Sections 2.1 and 2.2) record the two types of circuits we will construct. To state these lemmas, recall that a circuit C is consistent with IP_{n} if $C(x, y) \leq \operatorname{IP}_{n}(x, y)$ for all inputs (x, y). We let $\mathrm{H}(p):=-p \log p-(1-p) \log (1-p)$ denote the binary entropy function. Moreover, we let $\mathbb{H}(X)$ denote the usual Shannon entropy of a random variable X. Finally, for $p \in[0,1]$, we define a random variable $X_{p} \in\{0,1\}^{2}$ such that $\operatorname{Pr}\left[X_{p}=11\right]=p$ and $\operatorname{Pr}\left[X_{p}=s\right]=(1-p) / 3$ for $s \in\{00,01,10\}$.

- Lemma 3. For every $p \in\left[0, \frac{1}{2}\right]$ there exists a Σ_{3}^{2}-circuit of size $2^{n \mathrm{H}(p)+o(n)}$ that is consistent with IP_{n} and that accepts all $(x, y) \in \operatorname{IP}^{-1}(1)$ with $p_{11}(x, y) \leq p$.
- Lemma 4. For every $p \in\left[\frac{1}{4}, 1\right]$ there exists a Σ_{3}^{2}-circuit of size $2^{\frac{1}{2} n \mathbb{H}\left(X_{p}\right)+o(n)}$ that is consistent with IP_{n} and that accepts all $(x, y) \in \operatorname{IP}^{-1}(1)$ with $p_{11}(x, y) \geq p$.

The final Σ_{3}^{2}-circuit for IP_{n} is the OR of the two Σ_{3}^{2}-circuits above. It is easy to see that using any constant $p \in\left(\frac{1}{4}, \frac{1}{2}\right)$ we get a circuit of size $2^{\beta n}$ with $\beta<1$. We can further optimise the choice of p by equating the two circuit size expressions, solving for p numerically (using any numerical computation software), which comes to $p:=0.3909 \ldots$, and then plugging this value of p into the size expressions to get a circuit of size $2^{0.965 \ldots \cdot n+o(n)}$, as desired.

It remains to prove Lemmas 3 and 4, which we do in the rest of this section.

2.1 Proof of Lemma 3

In this lemma we focus on finding efficient Σ_{3}^{2}-circuits accepting inputs $(x, y) \in \operatorname{IP}^{-1}(1)$ with a small value of $p_{11}(x, y) \leq p \leq 1 / 2$. Given a subset $I \subseteq[n]$, define the brute-force $C N F$ by

$$
\phi_{\mathrm{BF}}^{(I)}:=\bigwedge_{i \in I}\left(x_{i} \wedge y_{i}\right) \wedge \bigwedge_{i \in[n] \backslash I}\left(\neg x_{i} \vee \neg y_{i}\right) .
$$

Note that $\phi_{\mathrm{BF}}^{(I)}$ accepts an input (x, y) iff I equals the set of all i such that $\left(x_{i}, y_{i}\right)=(1,1)$. Hence, to accept every input with $p_{11}(x, y) \leq p$, our Σ_{3}^{2}-circuit will consider all suitable I :

$$
\begin{equation*}
C:=\bigvee_{\substack{I \subseteq[n] \\ I|\leq p n\\| I \mid \text { odd }}} \phi_{\mathrm{BF}}^{(I)} \tag{2}
\end{equation*}
$$

The size of C is at most $\binom{n}{\leq p n} \cdot O(n)$ where $\binom{n}{\leq p n}:=\sum_{i=0}^{p n}\binom{n}{i}$ can be estimated from above via Stirling's approximation by $2^{n \mathrm{H}(p)+o(n)}$ for all $p \leq 1 / 2$. Finally, it is clear from the construction that C is consistent with IP_{n}. This concludes the proof of Lemma 3.

2.2 Proof of Lemma 4

In this lemma we focus on finding efficient Σ_{3}^{2}-circuits accepting inputs $(x, y) \in \operatorname{IP}_{n}^{-1}(1)$ with a large value of $p_{11}(x, y) \geq p \geq 1 / 4$. To illustrate our idea, we first construct a circuit for a simpler related function, and then explain how to modify it to get circuits for IP_{n}.

Simple warm-up circuit. We first describe a circuit that computes the following partial function (which is consistent with $\neg \mathrm{IP}_{n}$, but we will address this later):

$$
f_{n}(x, y):= \begin{cases}0 & \text { if } n \cdot p_{11}(x, y) \text { is odd } \\ 1 & \text { if } n \cdot p_{s}(x, y) \text { is even for all } s \in\{0,1\}^{2}, \text { and } p_{11}(x, y) \geq p \\ * & \text { otherwise }\end{cases}
$$

The interesting case here is when n is even, as otherwise $f_{n}(x, y) \in\{0, *\}$ for all (x, y). Let $M \subseteq\binom{[n]}{2}:=\{e \subseteq[n]:|e|=2\}$ be a perfect matching of $[n]$ (that is, partition of $[n]$ into pairs). We define the collision $C N F$ associated with M by

$$
\phi_{\text {Coll }}^{(M)}:=\bigwedge_{\{i, j\} \in M}\left(x_{i} \leftrightarrow x_{j}\right) \wedge\left(y_{i} \leftrightarrow y_{j}\right) .
$$

This is a 2-CNF since we can write an equivalence as $a \leftrightarrow b \equiv(a \vee \neg b) \wedge(\neg a \vee b)$. Note that a collision CNF accepts iff for every pair $\{i, j\} \in M$ we have $\left(x_{i}, y_{i}\right)=\left(x_{j}, y_{j}\right)$. Hence it only accepts inputs where $n \cdot p_{s}(x, y)$ is even for all $s \in\{0,1\}^{2}$. Thus $\phi_{\text {Coll }}^{(M)}$ is consistent with f_{n}.

