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Abstract

Random linear codes (RLCs) are well known to have nice combinatorial properties and near-
optimal parameters in many different settings. However, getting explicit constructions matching
the parameters of RLCs is challenging, and RLCs are hard to decode efficiently. This motivated
several previous works to study the problem of partially derandomizing RLCs, by applying
certain operations to an explicit mother code. Among them, one of the most well studied
operations is random puncturing, where a series of works culminated in the work of Guruswami
and Mosheiff (FOCS’ 22), which showed that a random puncturing of a low-biased code is likely
to possess almost all interesting local properties of RLCs.

In this work, we provide an in-depth study of another, dual operation of random puncturing,
known as random shortening, which can be viewed equivalently as random puncturing on the
dual code. Our main results show that for any small ε, by starting from a mother code with
certain weaker conditions (e.g., having a large distance) and performing a random (or even
pseudorandom) shortening, the new code is ε-biased with high probability. Our results hold for
any field size and yield a shortened code with constant rate. This can be viewed as a complement
to random puncturing, and together, we can obtain codes with properties like RLCs from weaker
initial conditions.

Our proofs involve several non-trivial methods of estimating the weight distribution of code-
words, which may be of independent interest.

1 Introduction

Error correcting codes are fundamental objects in combinatorics and computer science. The study
of these objects together with the bounds and parameters that can be achieved, has also helped
shape the field of information theory starting from the pioneering work of Shannon and Hamming.
In the theory of error-correcting codes, linear codes form a fundamental class of codes that are
building blocks of many important constructions and applications. Such codes have simple algebraic
structures that are often key ingredients in their performance and analysis. For example, any linear
code with message length k and codeword length n over the field Fq can be described by both a

generator matrix in Fk×n
q and a parity check matrix in Fn×(n−k)

q .
It is well known that random linear codes (RLCs, where one samples each entry of the generator

matrix uniformly independently from Fq) enjoy nice combinatorial properties and have near-optimal
parameters in many different settings. Specifically, with high probability they achieve Shannon ca-
pacity, the Gilbert-Varshamov (GV) bound of rate-distance tradeoff, and are list-decodable up to
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capacity. However, getting explicit constructions remains a challenging problem in many situa-
tions. In addition, random linear codes have little structure, which makes it difficult to design
efficient decoding algorithms. Indeed, decoding random linear codes is closely related to the prob-
lems of learning parity with noise and learning with errors, whose hardness is the basis of many
cryptographic applications (see e.g., [Reg09]). As such, many previous works studied the prob-
lem of slightly derandomizing, or equivalently reducing the randomness used in RLCs, while still
maintaining their nice properties.

Among these works, random puncturing is one of the most well-studied operations. Here,
one takes an explicit mother code, and then randomly punctures some coordinates from the code
(or equivalently, punctures some columns from the generator matrix) to get a new, shorter code.
Specifically, a P-puncturing of a mother code C ⊆ Fn

q randomly chooses a subset P ⊆ [n] of size
p, and for every codeword of C, deletes all symbols with positions in P. Compared to standard
RLCs, the number of random bits used is thus reduced from O(nk log q) to O(n). Furthermore,
certain nice structures of the mother code are often inherited by the punctured code, which makes
decoding easier.

With sophisticated techniques, previous works have shown that if the mother code satisfies some
natural conditions, then after a random puncturing, with high probability the new code has certain
properties similar to those of RLCs. For example, motivated by the problem of achieving list-
decoding capacity, recent works [Woo13, RW14, FKS22, GST21, BGM22, GZ23, AGL23] studied
random puncturing of Reed-Muller (RM) codes and Reed-Solomon (RS) codes. Subsequent works
[GM22, PP23] generalized the list-decoding property to all monotone-decreasing local properties.
In all these works, the mother code needs to have some special properties, such as being an RS
code, an RM code, having a large distance over a large alphabet, or having a low bias over a small
alphabet. These properties are not immediately implied by general linear codes, and thus, one of
the natural goals is to gradually weaken the requirements of the mother code so that the approach
works for a broader class of codes. Indeed, as we shall see later, this is one of the main motivations
and themes in previous works.

In this paper we continue this line of work and study the following two natural questions:

1. If the mother code is not that strong, can we still use some operations to get a new code that
has properties similar to random linear codes?

2. What other operations, besides random puncturing, are useful in this context?

Towards answering these questions, we consider a different operation to reduce the randomness
of RLCs, called random shortening, previously studied in [BGL17, LDT21, YP17, NvZ15]. Specif-
ically, for an integer s, a random s-shortening of a code C ⊆ Fn

q randomly chooses a subset S ⊆ [n]
of size s, and forms a new code by picking all codewords of C which are zeros at the positions in S,
and deleting these zero symbols.

We note that just like random puncturing, the operation of random shortening can in fact be
carried out on any code, not just on linear codes. However, for linear codes there is an important,
alternative view of random shortening: it is actually the dual version of random puncturing. In
particular, one can check that it is equivalent to a random puncturing of size s on the parity check
matrix of a linear code C, or the generator matrix of the dual code C⊥. Thus in this paper, for a
linear code, we also call shortening dual puncturing.

This view brings some convenience from the viewpoint of the parity check matrix. For example,
any puncturing of the parity check matrix (hence also shortening) of a low-density parity check
(LDPC) code [Gal62] still results in an LDPC code. Another example is expander codes [SS96]. A
binary expander code C is based on a bipartite expander graph Γ : [N ]× [D] → [M ] with N nodes
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on the left, M nodes on the right, and left degree D. The parity check matrix of C is defined as
follows. Each left node corresponds to a codeword bit and each right node corresponds to a parity
check which checks if the parity of its neighboring codeword bits is 0. Such a code has linear time
decoding algorithms, and the distance of C can be lower bounded by using the vertex expansion
property of Γ. Specifically, assume that for every left set A ⊆ [N ], with |A| ≤ αN , the neighbors of
A, denoted as Γ(A) has size at least (1−ε)D|A|, then [CCLO23] showed that the distance of C is at
least roughly αN

2ε . Notice that an S-shortening of C actually corresponds to deleting nodes in S from
the left set [N ] together with their adjacent edges, thus this does not change the vertex expansion
property of the remaining graph. Hence the new code still has a distance of at least roughly αN

2ε ,
which in fact corresponds to a larger relative distance (since the new code has a shorter length).
As we will see shortly, this is actually a general property of any shortening of a code. In summary,
just like puncturing, the shortening operation also preserves certain nice properties of the mother
code, e.g., being an LDPC code or an expander code. In turn, this makes decoding easier.

Before stating our results, we first review some previous works on random puncturing and
random shortening in more detail.

