Black－Box Identity Testing of Noncommutative Rational Formulas in Deterministic Quasipolynomial Time

V．Arvind ${ }^{*} \quad$ Abhranil Chatterjee ${ }^{\dagger} \quad$ Partha Mukhopadhyay ${ }^{\ddagger}$

Abstract

Rational Identity Testing（RIT）is the decision problem of determining whether or not a noncommutative rational formula computes zero in the free skew field．It admits a deter－ ministic polynomial－time white－box algorithm［GGdOW16，IQS18，HH21］，and a randomized polynomial－time algorithm［DM17］in the black－box setting，via singularity testing of linear matrices over the free skew field．Indeed，a randomized NC algorithm for RIT in the white－box setting follows from the result of Derksen and Makam［DM17］．

Designing an efficient deterministic black－box algorithm for RIT and understanding the parallel complexity of RIT are major open problems in this area．Despite being open since the work of Garg，Gurvits，Oliveira，and Wigderson［GGdOW16］，these questions have seen limited progress．In fact，the only known result in this direction is the construction of a quasipolynomial－size hitting set for rational formulas of only inversion height two［ACM22］．

In this paper，we significantly improve the black－box complexity of this problem and obtain the first quasipolynomial－size hitting set for all rational formulas of polynomial size．Our construction also yields the first deterministic quasi－NC upper bound for RIT in the white－box setting．

[^0]
Contents

1 Introduction 3
1.1 Our Results 5
1.2 Proof Idea 5
1.3 Related results 10
1.4 Organization 11
2 Preliminaries 11
2.1 Notation 11
2.2 Algebraic Complexity Theory 11
2.3 Cyclic Division Algebras 12
2.4 Noncommutative Rational Series 14
2.5 Generalized Formal Power Series 15
3 Division Algebra Hitting Set for Generalized ABPs over Cyclic Division Algebras 16
3.1 Hitting set for generalized ABPs 16
4 Hitting Set for Nsingular given a Witness 18
5 Derandomizing Black-box RIT 21
5.1 Hitting set for rational formulas of constant inversion height 21
5.2 Hitting set construction for all rational formulas 23
5.2.1 Degree Improvement 23
5.2.2 Improving the dependency of dimension on the width 24
5.2.3 Improving the dependency on the number of variables 28
5.3 Final hitting set 28
5.4 RIT is in quasi-NC 30
6 Conclusion 32
A Appendix 35
A. 1 Division algebra hitting set for noncommutative ABPs 35

1 Introduction

The goal of algebraic circuit complexity is to understand the complexity of computing multivariate polynomials and rational expressions using basic arithmetic operations, such as additions, multiplications, and inverses. Algebraic formulas and algebraic circuits are some of the well-studied computational models.

In the commutative setting, the role of inverses is well understood, but in noncommutative computation it is quite subtle. To elaborate, it is known that any commutative rational expression can be expressed as fg^{-1} where f and g are two commutative polynomials [Str73]. However, noncommutative rational expression such as $x^{-1}+y^{-1}$ or $x y^{-1} x$ cannot be represented as $f g^{-1}$ or $f^{-1} g$ for any noncommutative polynomials f and g. Therefore, the presence of nested inverses makes a rational expression more complicated, for example $\left(z+x y^{-1} x\right)^{-1}-z^{-1}$.

A noncommutative rational expression is not always defined on a matrix substitution. For a noncommutative rational expression Φ, its domain of definition is the set of matrix tuples (of any dimension) where Φ is defined. Two rational expressions Φ_{1} and Φ_{2} are equivalent if they agree on every matrix substitution in the intersection of their domain of definition. This induces an equivalence relation on the set of all noncommutative rational expressions (with nonempty domain of definition). Interestingly, this computational definition was used by Amitsur in the characterization of the universal free skew field [Ami66]. The free skew field consists of these equivalence classes, called noncommutative rational functions. One can think of the free skew field $\mathbb{F}\left\langle x_{1}, \ldots, x_{n} \gg\right.$ as the smallest field that contains the noncommutative polynomial ring $\mathbb{F}\left\langle x_{1}, \ldots, x_{n}\right\rangle$. It has been extensively studied in mathematics [Ami66, Coh71, Coh95, FR04].

The complexity-theoretic study of noncommutative rational functions was initiated by Hrubeš and Wigderson [HW15]. Computationally (and in this paper), noncommutative rational functions are represented by algebraic formulas using addition, multiplication, and inverse gates over a set of noncommuting variables, and they are called noncommutative rational formulas. Hrubeš and Wigderson [HW15] also addressed the rational identity testing problem (RIT): decide efficiently whether a given noncommutative rational formula Φ computes the zero function in the free skew field. Equivalently, the problem is to decide whether Φ is zero on its domain of definition, follows from Amitsur's characterization [Ami66]. For example, the rational expression $\left(x+x y^{-1} x\right)^{-1}+$ $(x+y)^{-1}-x^{-1}$ is a rational identity, known as Hua's identity [Hua49]. Rational expressions exhibit peculiar properties which seem to make the RIT problem quite different from the noncommutative polynomial identity testing. For example, Bergman has constructed an explicit rational formula, of inversion height two, which is an identity for 3×3 matrices but not an identity for 2×2 matrices [Ber76]. Also, the apparent lack of canonical representations, like a sum of monomials representation for polynomials, and the use of nested inverses in noncommutative rational expressions complicate the problem. This motivates the definition of inversion height of a rational formula which is the maximum number of inverse gates in a path from an input gate to the output gate. The inversion height of a rational function is the minimum over the inversion heights of the formulas representing the function. For example, consider the rational expression $\left(x+x y^{-1} x\right)^{-1}$. Even though it has a nested inverse, it follows from Hua's identity that it represents a rational function of inversion height one. In fact, Hrubeš and Wigderson obtain the following interesting bound on the inversion height of any rational function [HW15]. This is obtained by adapting Brent's depth reduction for the commutative formulas [Bre74].

Fact 1. For any noncommutative n-variate rational formula Φ_{1} of size s, one can construct a rational formula Φ_{2} of size s with the following properties:

1. Both Φ_{1} and Φ_{2} compute the same rational function.
2. The domain of definition of Φ_{1} and Φ_{2} are exactly same.
3. The inversion height of Φ_{2} is at most $O(\log s)$.

Consequently, to design a black-box RIT algorithm for rational formulas of size at most s, it suffices to construct a hitting set for rational formulas of inversion height at most $O(\log s)$. This bound plays a crucial role in our proof.

Hrubeš and Wigderson have given an efficient reduction from the RIT problem to the singularity testing problem of linear matrices in noncommuting variables over the free skew field (NSingular). Equivalently, given a linear matrix $T=A_{1} x_{1}+\ldots+A_{n} x_{n}$ over noncommuting variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, the problem NSinguLar asks to decide whether there exists a matrix substitution $\left(p_{1}, \ldots, p_{n}\right)$ such that $\operatorname{det}\left(\sum_{i=1}^{n} A_{i} \otimes p_{i}\right) \neq 0$ [IQS18]. It is the noncommutative analogue of Edmonds' problem of symbolic determinant identity testing (Singular). While Singular can be easily solved in randomized polynomial time using Polynomial Identity Lemma [DL78, Zip79, Sch80], finding a deterministic algorithm remains completely elusive [KI04].

Remarkably, NSingular $\in \mathrm{P}$ thanks to two independent breakthrough results [GGdOW16, IQS18]. In particular, the algorithm of Garg, Gurvits, Oliveira, and Wigderson [GGdOW16] is analytic in nature and based on operator scaling which works over \mathbb{Q}. The algorithm of Ivanyos, Qiao, and Subrahmanyam [IQS18] is purely algebraic. Moreover, the algorithm in their paper [IQS18] works over \mathbb{Q} and fields with positive characteristics. Subsequently, a third algorithm based on convex optimization is also developed by Hamada and Hirai [HH21]. Not only are these beautiful results, but they have also enriched the field of computational invariant theory greatly [$\mathrm{BFG}^{+} 19, \mathrm{DM} 20, \mathrm{MW19]}$. As an immediate consequence, RIT can also be solved in deterministic polynomial time in the white-box setting. Both the problems admit a randomized polynomial-time black-box algorithm due to Derksen and Makam [DM17]. Essentially, the result of [DM17] shows that to test whether a rational formula of size s is zero or not (more generally, whether a linear matrix of size $2 s$ is invertible or not over the free skew field), it is enough to evaluate the formula (resp. the linear matrix) on random $2 s \times 2 s$ matrices.

Two central open problems in this area are to design faster deterministic algorithms for the NSingular problem and RIT problem in the black-box setting, raised in [GGdOW16, GGdOW20]. The algorithms in [GGdOW16] and [IQS18] are inherently sequential and they are unlikely to be helpful for designing a subexponential-time black-box algorithm. Even for the RIT problem (which could be easier than the NSingular problem), the progress towards designing an efficient deterministic black-box algorithm is very limited. In fact, only very recently a deterministic quasipolynomial-time black-box algorithm for identity testing of rational formulas of inversion height two has been designed [ACM22]. Another very recent result shows that certain ABP (algebraic branching program)-hardness of polynomial identities (PI) for matrix algebras will lead to a black-box subexponential-time derandomization of RIT in almost general setting [ACG ${ }^{+}$23]. However, such a hardness result has not established so far. It is interesting to note that in the literature of identity testing, the NSingular problem and the RIT problem stand among rare examples where deterministic polynomial-time white-box algorithms are designed but for the black-box case no deterministic subexponential-time algorithm is known.

It is well-known [GGdOW16] that an efficient black-box algorithm (via a hitting set construction) for NSingular would generalize the celebrated quasi-NC algorithm for bipartite perfect matching significantly [FGT21]. This motivates the study of the parallel complexity of NSingular and RIT. From the result of Derksen and Makam [DM17], one can observe that RIT in the white-box setting can be solved in randomized NC which involve formula evaluation, and matrix operations (addition, multiplication, and inverse computation) [Bre74, Csa76, Ber84, HW15]. ${ }^{1}$ Designing a hitting set in quasi-NC for this problem would therefore yield a deterministic quasi-NC algorithm for this problem.

1.1 Our Results

In this paper, we focus on the RIT problem and improve the black-box complexity significantly by showing the following result.

Theorem 2. For the class of n-variate noncommutative rational formulas of size s and inversion height θ, we can construct a hitting set $\mathcal{H}_{n, s, \theta} \subseteq \operatorname{Mat}_{\ell_{\theta}}(\mathbb{Q})^{n}$ of size $(n s)^{\theta^{O(1)} \log ^{2}(n s)}$ in deterministic $(n s)^{\theta^{O(1)} \log ^{2}(n s)}$ time where $\ell_{\theta}=(n s)^{\theta^{O(1)}}$.

Here $\operatorname{Mat}_{\ell_{\theta}}(\mathbb{Q})$ represents ℓ_{θ} dimensional matrix algebra over \mathbb{Q}. As an immediate corollary of Theorem 2 and Fact 1, we obtain the following.

Corollary 3 (black-box RIT). In the black-box setting, RIT can be solved in deterministic quasipolynomial time via an explicit hitting set construction.

Note that even for noncommutative formulas i.e. when the inversion height $\theta=0$, the best known hitting set is of quasipolynomial-size and improving it to a polynomial-size hitting set is a long standing open problem [FS13]. In this light, Theorem 2 is nearly the best result one can hope for, albeit improving the logarithmic factors on the exponent further.

We further show that our hitting set construction can in fact be performed in quasi-NC. In the white-box setting, we can evaluate a given rational formula on the hitting set points in parallel. This involves the evaluation of the formula in parallel, and supporting matrix addition, multiplication, and inverse computation. It is already observed that Brent's formula evaluation [Bre74] can be adapted to the setting of noncommuatative rational formulas [HW15], and such matrix operations can be performed in NC [Csa76, Ber84]. Combining these results with the quasi-NC construction of the hitting set, we obtain the following corollary.

Corollary 4 (white-box RIT). In the white-box setting RIT is in deterministic quasi-NC.

1.2 Proof Idea

The main idea of our proof is to construct a hitting set for rational formulas of every inversion height inductively. Our goal is now to construct a hitting set for rational formulas of inversion height θ given a hitting set for formulas of height $\theta-1$. To design a black-box RIT algorithm for rational formulas of size at most s as it suffices to construct a hitting set for rational formulas of inversion height at most $O(\log s)$, we can stop the induction at that stage. As we have already

[^1]defined, a noncommutative rational formula is nonzero in the free skew field if there exists a nonzero matrix substitution. However, the difficulty is that unlike a noncommutative polynomial, a rational formula may be undefined for a matrix substitution. It happens if there is an inverse on top of a subformula evaluated to a singular matrix. Informally speaking, it is somewhat easier to maintain that subformulas evaluate to nonzero matrices, but it is much harder to maintain that they evaluate to non-singular matrices. Therefore, a rational formula of height θ may not even be defined on any of the matrix tuple in the hitting set of formulas of height $\theta-1$.

One of the possible ways to tackle this problem is to evaluate rational formulas on some division algebra elements. Finite dimensional division algebras are associative algebras where every nonzero elements are invertible. This idea of embedding inside a division algebra is proved to be very useful for us. Let us formally define the notion of hitting set for rational formulas (of any arbitrary inversion height) inside a division algebra.
Definition 5 (Division algebra hitting set). For a class of rational formulas, a division algebra hitting set is a hitting set over some division algebra where every point in the hitting set is a division algebra tuple.