To construct a Σ_{3}^{2}-circuit for f_{n}, it is enough, as discussed in Section 1.2, to design a feasible solution to the (LP) associated with f_{n}. (We note that the (LP) formulation works equally well for partial functions.) To this end, we calculate in the following claim (proved in Section 2.3) the probability that a random collision CNF accepts a fixed 1 -input of f_{n}.
\triangleright Claim 5. Let $(x, y) \in f_{n}^{-1}(1)$. For a uniformly chosen perfect matching $M \subseteq\binom{[n]}{2}$,

$$
\underset{M}{\operatorname{Pr}}\left[\phi_{\mathrm{Coll}}^{(M)}(x, y)=1\right] \geq 2^{-\frac{1}{2} n \mathbb{H}\left(X_{p}\right)-o(n)}=: L(p) .
$$

We now construct a feasible solution to (LP) for f_{n}. Let $\Phi_{\text {Coll }}$ denote the set of all collision CNFs, one for each perfect matching of $[n]$. Consider the weight assignment corresponding to the uniform distribution over $\Phi_{\text {Coll }}$; namely, set $w_{\phi}:=1 /\left|\Phi_{\text {Coll }}\right|$ for every $\phi \in \Phi_{\text {Coll }}$ and $w_{\phi}:=0$ for all the rest. Note that the objective function value is $\sum_{\phi} w_{\phi}=1$. However, the assignment may not be feasible: for a covering constraint indexed by $(x, y) \in f_{n}^{-1}(1)$, we are only guaranteed a weak lower bound (much smaller than 1):

$$
\sum_{\phi} w_{\phi} \phi(x, y)=\operatorname{Pr}_{M}\left[\phi_{\mathrm{Coll}}^{(M)}(x, y)=1\right] \geq L(p)
$$

We can, however, transform this weight assignment into a feasible one by scaling all the weights up by a factor of $1 / L(p)$ (and truncating any resulting weight >1 to 1). In the scaled assignment, the objective function value is at most $1 / L(p)$. We conclude (using Lemma 2) that f_{n} has a circuit of size $O(n) / L(p)=2^{\frac{1}{2} n \mathbb{H}\left(X_{p}\right)+o(n)}$.

It remains to explain how a circuit of this size can also be constructed for IP_{n}.

Actual circuit for IP. To prove Lemma 4, we would like to use the Σ_{3}^{2}-circuit we constructed above for f_{n} to design a circuit for the partial function

$$
\operatorname{IP}_{n}^{(p)}(x, y):= \begin{cases}0 & \text { if } n \cdot p_{11}(x, y) \text { is even } \\ 1 & \text { if } n \cdot p_{11}(x, y) \text { is odd, and } p_{11}(x, y) \geq p \\ * & \text { otherwise }\end{cases}
$$

Consider the following nondeterministic algorithm for $\operatorname{IP}_{n}^{(p)}$. On input $(x, y) \in\{0,1\}^{2 n}$:

1. Nondeterministically guess a subset $S \subseteq\{0,1\}^{2}$ where $11 \in S$. The intention is that patterns in S should appear in (x, y) an odd number of times.
2. For each $s \in S$, guess a coordinate $i(s) \in[n]$.
3. For each $s \in S$, check that $\left(x_{i(s)}, y_{i(s)}\right)=s$. If not, reject.
4. Output the same as the function $f_{n-|S|}$ on input $\left(x_{i}, y_{i}\right)_{i \in[n] \backslash i(S)}$.

It is straightforward to check that this computes $\mathrm{IP}_{n}^{(p)}$ correctly. (A minor technical detail is that when computing $f_{n-|S|}$, the p_{11} value may slightly drop because we remove one occurrence of the 11-pattern. However, this is not really a problem since the slight drop will not affect the asymptotics of the circuit size.) The question remains: How can it be implemented as a Σ_{3}^{2}-circuit? We do it as follows. Consider any guess outcome $O:=\left(S,(i(s))_{s \in S}\right)$. We can modify the circuit C for $f_{n-|S|}$ (applied to the input bits $\left.\left(x_{i}, y_{i}\right)_{i \in[n] \backslash i(S)}\right)$ to perform the check in Item 3 by adding to each 2-CNF in C the singleton terms $\left(x_{i(s)}=s_{1}\right)$ and ($y_{i(s)}=s_{2}$) for all $s=\left(s_{1}, s_{2}\right) \in S$. Call the resulting circuit C_{O}. Our final Σ_{3}^{2}-circuit computes the OR of all circuits C_{O}. Since there are only $O\left(n^{4}\right)$ many different guess outcomes, the resulting circuit is only a factor $O\left(n^{4}\right)$ larger than our circuit for f_{n}. This concludes the proof of Lemma 4.