1.1 Previous Work

Recently, random puncturing has drawn a lot of attention in the context of list decoding. In
[Woo13], Wootters showed that by applying a random puncturing to a Reed-Muller code and
setting the desired rate to O(ε2), with high probability one can list-decode the punctured code up
to a relative radius of 1/2 − ε, with an exponential but non-trivial list size. In [RW14], Rudra
and Wootters showed that if the mother code is an RS code, and has a large enough relative
distance of 1 − 1/q − ε2, then after puncturing one can get a list-decoding radius of 1 − 1/q − ε
and a rate close to capacity up to a poly log(1/ε) factor, while the list size is O(1/ε). We remark
that a rate upper bound for list-decodable linear codes is given by Shangguan and Tamo [ST20],
which is a generalized singleton bound. Specifically, they proved that if C is a linear code of rate
R that is (ρ, L) list decodable, i.e., the code has a relative list decoding radius of ρ and list size
L, then ρ ≤ (1 − R) L

L+1 . They conjectured the existence of such codes and proved the case for
L = 2, 3. Later, towards proving this conjecture, Guo et. al. [GLS+22] showed that there are RS
codes that are (1−ε,O(1/ε)) list decodable and the rate can be Ω(ε/ log(1/ε)), though they mainly
use intersection matrices instead of random puncturing. Ferber, Kwan, and Sauermann [FKS22]
further showed that through random puncturing one can achieve a rate of ε/15 with list decoding
radius 1− ε and list size O(1/ε). This was further improved by Goldberg et. al. [GST21] to achieve
a rate of ε

2−ε . Most recently, [BGM22] showed that random puncturing of RS codes can go all the

way up to the generalized singleton bound if the field size is 2O(n), resolving a main conjecture
of [ST20]. This was subsequently improved by [GZ23], which reduced the field size to O(n2); and
again by [AGL23], which further reduced the field size to O(n), although [GZ23, AGL23] can only
get close to the generalized singleton bound. We note that all the above works mainly studied RS
codes or RM codes, which have strong algebraic structures, and some of them also require a large
relative distance (e.g., close to 1− 1/q).

On the other hand, Guruswami and Mosheiff [GM22] considered random puncturing of more
general codes with weaker properties. Specifically, they considered two cases, where the mother
code either has a low bias or has a large distance over a large alphabet (note that the property
of a low bias implies a large distance, hence is stronger). For both cases, they showed that the
punctured code can achieve list decoding close to capacity. In fact, they showed a stronger result,
that all monotone-decreasing local properties of the punctured code are similar to those of random
linear codes. Subsequent to [GM22], Putterman and Pyne [PP23] showed that the same results in
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[GM22] can be achieved by using a pseudorandom puncturing instead, which reduces the number
of random bits used in the puncturing to be linear in the block length of the punctured code, even
if the mother code has a much larger length.

Unlike puncturing, there are only a handful of previous works on shortening. In [NvZ15], Nelson
and Van Zwam proved that all linear codes can be obtained by a sequence of puncturing and/or
shortening of a collection of asymptotically good codes. In [YP17], Yardi and Pellikaan showed that
all linear codes can be obtained by a sequence of puncturing and/or shortening on some specific
cyclic code. In [BGL17], Bioglio et. al. presented a low-complexity construction of polar codes
with arbitrary length and rate using shortening and puncturing. In [LDT21], Liu et. al. provided
some general properties of shortened linear codes.

1.2 Notation and Definitions.

Definition 1.1. A linear code C of length n and dimension k over a finite field Fq is a k-dimensional
subspace of the n-dimensional vector space Fn

q . The rate of C is the ratio of the dimension to the

length of the code: R(C) = k
n . The distance (or minimum distance) of C is the minimum Hamming

distance between any two distinct codewords in the code: d(C) = min
c1,c2∈C,c1 ̸=c2

d(c1, c2). The relative

distance of C is the ratio of its distance to its length: δ(C) = d(C)
n .

The dual code C⊥ of a linear code is the dual linear subspace of C. Hence the sum of the rates
of C and C⊥ is 1. We call d⊥(C) the dual distance of C as the minimum distance of its dual code

C⊥. The relative dual distance of C is the ratio of its dual distance to its length: δ⊥(C) = d⊥(C)
n .

We denote a linear code with these properties as an [n, k, d]q code or an [n, k, d, d⊥]q code.
Moreover, a linear code can be described by a k × n generator matrix G, where each codeword in
C is a linear combination of the rows of G. The parity check matrix of C is an n× (n− k) matrix
H satisfying the property that for any codeword c ∈ C, cH = 0. So H⊤ is the generator matrix of
C⊥.

Definition 1.2. Let P be a subset of [n] of size p. A P-puncturing on a code C of length n involves
removing p positions indexed by P. The resulted punctured code C(P) has length n − p. If P is a
uniformly random subset of size p, we say that C(P) is obtained from C by a random p-puncturing.

Definition 1.3. Let S be a subset of [n] of size s. An S-shortening on a code C of length n involves
selecting all codewords with zero values on positions indexed by S and removing these positions.
The resulted shortened code C[S] has length n− s. If S is a uniformly random subset of size s, we
say that C[S] is obtained from C by a random s-shortening.

Definition 1.4. The q-ary entropy function is defined as Hq(x) = x logq(q − 1) − x logq x − (1 −
x) logq(1− x).

Throughout the paper, we use “with high probability” to mean that when the rate R, relative
distance δ, relative dual distance δ⊥ of the code, and other given parameters are fixed, the probabil-
ity of the event is 1−O(exp(−tn)) for some constant t. Essentially, this means that the probability
of the event occurring approaches 1 as the block length n increases, making it increasingly likely
that the desired properties hold.

As in [GM22], in this paper we also consider monotone-decreasing, local properties. Informally,
we call a code property P monotone-decreasing and local if, the fact that a code C does not satisfy
P can be witnessed by a small “bad set” of codewords in C. For example, some typical properties,
such as being list-decodable to capacity and having a small bias, are monotone-decreasing and
local properties. More formally, a monotone-decreasing and local property is the opposite of a
monotone-increasing and local property, defined below.
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Definition 1.5. A property P is said to be

• monotone-increasing if, for any code C, whenever one of its subcodes (i.e., a subspace of C)
satisfies P, the code C itself also satisfies P (monotone-decreasing if the complement of P
is monotone-increasing);

• b-local for some b ∈ N if there exists a family BP of sets of words in Fn
q , with the size of the

sets at most b, and such that C satisfies P if and only if there exists an set B ∈ BP satisfying
B ⊆ C,

• row-symmetric if, for any code C ⊆ Fn
q that satisfies P, the resulting code obtained by

performing a permutation on the n positions of C also satisfies P.

1.3 Main Results

Random puncturing vs. random shortening Before formally stating our results, we first
informally compare the two operations of random puncturing and random shortening. A random
p-puncturing of a code of length n involves uniformly selecting p positions randomly from [n],
and discarding these positions in the code. One can see that under appropriate conditions, this
operation preserves the distinctness of all codewords, and thus can increase the rate of the code.
However it may decrease the distance or relative distance of the code. In contrast, a random s-
shortening of a code involves picking s positions uniformly randomly from [n], forming a subcode
that consists of codewords which contain only zeros at these positions, and then deleting these
positions in the subcode. It can be seen that this operation perserves the distance of the code, and
thus increases the relative distance of the code, but on the other hand the rate of the code can
potentially decrease. Hence, these two operations are indeed “dual” in some sense, and therefore
one can apply both operations to adjust both the rate and the relative distance of the code.