The advantage of such a hitting set is that, whenever a rational formula evaluates to some nonzero value (over a tuple in the hitting set), the output is invertible. ${ }^{2}$ Therefore every rational formula of height θ is defined on some tuple in the division algebra hitting set for rational formulas of inversion height $\theta-1$. Can we now efficiently construct a division algebra hitting set for rational formulas of inversion height θ ? In that case, we could inductively build a division algebra hitting set for rational formulas of every inversion height. For the base case of the induction, we want to construct a division algebra hitting set for noncommutative formulas. One of the key developments in [ACM22] was to embed the hitting set obtained by Forbes and Shpilka [FS13] for noncommutative polynomials computed by algebraic branching programs (ABPs) in a cyclic division algebra (see Section 2.3 for the definition of a cyclic division algebra) of suitably small index i.e. the dimension of its matrix representation. This inductive construction of the division algebra hitting set is the main technical step we implement here using several conceptual and technical ideas.

At this point, we take a detour and carefully examine the connection between the RIT and NSingular problems. It is known that RIT is polynomial-time reducible to NSingular [HW15]. But do we need the full power of NSingular to solve the RIT problem for rational formulas of height θ given a hitting set for formulas of height $\theta-1$? Consider the following promised version of NSingular. The input is a linear matrix $T\left(x_{1}, \ldots, x_{n}\right)$ and a matrix tuple $\left(p_{1}, \ldots, p_{n}\right) \in D_{1}^{n}$ for a cyclic division algebra D_{1}. The promise is that there is a submatrix T^{\prime} of size $s-1$ (removing the $i^{t h}$ row and $j^{\text {th }}$ column, for some $i, j \in[s]$) such that $T^{\prime}\left(p_{1}, \ldots, p_{n}\right)$ is invertible. It is easier to think such a tuple $\left(p_{1}, \ldots, p_{n}\right)$ as a witness. The question is now to check the singularity of T over the free skew field. We show that the construction of a hitting set for rational formulas of inversion height θ inductively reduces to this special case where the witness is some tuple in the hitting set for height $\theta-1$.

[^2]We then consider the shifted matrix $T\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right)$. Using Gaussian elimination, we could convert the shifted matrix of form:

$$
U \cdot T\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right) \cdot V=\left[\begin{array}{c|c}
I_{s-1}-L & A_{j} \tag{1}\\
\hline B_{i} & C_{i j}
\end{array}\right],
$$

where the entries of $L, A_{j}, B_{i}, C_{i j}$ are homogeneous D_{1}-linear forms. Here B_{i} is a row vector and A_{j} is a column vector. At a high level, it has a conceptual similarity with the idea used in [BBJP19] in approximating commutative rank. It is not too difficult to prove that T is invertible, if and only if, $C_{i j}-B_{i}\left(I_{s-1}-L\right)^{-1} A_{j}=C_{i j}-B_{i}\left(\sum_{k \geqslant 0} L^{k}\right) A_{j}$ is a nonzero series. Using a standard result of noncommutative formal series [Eil74, Corollary 8.3], this is equivalent in saying that the truncated polynomial $C_{i j}-B_{i}\left(\sum_{k \leqslant(s-1) \ell} L^{k}\right) A_{j}$ is nonzero where ℓ is the index of D_{1}. However, the series and the polynomial will have division algebra elements interleaving in between the variables. Such a series (resp. polynomial) is called a generalized series (resp. generalized polynomial) and has been studied extensively in the work of Volčič (see [Vol18] for more details). We can also define a notion of generalized ABP similarly and show that the truncated generalized polynomial of our interest is indeed computable by a polynomial-size generalized ABP. Finally, (up to a certain scaling by scalars) the upshot is that the division algebra hitting set construction for rational formulas inductively reduces to the division algebra hitting set construction for such generalized ABPs.

We now consider such generalized ABPs where the coefficients lie inside a cyclic division algebra D_{1} of index ℓ_{1}, call such ABPs as D_{1}-ABPs. Our goal is to construct a division algebra hitting set for such ABPs. To do so, a key conceptual idea that we use is to introduce new noncommuting indeterminates for every variable and use the following mapping:

$$
x_{i} \mapsto \sum_{j, k=1}^{\ell_{1}} C_{j k} \otimes y_{i j k}
$$

where $\left\{C_{j k}\right\}$ is the basis of D_{1}. The idea is to overcome the problem of interleaving division algebra elements using the property of tensor products. This substitution reduces the problem to identity testing of a noncommutative ABP in the $\left\{y_{i j k}\right\}$ variables. Luckily, a division algebra hitting set construction for noncommutative ABPs is already known [ACM22]. For our purpose, we need to build the hitting set inside a division algebra that contains D_{1} as a subalgebra. A natural thought could be to take the tensor product of D_{1} and the division algebra in which the hitting set for the noncommutative ABP in the $\left\{y_{i j k}\right\}$ variables rests. However, in general, the tensor product of two division algebras is not a division algebra. At this point, we use a result of [Pie82] that states that the tensor product of two cyclic division algebras of index ℓ_{1} and ℓ_{2} is a cyclic division algebra of index $\ell_{1} \ell_{2}$ if ℓ_{1} and ℓ_{2} are relatively prime. However, the division algebra hitting set construction for noncommutative ABPs is known for division algebras whose index is only a power of two [ACM22]. To use the result of [Pie82] in several stages recursively, we need a division algebra hitting set construction whose index is a power of any arbitrary prime p.

We now informally describe how to find a hitting set for noncommutative formulas (more generally for noncommutative ABPs) in a division algebra of arbitrary prime power index. For simplicity, suppose the prime is p and the ABP degree is p^{d}. In [FS13], it is assumed that the degree of the $A B P$ is 2^{d} and the construction has a recursive structure. In particular, it is by a reduction to the hitting set construction for ROABPs (read-once algebraic branching programs)
over the commutative variables $u_{1}, u_{2}, \ldots, u_{2^{d}}$. The recursive step in their construction is by combining hitting sets (via hitting set generator \mathcal{G}_{d-1}) for two halves of degree 2^{d-1} [FS13] with a rank preserving step of matrix products to obtain the generator \mathcal{G}_{d} at the $d^{t h}$ step. More precisely, \mathcal{G}_{d} is a map from $\mathbb{F}^{d+1} \rightarrow \mathbb{F}^{2^{d}}$ that stretches the seed $\left(\alpha_{1}, \ldots, \alpha_{d+1}\right)$ to a 2^{d} tuple for the read-once variables.

For our case, the main high-level idea is to decompose the ABP of degree p^{d} in p consecutive windows each of length p^{d-1}. One can adapt the rank preserving step for two matrix products in [FS13] even for the case of p many matrix products. However, the main difficulty is to ensure that the hitting set points lie inside a division algebra. For our purpose, we take a classical construction of cyclic division algebras [Lam01, Chapter 5]. The cyclic division algebra $D=(K / F, \sigma, z)$ is defined using a indeterminate x as the ℓ-dimensional vector space:

$$
D=K \oplus K x \oplus \cdots \oplus K x^{\ell-1},
$$

where the (noncommutative) multiplication for D is defined by $x^{\ell}=z$ and $x b=\sigma(b) x$ for all $b \in K$. Here $\sigma: K \rightarrow K$ is an automorphism of the Galois group $\operatorname{Gal}(K / F)$. The field $F=\mathbb{Q}(z)$ and $K=F(\omega)$, where z is an indeterminate and ω is an $\ell^{\text {th }}$ primitive root of unity. The matrix representation of a general element in D is of the following form:

$$
\left[\begin{array}{ccccc}
0 & b & 0 & \cdots & 0 \\
0 & 0 & \sigma(b) & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \sigma^{\ell-2}(b) \\
z \sigma^{\ell-1}(b) & 0 & \cdots & 0 & 0
\end{array}\right] .
$$

Roughly, the plan will be to (inductively) assume that the construction follows the σ-automorphism in each window of length p^{d-1}, and then we need to satisfy the σ-action at each $p-1$ boundaries. More technically, to embed the hitting set of [FS13], we need to choose $\ell=p^{L}$ appropriately larger than p^{d}. As it turns out the construction of the division algebra requires a tower of extension fields of F, with a higher-order root of unity at each stage.

Specifically, let $\omega_{i}=\omega^{p^{a_{i}}}$ for $a_{1}>a_{2}>\cdots>a_{d}>a_{d+1}>0$, where a_{i} are positive integers suitably chosen. Let $K_{i}=F\left(\omega_{i}\right)$ be the cyclic Galois extension for $1 \leqslant i \leqslant d+1$ giving a tower of extension fields

$$
F \subset F\left(\omega_{1}\right) \subset F\left(\omega_{2}\right) \subset \cdots \subset F\left(\omega_{d}\right) \subset F\left(\omega_{d+1}\right) \subset F(\omega) .
$$

We require two properties of $\omega_{i}, 1 \leqslant i \leqslant d+1$. Firstly, for the hitting set generator \mathcal{G}_{i} we will choose the root of unity as ω_{i} and the variable α_{i} will take values only in the set $W_{i}=\left\{\omega_{i}^{j} \mid 1 \leqslant\right.$ $\left.j \leqslant p^{L-a_{i}}\right\}$. We also require that the K-automorphism σ has the property that for all $1 \leqslant i \leqslant d+1$ the map $\sigma^{p^{i}}$ fixes ω_{i}. In fact we will ensure that $\sigma^{p^{i}}$ has $F\left(\omega_{i}\right)$ as its fixed field. The construction of matrix tuples in D satisfying the above properties is the main technical step in Theorem 19.

It turns out that implementing all these ideas leads to a quasipolynomial-size hitting set for rational formulas of any constant inversion height. More precisely, for rational formulas of inversion height θ, the size of the hitting set would be $(n s)^{2^{O\left(\theta^{2}\right)} \log (n s)}$ and the final division algebra index will be $(n s)^{2^{0\left(\theta^{2}\right)}}$. But to get the quasipolynomial-size hitting set for arbitrary rational formulas (where $\theta=O(\log s)$) several further technical and conceptual ideas are required.

We first need to analyze the source of the blow-up of $2^{O\left(\theta^{2}\right)}$ in the exponent of the dimension. Let the indices at the $(\theta-1)^{t h}$ and $\theta^{t h}$ stages are $\ell_{\theta-1}$ and ℓ_{θ} respectively. It turns out that $\ell_{\theta}=\ell_{\theta-1} \ell$ where ℓ is the dimension of each matrix tuple in the hitting set construction of a $D_{\theta-1^{-}}$ ABP (recursively) which has the number of variables $\ell_{\theta-1}^{2} n$, width $2 \ell_{\theta-1} s$, and degree $\ell_{\theta-1}(2 s+1)$. From our proof technique, it reveals that $\ell=\left(\ell_{\theta-1} s n\right)^{O\left(p_{\theta}\right)}$. Here p_{θ} is the prime selected at the $\theta^{\text {th }}$ level of the construction. Using the prime number theorem p_{θ} is bounded by θ^{2}. Substituting all the parameters and unfolding the recursion leads to $\ell_{\theta} \geqslant \ell_{0}^{2^{\theta}}$. The main source of this blow-up is the polynomial dependence on $\ell_{\theta-1}$ in the expression for ℓ. Thus it is important to control the dependence of $\ell_{\theta-1}$ in all three parameters: number of variables, width, and the degree.

The degree parameter appears from the truncation of $D_{\theta-1}$-series at degree $\ell_{\theta-1}(2 s+1)$. This can be easily managed down to $2 s+1$, if we use a generalization of [Eil74, Theorem 8.3] over division algebra [DK21, Example 8.2]. ${ }^{3}$ The dependence of the size of the hitting set on the number of variables can be improved by a log-product trick over two variables $\left\{y_{0}, y_{1}\right\}$ that replaces x_{i} by $y_{b_{1}} y_{b_{2}} \cdots y_{b_{\log n}}$ where $b_{\log n} \cdots b_{1}$ is the binary representation of i. This trick will increase the degree by a factor of $\log n$, but we will be fine since in the hitting set size, the dependence on the degree is only logarithmic. The more conceptual part of the argument, is to improve the dependence on the width. Here somewhat surprisingly, we give a construction such that the index of the division algebra has no dependence on the width in the exponent. This is achieved by adjoining the base field F by a complex root of unity ω_{0} of a sufficiently large order of a prime power. Moreover, this prime is different from all the other primes used in the recursive process. Informally, enlarging the base field by ω_{0} creates enough room to choose the substitution for the variable α_{i} in a way independent of the width.

Implementing all these steps we get a quasipolynomial-size hitting set over $\mathbb{Q}\left(\omega_{0}, \underline{\omega}, \underline{z}\right)$ where $\underline{\omega}$ and \underline{z} are θ-dimensional vectors of the complex roots of unity and z variables respectively, used in different stages of the recursion. It is more desirable to obtain a hitting set whose matrix entries are over \mathbb{Q}. We show how to transfer the hitting set over \mathbb{Q} by a relatively standard idea that treats the parameters $\omega_{0}, \underline{\omega}$ and \underline{z} as fresh indeterminates $t_{1}, \underline{t}_{2}, \underline{t}_{3}$ and vary them over a suitably chosen quasipolynomial-size set over \mathbb{Q}. Finally, the matrices in the hitting set may not be from any division algebra (due to substitution of $t_{1}, \underline{t}_{2}, t_{3}$ from \mathbb{Q}). However it suffices for the purpose of rational identity testing. This completes the proof sketch of Theorem 2.