2.3 Proof of Claim 5

Write $n!!:=\prod_{i=0}^{\lfloor n / 2\rfloor}(n-2 i)$ for the double factorial. The number of perfect matchings on $[n]$ is well-known to be given by $(n-1)!!$ when n is even. Therefore, $\left(n p_{s}-1\right)$!! gives the number of ways to match the coordinates with pattern s. We have

$$
\begin{equation*}
\underset{M}{\operatorname{Pr}}\left[\phi_{\mathrm{Coll}}^{(M)}(x, y)=1\right]=\frac{\prod_{s \in\{0,1\}^{2}}\left(n p_{s}-1\right)!!}{(n-1)!!} . \tag{3}
\end{equation*}
$$

Taking logarithms and using Stirling's approximation ($\left.\log n!!=\frac{1}{2} n \log n-\frac{1}{2} n \pm o(n)\right)$ we get

$$
\begin{aligned}
\log \operatorname{Pr}_{M}\left[\phi_{\mathrm{Coll}}^{(M)}(x, y)=1\right] & =\frac{1}{2} \sum_{s} n p_{s} \log \left(n p_{s}\right)-\frac{1}{2} n \log n \pm o(n) \\
& =\frac{1}{2} n \cdot \sum_{s} p_{s} \log p_{s} \pm o(n) \\
& =-\frac{1}{2} n \cdot \mathbb{H}(P) \pm o(n) .
\end{aligned}
$$

Here $P \in\{0,1\}^{2}$ is the random variable defined by $\operatorname{Pr}[P=s]=p_{s}$. We ask: which random variable $X \in\{0,1\}^{2}$ maximises the entropy $\mathbb{H}(X)$ subject to the constraint $\operatorname{Pr}[X=11]=p^{*}$? By the concavity of \mathbb{H} and symmetry (we can relabel outcomes without affecting the entropy), it is the random variable $X_{p^{*}}$ such that

$$
\operatorname{Pr}\left[X_{p^{*}}=11\right]=p^{*}, \quad \operatorname{Pr}\left[X_{p^{*}}=00\right]=\operatorname{Pr}\left[X_{p^{*}}=10\right]=\operatorname{Pr}\left[X_{p^{*}}=01\right]=\left(1-p^{*}\right) / 3
$$

The univariate map $p^{*} \mapsto \mathbb{H}\left(X_{p^{*}}\right)$ is also concave. It is maximised at $p^{*}=1 / 4$ (when $X_{p^{*}}$ is uniform), and decreasing for $p^{*}>1 / 4$. This means that, since $1 / 4 \leq p \leq p_{11}$, we have that $\mathbb{H}\left(X_{p}\right) \geq \mathbb{H}\left(X_{p_{11}}\right) \geq \mathbb{H}(P)$. Hence we obtain the claimed lower bound:

$$
\log \operatorname{Pr}_{M}\left[\phi_{\mathrm{Coll}}^{(M)}(x, y)=1\right] \geq-\frac{1}{2} n \cdot \mathbb{H}\left(X_{p}\right)-o(n)
$$

3 Lower bound

In this section, we prove the lower bound $\alpha \geq \log \frac{9}{5}=0.847 \ldots$ as claimed in Theorem 1. We will follow the Dual LP strategy discussed in Section 1.2. Namely, we will choose a hard distribution over $\mathrm{IP}_{n}^{-1}(1)$ and then bound the acceptance probability of any 2-CNF consistent with IP_{n}. In fact, it is convenient to prove a slightly stronger statement and bound the acceptance probability of any 2-CNF consistent with IP_{n} or $\neg \mathrm{IP}_{n}$. Indeed, we let Φ_{n} denote the set of 2-CNFs consistent with IP_{n} or $\neg \mathrm{IP}_{n}$.

Hard distribution. As the hard distribution, we consider the binomial distribution \mathcal{D}_{p} with parameter $p \in(0,1)$, whose choice we will optimise later. That is, $(X, Y) \sim \mathcal{D}_{p}$ is such that all bits are $i i d$: they are independent and have identical distribution, $\operatorname{Pr}\left[X_{i}=1\right]=\operatorname{Pr}\left[Y_{i}=1\right]=p$. Note that \mathcal{D}_{p} is not in fact supported on $\operatorname{IP}_{n}^{-1}(1)$, but it still places $\Omega(1)$ probability mass on this set. Consequently, any Σ_{3}^{2}-circuit will have to cover $\Omega(1)$ fraction of \mathcal{D}_{p} with its CNFs, so we can still use \mathcal{D}_{p} for proving a lower bound.

Max-probability formulas. Our goal will be to argue that any $\phi \in \Phi_{n}$ has an acceptance probability dominated by one of two "maximum probability formulas" (max-formulas, for short). Namely, our first max-formula is the collision CNF (used in our upper bound in Section 2.2 and specialised here for one matching) and our second formula has a NAND constraint for each coordinate.

$$
\begin{array}{ll}
\text { 1st max-formula: } & \phi_{\text {Coll }}^{(n)}:=\bigwedge_{i \in[n / 2]}\left(x_{2 i-1} \leftrightarrow x_{2 i}\right) \wedge\left(y_{2 i-1} \leftrightarrow y_{2 i}\right) \quad \text { where } n \text { is even, } \\
\text { 2nd max-formula: } & \phi_{\text {Nand }}^{(n)}:=\bigwedge_{i \in[n]}\left(\neg x_{i} \vee \neg y_{i}\right) .
\end{array}
$$