A linear code C ⊆ Fn
q , where q = pr for some prime p, is called ε-biased, if for every codewords

c ∈ C,
∣∣∑n

i=1 ω
tr(a·ci)

∣∣ ≤ εn for all a ∈ F∗
q . where ω = e

2πi
p and tr : Fq → Fp is the field trace map.

In Section 2.2, we will provide a more detailed explanation of the ϵ-biased code.
Our main results show that random shortening is an effective way to reduce the bias of a code.

Note that this is stronger than increasing the relative distance, since the former implies the latter
(see Proposition 2.10). If the mother code satisfies certain conditions, then we show after random
shortening the new code can achieve an arbitrarily small bias with high probability. We note that
a random linear code has a small bias, and thus in this sense the code after random shortening
behaves like random linear codes. Moreover, the condition that the mother code has a low bias
is required in several previous works (e.g., [GM22, PP23]), while these works essentially do not
care about the rate of the mother code. Thus we can apply a random puncturing to the new code
after a random shortening, to get another code where all monotone-decreasing local properties are
similar to those of random linear codes. This further weakens the requirements of mother codes in
previous works to some extent.

Low-Biased codes from codes with large distance. A low-biased code must have a large
distance, as stated in Proposition 2.10. However, the reverse may not hold. The following theorem
shows that it is also possible to derive a low-biased code from a code with a large distance by
random shortening.

Theorem 1.6. For any 0 < ε < 1, any [n,Rn, δn]q code C with q−1
q − q

q−1

(
ε

2(q−1)

)2
< δ < q−1

q

and any constant 0 < γ < R, there exists a number 0 < s < R such that the following holds. If
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we perform a random sn-shortening S to C, then with high probability, the shortened code C[S] is
ε-biased and has rate at least R− γ.

We note that the theorem only requires a lower bound on the relative distance, but there are no
restrictions on the rate of the original code, R. Hence, this requirement is generally easy to satisfy,
for example, from simple constructions using code concatenation. Furthermore, we can select an
appropriate shortening size to ensure that the rate of the shortened code is arbitrarily close to R.

The distance condition of C in Theorem 1.6 can also be relaxed, resulting in the following
theorem.

Theorem 1.7. Given any 0 < ε < 1, if an [n,Rn, δn]q code C satisfies the condition that there

exists some 0 < β < 1, such that δ
1−(1−β)R > q−1

q − q
q−1

(
ε

2(q−1)

)2
, then there exists a number

0 < s < R such that the following holds. If we perform a random sn-shortening S to C, then with
high probability, the shortened code C[S] is ε-biased with rate at least βR.

Indeed, the asymptotic form of the Plotkin bound is given by

R ≤ 1− (
q

q − 1
) · δ + o(1). (1)

Thus Theorem 1.7 implies that as long as the rate-distance trade-off of the original code is close
enough to the Plotkin bound, we can obtain a code with an arbitrarily small bias by random
shortening. On the other hand, unlike in Theorem 1.6, the rate of the shortened code may not be
arbitrarily close to R, but we can still get a new rate that is only a constant factor smaller.

Remark 1. Just as in [GM22], in both our theorems, the condition that C is a linear code is crucial
for ensuring that the shortened code maintains a constant rate with high probability. When C is
non-linear, there are certain counterexamples. For instance, let C′ be an [n,Rn, δn]q code and let C
be obtained from C′ by adding τn 1’s at the end of each codeword in C. By picking an arbitrarily
small constant τ > 0, the rate and relative distance of C are almost the same as C′. However, after
a random sn-shortening, C[S] is the 0 code with probability 1− 2−Ω(n).

Low-biased codes from codes with small rate and not too small dual distance. In the
next theorem, there is no requirement for δ to be very large. Instead, we impose constraints on its
dual distance, δ⊥, and the rate, R. If the dual distance is not too small and the rate can be upper
bounded, then we can also apply the shortening technique to obtain a low-biased code.

Theorem 1.8. Given any 0 < ε < 1, if an [n,Rn, δn, δ⊥n]q code C satisfies the condition that

there exist 0 < γ < 1
4 , 0 < δ⊥0 < min{ε

1
γ ,
(
1+logq(1−δ)

36

)2
, (1q )

1
γ }, such that δ⊥ > δ⊥0 and 0 <

R < 0.5−2γ
1+0.9·logq(1−δ)Hq(δ

⊥
0 ), then there exists a number 0 < s < R such that the following holds. If

we perform a random sn-shortening S to C, then with high probability the shortened code C[S] is
ε-biased with rate at least 0.1R.

In Theorem 1.8, the rate of the dual code must be sufficiently large. Additionally, if the term
1
2
−2γ

1+0.9·logq(1−δ) is less than 1, the rate-distance trade-off of the dual code surpasses the Gilbert-

Varshamov (GV) bound. Consequently, when examining the problem within the context of the GV
bound, we need to impose specific constraints on δ. This leads to the following corollary.
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Corollary 1.9. Given any 0 < ε < 1, δ > 1 − q−0.6, there exists a number γ > 0, such that for

any δ⊥ > δ⊥0 , 0 < R < (1 + γ)Hq(δ
⊥
0 ) for a certain 0 < δ⊥0 < min{ε

1
γ , 1

8100 , (
1
q )

1
γ }, there exists a

number 0 < s < R such that the following holds. Let C be any [n,Rn, δn, δ⊥n]q code. If we perform
a random sn-shortening S to C, then with high probability the shortened code C[S] is ε-biased with
rate at least 0.1R.

Theorem 1.8 and Corollary 1.9 show that as long as the mother code and its dual both have a
reasonable relative distance, one can use random shortening to get a new code with an arbitrary
small bias, while only losing a constant factor in the rate. We note that linear codes such that both
the code and its dual have good relative distance are also easily constructible, for example, see
[Shp09].

Random-like codes by random shortening and puncturing. In [GM22], the authors showed
that a random puncturing of a low-biased code results in a new code that behaves like random linear
codes. Using our theorems, we present a weaker condition that still achieves similar results. This
follows from a combination of random shortening and random puncturing, as briefly discussed
before.

Theorem 1.10. For any 0 < ε < 1, b ∈ N, and prime power q, there exists some η > 0, such that
the following holds. Let P be a monotone-decreasing, b-local, and row-symmetric property over Fn

q

satisfied by a random linear code of length n and rate R′. There exists some η > 0 such that the
following holds. If any one of the following properties is satisfied for R, δ, δ⊥, q, η:

1. δ > ( q−1
q − η)(1−R), or

2. δ⊥ > δ⊥0 and 0 < R <
1
2
−2γ

1+0.9·logq(1−δ)Hq(δ
⊥
0 ) for a certain 0 < δ⊥0 < min{ε

1
γ ,
(
1+logq(1−δ)

36

)2
, (1q )

1
γ },

then there exists m, p, s > 0 such that for any [m,Rm, δm]q code, if we perform a random sm-
shortening and then a random pm-puncturing on C, the resulted code D has length n, rate at least
R′ − ε and with high probability, satisfies P.