As already outlined in Section 1.1, the proof of Corollary 4 follows from the proof of Theorem 2 in the expected way. It has two main steps. Firstly, by analyzing the recursive structure of our hitting set construction, we notice that the matrix tuples in hitting set can be constructed in quasiNC. The second step is to evaluate the given rational formula on the hitting set in parallel which we already explained in Section 1.1 using the earlier results [Bre74, HW15, Csa76, Ber84]. It is wellknown that the identity testing of noncommutative formulas (more generally, noncommutative ABPs) can be done in NC [AJS09, For14].

We now conclude this section with a summary of the key steps involved in the hitting set construction.
${ }^{3}$ We give a self-contained proof of this result in Fact 15.

Informal summary.

1. Division algebra hitting set construction for generalized ABPs defined over cyclic division algebras (Section 3).
(a) Given any prime p, we build hitting set for noncommutative ABPs inside a cyclic division algebra whose index is a power of p (Theorem 19).
(b) We reduce the hitting set problem for generalized ABPs to that of noncommutative ABPs using the map $x_{i} \mapsto \sum C_{j k} \otimes y_{i j k}$ (the key idea in Theorem 23).
2. We construct the hitting set for NSingular problem given a witness. This uses the construction of division algebra hitting set for generalized ABPs in Step 1 (Theorem 26).
3. Hitting set construction for rational formulas.
(a) We construct it inductively on the inversion height θ. While going from $\theta-1$ to θ, we use the hitting set construction for NSingular problem under witness in Step 2. This suffices for the case of constant inversion heights (Theorem 29).
(b) To construct the hitting set for all rational formulas, we improve the dependency of the index parameter of the cyclic division algebra on the hitting set construction by carefully analyzing the effect on degree, width, and the number of variables. The proof is developed in Section 5.2. The final result is presented in Section 5.3.

1.3 Related results

At a high level, this approach is inspired by the framework introduced in [ACM22, ACG ${ }^{+}$23]. In [ACM22], the authors construct a hitting set for rational formulas of inversion height two. One of the main ingredients of their proof is a division algebra hitting set construction for noncommutative formulas (more generally, for noncommutative ABPs). Additionally, they proposed the idea of building a hitting set inductively for every height as a possible approach to derandomize RIT in the black-box setting. Unfortunately they could not obtain a division algebra hitting set even for rational formulas of inversion height one. In [ACG $\left.{ }^{+} 23\right]$, the authors use a conjecture on hardness of polynomial identities [BW05] to inductively build a hitting set for every inversion height. A crucial bottleneck of this approach is that even assuming such a strong hardness conjecture, it yields a quasipolynomial-size hitting set only for rational formulas of inversion height barely up to constant. In this paper, we are able to overcome both the difficulties as we unconditionally build the quasipolynomial-size hitting set for all polynomial-size rational formulas.

As already mentioned, the results of [GGdOW20, IQS18, HH21] solve the more general NSingular problem in order to solve the RIT problem in the white-box setting. In contrast, our hitting set construction crucially uses the inversion height of the input rational formula inductively. Furthermore, the hitting set construction for the NSingular problem is known for the following special cases: when the input matrix is a symbolic matrix (for which bipartite perfect matching is a special case) [FGT21], or more generally, when the input matrix consists of rank-1 coefficient matrices (for which linear matroid intersection is a special case) [GT20]. ${ }^{4}$ An exponential
${ }^{4}$ In the following cases, invertibility over the (commutative) function field and invertibility over the (noncommutative) free skew field coincide.
lower bound on the size of the rational formula computed as an entry of the inverse of a symbolic matrix is known [HW15]. Therefore, our hitting set construction does not subsume these results. Similarly, it is quite unlikely to reduce the RIT problem (in the general setting) to any of these special cases of NSingular problem. Thus it seems that these results are incomparable.

1.4 Organization

In Section 2, we provide a background on algebraic complexity theory, cyclic division algebras, and noncommutative formal power series. The result of Section 3 is the construction of a hitting set for generalized ABPs defined over cyclic division algebras. In Section 4, we construct a hitting set for NSingular problem given a witness. The main result is proved in Section 5 in two parts: Section 5.1 gives the proof for rational formulas of constant inversion height and Section 5.2 gives the proof of our main result : a hitting set for arbitrary rational formulas (Theorem 2). Section 5.4 contains the proof of Corollary 4. Finally, we raise a few questions for further research in Section 6.

2 Preliminaries

2.1 Notation

Throughout the paper, we use \mathbb{F}, F, K to denote fields, and $\operatorname{Mat}_{m}(\mathbb{F})\left(\operatorname{resp}^{\left(\operatorname{Mat}_{m}(F), \operatorname{Mat}_{m}(K)\right)}\right.$ to denote m-dimensional matrix algebra over \mathbb{F} (resp. over F, K). Similarly, Mat ${ }_{m}(\mathbb{F})^{n}$ (resp. $\left.\operatorname{Mat}_{m}(F)^{n}, \operatorname{Mat}_{m}(K)^{n}\right)$ denote the set of n-tuples over $\operatorname{Mat}_{m}(\mathbb{F})$ (resp. $\operatorname{Mat}_{m}(F)$, $\operatorname{Mat}_{m}(K)$), respectively. D is used to denote finite-dimensional division algebras. We use p to denote an arbitrary prime number. Let \underline{x} denote the set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$. Sometimes we use $p=\left(p_{1}, \ldots, p_{n}\right)$ and $\underline{q}=\left(q_{1}, \ldots, q_{n}\right)$ to denote the matrix tuples in suitable matrix algebras where n is clear from the context. The free noncommutative ring of polynomials over a field \mathbb{F} is denoted by $\mathbb{F}\langle\underline{x}\rangle$. For matrices A and B, their usual tensor product is denoted by $A \otimes B$. For a polynomial f and a monomial m, we use [m] f to denote the coefficient of m in f.

2.2 Algebraic Complexity Theory

Definition 6 (Algebraic Branching Program). An algebraic branching program (ABP) is a layered directed acyclic graph. The vertex set is partitioned into layers $0,1, \ldots, d$, with directed edges only between adjacent layers (i to $i+1$). There is a source vertex of in-degree 0 in the layer 0 , and one out-degree $0 \operatorname{sink}$ vertex in layer d. Each edge is labeled by an affine \mathbb{F}-linear form in variables, say, $x_{1}, x_{2}, \ldots, x_{n}$. The polynomial computed by the ABP is the sum over all source-to-sink directed paths of the ordered product of affine forms labeling the path edges.

The size of the ABP is defined as the total number of nodes and the width is the maximum number of nodes in a layer, and the depth or length is the number of layers in the ABP. An ABP can compute a commutative or a noncommutative polynomial, depending on whether the variables $x_{1}, x_{2}, \ldots, x_{n}$ occurring in the F-linear forms are commuting or noncommuting. ABPs of width w can also be defined as an iterated matrix multiplication $\underline{u}^{t} \cdot M_{1} M_{2} \cdots M_{\ell} \cdot \underline{v}$, where $\underline{u}, \underline{v} \in \mathbb{F}^{n}$ and each M_{i} is of form $\sum_{i=1}^{n} A_{i} x_{i}$ for matrices $A_{i} \in \operatorname{Mat}_{w}(\mathbb{F})$, assuming without loss of generality that all matrices $M_{j}, 1 \leqslant j \leqslant \ell$ are $w \times w$. Here, \underline{u}^{t} is the transpose of \underline{u}.

We say a set $\mathcal{H} \subseteq \mathbb{F}^{n}$ is a hitting set for a (commutative) algebraic circuit class C if for every n-variate polynomial f in $C, f \not \equiv 0$ if and only if $f(\underline{a}) \neq 0$ for some $\underline{a} \in \mathcal{H}$.

A special class of ABPs in commuting variables are the read-once ABPs (in short, ROABPs). In ROABPs a different variable is used for each layer, and the edge labels are univariate polynomials over that variable. For the class of ROABPs, Forbes and Shpilka [FS13] obtained the first quasipolynomial-time black-box algorithm by constructing a hitting set of quasipolynomial size.

Theorem 7. [FS13] For the class of polynomials computable by a width r, depth d, individual degree $<n$ ROABPs of known order, if $|\mathbb{F}| \geqslant\left(2 d n r^{3}\right)^{2}$, there is a poly (d, n, r)-explicit hitting set of size at most $\left(2 d n^{2} r^{4}\right)^{\lceil\log d+1\rceil}$.

Indeed, they proved a more general result.
Definition 8 (Hitting Set Generator). A polynomial map $\mathcal{G}: \mathbb{F}^{t} \rightarrow \mathbb{F}^{n}$ is a generator for a circuit class C if for every n-variate polynomial f in $C, f \equiv 0$ if and only if $f \circ \mathcal{G} \equiv 0$.

Theorem 9. [FS13, Construction 3.13, Lemma 3.21] For the class of polynomials computable by a width r, depth d, individual degree $<n$ ROABPs of known order, one can construct a hitting set generator $\mathcal{G}: \mathbb{F}^{\lceil\log d+1\rceil} \rightarrow \mathbb{F}^{d}$ of degree dnr ${ }^{4}$ efficiently.

As a consequence, Forbes and Shpilka [FS13], obtain an efficient construction of quasipolynomial-size hitting set for noncommutative ABPs as well. Consider the class of noncommutative ABPs of width r, and depth d computing polynomials in $\mathbb{F}\langle\underline{x}\rangle$. The result of Forbes and Shpilka provide an explicit construction (in quasipolynomial-time) of a set Mat ${ }_{d+1}(\mathbb{F})$, such that for any ABP (with parameters r and d) computing a nonzero polynomial f, there always exists $\left(p_{1}, \ldots, p_{n}\right) \in \mathcal{H}_{n, r, d}, f(\underline{p}) \neq 0$.

Theorem 10 (Forbes and Shpilka [FS13]). For all $n, r, d \in \mathbb{N}$, if $|\mathbb{F}| \geqslant \operatorname{poly}(d, n, r)$, then there is a hitting set $\mathcal{H}_{n, r, d} \subset \operatorname{Mat}_{d+1}(\mathbb{F})$ for noncommutative ABPs of parameters $\left|\mathcal{H}_{n, r, d}\right| \leqslant(r d n)^{O(\log d)}$ and there is a deterministic algorithm to output the set $\mathcal{H}_{n, r, d}$ in time $(r d n)^{O(\log d)}$.

2.3 Cyclic Division Algebras

A division algebra D is an associative algebra over a (commutative) field \mathbb{F} such that all nonzero elements in D are units (they have a multiplicative inverse). In this paper, we are interested in finite-dimensional division algebras. Specifically, we focus on cyclic division algebras and their construction [Lam01, Chapter 5]. Let $F=\mathbb{Q}(z)$, where z is a commuting indeterminate. Let ω be an $\ell^{t h}$ primitive root of unity. To be specific, let $\omega=e^{2 \pi \iota / \ell}$. Let $K=F(\omega)=\mathbb{Q}(\omega, z)$ be the cyclic Galois extension of F obtained by adjoining ω. So, $[K: F]=\ell$ is the degree of the extension. The elements of K are polynomials in ω (of degree at most $\ell-1$) with coefficients from F.

Define $\sigma: K \rightarrow K$ by letting $\sigma(\omega)=\omega^{k}$ for some k relatively prime to ℓ and stipulating that $\sigma(a)=a$ for all $a \in F$. Then σ is an automorphism of K with F as fixed field and it generates the Galois group $\operatorname{Gal}(K / F)$.

The division algebra $D=(K / F, \sigma, z)$ is defined using a new indeterminate x as the ℓ dimensional vector space:

$$
D=K \oplus K x \oplus \cdots \oplus K x^{\ell-1}
$$

where the (noncommutative) multiplication for D is defined by $x^{\ell}=z$ and $x b=\sigma(b) x$ for all $b \in K$. The parameter ℓ is called the index of D [Lam01, Theorem 14.9].

The elements of D has matrix representation in $K^{\ell \times \ell}$ from its action on the basis $X=$ $\left\{1, x, \ldots, x^{\ell-1}\right\}$. I.e., for $a \in D$ and $x^{j} \in \mathcal{X}$, the $j^{t h}$ row of the matrix representation is obtained by writing $x^{j} a$ in the \mathcal{X}-basis.