Writing $\operatorname{Pr}_{\mathcal{D}}[\phi]:=\operatorname{Pr}_{(X, Y) \sim \mathcal{D}}[\phi(X, Y)=1]$ for short, it is straightforward to see that

$$
\begin{equation*}
\underset{\mathcal{D}_{p}}{\operatorname{Pr}}\left[\phi_{\text {Coll }}^{(n)}\right]=\left(p^{2}+(1-p)^{2}\right)^{n} \quad \text { and } \quad \underset{\mathcal{D}_{p}}{\operatorname{Pr}}\left[\phi_{\text {Nand }}^{(n)}\right]=\left(1-p^{2}\right)^{n} \tag{4}
\end{equation*}
$$

Equating these probabilities and solving for p yields our optimal choice $p=p^{*}:=2 / 3$. The following lemma states that these formulas have, for $p=p^{*}$, higher acceptance probabilities than any 2-CNF consistent with $\mathrm{IP}_{n}\left(\right.$ or $\left.\neg \mathrm{IP}_{n}\right)$.

- Lemma 6. $\operatorname{Pr}_{\mathcal{D}_{p^{*}}}[\phi] \leq M_{p^{*}}^{(n)}:=\max \left\{\operatorname{Pr}_{\mathcal{D}_{p^{*}}}\left[\phi_{\text {Coll }}^{(n)}\right], \operatorname{Pr}_{\mathcal{D}_{p^{*}}}\left[\phi_{\text {Nand }}^{(n)}\right]\right\}$ for any $\phi \in \Phi_{n}$.

Using Lemma 6 it is easy to complete our proof. We get for any $\phi \in \Phi_{n}$,

$$
\underset{\mathcal{D}_{p^{*}}}{\operatorname{Pr}}[\phi] \leq M_{2 / 3}^{(n)}=\left(1-(2 / 3)^{2}\right)^{n}=2^{-\log (9 / 5) \cdot n}=2^{-0.847 \ldots \cdot n}
$$

As per Dual LP, the reciprocal of this probability yields the claimed circuit lower bound. It remains to prove Lemma 6, which we do in the rest of this section.

3.1 Proof of Lemma 6

To help us analyse acceptance probabilities, we first prove a structure lemma for any consistent 2-CNF formula ϕ. This lemma will find some "structured" formula ϕ^{\prime} that is (semantically) implied by ϕ, denoted $\phi \models \phi^{\prime}$ (that is, $\phi^{-1}(1) \subseteq \phi^{\prime-1}(1)$). The formula ϕ^{\prime} comes from a set of structured formulas \mathcal{S}_{n}, which we will carefully define in Section 3.2. For now, it suffices for us to know that each structured formula $\phi^{(k)} \in \mathcal{S}_{n}$ only mentions variables among $\left(x_{i}, y_{i}\right)_{i \in I}$ for some subset $I \subseteq[n]$ of size $|I|=k$ (possibly $k \ll n$).

- Lemma 7 (Structure lemma). Let $\phi \in \Phi_{n}$ be a 2-CNF consistent with IP_{n} or $\neg \mathrm{IP}_{n}$. Then there is some structured 2-CNF formula $\phi^{(k)} \in \mathcal{S}_{n}$ such that $\phi \models \phi^{(k)}$.

We can now formulate a "localised" version of Lemma 6 for structured formulas. It allows us to locally compare the acceptance probability of $\phi^{(k)}$ with our max-formulas $\phi_{\text {Coll }}^{(k)}$ and $\phi_{\text {Nand }}^{(k)}$, now defined naturally over k many coordinates. Our original definition of $\phi_{\text {Coll }}^{(n)}$ was actually assuming n is even. For technical convenience, for odd n, we define $\phi_{\text {Coll }}^{(n)}:=$ $\phi_{\text {Coll }}^{(n-1)} \wedge\left(x_{n} \leftrightarrow y_{n}\right)$. The bounds in (4) continue to hold for this extended definition.

- Lemma 8. $\operatorname{Pr}_{\mathcal{D}_{p^{*}}}\left[\phi^{(k)}\right] \leq M_{p^{*}}^{(k)}:=\max \left\{\operatorname{Pr}_{\mathcal{D}_{p^{*}}}\left[\phi_{\text {Coll }}^{(k)}\right], \operatorname{Pr}_{\mathcal{D}_{p^{*}}}\left[\phi_{\text {Nand }}^{(k)}\right]\right\}$ for any $\phi^{(k)} \in \mathcal{S}_{n}$.

Using Lemmas 7 and 8 (proved below) it is now easy to prove Lemma 6:
Proof of Lemma 6. We prove this by induction on n. The base case $n=0$ is vacuously true under the convention that $\operatorname{Pr}\left[\phi_{\perp}\right]=M_{p^{*}}^{(0)}=1$ for the empty formula ϕ_{\perp}. For the inductive case $n \geq 1$, let $\phi \in \Phi_{n}$ be arbitrary. Apply the structure lemma (Lemma 7) to find some $\phi^{(k)} \in \mathcal{S}_{n}$ such that $\phi \models \phi^{(k)}$. Suppose for notational convenience $\phi^{(k)}$ involves the first $k \leq n$ coordinates. Let $\mathcal{D}_{p^{*}}^{(k)}$ denote our binomial distribution over $\{0,1\}^{2 k}$. Then