Remark 2. In fact, all our theorems hold under the more restricted pseudorandom shortening,
where S is sampled from a random walk on a sufficiently good constant-degree expander graph, as
in [PP23]. The reason is that in this case, the only thing that changes is the probability that a
random shortening does not hit a codeword. A standard hitting set property of random walks on
expander graphs ensures that this probability (as in Lemma 2.15) remains close to (1− δ)s, as long
as the second largest normalized eigenvalue in absolute value of the expander is small enough, which
can be achieved by having a large enough constant degree. Consequently, all our proofs essentially
go through with only minimal changes. Thus, like [PP23], we can also reduce the number of random
bits used in the shortening to be linear in the block length of the shortened code, even if the mother
code has a much larger length.

Remark 3. We emphasize that, in all our theorems, the conditions of the mother code we need are
weaker than the conditions in previous works which only use random puncturing [GM22, PP23].
For example, when the alphabet size is small, those works require the mother code to have a small
bias, which implies a large distance. On the other hand, our theorems either only require a large
distance, or only require a reasonable distance in both the mother code and its dual.
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Discussions and open questions. Our work leaves several open questions for future investiga-
tion. One such question is whether we can achieve a good rate when performing random shortening.
Right now, using our analysis, the rate of the code after random shortening is potentially worse
than the mother code we start with, and thus we do not get a good rate-distance trade-off by
simply applying random shortening. Therefore, it is a natural question to see if one can achieve
an ε-biased code through random shortening while at the same time maintaining a favorable R–ε
trade-off, if we start with some good initial conditions of the mother code. Another direction is
further weakening the initial conditions required for obtaining low-biased codes, such as removing
the constraint of δ in Theorem 1.8. In our view, these questions present exciting opportunities for
advancing our understanding of random shortening, low-biased codes and their connections.

Finally, it would also be quite interesting to completely derandomize the random shortening,
thus yielding explicit constructions of low-biased codes with special structures (e.g., LDPC codes
or expander codes). This will complement existing constructions of low-biased codes, and possibly
lead to more efficient decoding algorithms.

1.4 Technique Overview

We investigate the effect of shortening as follows. An S-shortening applied to a code C of length n
involves selecting all codewords with zeros at positions indexed by S and removing these positions.
Specifically, if the support of a codeword c ∈ C intersects S (in which case we say S hits c), then c
will not be included in the shortened code; if the support of c does not intersect S, then there is
a codeword c′ ∈ C[S], which is obtained from c by removing all positions in S. In this way, under
a random shortening, each non-zero codeword has a certain probability of being dropped and a
certain probability of being retained in C[S]. If the distance of C is δn, then the probability of each
codeword being hit and dropped is at least 1− (1− δ)s by Lemma 2.15, where s is the size of S.

We use Cε to denote all codewords in C which are not ε-biased. If the size of Cε is small, then
by a union bound, the probability that not all codewords in Cε are hit by S is exponentially small.
Thus, with high probability, all codewords in C that are not hit by S and inherited to C[S] are
ε-biased. Hence, a critical part of all our proofs is to upper bound the size of Cε.

Furthermore, as long as C is a linear code and s is less than the dimension k of C, we know that
the shortened code C[S] has dimension at least k− s. Consequently, C[S] retains a nonzero constant
rate as well.

Change of parameters. The shortening results in changes to the parameters of the code. Here,
we mainly apply shortening for two purposes: adjusting the bias and amplifying the relative dis-
tance.

1. Adjusting the bias: Let C be of length n. When Cε′ is hit by S, it implies that the
codewords in C not hit by S are all ε′-biased. However, it doesn’t directly imply that the
shortened code C[S] is also ε′-biased, since the shortening operation changes the length of the
code. Nevertheless, the new bias ε of C[S] is given by ε ≤ ε′n+s

n−s , where s is the size of the
shortening S. If s is small compared to n, ε is close to ε′. In the proof of Theorem 1.6, we
can choose s to be a sufficiently small fraction of n. In the proof of Theorem 1.8, we provide
an upper bound for R, which also enables us to choose a small shortening size. In both cases,
we set the shortening size to be less than 0.05ε′n, allowing us to choose ε′ = 0.9ε.

2. Amplifying the relative distance: We use another technique in the proof of Theorem 1.7
to first transform a code with a rate-distance trade-off near the Plotkin bound into a code
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with near-optimal distance. By Proposition 2.8, the distance of the shortened code C[S] is no
less than that of the original code C. However, since C[S] has length n − s instead of n, its
relative distance becomes δ

1− s
n
. This allows us to increase the relative distance of the code.

In turn, Theorem 1.7 follows from Theorem 1.6.

Estimation of the size of Cε. This is the most critical part of all our proofs. For Theorem 1.6
and Theorem 1.8, we have two different ways of estimating the upper bound of |Cε|:

1. Estimating |Cε| with relative distance δ: We use Jq(δ) to denote the list decoding radius
corresponding to the classical Johnson bound for a code over Fq with relative distance δ. It
is easy to see that when δ is close to the optimal q−1

q , so is Jq(δ). To give an upper bound of

|Cε|, we construct q balls in Fn
q with radius Jq(δ) and centered at t · 1⃗, where 1⃗ is the all-one

vector and t ∈ Fq. By the Johnson bound, the number of codewords covered by these balls
is at most poly(n). We show that, if a codeword c is not covered by these balls, its empirical
distribution over Fq is close to the uniform distribution, which implies c is small biased. This
upper bounds |Cε| by poly(n).

2. Estimating |Cε| with relative dual distance δ⊥ and rate R: If C has dual distance d⊥,
then any d⊥ − 1 columns of the generator matrix of C are linearly independent, which means
that if we uniformly randomly choose a codeword from C, then any d⊥ − 1 symbols of the
codeword are independently uniform, i.e., the symbols of a random codeword are d⊥− 1-wise
independent. We can now use this property to estimate the probability that a codeword
randomly chosen from C is not ε-biased. This is a typical application of the concentration
phenomenon from the higher moment method, where we use Hoeffding inequality, Chernoff
bound, and Sub-Gaussian property to bound the (d⊥−1)th moment of the summation of some
random variables. Then by Markov’s inequality, the probability that a random codeword is
not ε-biased can be bounded, which also gives an upper bound on |Cε|.

Obtaining random-like codes. To obtain random-like codes, we combine our results with
those in [GM22], which state that a randomly punctured low-biased code is likely to possess any
monotone-decreasing local property typically satisfied by a random linear code of a similar rate.
By our results, we can start from a code with less stringent conditions and achieve the same results
as in [GM22], through the operations of a random shortening followed by a random puncturing.