For example, the matrix representation $M(x)$ of x is:

$$
M(x)[i, j]= \begin{cases}1 & \text { if } j=i+1, i \leqslant \ell-1 \\ z & \text { if } i=\ell, j=1 \\ 0 & \text { otherwise }\end{cases}
$$

$$
M(x)=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
z & 0 & \cdots & 0 & 0
\end{array}\right]
$$

For each $b \in K$ its matrix representation $M(b)$ is:

$$
\begin{gathered}
M(b)[i, j]= \begin{cases}b & \text { if } i=j=1 \\
\sigma^{i-1}(b) & \text { if } i=j, i \geqslant 2 \\
0 & \text { otherwise. }\end{cases} \\
M(b)=\left[\begin{array}{cccccc}
b & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma(b) & 0 & 0 & 0 & 0 \\
0 & 0 & \sigma^{2}(b) & 0 & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
0 & 0 & 0 & 0 & \sigma^{\ell-2}(b) & 0 \\
0 & 0 & 0 & 0 & 0 & \sigma^{\ell-1}(b)
\end{array}\right]
\end{gathered}
$$

Proposition 11. For all $b \in K, M(b x)=M(b) \cdot M(x)$
Also, the matrix representation of $x b=\sigma(b) x$ is easy to see in the basis $\left\{1, x, \ldots, x^{\ell-1}\right\}$:

$$
M(\sigma(b) x)=\left[\begin{array}{cccccc}
0 & \sigma(b) & 0 & 0 & 0 & 0 \\
0 & 0 & \sigma^{2}(b) & 0 & 0 & 0 \\
0 & 0 & 0 & \sigma^{3}(b) & 0 & 0 \\
0 & 0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 0 & \sigma^{\ell-1}(b) \\
\sigma^{\ell}(b) z & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Define $C_{i j}=M\left(\omega^{j-1}\right) \cdot M\left(x^{i-1}\right)$ for $1 \leqslant i, j \leqslant \ell$. Observe that $\mathfrak{B}=\left\{C_{i j}, i, j \in[\ell]\right\}$ is a F-generating set for the division algebra D.

Fact 12. The F-linear span of \mathfrak{B} is the cyclic division algebra D in the matrix algebra $\operatorname{Mat}_{\ell}(K)$.

The following proposition is a standard fact.
Proposition 13. [Lam01, Section 14(14.13)] The K-linear span of \mathfrak{B} is the entire matrix algebra $\mathrm{Mat}_{\ell}(K)$.
The following theorem gives us a way of constructing new division algebras using tensor products. This construction plays an important role in our main result.
Theorem 14. [Pie82, Proposition, Page 292] Let K, L be cyclic extensions of the field F such that their extension degrees, $[K: F]$ and $[L: F]$, are relatively prime. Let $D_{1}=\left(K / F, \sigma_{1}, z\right)$, and $D_{2}=\left(L / F, \sigma_{2}, z\right)$ be the corresponding cyclic division algebras as defined above. Then their tensor product $D_{1} \otimes D_{2}$ is also a cyclic division algebra.

2.4 Noncommutative Rational Series

Let D be a division algebra and P be a series over the noncommuting variables $x_{1}, x_{2}, \ldots, x_{n}$ defined as follows:

$$
P=c-B\left(\sum_{k \geqslant 0} L^{k}\right) A,
$$

where c is a D-linear form (over $\left.x_{1}, \ldots, x_{n}\right), B$ (resp. A) is a $1 \times s$ (resp. $s \times 1$) dimensional vector, and L is a $s \times s$ matrix. The entries of B, L, A are D-linear forms over x_{1}, \ldots, x_{n}. Furthermore, the variables $x_{i}: 1 \leqslant i \leqslant n$ commute with the elements in D. Define the truncated polynomial \widetilde{P} as follows:

$$
\begin{equation*}
\widetilde{P}=c-B\left(\sum_{k \leqslant s-1} L^{k}\right) A \tag{2}
\end{equation*}
$$

The next statement shows that the infinite series $P \neq 0$ is equivalent in saying that \widetilde{P} is nonzero. The proof of the fact is standard when D is a (commutative) field [Eil74, Corollary 8.3, Page 145]. For the case of division algebras, the proof can be found in [DK21, Example 8.2, Page 23]. However, we include a self-contained proof.
Fact 15. The infinite series $P \neq 0$ if and only if its truncation $\widetilde{P} \neq 0$.
Proof. If $P=0$, then obviously $\widetilde{P}=0$, since the degrees in different homogeneous components do not match. Now, suppose $\widetilde{P}=0$. Notice that the terms in c are linear forms and the degree of any term in $B\left(\sum_{k \geqslant 0} L^{k}\right) A$ is at least two. Hence, c must be zero. Write the row and column vectors B and A as $B=\sum_{\ell} B_{\ell} x_{\ell}, A=\sum_{\ell} A_{\ell} x_{\ell}$. Similarly, write $L=\sum_{\ell} L_{\ell} x_{\ell}$.

Suppose $B L^{s} A$ contributes a nonzero monomial (word) $w=x_{i_{1}} x_{i_{2}} \ldots x_{i_{s+2}}$. Clearly the coefficient of w is $B_{i_{1}} L_{i_{2}} \ldots L_{i_{s+1}} A_{i_{s+2}}$. Consider the vectors $v_{1}=B_{i_{1}}, v_{2}=B_{i_{1}} L_{i_{2}}, \ldots, v_{s+1}=B_{i_{1}} L_{i_{2}} \ldots L_{i_{s+1}}$ corresponding to the prefixes $w_{1}=x_{i_{1}}, w_{2}=x_{i_{1}} x_{i_{2}}, \ldots, w_{s+1}=x_{i_{1}} \ldots x_{i_{s+1}}$. These vectors $v_{i}, 1 \leqslant i \leqslant s+1$ all lie in the (left) D-module D^{s} which has rank s. As D is a division algebra, these vectors cannot all be D-linearly independent. Hence, there are elements $\lambda_{1}, \ldots, \lambda_{s+1}$ in D, not all zero, such that the linear combination $\lambda_{1} v_{1}+\ldots+\lambda_{s+1} v_{s+1}=0$. However, $v_{s+1} A_{i_{s+2}} \neq 0$ by the assumption. Hence, there is at least one vector $v_{\ell}: 1 \leqslant \ell \leqslant s$ such that $v_{\ell} A_{i_{s+2}} \neq 0$. This means that the coefficient of the word $w_{\ell} x_{i_{s+2}}$, which is of length at most $s+1$, is nonzero in \widetilde{P}, which is not possible by assumption.

Now, with $k=s$ as the base case, we can inductively apply the above argument to show that $B L^{k} A$ is zero for each $k \geqslant s$.

2.5 Generalized Formal Power Series

We now define the notion of generalized series first introduced by Volčič. For a detailed exposition, see [Vol18].

A generalized word or a generalized monomial in x_{1}, \ldots, x_{n} over the matrix algebra $\mathrm{Mat}_{m}(\mathbb{F})$ allows the matrices to interleave between variables. That is to say, a generalized monomial is of the form: $a_{0} x_{k_{1}} a_{2} \cdots a_{d-1} x_{k_{d}} a_{d}$, where $a_{i} \in \operatorname{Mat}_{m}(\mathbb{F})$, and its degree is the number of variables d occurring in it. A finite sum of generalized monomials is a generalized polynomial in the ring $\operatorname{Mat}_{m}(\mathbb{F})\langle\underline{x}\rangle$. A generalized formal power series over $\operatorname{Mat}_{m}(\mathbb{F})$ is an infinite sum of generalized monomials such that the sum has finitely many generalized monomials of degree d for any $d \in \mathbb{N}$. The ring of generalized series over $\operatorname{Mat}_{m}(\mathbb{F})$ is denoted $\left.\operatorname{Mat}_{m}(\mathbb{F})\langle\underline{x}\rangle\right\rangle$.

A generalized series (resp. polynomial) S over $\operatorname{Mat}_{m}(\mathbb{F})$ admits the following canonical description. Let $E=\left\{e_{i, j}, 1 \leqslant i, j \leqslant m\right\}$ be the set of elementary matrices. Express each coefficient matrix a in S in the E basis by a F-linear combination and then expand S. Naturally each monomial of degree- d in the expansion looks like $e_{i_{0}, j_{0}} x_{k_{1}} e_{i_{1}, j_{1}} x_{k_{2}} \cdots e_{i_{d-1}, j_{d-1}} x_{k_{d}} e_{i_{d}, j_{d}}$ where $e_{i_{l}, j_{l}} \in E$ and $x_{k_{l}} \in \underline{x}$. We say the series S (resp. polynomial) is identically zero if and only if it is zero under such expansion i.e. the coefficient associated with each generalized monomial is zero.

The evaluation of a generalized series over $\operatorname{Mat}_{m}(\mathbb{F})$ is defined on any $k^{\prime} m \times k^{\prime} m$ matrix algebra for some integer $k^{\prime} \geqslant 1$ [Vol18]. To match the dimension of the coefficient matrices with the matrix substitution, we use an inclusion map $\iota: \operatorname{Mat}_{m}(\mathbb{F}) \rightarrow \operatorname{Mat}_{k^{\prime} m}(\mathbb{F})$, for example, ι can be defined as $\iota(a)=a \otimes I_{k^{\prime}}$ or $\iota(a)=I_{k^{\prime}} \otimes a$. Now, a generalized monomial $a_{0} x_{k_{1}} a_{1} \cdots a_{d-1} x_{k_{d}} a_{d}$ over Mat ${ }_{m}(\mathbb{F})$ on matrix substitution $\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{Mat}_{k^{\prime} m}(\mathbb{F})^{n}$ evaluates to

$$
\iota\left(a_{0}\right) p_{k_{1}} \iota\left(a_{1}\right) \cdots \iota\left(a_{d-1}\right) p_{k_{d}} \iota\left(a_{d}\right)
$$

under some inclusion map $\iota: \operatorname{Mat}_{m}(\mathbb{F}) \rightarrow \operatorname{Mat}_{k^{\prime} m}(\mathbb{F})$. All such inclusion maps are known to be compatible by the Skolem-Noether theorem [Row80, Theorem 3.1.2]. Therefore, if a series S is zero with respect to some inclusion map $\iota: \operatorname{Mat}_{m}(\mathbb{F}) \rightarrow \operatorname{Mat}_{k^{\prime} m}(\mathbb{F})$, then it is zero w.r.t. any such inclusion map.

We naturally extend the definition of usual ABPs (Definition 6) to the generalized ABPs.
Definition 16 (Generalized Algebraic Branching Program). A generalized algebraic branching program is a layered directed acyclic graph. The vertex set is partitioned into layers $0,1, \ldots, d$, with directed edges only between adjacent layers (i to $i+1$). There is a source vertex of in-degree 0 in the layer 0 , and one out-degree $0 \operatorname{sink}$ vertex in layer d. Each edge is labeled by a generalized linear form of $\sum_{i=1}^{n} a_{i} x_{i} b_{i}$ where $a_{i}, b_{i} \in \operatorname{Mat}_{m}(\mathbb{F})$ for some integer m. As usual, width is the maximum number of vertices in a layer. The generalized polynomial computed by the ABP is the sum over all source-to-sink directed paths of the ordered product of generalized linear forms labeling the path edges.

Remark 17. It is clear from the definition above that such generalized ABPs with d layers compute homogeneous generalized polynomials of degree- d.

3 Division Algebra Hitting Set for Generalized ABPs over Cyclic Division Algebras

In this section, we consider generalized ABPs where the coefficients are from a cyclic division algebra. We will construct hitting set for such ABPs inside another cyclic division algebra.

Definition 18 (D_{1}-ABP). Let $D_{1}=\left(K_{1} / F, \sigma_{1}, z\right)$ be a cyclic division algebra of index ℓ_{1}. We define a D_{1} - ABP as a generalized $\mathrm{ABP} \mathcal{A}$ in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ variables (as defined in Definition 16) where each edge is labeled by $\sum_{i=1}^{n} a_{i} x_{i} b_{i}: a_{i}, b_{i} \in D_{1}$. The ABP \mathcal{A} computes a generalized polynomial over D_{1}.

One of the key ingredients of the proof is the following theorem which we prove in Appendix A.1. Given any prime p, the theorem shows a construction of hitting set for noncommutative ABPs in a cyclic division algebra whose index is a power of p.

Theorem 19. Let p be any prime number. For the class of n-variate degree \tilde{d} noncommutative polynomials computed by homogeneous ABPs of width r, we can construct a hitting set $\widehat{\mathcal{H}}_{n, r, \tilde{d}} \subseteq D_{2}^{n}$ of size $(n r \tilde{d})^{O(p \log \tilde{d})}$ in $(n r \tilde{d})^{O(p \log \tilde{d})}$ time. Here D_{2} is a cyclic division algebra of index $\ell_{2}=p^{L}$ where $L=O\left(\log _{p}(n r \tilde{d})\right)$.

In [ACM22], a similar theorem is proved only for the case $p=2$. The main technical difference is that, to maintain the hitting set points inside a cyclic division algebra, the recursive structure of the construction tackles several boundary conditions together. In [ACM22], the recursive structure takes care of one such boundary condition.

3.1 Hitting set for generalized ABPs

To use the result of Theorem 19 for the case of generalized ABPs, we develop a method that reduces the hitting set construction problem for generalized ABPs to that of noncommutative ABPs. This is an important conceptual part of the proof.

Informally, the combined effect of Claim 20, Claim 21, and Lemma 22 show that a D_{1}-ABP can be evaluated to nonzero on a point in a cyclic division algebra $D_{1} \otimes D_{2}$ where the index of the cyclic division algebra D_{2} is relatively prime to the index of D_{1}.