$$
\operatorname{Pr}_{\mathcal{D}_{p^{*}}^{(n)}}^{\operatorname{nr}}[\phi] \leq \sum_{\substack{a, b \in\{0,1\}^{k} \\ \phi^{(k)}(a, b)=1}} \operatorname{Pr}_{p_{p^{*}}^{(k)}}[(a, b)] \cdot \operatorname{Pr}_{\mathcal{D}_{p^{*}}^{(n-k)}}^{\operatorname{Pr}}\left[\left.\phi\right|_{a, b}\right]
$$

where $\left.\phi\right|_{a, b}$ is obtained from ϕ by restricting the first k coordinates to values (a, b). We note that restricting values in a formula consistent with IP_{n} might yield a formula consistent with $\neg \mathrm{IP}_{n-k}$ (and vice versa). We now apply Lemma 6 inductively for $\left.\phi\right|_{a, b}$ to conclude

$$
\underset{\mathcal{D}_{p^{*}}^{(n)}}{\operatorname{Pr}}[\phi] \leq M_{p^{*}}^{(n-k)} \cdot \sum_{a, b} \operatorname{Pr}_{\mathcal{D}_{p^{*}}^{(k)}}[(a, b)]=M_{p^{*}}^{(n-k)} \cdot \operatorname{Pr}_{\mathcal{D}_{p^{*}}^{(k)}}\left[\phi^{(k)}\right] \leq M_{p^{*}}^{(n-k)} M_{p^{*}}^{(k)}=M_{p^{*}}^{(n)},
$$

where the last inequality is Lemma 8 and the final equality follows from (4).
The rest of this section is organised as follows. We first define our family of structured formulas \mathcal{S}_{n} in Section 3.2. Then we will prove Lemmas 7 and 8 in Sections 3.3 and 3.4.

3.2 Structured formulas in \mathcal{S}_{n}

We now proceed to define our family of structured formulas \mathcal{S}_{n}. The family will be closed under symmetries of IP_{n}, as we now explain. The value of inner product IP_{n} remains unchanged if we permute its n coordinates (e.g., swap $\left(x_{i}, y_{i}\right)$ with $\left.\left(x_{j}, y_{j}\right)\right)$ or transpose two variables inside a single coordinate (i.e., swap $\left(x_{i}, y_{i}\right)$ with $\left.\left(y_{i}, x_{i}\right)\right)$. These permutations generate the group of symmetries of IP_{n}. We say that two CNFs ϕ and ϕ^{\prime} are isomorphic if there is some symmetry π of IP_{n} that, when applied to ϕ to yield ϕ^{π}, makes the two formulas equivalent, $\phi^{\pi} \equiv \phi^{\prime}$, that is, to accept the same set of inputs.

Structured family \mathcal{S}_{n}. To define \mathcal{S}_{n}, we list below its various members. Each formula is defined over some $k \leq n$ pairs of literals $L_{k}:=\left\{\tilde{x}_{1}, \tilde{y}_{1}, \ldots, \tilde{x}_{k}, \tilde{y}_{k}\right\}$ where $\tilde{x}_{i} \in\left\{x_{i}, \neg x_{i}\right\}$ and $\tilde{y}_{i} \in\left\{y_{i}, \neg y_{i}\right\}$. Each item defines a type of 2 -CNF with the understanding that each of its isomorphic copies is included in \mathcal{S}_{n}. See Figure 1 for illustrations. We start with two cases corresponding to our max-formulas.

1. Nand is $\phi_{\text {Nand }}^{(1)}=\left(\neg x_{1} \vee \neg y_{1}\right)$. This is case $n=1$ of our second max-formula.
2. Matching is defined relative to a perfect matching $M \subseteq\binom{L_{k}}{2}$ by

$$
\phi_{\text {Match }}^{(k)}=\bigwedge_{\left\{\ell, \ell^{\prime}\right\} \in M}\left(\ell \leftrightarrow \ell^{\prime}\right)
$$

Note that this is a generalisation of our first max-formula (where the literals are positive and the perfect matching is more structured).

The final type of formula will be an extension of the following "ladder" formula

$$
\psi^{(k)}=\bigwedge_{i=1}^{k-1}\left(\tilde{y}_{i} \leftrightarrow \tilde{x}_{i+1}\right) \quad \text { where } k \geq 2
$$

We also define two types of "terminal" constraints (where $\ell, \ell^{\prime} \in L_{k}$),

$$
\begin{aligned}
\text { Back-edge: } & \psi_{\mathrm{B}}^{\text {left }}=\left(\tilde{x}_{1} \leftrightarrow \ell\right), \quad \psi_{\mathrm{B}}^{\text {right }}=\left(\tilde{y}_{k} \leftrightarrow \ell^{\prime}\right) \quad \text { where } \ell \neq \tilde{x}_{1} \text { and } \ell^{\prime} \neq \tilde{y}_{k}, \\
\text { Positive: } & \psi_{\mathrm{P}}^{\text {left }}=\left(y_{1} \rightarrow x_{1}\right), \quad \psi_{\mathrm{P}}^{\text {right }}=\left(x_{k} \rightarrow y_{k}\right)
\end{aligned}
$$

3. Ladder is given by choosing terminal types $(L, R) \in\{\mathrm{B}, \mathrm{P}\}^{2}$ and defining

$$
\phi_{L R}^{(k)}=\psi^{(k)} \wedge \psi_{L}^{\text {left }} \wedge \psi_{R}^{\mathrm{right}}
$$

- Remark 9. It can be shown that this list is irredundant in that, for each type, there is a formula $\phi^{(k)} \in \mathcal{S}_{n}$ of that type and $\phi \in \Phi_{n}$ such that $\phi \models \phi^{(k)}$ but $\phi \not \models \phi^{\prime}$ for every $\phi^{\prime} \in \mathcal{S}_{n}$ of type different than $\phi^{(k)}$. This means that we need all three types for our structure lemma.