Organization. The rest of this paper is organized as follows. In Section 2, we describe some basic
definitions, terms, and useful properties. In Section 3, we show how to combine other theorems and
the work of [GM22] to obtain a random-like code with weaker initial conditions and prove Theorem
1.10. In Section 4, we present two methods for estimating |Cε|. In Section 5, we prove Theorem 1.6
and Theorem 1.7. In Section 6, we prove Theorem 1.8 and Corollary 1.9.

2 Preliminary

2.1 Punctured codes and shortened codes

Definition 2.1. A linear code C of length n and dimension k over a finite field Fq is a k-dimensional
subspace of the n-dimensional vector space Fn

q . The rate of C is defined as the ratio of the dimension

to the length of the code: R(C) = k
n . The distance (or minimum distance) of C is the minimum

9



Hamming distance between any two distinct codewords in the code: d(C) = minc1,c2∈C,c1 ̸=c2 d(c1, c2).

The relative distance of C is the ratio of its distance to its length: δ(C) = d(C)
n . The dual distance

of C is the minimum distance of its dual code C⊥, denoted by d⊥(C). The relative dual distance of

C is the ratio of its dual distance to its length: δ⊥(C) = d⊥(C)
n . We denote a linear code with these

properties as an [n, k, d]q code or an [n, k, d, d⊥]q code. A linear code can be described by a k × n
generator matrix G, where each codeword in C can be obtained as a linear combination of the rows
of G. The parity check matrix of C is an n× (n− k) matrix H satisfying the property that for any
codeword c ∈ C, cH = 0.

Definition 2.2. Let P be a subset of [n] of size p. A P-puncturing on a code C of length n involves
removing p positions indexed by P. The resulted punctured code C(P) has length n − p. If P is a
uniformly random subset of size p, we say that C(P) is obtained from C by a random p-puncturing.

Definition 2.3. Let S be a subset of [n] of size s. An S-shortening on a code C of length n involves
selecting all codewords with zero values on positions indexed by S and removing these positions.
The resulted shortened code C[S] has length n− s. If S is a uniformly random subset of size s, we
say that C[S] is obtained from C by a random s-shortening.

Proposition 2.4. For a linear code C, and P,S ⊆ [n], C(P) and C[S] are also both linear codes.
The generator matrix of C(P) is obtained from that of C by deleting p columns indexed by P, and
the parity check matrix of C[S] is obtained from that of C by deleting s rows indexed by S.

Given that the parity check matrix of a code is the transpose of the generator matrix of its
corresponding dual code, we can deduce that shortening a code is equivalent to puncturing its dual
code. Consequently, we can observe the following properties.

Proposition 2.5. For a linear code C, and P ⊆ [n], (C(P))⊥ = (C⊥)[P].

Definition 2.6. Let C ⊆ Fn
q and c be a codeword in C, and S ⊆ [n]. Denote supp(c) to be the set

of non-zero coordinates of c. We say S hits c if supp(c) ∩ S ̸= ∅, S hits Cε if each codeword in Cε
is hit by S.

In general, when applying the shortening S to a code C, we exclude any codeword that is hit by
S. Specifically, if a codeword c ∈ C is hit by S, by definition we do not include it in the shortened
code C[S]. On the other hand, if a codeword c is not hit by S, there exists a corresponding codeword
c′ in the shortened code C[S], which is obtained by removing all positions indexed by S.

Next, we examine the effects of the shortening operation on code parameters.

Proposition 2.7. Let C be an [n, k, d, d⊥]q code and S be a subset of [n] of size s < k. The
shortened code C[S] has dimension k′ ≥ k − s. Moreover, if s < d⊥, then k′ = k − s.

Proof. By Proposition 2.4, the parity matrix of C[S] is (n − s) × (n − k), which implies that the
dimension of C[S] is at least (k − s). If s < d⊥, by Proposition 2.5, there doesn’t exist a non-zero
codeword c ∈ C⊥ such that supp(c) ⊆ S. In this case, there won’t be any collisions between two
codewords in C⊥ after shortening, so dim(C)⊥ = dim(C[S])⊥ = n− k, and the punctured code C[S]

has rate k − s.

Proposition 2.8. Let C be an [n, k, d, d⊥]q code and S be a subset of [n] of size s < k, The distance
of shortened code C[S] is at least d.

Proof. By definition, any non-zero codeword c ∈ C[S] comes from some codewords c′ ∈ C by
removing all coordinates indexed by [S], and ci = 0 for any i ∈ S, and thus wt(c) ≥ wt(c′) ≥ d.
So, the distance of C[S] is at least d.
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Moreover, since the shortened code C[S] has length of n − s instead of n, its relative distance
becomes δ

1− s
n
. This allows us to increase the relative distance of the code.

2.2 A characterization of ε-biased code

In this section, we recall the definition of ε-biased code.

Definition 2.9. Let C ⊆ Fn
q , where q = pr for some prime p and let ε > 0. A vector x ∈ Fn

q is said

to be ε-biased if
∣∣∑n

i=1 ω
tr(a·xi)

∣∣ ≤ εn for all a ∈ F∗
q . Here, ω = e

2πi
p and tr : Fq → Fp is the field

trace map: tr(x) =
∑r

i=1 x
pi . The code C is said to be ε-biased if every c ∈ C\{0} is ε-biased.

Note that for a binary vector x ∈ Fn
2 ,
∣∣∑n

i=1 ω
tr(−xi)

∣∣ = |n− 2 · wt(x)|. Then, a binary code C
is ε-biased if and only of all non-zero codewords c of C has weight 1−ε

2 n ≤ wt(c) ≤ 1+ε
2 n.

Proposition 2.10. If C ⊆ Fn
q is ε-biased, then its distance is at least (q−1)(1−ε)

q n.

Proof. Since C ⊆ Fn
q is ε-biased, for any c ∈ C,∣∣∣∣∣∣

∑
a∈F∗

q

n∑
i=1

ωtr(a·ci)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
a∈F∗

q

∑
i:ci ̸=0

ωtr(a·ci) + (n− wt(c))

∣∣∣∣∣∣ ≤ (q − 1)εn. (2)

By changing the order of double summation,∣∣∣∣∣∣
∑
i:ci ̸=0

∑
a∈F∗

q

ωtr(a·ci) + (q − 1)(n− wt(c))

∣∣∣∣∣∣ ≤ (q − 1)εn. (3)

Since
∑

a∈F∗
q
ωtr(a·ci) = −1 for all ci ̸= 0, we get

|(q − 1)n− q · wt(c)| ≤ (q − 1)εn, (4)

which implies wt(c) ≥ (q−1)(1−ε)
q n.

Definition 2.11. Given a vector x ∈ Fn
q , we define its empirical distribution Empx over Fq by

Empx(t) = Pri∈[n](xi = t). (5)

Lemma 2.12. Given a vector x ∈ Fn
q , if for any t ∈ Fq,

Empx(t) ≤
1

q
+

ε

2(q − 1)
, (6)

then x is ε-biased.