Claim 20. For any nonzero n-variate degree-d $D_{1}-A B P \mathcal{A}$ of width r, for every $d^{\prime} \geqslant \ell_{1} d$, there is a $d^{\prime} \times d^{\prime}$ matrix tuple such that the $D_{1}-A B P$ is nonzero evaluated on that tuple. Here ℓ_{1} is the index of D_{1}.

Proof. Fix an edge of \mathcal{A} and let its label be $\sum_{i=1}^{n} a_{i} x_{i} b_{i}$, for $a_{i}, b_{i} \in D_{1}$. Replace each $a_{i}, b_{i} \in D_{1}$ by its matrix representation in $\operatorname{Mat}_{\ell_{1}}\left(K_{1}\right)$ and the variable x_{i} by Z_{i}, an $\ell_{1} \times \ell_{1}$ matrix whose $(j, k)^{\text {th }}$ entry is a new noncommuting indeterminate $z_{i j k}$. Therefore, each edge is now labeled by an $\ell_{1} \times \ell_{1}$ matrix whose entries are K_{1}-linear terms in $\left\{z_{i j k}\right\}$ variables. After the substitution, \mathcal{A} is now computing a matrix M of degree- d noncommutative polynomials. Clearly, it is an identitypreserving substitution. I.e., \mathcal{A} is nonzero if and only if M is nonzero. Therefore, if \mathcal{A} is nonzero, we can find a $d \times d$ matrix substitution for the $\left\{z_{i j k}\right\}$ variables such that M evaluated on that substitution is nonzero. ${ }^{5}$ Hence, we obtain an $\ell_{1} d \times \ell_{1} d$ matrix tuple for the \underline{x} variables such that \mathcal{A} is nonzero on that substitution.

[^3]Claim 21. Suppose for a nonzero n-variate degree-d $D_{1}-A B P \mathcal{A}$ of width r, there is a matrix tuple $\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{Mat}_{d^{\prime}}\left(K_{1}\right)^{n}$ such that the ABP is nonzero evaluated on that tuple. Let $\widetilde{D}_{1}=\left(\widetilde{K}_{1} / F, \widetilde{\sigma}, z\right)$ be a cyclic division algebra of index d^{\prime}, where K_{1} is a subfield of \widetilde{K}_{1}. Then there is a tuple in \widetilde{D}_{1}^{n} such that the $D_{1}-A B P \mathcal{A}$ is nonzero evaluated on that tuple as well.

Proof. Let $\left\{\widetilde{C}_{j, k}\right\}_{1 \leqslant j, k \leqslant \ell_{1} \ell_{2}}$ be the basis of the division algebra \widetilde{D}_{1} as defined in Section 2.3. By Proposition 13, we can write each matrix $p_{i}=\sum_{j, k} \lambda_{i j k} \widetilde{C}_{j k}$ where each $\lambda_{i j k} \in \widetilde{K}_{1}$. Define new commuting indeterminates $\left\{u_{i j k}\right\}$ and let $\widetilde{p}_{i}=\sum u_{i j k} \widetilde{C}_{j k}$. Evaluating \mathcal{A} on $\left(\widetilde{p}_{1}, \ldots, \widetilde{p}_{n}\right)$ then gives a nonzero matrix of commutative polynomials, as it is nonzero if $u_{i j k} \leftarrow \lambda_{i j k}$. We can now find a substitution for each $u_{i j k} \leftarrow \gamma_{i j k} \in \mathbb{Q}$ such that such a nonzero polynomial evaluates to nonzero. Hence, we can define a tuple $\left(q_{1}, \ldots, q_{n}\right)$ where each $q_{i}=\sum \gamma_{i j k} \widetilde{C}_{j k}$ such that \mathcal{A} is nonzero on $\left(q_{1}, \ldots, q_{n}\right)$. Now the proof follows since each $q_{i} \in \widetilde{D}_{1}$.

Lemma 22. For any nonzero n-variate degree- $d D_{1}-A B P \mathcal{A}$ of width r, there is a cyclic division algebra \widetilde{D}_{1} of index $\ell_{1} \ell_{2}$ (where $\ell_{2} \geqslant d$ and ℓ_{2} is relatively prime to ℓ_{1}) and a tuple in \widetilde{D}_{1}^{n} such that \mathcal{A} is nonzero evaluated on that tuple.

Proof. Consider a cyclic division algebra D_{2} of index ℓ_{2}. Define $\widetilde{D}_{1}=D_{1} \otimes D_{2}$. By assumption, $\ell_{2}(\geqslant d)$ is relatively prime to ℓ_{1}. Therefore, \widetilde{D}_{1} is also a cyclic division algebra by Theorem 14. Now the proof follows from Claim 20 and Claim 21.

We are now ready to prove the main result of this section.
Theorem 23 (Division algebra hitting set for D_{1}-ABPs). Let D_{1} be a cyclic division algebra of index ℓ_{1} and p_{2} be any prime that is not a divisor of ℓ_{1}. For the class of n-variate degree-d D_{1}-ABPs of width r, we can construct a hitting set $\widehat{\mathcal{H}}_{n, r, d}^{D_{1}} \subseteq \widetilde{D}_{1}^{n}$ of size $\left(\ell_{1} n r d\right)^{O\left(p_{2} \log d\right)}$ in deterministic $\left(\ell_{1} n r d\right)^{O\left(p_{2} \log d\right)}$-time where \widetilde{D}_{1} is a cyclic division algebra of index $\ell_{1} \ell_{2}$. Here $\ell_{2}=p_{2}^{L_{2}}$ and $L_{2}=O\left(p_{2} \log _{p_{2}}\left(\ell_{1} n r d\right)\right)$. Moreover, D_{1} is a subalgebra of \widetilde{D}_{1}.

Proof. Let $\left\{C_{j k}\right\}_{1 \leqslant j, k \leqslant \ell_{1}}$ be the basis of D_{1}. Introduce a set of noncommuting indeterminates $\left\{y_{i j k}\right\}_{i \in[n], j, k \in\left[\ell_{1}\right]}$. Consider the following mapping:

$$
x_{i} \mapsto \sum_{j, k} C_{j k} \otimes y_{i j k}
$$

Equivalently, each x_{i} is substituted by an $\ell_{1} \times \ell_{1}$ matrix. Fix a $D_{1}-\mathrm{ABP} \mathcal{A}$. Consider each edge of \mathcal{A} labeled as $\sum_{i=1}^{n} a_{i} x_{i} b_{i}$ where $a_{i}, b_{i} \in D_{1}$. Replace each $a_{i}, b_{i} \in D_{1}$ by its matrix representation in $\operatorname{Mat}_{\ell_{1}}\left(K_{1}\right)$ and x_{i} by the $\ell_{1} \times \ell_{1}$ matrix $\sum_{j, k} C_{j k} \otimes y_{i j k}$. Therefore, each edge is now labeled by an $\ell_{1} \times \ell_{1}$ matrix whose entries are K_{1}-linear terms in $\left\{y_{i j k}\right\}$ variables. After the substitution, \mathcal{A} is now computing a matrix M of degree- d noncommutative polynomials in $\left\{y_{i j k}\right\}$ variables.
Claim 24. If the $D_{1}-A B P \mathcal{A}(\underline{x})$ is nonzero then the matrix $M \in \operatorname{Mat}_{p_{1}}(\mathbb{F}\langle\underline{y}\rangle)$ is nonzero.

Proof. If $\mathcal{A}(\underline{x})$ is nonzero, then it is nonzero evaluated at some $\left(p_{1}, \ldots, p_{n}\right) \in \widetilde{D}_{1}^{n}$ where $\widetilde{D}_{1}=$ $D_{1} \otimes D_{2}$ (Lemma 22). We can therefore expand the D_{1} component in the $\left\{C_{j k}\right\}$ basis and write each $p_{i}=\sum C_{j k} \otimes q_{i j k}$ for some $q_{i j k} \in D_{2}$. Therefore M is nonzero under the substitution each $y_{i j k} \leftarrow q_{i j k}$.

We now claim that each entry of M is computable by a small ABP.
Claim 25. For each $1 \leqslant j, k \leqslant \ell_{1}$, the $(j, k)^{\text {th }}$ entry of the matrix $M \in \operatorname{Mat}_{\ell_{1}}(\mathbb{F}\langle\underline{y}\rangle)$ is computable by an $\ell_{1}^{2} n$-variate degree-d noncommutative homogeneous ABP of width $\ell_{1} r$.

Proof. For each vertex v in the D_{1}-ABP \mathcal{A}, make ℓ_{1} copies of v (including the source S and $\operatorname{sink} T$), let us call it $(v, 1), \ldots,\left(v, \ell_{1}\right)$. For any two vertices u and v, suppose the edge is labeled by $\sum_{i=1}^{n} a_{i} x_{i} b_{i}$ and $M_{u, v}$ be the corresponding $\ell_{1} \times \ell_{1}$ matrix after substitution. Then for each $1 \leqslant \hat{j}, \hat{k} \leqslant \ell_{1}$, we add an edge $((u, \hat{j}),(v, \hat{k}))$ labeled by the $(\hat{j}, \hat{k})^{t h}$ entry of $M_{u, v}$. Note that product of the edge labels of a path exactly captures the corresponding matrix product. Therefore, if we consider the ABP with source (S, \hat{j}) and $\operatorname{sink}(T, \hat{k})$, it is computing the $(\hat{j}, \hat{k})^{t h}$ entry of the matrix M. Note that the width of the new ABP is $\ell_{1} r$.

We now consider a nonzero entry of the matrix M which is computable by an $\ell_{1}^{2} n$-variate degree- d noncommutative homogeneous ABP of width $\ell_{1} r$. Our goal is now to get a division algebra hitting set for this ABP inside a cyclic division algebra D_{2} of index $\ell_{2}=p_{2}^{L_{2}}$. Define $\widetilde{D}_{1}=D_{1} \otimes D_{2}$ which is a cyclic division algebra of index $\ell_{1} \ell_{2}$ by Theorem 14.

Finally, $\quad \widehat{\mathcal{H}}_{n, r, d}^{D_{1}}=\left\{\left(q_{1}, \ldots, q_{n}\right): q_{i}=\sum_{j, k} C_{j k} \otimes q_{i j k} \quad\right.$ where $\left.\quad\left(q_{111}, \ldots, q_{n \ell_{1} \ell_{1}}\right) \in \widehat{\mathcal{H}}_{\ell_{1}^{2} n, \ell_{1} r, d}\right\}$.
By Theorem 19, the size of $\widehat{\mathcal{H}}_{\ell_{1}^{2} n, \ell_{1} r, d}$ is $\left(\ell_{1} n r d\right)^{O\left(p_{2} \log d\right)}$ and L_{2} is $O\left(p_{2} \log _{p_{2}}\left(\ell_{1} n r d\right)\right)$.

4 Hitting Set for Nsingular given a Witness

In this section, we consider the NSingular problem for linear matrices of size $s \times s$ under the promise that we already have a witness matrix tuple such that a submatrix of size s-1 is invertible on that tuple. The result of this section is crucial for the hitting set construction for rational formulas in Section 5.

More precisely, we construct the hitting set for rational formulas inductively on the inversion height. To construct a hitting set for inversion height θ from inversion height $\theta-1$, we will use the promised version of the NSingular problem.

Theorem 26. Let $T(\underline{x})$ be a linear matrix of size s in $\left\{x_{1}, \ldots, x_{n}\right\}$ variables and D_{1} be a cyclic division algebra of index ℓ_{1}. Let p_{2} be any prime which is not a divisor of ℓ_{1}. Then, given a tuple $\left(p_{1}, \ldots, p_{n}\right) \in D_{1}^{n}$ such that there is a submatrix T^{\prime} of T of size $s-1$ such that $T^{\prime}(p)$ is invertible, we can construct a hitting set $\widetilde{\mathcal{H}}_{n, s, \ell_{1}}^{\underline{p}} \subseteq \widetilde{D}_{1}^{n}$ of size $\left(\ell_{1} n s\right)^{O\left(p_{2} \log \left(\ell_{1} s\right)\right)}$ in deterministic $\left(\ell_{1} n s\right)^{O\left(p_{2} \log \left(\ell_{1} s\right)\right)}$-time such that if $T(\underline{x})$ is invertible
over the free skew field then for some $\left(q_{1}, \ldots, q_{n}\right) \in \widetilde{\mathcal{H}}_{n, s, \ell_{1}}^{\underline{p}}, T(\underline{q})$ is invertible. Here \widetilde{D}_{1} is a cyclic division algebra of index $\ell_{1} p_{2}{ }^{O\left(p_{2} \log _{\rho_{2}}\left(\ell_{1} n s\right)\right)}$.

Proof. We can find two invertible transformations U, V in $\operatorname{Mat}_{s}\left(D_{1}\right)$ such that

$$
U \cdot T\left(p_{1}, p_{2}, \ldots, p_{n}\right) \cdot V=\left[\begin{array}{c|c}
I_{s-1} & 0 \\
\hline 0 & 0
\end{array}\right],
$$

where I_{s-1} is the identity matrix whose diagonal elements are the identity element of D_{1}. This is possible since one can do Gaussian elimination over division algebras.