3.3 Proof of Structure lemma (Lemma 7)

In the proof of Lemma 7, we use the standard notion of an implication graph of a 2-CNF.
Implication graphs. Given a 2-CNF ϕ over k variables $\left\{x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right\}$, its implication graph $G_{\phi}=(V, E)$ is the directed graph given by

$$
\begin{aligned}
V & :=\left\{x_{1}, \neg x_{1}, y_{1}, \neg y_{1}, \ldots, x_{k}, \neg x_{k}, y_{k}, \neg y_{k}\right\} \\
E & :=\left\{(u, v) \in V^{2}: u \neq v \text { and } \phi \models(u \rightarrow v)\right\} .
\end{aligned}
$$

We note that implication graphs are sometimes defined more syntactically: For each clause $(u \vee v)$ of ϕ, include the edges $(\neg u, v)$ and $(\neg v, u)$ in G_{ϕ}, and moreover, for each

Figure 1 Examples of Matching and Ladder CNFs.
singleton clause (u) of ϕ, include the edges (v, u) in G_{ϕ} for all v. Taking the transitive closure (add edge (u, v) if there is a directed path from u to v) of this graph yields the graph in our (semantic) definition above.

We call a strongly connected component of G_{ϕ} a strong-component for short. We say that a variable x_{i} is fixed by ϕ if there is some $b \in\{0,1\}$ such that for every $(x, y) \in \phi^{-1}(1)$ we have $x_{i}=b$. The following lemma will be used several times.

- Lemma 10. Let $\phi \in \Phi_{n}$ and suppose y_{1} lies in a strong-component of size 1 in G_{ϕ}. Then we have $\phi \models x_{1} \rightarrow \tilde{y}_{1}$ for some $\tilde{y}_{1} \in\left\{y_{1}, \neg y_{1}\right\}$.
Proof. We may assume that y_{1} is not fixed by ϕ, as otherwise the lemma is trivially true. We assume that $\phi \not \models x_{1} \rightarrow \neg y_{1}$ and hope to show $\phi \models x_{1} \rightarrow y_{1}$. Thus, there is some satisfying assignment $\left(x^{\prime}, y^{\prime}\right) \in \phi^{-1}(1)$ such that $\left(x_{1}^{\prime}, y_{1}^{\prime}\right)=(1,1)$. Denote by $N_{\text {in }} \subseteq V$ the in-neighbours of y_{1}, that is, all the literals from which there exists an edge (equivalently, directed path, as G_{ϕ} is transitively closed) to y_{1}. Note that $\{\ell, \neg \ell\} \nsubseteq N_{\text {in }}$ for every literal ℓ, as otherwise one of ℓ or $\neg \ell$ would always be set to 1 , forcing y_{1} to always be 1 , contradicting that y_{1} is not fixed. Modify $\left(x^{\prime}, y^{\prime}\right)$ by setting literals in $N_{\text {in }}$ to 0 . By the properties listed above, it follows that the new assignment, call it $\left(x^{\prime \prime}, y^{\prime \prime}\right)$, still satisfies ϕ. Moreover, $\left(x^{\prime \prime}, y^{\prime \prime}\right)$ has the property that we may flip the value of all the literals in the strong-component of y_{1}-which is just y_{1} itself-and still remain a satisfying assignment. Since we can flip y_{1} in isolation, we must have that $x_{1}^{\prime \prime}=0$ (otherwise we would change the parity of the 11 pattern, which contradicts $\phi \in \Phi_{n}$). But since $x_{1}^{\prime}=1$ we must have that $x_{1} \in N_{\mathrm{in}}$, meaning that (x_{1}, y_{1}) is an edge, and hence $\phi \models x_{1} \rightarrow y_{1}$, as desired.

We now proceed to prove Lemma 7 in two cases by considering G_{ϕ} for $\phi \in \Phi_{n}$.
Case 1: Every strong-component is of size 1. Applying Lemma 10 twice, the second time with roles of x_{1} and y_{1} swapped, we learn that $\phi \models x_{1} \rightarrow \tilde{y}_{1}$ and $\phi \models y_{1} \rightarrow \tilde{x}_{1}$. If $\phi \models x_{1} \rightarrow \neg y_{1}$ or $\phi \models y_{1} \rightarrow \neg x_{1}$ holds then we have $\phi \models \phi_{\text {Nand }}^{(1)}$, as desired. In the remaining case, both $\phi \models x_{1} \rightarrow y_{1}$ and $\phi \models y_{1} \rightarrow x_{1}$ hold, which implies $\phi \models \phi_{\text {Match }}^{(1)}$.

Case 2: There exists a strong-component of size at least 2. Suppose by symmetry that y_{1} lies in a strong-component of size at least 2 . If y_{1} is bidirectionally connected to \tilde{x}_{1}, that is, $\phi \models\left(y_{1} \leftrightarrow \tilde{x}_{1}\right)$, then this means that $\phi \models \phi_{\text {Match }}^{(1)}$ and we are done.