Proof. We compute the total variation distance between Empx and the uniform distribution over
Fq, which is given by

1

2

∑
t∈Fq

|Empx(t)−
1

q
| =

∑
t:Empx(t)>

1
q

(Empx(t)−
1

q
) ≤ ε

2
. (7)

11



Since for any a ∈ F∗
q , ∑

t∈Fq

ωtr(a·t) = 0. (8)

We know that ∣∣∣∣∣
n∑

i=1

ωtr(a·xi)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
t∈Fq

∑
i:xi=t

ωtr(a·xi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
t∈Fq

(∑
i:ci=t

ωtr(a·xi) − n

q
ωtr(a·t)

)∣∣∣∣∣∣
≤
∑
t∈Fq

n ·
∣∣∣∣Empx(t)−

1

q

∣∣∣∣ ≤ εn,

(9)

which implies x is ε-biased.

Definition 2.13. Let C be a code of length n. Denote Cε to be the set of all non-zero codewords
which are not ε-biased.

Lemma 2.14. Let C be a code of length n, and S be a subset of [n] of size s. If S hits Cε, then the
shortened code C[S] is εn+s

n−s -biased.

Proof. Any non-zero codeword c ∈ C[S] comes from some codewords c′ ∈ C by removing all coor-
dinates indexed by [S], and ci = 0 for any i ∈ S. Since S hits Cε, c′ is ε-biased, that is, for any

a ∈ F∗
q ,
∣∣∣∑n

i=1 ω
tr(a·c′i)

∣∣∣ ≤ εn. Then ∣∣∣∣∣
n−s∑
i=1

ωtr(a·ci)

∣∣∣∣∣
=

∣∣∣∣∣∑
i/∈S

ωtr(a·c′i)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=1

ωtr(a·c′i)

∣∣∣∣∣+
∣∣∣∣∣∑
i∈S

ωtr(a·c′i)

∣∣∣∣∣
≤εn+ s =

(
εn+ s

n− s

)
(n− s)

(10)

for any a ∈ F∗
q , and thus C[S] is εn+s

n−s -biased.

Lemma 2.15. Let C be a code of length n and distance d = δn, and S be a subset of [n] of size s.
For any codeword c ∈ C, the probability that c is not hit by S is at most

(1− δ)s.

Proof. Suppose wt(c) = i. c not hit by S means S ∩ supp(c) = ∅, whose probability is at most(
n−i
s

)(
n
s

) ≤ (1− i

n
)s ≤ (1− δ)s. (11)
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3 Random-like codes by random shortening and puncturing

In this section, we integrate the applications of low-biased codes with our theorems to obtain
further results. In [GM22], random punctured low biased codes are studied, and they are shown to
be locally similar to random linear codes. By combining this result, we can derive weaker conditions
for obtaining a random-like code. We first recall some of the framework for studying properties of
codes, which was established in [MRRZ+20, GMR+20].

A property P of length-n linear codes over Fq is a collection of linear codes in Fn
q . A linear

code C ⊆ Fn
q such that C ∈ P is said to satisfy P.

Definition 3.1. A property P is said to be

• monotone-increasing if, for any code C, whenever one of its subcodes (i.e., a subspace of C)
satisfies P, the code C itself also satisfies P (monotone-decreasing if the complement of P
is monotone-increasing);

• b-local for some b ∈ N if there exists a family BP of sets of words in Fn
q , with the size of the

sets at most b, and such that C satisfies P if and only if there exists an set B ∈ BP satisfying
B ⊆ C,

• row-symmetric if, for any code C ⊆ Fn
q that satisfies P, the resulting code obtained by

performing a permutation on the n positions of C also satisfies P.

Definition 3.2. Let P be a nonempty monotone-increasing property over Fn
q . Its threshold is

defined by

RLC(P) = min

{
R ∈ [0, 1] | Pr

[
Cn,q
RLC(R) satisfies P

]
≥ 1

2

}
, (12)

where Cn,q
RLC(R) is a random linear code of rate R in Fn

q .

Theorem 3.3. [MRRZ+20] Let P ⊆ Fn
q be a random linear code of radius R and Let P be a

monotone-increasing, b-local and row-symmetric property over Fn
q , where

n
logq n

≥ ωn→∞
(
q2b
)
. The

following now holds for every ε > 0.

1. If R ≤ RLC(P)− ε then

Pr[C satisfies P] ≤ q−(ε−on→∞(1))n. (13)

2. If R ≥ RLC(P) + ε then

Pr[C satisfies P] ≥ 1− q−(ε−on→∞(1))n. (14)

Theorem 3.4. [GM22] Let q be a prime power, and let P be a monotone-decreasing, row-
symmetric and b-local property over Fn

q , where
n

logn ≥ ωn→∞
(
q2b
)
. Let D ⊆ Fm

q be a linear code.
Let C be a random n-puncturing of D of design rate R ≤ RLC(P) − ε for some ε > 0. Suppose

that D is
(
εb ln q
qb

)
-biased. Then,

Pr[C satisfies P] ≤ q−(ε−on→∞(1))n.

This theorem offers a technique for constructing random-like codes from low biased codes.
By combining puncturing and shortening methods, we can transform a code with weaker initial
conditions into a random-like code. Since a monotone-increasing property is the negation of a
monotone-decreasing property, we can present our theorem using the monotone-decreasing property
and the term “with high probability” instead of “with probability exponentially decreasing”.

13



Theorem 3.5. Let 0 < ε < 1, b ∈ N, and q be a prime power. For any monotone-decreasing,
b-local, and row-symmetric property P over Fn

q with RLC(P) > ε, there exists some η > 0 such

that the following holds. If any one of the following conditions is satisfied for R, δ, δ⊥, q, η:

1. δ > ( q−1
q − η)(1−R), or

2. 0 < δ⊥ < min{η
1
γ ,
(
1+logq(1−δ)

36

)2
, (1q )

1
γ } and 0 < R <

1
2
−2γ

1+0.9 logq(1−δ)Hq(δ
⊥) for some γ,

then there exist positive m, p, s such that for any [m,Rm, δm]q code C, upon performing a random
sm-shortening and then a random pm-puncturing to C, the resultant code D has length n, rate of
at least RLC(P)− ε and, with high probability, satisfies P.

Proof. Define η = min{ εb ln q
qb

,RLC(P) − ε}. Given that one of the two conditions holds, we
can select an s such that a random sn-puncturing to C results in an η-biased code by Theorem
1.7 and Theorem 1.8. In this scenario, due to the singleton bound, the code rate is less than
RLC(P)− ε. Utilizing Theorem 3.4, we designate the rate as RLC(P)− ε and perform a random
p-puncturing. The resulting code then has a rate RLC(P)−ε and, with a high probability, satisfies
P. Furthermore, as the choices of s and p are independent of m, we can finally define m = n

1−s−p .
Consequently, the resulting code has a length of n.