Notice that $T(\underline{x}+\underline{p})=T(\underline{p})+T(\underline{x})$. Hence, we can write

$$
T(\underline{x}+\underline{p})=U^{-1} \cdot\left(\left[\begin{array}{c|c}
I_{s-1} & 0 \\
\hline 0 & 0
\end{array}\right]+U \cdot T(\underline{x}) \cdot V\right) \cdot V^{-1} .
$$

Let the invertible submatrix T^{\prime} of T of size $s-1$ is obtained by removing the $i^{t h}$ row and $j^{t h}$ column, for some $i, j \in[s]$. We can therefore write,

$$
T(\underline{x}+\underline{p})=U^{-1} \cdot\left[\begin{array}{c|c}
I_{s-1}-L & A_{j} \\
\hline B_{i} & C_{i j}
\end{array}\right] \cdot V^{-1},
$$

where each entry of $L, A_{j}, B_{i}, C_{i j}$ are D_{1}-linear forms in \underline{x} variables with no constant term. We can simplify it further by multiplying both sides by invertible matrices and writing,

$$
\begin{gather*}
T(\underline{x}+\underline{p})=U^{-1} U^{\prime}\left[\begin{array}{c|c}
I_{s-1}-L & 0 \\
\hline 0 & C_{i j}-B_{i}\left(I_{s-1}-L\right)^{-1} A_{j}
\end{array}\right] V^{\prime} V^{-1} . \tag{4}\\
\text { where, } U^{\prime}=\left[\begin{array}{c|c}
I_{s-1} & 0 \\
\hline B_{i}\left(I_{s-1}-L\right)^{-1} & 1
\end{array}\right], \quad V^{\prime}=\left[\begin{array}{c|c}
I_{s-1} & \left(I_{s-1}-L\right)^{-1} A_{j} \\
\hline 0 & 1
\end{array}\right] .
\end{gather*}
$$

$$
\begin{equation*}
\text { Let, } \quad P_{i j}(\underline{x})=C_{i j}-B_{i}\left(I_{s-1}-L\right)^{-1} A_{j} . \tag{5}
\end{equation*}
$$

We can also represent $P_{i j}$ as a series:

$$
P_{i j}(\underline{x})=C_{i j}-B_{i}\left(\sum_{k \geqslant 0} L^{k}\right) A_{j} .
$$

This is a generalized series (in \underline{x} variables) over the division algebra D_{1} where the division algebra elements can interleave in between the variables.

Claim 27.

$$
\begin{aligned}
& \text { Define, } \quad \widetilde{P}_{i j}(\underline{x})=C_{i j}-B_{i}\left(\sum_{0 \leqslant k \leqslant(s-1) \ell_{1}} L^{k}\right) A_{j} . \\
& \text { Then, } P_{i j}(\underline{x})=0 \Longleftrightarrow \widetilde{P}_{i j}(\underline{x})=0 .
\end{aligned}
$$

Proof. If we substitute each $x_{i^{\prime}}$ by the generic $\ell_{1} \times \ell_{1}$ matrix of noncommuting indeterminates $Z_{i^{\prime}}=\left(z_{i^{\prime} j^{\prime} k^{\prime}}\right)_{1 \leqslant j^{\prime}, k^{\prime} \leqslant \ell_{1}}$, the generalized series $P_{i j}$ then computes a matrix of recognizable series over the variables $\left\{z_{i^{\prime} j^{\prime} k^{\prime}}^{\prime}\right\}_{1 \leqslant i^{\prime} \leqslant n, 1 \leqslant j^{\prime}, k^{\prime} \leqslant \ell_{1}}$ (the proof is similar to Claim 25). Then Fact 15 implies that if we truncate $P_{i j}(\underline{Z})$ within degree $(s-1) \ell_{1}$, we get a nonzero matrix of polynomials computed by ABPs. Note that, substituting each $x_{i^{\prime}}$ by the generic $\ell_{1} \times \ell_{1}$ matrix $Z_{i^{\prime}}=\left(z_{i^{\prime} j^{\prime} k^{\prime}}\right)_{j^{\prime}, k^{\prime}}$ in $\widetilde{P}_{i j}$ will have the same effect. Therefore,

$$
P_{i j}(\underline{x})=0 \Longleftrightarrow \widetilde{P}_{i j}(\underline{x})=0 .
$$

We can now write, $\quad P_{i j}=0 \Longleftrightarrow\left(C_{i j}=0 \quad\right.$ and \quad for each $\left.0 \leqslant k \leqslant(s-1) \ell_{1}, \quad B_{i} L^{k} A_{j}=0\right)$, where each $B_{i} L^{k} A_{j}$ is a generalized polynomial over D_{1}, indeed it is a D_{1} - ABP .

The following statement now reduces the singularity testing to identity testing of a $D_{1}-\mathrm{ABP}$. ${ }^{6}$
Claim 28. $T(\underline{x})$ is invertible over the free skew field if and only if $\widetilde{P}_{i j} \neq 0$.
Proof. Let $\widetilde{P}_{i j}$ be zero, therefore $P_{i j}$ is also zero by Claim 27. Assume to the contrary, $T(\underline{x})$ is invertible over the free skew field. Then, there exists a matrix tuple $\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right) \in \operatorname{Mat}_{k \ell_{1}}(K)^{n}$ for some large enough integer k and an extension field K, such that $T\left(p^{\prime}\right)$ is invertible. We now evaluate Equation (4) substituting each $x_{i^{\prime}} \mapsto p_{i^{\prime}}^{\prime}-p_{i^{\prime}} \otimes I_{k}$. Clearly, $P_{i j}$ must be nonzero on that substitution which leads to a contradiction.

For the other direction, if $\widetilde{P}_{i j} \neq 0$, then there exists a matrix tuple $\left(q_{1}, \ldots, q_{n}\right) \in \widetilde{D}_{1}^{n}$ where \widetilde{D}_{1} is a cyclic division algebra of index $\ell_{1} \ell_{2}$ (see Lemma 22), such that $\widetilde{P}_{i j}(\underline{q}) \neq 0$. We then evaluate $T(\underline{x}+\underline{p})$ on $\left(t q_{1}, \ldots, t q_{n}\right)$ where t is a commutative variable. Clearly, the infinite series $P_{i j}$ is nonzero at $t \underline{q}$ since the different degree- t parts do not cancel each other. Also, $\left(I_{s-1}-L\right)(t \underline{q})$ is invertible.

However, this also shows that $P_{i j}(t \underline{q})$ is a nonzero matrix of rational expressions in t, and the determinant of $\left(I_{s-1}-L\right)(t q)$ is a nonzero polynomial. Since the degrees of the polynomials in the rational expressions and the determinant are bounded by a polynomial, we can vary the parameter t over a polynomial-size set $\Gamma \subset \mathbb{Q}$ such that $P_{i j}(t \underline{q})$ and $\operatorname{det}\left(I_{s-1}-L\right)(t q)$ are nonzero, for some $t \in \Gamma$. As we need to only avoid the roots of the numerator and the denominator polynomials present in $P_{i j}(t \underline{q})$, and the roots of $\operatorname{det}\left(I_{s-1}-L\right)(t \underline{q})$, it suffices to choose $\Gamma \subset \mathbb{Q}$ of size poly $\left(s, \ell_{1}, \ell_{2}\right)$. Therefore, $T\left(t \underline{q}+\underline{p} \otimes I_{\ell_{2}}\right)$ is invertible for some $t \in \Gamma$ by Equation (4).

Let k_{0} be the minimum k such that $B_{i} L^{k} A_{j} \neq 0$. Now apply Theorem 23 on $B_{i} L^{k_{0}} A_{j}$ to construct a hitting set $\widehat{\mathcal{H}}_{n, s-1, \ell_{1}(s-1)}^{D_{1}}$ of size $\leqslant\left(n s \ell_{1}\right)^{O\left(p_{2} \log \left(s \ell_{1}\right)\right)}$ inside a division algebra \widetilde{D}_{1} of index $\ell_{1} \ell_{2}$, where $\ell_{2}=p_{2}^{L_{2}}$ for a prime p_{2} that does not divide ℓ_{1}. Moreover, $L_{2}=O\left(p_{2} \log _{p_{2}}\left(\ell_{1} n s\right)\right)$. Hence the set Γ can be chosen to be of size $\left(n s \ell_{1}\right)^{O\left(p_{2}\right)}$.

This gives the final hitting set,

$$
\begin{equation*}
\widetilde{\mathcal{H}}_{n, s, \ell_{1}}^{\underline{p}}=\left\{\left(t q_{1}+p_{1} \otimes I_{\ell_{2}}, \ldots, t q_{n}+p_{n} \otimes I_{\ell_{2}}\right): \underline{q} \in \widehat{\mathcal{H}}_{n, s-1, \ell_{1}(s-1)}^{D_{1}} \quad \text { and } \quad t \in \Gamma\right\} . \tag{6}
\end{equation*}
$$

[^4]
5 Derandomizing Black-box RIT

In this section, we prove Theorem 2. For clarity, we divide the proof into two subsections. In the first subsection, we prove a weaker statement that yields a quasipolynomial-size hitting set for rational formulas of constant inversion heights. Building on this, in the next subsection, we explain the steps to strengthen the result and obtain a quasipolynomial-size hitting set for the general case i.e. for all rational formulas of polynomial size.

5.1 Hitting set for rational formulas of constant inversion height

Theorem 29 (Black-box RIT for constant inversion height). For the class of n-variate noncommutative rational formulas of size s and inversion height θ, we can construct a hitting set $\mathcal{H}_{n, s, \theta}^{\prime} \subseteq \operatorname{Mat}_{\theta_{\theta}}(\mathbb{Q})^{n}$ of size $(n s)^{2^{O\left(\theta^{2}\right)} \log (n s)}$ in deterministic time $(n s)^{2^{O\left(\theta^{2}\right)} \log (n s)}$, where $\ell_{\theta}=(n s)^{2^{O\left(\theta^{2}\right)}}$.

Proof. The proof is by induction on the inversion height of a rational formula. We will show that for every inversion height θ we can construct a hitting set $\mathcal{H}_{n, s, \theta} \subseteq D_{\theta}^{n}$ as claimed, where D_{θ} is a cyclic division algebra. The base case $\theta=0$ is for noncommutative formulas (which have inversion height 0). Such a hitting set construction of size $(n s)^{O(\log (n s))}$ is given for noncommutative formulas without inversions, in fact even for noncommutative ABPs [ACM22].

Inductively assume that we have such a construction for rational formulas of size s and inversion height $\theta-1$. Let $\Phi(\underline{x})$ be any rational formula of inversion height θ in $\mathbb{Q} \nless \underline{x} \gtrdot$ of size s. We first show the following.

Claim 30. For every rational formula Φ of inversion height θ in $\mathbb{Q} \nless \underline{x}>$ of size s, there exists a $\underline{p} \in \mathcal{H}_{n, s, \theta-1}$ such that $\Phi(p)$ is defined.

Proof. Let \mathcal{F} be the collection of all those inverse gates in the formula such that for every $\mathfrak{g} \in \mathcal{F}$, the path from the root to \mathfrak{g} does not contain any inverse gate. For each $\mathfrak{g}_{i} \in \mathcal{F}$, let h_{i} be the subformula input to \mathfrak{g}_{i}. Consider the formula $h=h_{1} h_{2} \cdots h_{k}$ (where $k=|\mathcal{F}|$) which is of size at most s since for each i, j, h_{i} and h_{j} are disjoint. Note that h is of inversion height $\theta-1$. Therefore, for some $\underline{p} \in \mathcal{H}_{n, s, \theta-1}, h(\underline{p})$ is nonzero and hence invertible as it is a division algebra hitting set. Therefore, each h_{i} is also invertible at \underline{p}. By definition, the path from the root to each \mathfrak{g} does not contain any inverse gate. Hence, $\Phi(\underline{x})$ is defined at \underline{p}.

If the rational formula Φ has size s, it is shown in [HW15, Theorem 2.6] that Φ can be represented as the top right corner of the inverse of a linear matrix of size at most 2 s . More precisely, $\Phi(\underline{x})=u^{t} L^{-1} v$ where L is a linear matrix of size at most $2 s$ and $u, v \in \mathbb{Q}^{2 s}$ are $2 s$-dimensional column vectors whose first (resp. last) entry is 1 and others are zero. ${ }^{7}$ Therefore, Φ^{-1} can be written as the following [HW15, Equation 6.3]:

$$
\Phi^{-1}(\underline{x})=\left[\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right] \cdot \widehat{L}^{-1} \cdot\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] \quad \text { where } \widehat{L}=\left[\begin{array}{c|c}
v & L \\
\hline 0 & -u^{t}
\end{array}\right] .
$$

[^5]By Claim 30 the formula Φ is defined for some $p \in \mathcal{H}_{n, s, \theta-1}$. Therefore, L is invertible at p (see [HW15, Proposition 7.1]).

Our goal is to find a division algebra tuple such that Φ is nonzero and hence invertible. Equivalently, the goal is to find a division algebra tuple such that Φ^{-1} is defined, and therefore \widehat{L} is invertible on that tuple [HW15, Proposition 7.1].