Assume henceforth that y_{1} is bidirectionally connected to some literal other than \tilde{x}_{1}, say by symmetry $y_{1} \leftrightarrow \tilde{x}_{2}$. Consider y_{2} : is it bidirectionally connected to a literal in coordinate greater than 2? If yes, say by symmetry $y_{2} \leftrightarrow \tilde{x}_{3}$. Consider y_{3}, etc. By this "unravelling" process, we are exposing the bidirectional edges of a ladder formula $\psi^{(k)}$. This process must eventually end at step $k \leq n$ in one of the following two cases.

- Subcase 2-1: y_{k} is bidirectionally connected to some literal ℓ^{\prime} in coordinate $\leq k$. Here we have $\phi \models\left(y_{k} \leftrightarrow \ell^{\prime}\right)=\psi_{\mathrm{B}}^{\text {right }}$.
- Subcase 2-2: y_{k} lies in a singleton strong-component. In this case, we apply Lemma 10 to learn that $\phi \models x_{k} \rightarrow \tilde{y}_{k}$. If $\models x_{k} \rightarrow \neg y_{k}$, then we would have found a copy of $\phi_{\text {Nand }}^{(1)}$ in coordinate k and we are done. Otherwise $\phi \models x_{k} \rightarrow y_{k}$, which means $\phi \models \psi_{\mathrm{P}}^{\text {right }}$.

That is, in both cases (if we did not outright prove the lemma) we found either $\phi \models \psi_{\mathrm{B}}^{\text {right }}$ or $\phi \models \psi_{\mathrm{P}}^{\text {right }}$. By a similar argument, we can start unravelling edges starting at x_{1} to find either $\phi \models \psi_{\mathrm{B}}^{\text {left }}$ or $\phi \models \psi_{\mathrm{P}}^{\text {left }}$. This will allow us to terminate the left side of the ladder, which completes the proof that $\phi=\phi_{L R}^{(k)}$.

3.4 Proof of Lemma 8

We show the inequalities for every $\phi \in \mathcal{S}_{n}$.

- $\phi_{\text {Nand }}^{(1)}$: This is true by definition of $M_{p}^{(1)}$.
- $\phi_{\text {Match }}^{(k)}$: First note that the structure of the perfect matching for $\phi_{\text {Match }}^{(k)}$ will not change the acceptance probability because all input bits are iid. Moreover, when both ℓ and ℓ^{\prime} are positive, $\operatorname{Pr}\left[\ell \leftrightarrow \ell^{\prime}\right]=p^{2}+(1-p)^{2}$; otherwise, $\operatorname{Pr}\left[\ell \leftrightarrow \ell^{\prime}\right]=\max \left\{2 p(1-p), p^{2}+(1-p)^{2}\right\} \leq$ $p^{2}+(1-p)^{2}$ for all $p \in[0,1]$. Therefore, we have that $\operatorname{Pr}_{\mathcal{D}_{p}}\left[\phi_{\text {Match }}^{(k)}\right] \leq \operatorname{Pr}_{\mathcal{D}_{p}}\left[\phi_{\text {Coll }}^{(k)}\right]$.
- $\phi_{\mathrm{BB}}^{(k)}$: We show in the above that $\operatorname{Pr}\left[\ell \leftrightarrow \ell^{\prime}\right] \leq p^{2}+(1-p)^{2}$ for any literals ℓ and ℓ^{\prime}; we can similarly show that, for any literals ℓ, ℓ^{\prime} and $\ell^{\prime \prime}, \operatorname{Pr}\left[\ell \leftrightarrow \ell^{\prime}, \ell \leftrightarrow \ell^{\prime \prime}\right] \leq p^{3}+(1-p)^{3}$. Replacing all literals in $\phi_{\mathrm{BB}}^{(k)}$ by their positive analogues to get a new CNF ϕ, we have that $\operatorname{Pr}_{\mathcal{D}_{p}}\left[\phi_{\mathrm{BB}}^{(k)}\right] \leq \operatorname{Pr}_{\mathcal{D}_{p}}[\phi]$. Let M be the perfect matching associated with ϕ. Define $M^{\prime}:=M \cup\left\{\left(x_{1}, y_{k}\right)\right\}$. Observe that M^{\prime} is a perfect matching for all $2 k$ literals. Let ϕ^{\prime} be the matching CNF constructed from M^{\prime}. Let P be the acceptance probability of ϕ. We know that $\operatorname{Pr}_{\mathcal{D}_{p}}\left[\phi^{\prime}\right]=P \cdot \frac{\left[(1-p)^{2}+p^{2}\right]^{3}}{\left[(1-p)^{3}+p^{3}\right]^{2}} \geq P$ since $\frac{\left[(1-p)^{2}+p^{2}\right]^{3}}{\left[(1-p)^{3}+p^{3}\right]^{2}} \geq 1$ for $p \in[0,1]$.
- $\phi_{P P}^{(k)}$: Similarly, we can replace all literals in $\phi_{P P}^{(k)}$ with their positive analogues and get ϕ. Let M be the perfect matching associated with ϕ. Define $M^{\prime}:=M \cup\left\{\left(x_{1}, y_{k}\right)\right\}$. Observe that M^{\prime} is a perfect matching for all $2 k$ literals. Let ϕ^{\prime} be the matching CNF constructed from M^{\prime}. Let P be the acceptance probability of ϕ. If $k=2$ then we have that $P=(1-p)^{2}+p^{4}=\left[(1-p)^{2}+p^{2}\right]^{2}=\operatorname{Pr}_{\mathcal{D}_{p}}\left[\phi^{\prime}\right]$ for $p=\frac{2}{3}$. If $k>2$, we know that $\operatorname{Pr}_{\mathcal{D}_{p}}\left[\phi^{\prime}\right]=P \cdot \frac{\left((1-p)^{2}+p^{2}\right)^{3}}{\left((1-p)^{2}+p^{3}\right)^{2}}>P$ since $\frac{\left((1-p)^{2}+p^{2}\right)^{3}}{\left((1-p)^{2}+p^{3}\right)^{2}}>1$ for $p=\frac{2}{3}$.
- $\phi_{B P}^{(k)}$: As we have seen before, we can replace all literals in $\phi_{B P}^{(k)}$ with their positive analogues and get ϕ. Let M be the perfect matching associated with ϕ. Define $M^{\prime}:=M \cup\left\{\left(x_{1}, y_{k}\right)\right\}$. Observe that M^{\prime} is a perfect matching for all $2 k$ literals. Let ϕ^{\prime} be the matching CNF constructed from M^{\prime}. Let P be the acceptance probability of ϕ. If $k=2$ then we have that $P=(1-p)^{3}+p^{4}<\left[(1-p)^{2}+p^{2}\right]^{2}=\operatorname{Pr}_{\mathcal{D}_{p}}\left[\phi^{\prime}\right]$ for $p=\frac{2}{3}$. If $k>2$, we know that $\operatorname{Pr}_{\mathcal{D}_{p}}\left[\phi^{\prime}\right]=P \cdot \frac{\left((1-p)^{2}+p^{2}\right)^{3}}{\left((1-p)^{2}+p^{3}\right)\left[(1-p)^{3}+p^{3}\right]}>P$ since $\frac{\left((1-p)^{2}+p^{2}\right)^{3}}{\left((1-p)^{2}+p^{3}\right)\left[(1-p)^{3}+p^{3}\right]}>1$ for $p=\frac{2}{3}$.