4 Estimation on low-biased codewords

For a random vector x ∈ Fn
q , it is known from the law of large numbers that its empirical distribution

Empx is, with high probability, ε-close to the uniform distribution over Fq for any ε as n goes to
infinity. Therefore, for each ε, let C be a random code; Cε will, with high probability, constitute
only a small fraction of C. In the following, we present several estimation methods for the size of
|Cε| under general conditions.

We first give a fact about field trace map: Fq → Fp. The trace map is defined by tr(x) =∑r
i=1 x

pi , where q = pr. In fact, this map is both linear and surjective. Consequently, for any
a ∈ F∗

q , if x is selected uniformly at random from Fq, then tr(a · xi) will also assume a uniformly
random value in Fp.

We commence by presenting our first estimation method. Given a scenario where the distance δ
is substantial, it is viable to set ε to a small value, thereby ensuring that the number of codewords
in Cε is restricted to a maximum polynomial number. To exemplify, consider a binary code C over
Fn
2 with a considerable distance δ. We argue that, in this instance, only a polynomial number of

codewords surpass a weight greater than 1
2 + O(

√
ϵ). We can create a Hamming sphere, centered

at [1, 1, · · · , 1] with a radius J(δ) = 1
2(1−

√
1− 2δ). It is within this sphere that only a polynomial

number of codewords exist.

Lemma 4.1. Let C be an [n,Rn, δn]q code. For any ε ≥ 2(q − 1)
√

q−1
q ( q−1

q − δ), |Cε| ≤ q2δn2.

Proof. For each t ∈ Fq Denote t⃗ ∈ Fn
q to be the vector where each entry has a value t. Denote

Jq(δ) = (1 − 1
q )
(
1−

√
1− q

q−1δ
)
, which is the list decoding radius associated with the Johnson

bound. Let
B(t) = {c ∈ C | d(c, t⃗) ≤ Jδ(δ)}. (15)

By Johnson bound for a linear code,

|
⋃
t∈Fq

B(t)| ≤
∑
t∈Fq

|B(t)| ≤ q2δn2. (16)
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If c /∈
⋃

t∈Fq
B(t), then the Hamming distance between c and t⃗ is at least Jq(δ) for each t ∈ Fq,

which means

Empc(t) ≤ 1− Jq(δ) =
1

q
+

√
q − 1

q
(
q − 1

q
− δ). (17)

By Lemma 2.12, c is ε-biased for any ε ≥ 2(q − 1)
√

q−1
q ( q−1

q − δ), and thus

|Cε| ≤ |
⋃
t∈Fq

B(t)| ≤ q2δn2. (18)

Another approach to approximate |Cε| is the probability method. It is essential to observe that
when the dual code of C has distance d + 1, every set of d columns within the generator matrix
of C are linearly independent. This observation implies that when examining the distribution of
a randomly selected codeword from C, the bits exhibit d-wise independence. Consequently, C is
bound by the constraints of the d-th moment inequality.

Lemma 4.2. x1, · · · , xn are independent random variables with µ = 0, and xi ∈ [−1, 1]. Denote
Xn =

∑n
i=1 xi. Then for any even d,

E((Xn)
d) ≤ 2 · (2n)d/2 · (d

2
)!. (19)

Proof. By Hoeffding inequality, for any λ ≥ 0,

EeλXn ≤ e
λ2

2
n. (20)

Then by Chernoff bound, for any t > 0,

Pr (Xn ≥ t) ≤ exp

(
− t2

2n

)
;

Pr (Xn ≤ −t) ≤ exp

(
− t2

2n

)
.

(21)

Then by Sub-Gaussian property, for any even d,

E((Xn)
d) = E(|Xn|d) ≤ 2 · (2n)d/2 · (d

2
)!. (22)

Corollary 4.3. Let x1, x2 · · · , xn be random variables taking values in [−1, 1] which are d-wise
independent, E(xi) = 0. Let Xn =

∑n
i=1 xi, δ = d/n, then for any ε > 0,

Pr(|
n∑

i=1

xi| ≥ εn) ≤ 4
√
πd(

δ

ε2e
)δn/2. (23)

Proof. If x1, x2 · · · , xn are d-wise independent, then the d-th central moment of Xn =
∑n

i=1 xi
is the same as the case where these x1, x2 · · · , xn are fully independent. Therefore, by Markov
inequality,

Pr(|
n∑

i=1

xi| ≥ εn) ≤ E((Xn)
d)

(εn)2
= 4

√
πd(

δ

ε2e
)δn/2. (24)
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Lemma 4.4. Let x be a random vector, whose components uniformly take values in Fq and are
d-wise independent. Let δ = d/n. Then

Pr(x is not ε-biased) ≤ 2
√
2(q − 1)

(
2δ

ε2e

)δn/2

. (25)

Proof. Let Re(·) and Im(·) denote the real part and imaginary part of a complex number separately.
Since for each i ∈ [n], a ∈ Fq, Re(ω

tr(a·xi)) and Im(ωtr(a·xi)) are real-valued discrete random variables
with µ = 0, and taking values in [0, 1].

Pr(x is not ε-biased)

≤
∑
a∈F∗

q

Pr(|
n∑

i=1

ωtr(a·xi)| ≥ εn)

≤
∑
a∈F∗

q

(
Pr(|

n∑
i=1

Re(ωtr(a·xi))| ≥
√
2

2
εn) + Pr(|

n∑
i=1

Im(ωtr(a·xi))| ≥
√
2

2
εn)

)

≤8(q − 1)
√
πδn

(
2δ

ε2e

)δn/2

.

(26)

Corollary 4.5. Let C be a code of length n, rate R and dual distance d⊥ = δ⊥n over the field Fq.
Then for each ε > 0, the number of codewords which are not ε-biased is not more than

8q
√
πδ⊥n ·

(
2δ⊥

ε2e

)δ⊥n/2

· qRn

for sufficiently large n.

Proof. If C has dual distance d⊥, then each d⊥−1 columns of generating matrix of C are independent,
which means that if we uniformly randomly choose a codeword from C, each d⊥ − 1 bits of the
codeword are independent. Therefore, the number of codewords is less than

Pr (c is not ε-biased | c ∈ C) · |C|

≤8(q − 1)
√
π(δ⊥n− 1) ·

(
2δ⊥ − 2

n

ε2e

)(δ⊥n−1)/2

· qRn,
(27)

which is less than

8q
√
πδ⊥n ·

(
2δ⊥

ε2e

)δ⊥n/2

· qRn

for sufficiently large n.

5 Proof of Theorem 1.6

Before proving Theorem 1.6, we first give the following theorem.