Notice that \widehat{L} is of size at most $2 s+1$. Moreover, we know a tuple $p \in \mathcal{H}_{n, s, \theta-1}$ such that a submatrix L of \widehat{L} of size $2 s$ is invertible on p. We can now use the construction of $\tilde{\mathcal{H}}_{n, 2 s+1, \ell_{\theta-1}}^{\underline{p}}$ (where $\ell_{\theta-1}$ is the index of the cyclic division algébra $D_{\theta-1}$), as described in Theorem 26, to find a tuple \underline{q} inside a division algebra of dimension ℓ_{θ} such that $\widehat{L}(\underline{q})$ is invertible, therefore $\Phi(\underline{q})$ is nonzero.

We now obtain the following hitting set:

$$
\mathcal{H}_{n, s, \theta}=\bigcup_{\underline{p} \in \mathcal{H}_{n, s, \theta-1} \subseteq D_{\theta-1}^{n}} \widetilde{\mathcal{H}}_{n, 2 s+1, \ell_{\theta-1}}^{\underline{p}}
$$

where $\quad \widetilde{\mathcal{H}}_{n, 2 s+1, \ell_{\theta-1}}^{p}=\left\{\left(t q_{1}+p_{1} \otimes I_{\ell_{2}}, \ldots, t q_{n}+p_{n} \otimes I_{\ell_{2}}\right): \underline{q} \in \widehat{\mathcal{H}}_{n, 2 s, \ell_{\theta-1}(2 s+1)}^{\mathrm{D}_{\theta-1}}\right.$ and $\left.t \in \Gamma\right\}$
and $\quad \widehat{\mathcal{H}}_{n, 2 s, \ell_{\theta-1}(2 s+1)}^{D_{\theta-1}}=\left\{\left(q_{1}, \ldots, q_{n}\right): q_{i}=\sum_{j, k} C_{j k} \otimes q_{i j k}:\left(q_{111}, \ldots, q_{n \ell_{\theta-1} \ell_{\theta-1}}\right) \in \widehat{\mathcal{H}}_{\ell_{\theta-1}^{2}, 2 \ell_{\theta-1} s, \ell_{\theta-1}(2 s+1)}\right\}$.
Using our construction, we get that $\ell_{\theta}=\ell_{\theta-1} p_{\theta}{ }^{O\left(p_{\theta} \log _{p_{\theta}}\left(\ell_{\theta-1} s n\right)\right)}=\ell_{\theta-1}\left(\ell_{\theta-1} s n\right)^{O\left(p_{\theta}\right)}$. We choose p_{θ} to be the $(\theta+1)^{\text {th }}$ prime selected at the $\theta^{\text {th }}$ stage. By prime number theorem, we can bound $p_{\theta} \leqslant \theta^{2}$. Now we want to argue that $\ell_{\theta} \leqslant(n s)^{\theta^{\theta^{2}}}$ for sufficiently large constant c.

To see that, note that $\ell_{\theta} \leqslant\left(\ell_{\theta-1}\right)^{1+O\left(\theta^{2}\right)}(n s)^{O\left(\theta^{2}\right)}$. Inductively, $\ell_{\theta-1} \leqslant(n s)^{c^{(\theta-1)^{2}}}$. Therefore,

$$
\ell_{\theta} \leqslant(n s)^{c^{(\theta-1)^{2}}\left(1+O\left(\theta^{2}\right)\right)} \cdot(n s)^{O\left(\theta^{2}\right)} \leqslant(n s)^{c^{\theta^{2}}},
$$

for sufficiently large constant c. Note that at the base case, $\ell_{0}=(n s)^{O(1)}$ [ACM22]. Similarly, by unfolding the recursion, we get

$$
\left|\mathcal{H}_{n, s, \theta}\right|=\left|\mathcal{H}_{n, s, \theta-1}\right| \cdot\left|\widetilde{\mathcal{H}}_{\ell_{\theta-1}^{2} n, 2 \ell_{\theta-1} s, 2 s+1}\right| \cdot|\Gamma| .
$$

Solving it, we get that $\left|\mathcal{H}_{n, s, \theta}\right|=(n s)^{2^{0\left(\theta^{2}\right)} \log (n s)}$.
Note that $\mathcal{H}_{n, s, \theta} \subseteq D_{\theta}^{n}$. From our construction, the entry of each matrix in the hitting set is in $\mathbb{Q}(\underline{z}, \underline{\omega})$ where $\underline{\omega}$ is a complex $\left(p_{\theta}^{\ell_{\theta}}\right)_{\theta}$ roots of unity and $\underline{z}=\left(z_{\theta}\right)_{\theta}$. We now discuss how to obtain a hitting set over \mathbb{Q} itself. In the hitting set points suppose we replace $\underline{\omega}$ and \underline{z} by commuting indeterminates $\underline{t}_{1}, \underline{t}_{2}$ of degree bounded by ℓ_{θ}. Then, for any nonzero rational formula Φ of size s there is a matrix tuple in the hitting set on which Φ evaluates to a nonzero matrix $M\left(\underline{t}_{1}, \underline{t}_{2}\right)$ of dimension $(n s)^{2^{O\left(\theta^{2}\right)}}$ over the commutative function field $\mathbb{Q}\left(\underline{t}_{1}, \underline{t}_{2}\right)$. It is easy to show that each entry of $M\left(\underline{t}_{1}, \underline{t}_{2}\right)$ is a commutative rational function of the form a / b, where a and b are polynomials in \underline{t}_{1} and \underline{t}_{2} and the degrees of both a and b are bounded by $(n s)^{20\left(\theta^{2}\right)}$. We can now vary the parameters in $\underline{t}_{1}, \underline{t}_{2}$ over a sufficiently large set $\widetilde{T} \subseteq \mathbb{Q}$ of size $(n s)^{2^{0\left(\theta^{2}\right)}}$ such that we avoid the roots of the
numerator and denominator polynomials involved in the computation. This gives our final hitting set $\mathcal{H}_{n, s, \theta}^{\prime} \subseteq \operatorname{Mat}_{\ell_{\theta}}^{n}(\mathbb{Q})$ defined as:

$$
\mathcal{H}_{n, s, \theta}^{\prime}=\left\{\underline{q}^{\prime}\left(\underline{\alpha}_{1}, \underline{\alpha}_{2}\right): \underline{q}^{\prime}(\underline{\omega}, \underline{z}) \in \mathcal{H}_{n, s, \theta} \subseteq D_{\theta}^{n},\left(\underline{\alpha}_{1}, \underline{\alpha}_{2}\right) \in \widetilde{T} \times \cdots \times \widetilde{T}\right\} .
$$

5.2 Hitting set construction for all rational formulas

In this section, our goal is to improve the upper bound of Theorem 29 and obtain a quasipolynomialsize hitting set for the general case. We first analyze the source of blow-up (incurred by the inversion height θ) and then figure out the means to control it.

Recall from the last theorem that, $\mathcal{H}_{n, s, \theta} \subseteq D_{\theta}^{n}$ is the hitting set for n-variate size-s rational formulas of inversion height θ where D_{θ} is a cyclic division algebra of index ℓ_{θ}. From the hitting set construction of Theorem 29, $\ell_{\theta}=\ell_{\theta-1} \cdot \ell$ where ℓ is the dimension of the matrices used in the hitting set $\widehat{\mathcal{H}}_{\ell_{\theta-1}^{2} n, 2 \ell_{\theta-1} s, \ell_{\theta-1}(2 s+1)}$.

What is the value of ℓ ? Recall from the proof of Theorem 29 that $\ell=p_{\theta}^{O\left(p_{\theta} \log \left(\ell_{\theta-1} s n\right)\right)}=$ $\left(\ell_{\theta-1} s n\right)^{O\left(p_{\theta} \log p_{\theta}\right)}$, where p_{θ} is the $(\theta+1)^{\text {th }}$ prime selected for the hitting set construction for formulas of inversion height θ. This shows that the growth of ℓ_{θ} is at least $\ell_{0}^{2^{\theta}}$. To control this blow-up (up to quasipolynomial), it suffices to construct a hitting set at the $\theta^{\text {th }}$ level, in which the dependence of $\ell_{\theta-1}$ in ℓ is only logarithmic. Now look at the parameters in $\widehat{\mathcal{H}}_{\ell_{\theta-1}^{2} n, 2 \ell_{\theta-1} s, \ell_{\theta-1}(2 s+1)}$. Recall from Theorem 19 that ℓ has at least polynomial dependence in all the parameters (i.e. the number of variables, width, degree) contain $\ell_{\theta-1}$. Thus it is important to control their dependence in ℓ. More precisely, these three parameters enter from the following sources:

1. The degree of the truncated generalized ABP in Claim 27.
2. Dependency on width in the hitting set dimension in Theorem 19.
3. Dependency on the number of variables in the hitting set dimension in Theorem 19.

We now explain how to modify the hitting set construction to deal with each of these.

5.2.1 Degree Improvement

First we analyze the degree bound of the truncated generalized ABP as obtained in Claim 27 and show how it can be improved.

Claim 31. Consider a generalized D_{1}-series P as defined in Equation (5) (with a slight abuse in notation for simplicity) where $D_{1}=\left(K_{1} / F, \sigma_{1}, z\right)$.

$$
\begin{gathered}
\qquad P(\underline{x})=C-B\left(\sum_{k \geqslant 0} L^{k}\right) A, \\
\text { Define its truncation: } \widetilde{P}(\underline{x})=C-B\left(\sum_{0 \leqslant k \leqslant s-1} L^{k}\right) A . \\
\text { Then } P(\underline{x})=0 \Longleftrightarrow \widetilde{P}(\underline{x})=0 .
\end{gathered}
$$

Proof. Suppose P is nonzero. Substitute each $\left\{x_{i}: 1 \leqslant i \leqslant n\right\}$ by the following map used in the proof of Theorem 23:

$$
x_{i} \mapsto \sum_{j, k} C_{j k} \otimes y_{i j k}
$$

Consider an entry of L which is of form $\sum_{i=1}^{n} a_{i} x_{i} b_{i}$ for some $a_{i}, b_{i} \in D_{1}$. Since $C_{j k}, 1 \leqslant j, k \leqslant \ell_{1}$ is a basis for the division algebra D_{1}, we can write each entry of L as $\sum \beta_{i j k} \beta_{i j^{\prime} k^{\prime}}^{\prime} C_{j k} x_{i} C_{j^{\prime} k^{\prime}}$ for some $\beta_{i j k}, \beta_{i j^{\prime} k^{\prime}} \in F$. Substituting each x_{i} as above and identifying each $C_{j k}$ with $C_{j k} \otimes 1$, it follows that each entry of L can be expressed as $\sum_{j, k}\left(C_{j k} \otimes \sum_{i} \alpha_{i j k} y_{i j k}\right)$, where each $\alpha_{i j k} \in F$. Therefore, it now computes a series $\sum C_{j k} \otimes f_{j k} \in D_{1} \otimes_{F} F\langle\langle\underline{y}\rangle$. We first observe the following claim. Its proof is omitted as it is a straightforward generalization of the proof of Claim 24.
Claim 32. $P(\underline{x})=0 \Longleftrightarrow \sum C_{j k} \otimes f_{j k}=0$.
Recall that, $D_{1}\langle y\rangle$ denotes the formal power series in noncommuting \underline{y} variables where the coefficients are in D_{1} and \underline{y} variables commute with the elements in D_{1}. We now define the following map:

$$
\begin{aligned}
\psi: D_{1} \otimes_{F} F\langle\langle y\rangle & \left.\rightarrow D_{1}\langle y\rangle\right\rangle, \\
C_{j k} \otimes y_{i j k} & \mapsto C_{j k} y_{i j k} .
\end{aligned}
$$

Note that, ψ is an isomorphism. Each entry of the matrix L is now of form $\sum_{i, j, k} \gamma_{i j k} y_{i j k}$ (where $\gamma_{i j k} \in D_{1}$). Therefore, substituting each $x_{i} \mapsto \sum_{j, k} C_{j k} \otimes y_{i j k}$ and then applying ψ-map on P computes a series in $D_{1}\langle y\rangle$. We can now apply Fact 15 and truncate it to degree $s-1$ preserving the nonzeroness.

Clearly, applying the substitution $x_{i} \mapsto \sum_{j, k} C_{j k} \otimes y_{i j k}$ and then the ψ-map on \widetilde{P} will have the same effect. Therefore, \widetilde{P} is also nonzero.

5.2.2 Improving the dependency of dimension on the width

In this section, we modify the hitting set construction of Theorem 19 and make the dimension of the hitting set independent of the ABP width. More precisely, we show the following.

Theorem 33. Let p be any prime number. For the class of n-variate degree \tilde{d} noncommutative polynomials computed by homogeneous $A B P$ s of width r, we can construct a hitting set $\widehat{\mathcal{H}}_{n, r, \tilde{d}} \subseteq D_{2}^{n}$ ofsize $(n r \tilde{d})^{O(p \log \tilde{d})}$ in $(n r \tilde{d})^{O(p \log \tilde{d})}$ time. Here D_{2} is a cyclic division algebra of index $\ell_{2}=p^{L}$ where $L=O\left(p \log _{p}(n \tilde{d})\right)$.