Acknowledgements

We thank the anonymous reviewers for a careful reading of the paper and comments that helped us improve the presentation. This work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number MB22.00026.

References

1 Peter Frankl, Svyatoslav Gryaznov, and Navid Talebanfard. A Variant of the VC-Dimension with Applications to Depth-3 Circuits. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), volume 215, pages 72:1-72:19, Dagstuhl, 2022. Schloss Dagstuhl. doi:10.4230/LIPIcs.ITCS.2022.72.
2 Alexander Golovnev, Alexander S. Kulikov, and R. Ryan Williams. Circuit Depth Reductions. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021), volume 185, pages 24:1-24:20, Dagstuhl, 2021. Schloss Dagstuhl. doi:10.4230/LIPIcs ITCS.2021.24.
3 J. Håstad, S. Jukna, and P. Pudlák. Top-down lower bounds for depth-three circuits. Computational Complexity, 5(2):99-112, jun 1995. doi:10.1007/bf01268140.
4 Suichi Hirahara. A duality between depth-three formulas and approximation by depth-two. Technical report, arXiv, 2017. arXiv:1705.03588.
5 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512-530, dec 2001. doi:10.1006/jcss.2001.1774.
6 Rahul Jain and Hartmut Klauck. The partition bound for classical communication complexity and query complexity. In Proceedings of the 25th Conference on Computational Complexity (CCC), pages 247-258. IEEE, 2010. doi:10.1109/CCC.2010.31.

7 Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Algorithms and Combinatorics. Springer, 2012.
8 Mauricio Karchmer, Eyal Kushilevitz, and Noam Nisan. Fractional covers and communication complexity. SIAM Journal on Discrete Mathematics, 8(1):76-92, feb 1995. doi:10.1137/ s0895480192238482.
9 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, 1997.

10 Troy Lee and Adi Shraibman. Lower Bounds in Communication Complexity, volume 3. Now Publishers, 2007. doi:10.1561/0400000040.
11 L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13(4):383-390, 1975. doi:10.1016/0012-365X(75)90058-8.
12 R. Paturi, M. E. Saks, and F. Zane. Exponential lower bounds for depth three boolean circuits. computational complexity, 9(1):1-15, 2000. doi:10.1007/PL00001598.
13 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved exponential-time algorithm for k-SAT. Journal of the ACM, 52(3):337-364, may 2005. doi:10.1145/1066100.1066101.
14 Ramamohan Paturi, Pavel Pudlak, and Francis Zane. Satisfiability coding lemma. Chicago Journal of Theoretical Computer Science, 5(1):1-19, 1999. doi:10.4086/cjtcs.1999.011.
15 Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Jozef Gruska, editor, Mathematical Foundations of Computer Science 1977, pages 162-176, Berlin, Heidelberg, 1977. Springer Berlin Heidelberg.
16 Emanuele Viola. On the power of small-depth computation. Foundations and Trends in Theoretical Computer Science, 5(1):1-72, 2009. doi:10.1561/0400000033.

[^0]: ${ }^{1}$ If \mathcal{D}, p is feasible for (Dual LP), then $A(x):=\mathcal{D}(x) / p$ is feasible and has the same objective function value in the other program. In the other direction, set $p:=1 / \sum_{y} A(y)$ and $\mathcal{D}(x):=p \cdot A(x)$.