Theorem 5.1. Let C be an [n,Rn, δn]q code. If we perform a random sn-shortening S to C, where

s < R, then with high probability, the shortened code C[S] is ε-biased, where ε =
2(q−1)

√
q−1
q

(
q−1
q

−δ
)
+s

1−s .
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Proof. Denote ε′ = 2(q − 1)
√

q−1
q ( q−1

q − δ). From Lemma 4.1, we know that |Cε′ | ≤ q2δn2. Hence,

by union bound,
Pr (S doesn’t hit all codewords in Cε′)

≤
∑
c∈Cε′

Pr (c is not hit by S)

≤q2δn2 · (1− δ)sn,

(28)

which approaches 0 as n tends to infinity. Hence, with high probability, S hits Cε′ . From Lemma
2.14, the shortened code C[S] is ε-biased.

To get Theorem 1.6, we need to select an appropriate value for s that satisfies the following
conditions:

1. The chosen s does not cause a significant decrease in the rate R.

2. s satisfies the requirements defined by ε.

Proof of Theorem 1.6. Let s = min{ γ
1+γ ,

R
2 ,

ε
2 − (q − 1)

√
q−1
q ( q−1

q − δ)}. By Proposition 2.7, since

s ≤ min{ γ
1+γ ,

R
2 }, the rate of C[S] is

R− s

1− s
> R− γ. (29)

Rearranging the inequality q−1
q − q

q−1

(
ε

2(q−1)

)2
< δ, we get

(q − 1)

√
q − 1

q
(
q − 1

q
− δ) <

ε

2
, (30)

And since s < ε
2 − (q − 1)

√
q−1
q ( q−1

q − δ).

2(q − 1)
√

q−1
q ( q−1

q − δ) + s

1− s

<
(q − 1)

√
q−1
q ( q−1

q − δ) + ε
2

1− ε
2 + (q − 1)

√
q−1
q ( q−1

q − δ)

<ε.

(31)

By Lemma 5.1, C[S] is ε-biased.

Proof of Theorem 1.7. Since δ
1−(1−β)R > q−1

q − q
q−1

(
ε

2(q−1)

)2
, we can first choose an s < (1− β)R

such that δ
1−s > q−1

q − q
q−1

(
ε

2(q−1)

)2
. We then perform an sn-shortening S to C. By Proposition 2.8

and Proposition 2.7, C[S] has a distance of at least q−1
q − q

q−1

(
ε

2(q−1)

)2
and rate at least R−s

1−s > βR.

Then, using Theorem 1.6, we are able to select a sufficiently small γ defined in Theorem 1.6 such
that R−s

1−s − γ > βR, which ultimately enables us to achieve the desired result.
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6 Proof of Theorem 1.8

We first present an inequality concerning the q-ary entropy function Hq(x) here.

Lemma 6.1. For any q = pr, 0 < γ < 1
4 , when 0 < x < (1q )

1
γ , Hq(x) < −(1 + 2γ)x logq x.

Proof. When q = 2,

Hq(x)

−x logq x
− 1 =

−(1− x) logq(1− x)

−x logq(x)
<

logq(1 + 2x)

−x logq(x)
<

2

− logq(x)
= −2 logx(q) < 2γ. (32)

for 0 < x < (1q )
1
γ . When q ≥ 3,

x logq(q − 1)

−x logq(x)
= − logx(q − 1) < − logx(q) < γ,

−(1− x) logq(1− x)

−x logq(x)
<

− logq(1− x)

−x logq(x)
<

x

−x logq(x)
= − logx(q) < γ,

(33)

for 0 < x < (1q )
1
γ , and thus

Hq(x)

−x logq x
− 1 =

x logq(q − 1)

−x logq(x)
+

−(1− x) logq(1− x)

−x logq(x)
< 2γ. (34)

Proof of Theorem 1.8. We set ε′ = 0.9ε and get δ⊥0 < (
√
eε′√
2
)
1
γ . Let s =

R−( 1
2
−2γ)Hq(δ⊥0 )

− logq(1−δ) . We get

Pr (S doesn’t hit all codewords in Cε′)

≤
∑
c∈Cε′

Pr (c is not hit by S)

≤|Cε′ | · (1− δ)sn (using Lemma 2.15)

≤8q
√

πδ⊥0 n ·
(

2δ⊥0
(ε′)2e

)δ⊥0 n/2

· qRn · (1− δ)sn (using Corollary 4.5)

=8q
√
πδ⊥0 n ·

(
2δ⊥0
(ε′)2e

)δ⊥0 n/2

· qRn · qlogq(1−δ)sn

=8q
√
πδ⊥0 n ·

(
(δ⊥0 )

1−2γ
)δ⊥0 n/2

· q(
1
2
−2γ)Hq(δ⊥0 )·n (using s =

R− (12 − 2γ)Hq(δ
⊥
0 )

− logq(1− δ)
)

≤8q
√
πδ⊥0 n ·

(
(δ⊥0 )

1−2γ
)δ⊥0 n/2

· q−( 1
2
−2γ)(1+2γ)δ⊥0 logq δ

⊥
0 ·n (using Lemma 6.1)

=8q
√

πδ⊥0 n ·
(
(δ⊥0 )

1
2
−γ · (δ⊥0 )−( 1

2
−2γ)(1+2γ)

)δ⊥0 n

=8q
√

πδ⊥0 n · (δ⊥0 )4γ
2δ⊥0 n.

(35)

Therefore, this probability in Equation 35 tends to 0 as n approaches infinity.
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Moreover, one can verify that s < 0.9R given s =
R−( 1

2
−2γ)Hq(δ⊥0 )

− logq(1−δ) and R ≤
1
2
−2γ

1+0.9·logq(1−δ)Hq(δ
⊥
0 ).

Hence, the shortened code C[S] has rate at least R−s
1−s > 0.1R, and

s < R

<
0.5− 2γ

1 + logq(1− δ)
Hq(δ

⊥
0 )

< − 0.75

1 + logq(1− δ)
· δ⊥0 · logq(δ⊥0 ) (using Lemma 6.1)

<
0.75

1 + logq(1− δ)
· (δ⊥0 )

1
2 · (δ⊥0 )γ · (δ⊥0 )

1
4 · (− logq(δ

⊥
0 )) (using γ <

1

4
)

<
1

48
· 10
9
ε′ · 4

e ln(2)

(using 0 < δ⊥0 < min{
(
2 + logq(1− δ)

36

)2

, ε
1
γ } and − (δ⊥0 )

1
4 · logq(δ⊥0 ) ≤

4

e ln 2
)

< 0.05ε′.

(36)

By Lemma 2.14, C[S] is ε′+s
1−s -biased and since ε′+s

1−s < 10
9 ε

′ < ε. So, with high probability, C[S] is
ε-biased.

Proof of Corollary 1.9. Given that δ > 1 − q−0.6, we have logq(1 − δ) < −0.6. We can select a

universal constant η such that
1
2
−2η

1+0.9·logq(1−δ) > 1. Set γ = min{η,
1
2
−2η

1+0.9·logq(1−δ) − 1}. By invoking

theorem 1.8 with s =
R−( 1

2
−2γ)Hq(δ⊥0 )

− logq(1−δ) again, we have the same guarantee.
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