Proof. The proof is along the same lines as the proof of Theorem 19 with a few crucial modifications. For the sake of reading, we give the complete proof in a self-contained way (and independent to Theorem 19) Let $\Lambda=2^{\tau}$, the order of the root of unity ω_{0}, be sufficiently large (indeed, it suffices to choose τ such that Λ is larger than all the values of $r^{3 p}$ that will arise in the recursive hitting set construction. The actual value of Λ, that will turn out to be quasipolynomially bounded, we shall fix later in the analysis). Define ω_{0} as the primitive $\Lambda^{t h}$ root of unity. We set the base field for the cyclic division algebra constructions as $F=\mathbb{Q}\left(z, \omega_{0}\right)$.

The following lemma is, mutatis mutandis, the same as Lemma 40 except the value of μ we set.

Lemma 34. Consider p many families of $r \times r$ matrices $\mathcal{M}_{1}=\left\{M_{1,1}, M_{1,2}, \ldots, M_{1, p^{d-1}}\right\}, \ldots, \mathcal{M}_{p}=$ $\left\{M_{p, 1}, M_{p, 2}, \ldots, M_{p, p^{d-1}}\right\}$ where for the $j^{\text {th }}$ family the entries are univariate polynomials over $F\left[u_{j}\right]$ of degree less than n. Let $\left(f_{1}(u), f_{2}(u), \ldots, f_{p^{d-1}}(u)\right) \in F[u]$ be polynomials of degree at most m. Let $\omega \in \bar{F}$ be a root of unity of order more than $\left(p^{d-1} n m\right)^{p}$, and let $K=F(\omega)$. Define polynomials in indeterminate v :

$$
\begin{aligned}
f_{i}^{\prime}(v)= & \sum_{\ell=1}^{r^{2}} f_{i}\left(\left(\omega^{\ell} \alpha_{d}\right)^{\mu_{1}}\right) q_{\ell}(v), 1 \leqslant i \leqslant p^{d-1} \\
f_{i+p^{d-1}}^{\prime}(v)= & \sum_{\ell=1}^{r^{2}} f_{i}\left(\left(\omega^{\ell} \alpha_{d}\right)^{\mu_{2}}\right) q_{\ell}(v), 1 \leqslant i \leqslant p^{d-1} \\
& \vdots \\
f_{i+(p-1) p^{d-1}}^{\prime}(v)= & \sum_{\ell=1}^{r^{2}} f_{i}\left(\left(\omega^{\ell} \alpha_{d}\right)^{\mu_{p}}\right) q_{\ell}(v), 1 \leqslant i \leqslant p^{d-1}
\end{aligned}
$$

where $\mu_{j}=\mu^{j-1}, \mu=1+\Lambda p^{d-1} n m$, and $q_{\ell}(v)$ is the corresponding Lagrange interpolation polynomial.
Then, for all but $\left(p^{d-1} n m r\right)^{p}$ many values of α_{d}, the K-linear span of the matrix coefficients of the matrix product $\prod_{j=1}^{p} \prod_{i=1}^{p^{d-1}} M_{j, i}\left(f_{i}\left(u_{j}\right)\right)$ is contained in the K-linear span of the matrix coefficients of the product $\prod_{j=1}^{p} \prod_{i=1}^{p^{d-1}} M_{j, i}\left(f_{i}^{\prime}(v)\right)$.

Now we are ready to prove Theorem 33. We will set $\ell_{2}=p^{L}$ as the index of the division algebra D_{2}, where $p \neq 2$ is the given prime and L will be determined in the analysis below. One of the necessary conditions is that $p^{L}>\tilde{d}$.

As mentioned before, an important step in [FS13] is to convert the given ABP into a setmultilinear form and eventually a read-once form. More specifically, they replace the noncommutative variable x_{i} by the matrix $M\left(x_{i}\right)$:

$$
M\left(x_{i}\right)=\left[\begin{array}{ccccc}
0 & x_{i 1} & 0 & \cdots & 0 \\
0 & 0 & x_{i 2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & x_{i \tilde{d}} \\
0 & 0 & \cdots & 0 & 0
\end{array}\right] .
$$

and the variables $x_{i 1}, x_{i 2}, \ldots, x_{i \tilde{d}}$ will be replaced by $u_{1}^{i}, u_{2}^{i}, \ldots, u_{\tilde{d}}^{i}$. Obviously, these matrices are nilpotent matrices and they are not elements of any division algebra. These variables will be finally substituted by the output of a generator $\mathcal{G}_{\log \tilde{d}}$ that stretches a seed $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\log \tilde{d}+1}\right)$ to $\left(f_{1}(\underline{\alpha}), f_{2}(\underline{\alpha}), \ldots, f_{\tilde{d}}(\underline{\alpha})\right)$.

Here, our plan will be to replace x_{i} by the following matrix $M\left(x_{i}\right)$:

$$
M\left(x_{i}\right)=\left[\begin{array}{ccccc|ccc}
0 & f_{1}^{i}(\underline{\alpha}) & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & f_{2}^{i}(\underline{\alpha}) & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & f_{\tilde{d}}^{i}(\underline{\alpha}) & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & f_{\tilde{d}+1}^{i}(\underline{\alpha}) & \cdots & 0 \\
\hline \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & \cdots & f_{\ell_{2}-1}^{i}(\underline{\alpha}) \\
z f_{\ell_{2}}^{i}(\underline{\alpha}) & 0 & 0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right]
$$

where the tuple $\left(f_{1}(\underline{\alpha}), \ldots, f_{\ell_{2}}(\underline{\alpha})\right)$ will be the output of a generator of seed length $O\left(\log \ell_{2}\right)$. Additionally, if we can maintain the property that each such matrix is a circulant matrix that represent a cyclic division algebra element of the form shown in Proposition 11, we will be in good shape. Now we discuss the implementation of these ideas.

Choose $\omega=e^{\frac{2 \pi}{p^{L}}}$, a primitive root of unity of order p^{L}. Let $F=\mathbb{Q}\left(z, \omega_{0}\right)$ and $K=F(\omega)$ be its (finite) extension by ω. Using the construction described in Section 2.3, we consider the cyclic division algebra $D_{2}=(K / F, \sigma, z)$. We fix the K-automorphism σ as

$$
\sigma(\omega)=\omega^{\Lambda p^{\kappa}+1},
$$

where the positive integer κ will be suitably chosen in the following analysis, fulfilling the constraints of Lemma 34 and some additional requirements. Note that, as σ fixes F pointwise, $\sigma\left(\omega_{0}\right)=\omega_{0}$.

Let $d=\log _{p} \tilde{d}$, where we assume (without loss of generality) that \tilde{d} is a power of p. Let $\omega_{i}=\omega^{p^{a_{i}}}$ for $a_{1}>a_{2}>\cdots>a_{d}>a_{d+1}>0$, where a_{i} are positive integers to be chosen. We denote by K_{i} the cyclic Galois extension $K_{i}=F\left(\omega_{i}\right)$ of F by ω_{i}, for $1 \leqslant i \leqslant d+1$. This gives a tower of field extensions

$$
F \subset F\left(\omega_{1}\right) \subset F\left(\omega_{2}\right) \subset \cdots \subset F\left(\omega_{d}\right) \subset F\left(\omega_{d+1}\right) \subset F(\omega)=K .
$$

We require two properties of $\omega_{i}, 1 \leqslant i \leqslant d+1$.

1. For the hitting set generator \mathcal{G}_{i} we will choose the root of unity as ω_{i} and the variable α_{i} will take values only in the set

$$
W_{i}=\left\{\omega_{0}^{\hat{j}} \omega_{i}^{j} \mid 1 \leqslant \hat{j} \leqslant \Lambda, 1 \leqslant j \leqslant p^{L-a_{i}}\right\} .
$$

2. We require that the K-automorphism σ has the property that for all $1 \leqslant i \leqslant d+1$ the map $\sigma^{p^{i}}$ fixes ω_{i}. It is enough to ensure that $\sigma^{\rho^{i}}$ has $F\left(\omega_{i}\right)$ as its fixed field.

We take up the second property. As $\sigma(\omega)=\omega^{\Lambda p^{\kappa}+1}$, we have $\sigma\left(\omega_{i}\right)=\omega^{p^{a_{i}}\left(\Lambda p^{\kappa}+1\right)}$. Therefore,

$$
\sigma^{p^{i}}\left(\omega_{i}\right)=\omega^{p^{a_{i}}\left(\Lambda p^{\kappa}+1\right)^{p^{i}}} .
$$

Now, $\left(\Lambda p^{\kappa}+1\right)^{p^{i}}=\sum_{j=0}^{p^{i}}\binom{p^{i}}{j} \Lambda^{j} p^{\kappa j}$. Choosing $\kappa=L / 2$, we have $\omega^{p^{k j}}=1$ for $j \geqslant 2$. Therefore,

$$
\sigma^{p^{i}}\left(\omega_{i}\right)=\omega^{p^{a_{i}}\left(\Lambda p^{i+\kappa}+1\right)}=\omega_{i} \cdot \omega^{\Lambda p^{a_{i}+i+\kappa}} .
$$

We can set $a_{i}+i+\kappa=L$ for $1 \leqslant i \leqslant d+1$ to ensure that $\sigma^{p^{i}}$ fixes ω_{i}. Putting $L=2 \kappa$, we obtain

$$
\begin{equation*}
a_{i}=\kappa-i \quad \text { for } 1 \leqslant i \leqslant d+1 . \tag{7}
\end{equation*}
$$

It remains to choose κ. In the construction of our hitting set generator \mathcal{G}_{i}, the parameter α_{i} will take values only in W_{i} defined above. We note that $\left|W_{i}\right|=\Lambda p^{L-a_{i}}=\Lambda p^{\kappa+i}$ (because for two different pairs $\left(j_{1}, j_{2}\right)$ and $\left(j_{1}^{\prime}, j_{2}^{\prime}\right), \omega_{0}^{j_{1}} \omega_{i}^{j_{2}} \neq \omega_{0}^{j_{1}^{\prime}} \omega_{i}^{j_{2}^{\prime}}$ since the orders of ω_{i} and ω_{0} are relatively prime). By Lemma 34 there are at most $\left(p^{d} n m r\right)^{p}$ many bad values of α_{i} for any i. Thus, it suffices to choose κ such that $\Lambda p^{\kappa}>\left(p^{d} n m r\right)^{p}$. As $m \leqslant r^{2}$ and $\Lambda>r^{3 p}$, it suffices to set

$$
\kappa=p d+\left\lceil p \log _{p} n\right\rceil+1
$$

Remark 35. This is precisely the place where the theorem gains the quantitative advantage over Theorem 19, by making κ independent of r.

The choice of κ determines the value of parameter μ in Lemma 34. Since $L=2 \kappa$, notice that $p^{L}>\tilde{d}$ is satisfied.

Coming back to the modified construction of \mathcal{G}_{d}, inductively, we can assume that we have already constructed hitting set generators for each window of length p^{d-1}. More precisely, let $\mathcal{G}_{d-1}:\left(\alpha_{1}, \ldots, \alpha_{d-1}, u\right) \mapsto\left(f_{1}(u), f_{2}(u), \ldots, f_{p^{d-1}}(u)\right)$ (where the polynomial $f_{i}(u) \in K_{d-1}[u]$, for $1 \leqslant i \leqslant p^{d-1}$) with the above two properties has already been constructed. Namely, for each window suppose $f_{i+1}(u)=\sigma\left(f_{i}(u)\right)$ holds for all $i \leqslant p^{d-1}-1$. Now define $\mathcal{G}_{d}:\left(\alpha_{1}, \ldots, \alpha_{d}, v\right) \mapsto$ $\left(f_{1}^{\prime}(v), f_{2}^{\prime}(v), \ldots, f_{p^{d}}^{\prime}(v)\right)$ using Lemma 34.

Since the Lagrange interpolation polynomial $q_{\ell}(v)$ has only integer coefficients, $\sigma\left(q_{\ell}(v)\right)=q_{\ell}(v)$. Therefore, for every $j^{\text {th }}$ window (where $j \in\{1,2, \ldots, p\}$) we have that $1+(j-1) p^{d-1} \leqslant i \leqslant j p^{d-1}-1$, we have $f_{i+1}^{\prime}(v)=\sigma\left(f_{i}^{\prime}(v)\right)$.

Now, consider each boundary condition, i.e. $i=j p^{d-1}$. We need to ensure that $\sigma\left(f_{j p^{d-1}}^{\prime}(v)\right)=$ $f_{1+j p^{d-1}}^{\prime}(v)$. Equivalently, we need to ensure that

$$
\sigma\left(\sum_{\ell=1}^{r^{2}} f_{p^{d-1}}\left(\left(\omega_{d}^{\ell} \alpha_{d}\right)^{\mu_{j-1}}\right) q_{\ell}(v)\right)=\sum_{\ell=1}^{r^{2}} f_{1}\left(\left(\omega_{d}^{\ell} \alpha_{d}\right)^{\mu_{j}}\right) q_{\ell}(v) .
$$

We prove it by induction on j. Inductively, we can enforce it by requiring that

$$
\sigma^{(j-1) p^{d-1}}\left(\sum_{\ell=1}^{r^{2}} f_{1}\left(\omega_{d}^{\ell} \alpha_{d}\right) q_{\ell}(v)\right)=\sum_{\ell=1}^{r^{2}} f_{1}\left(\left(\omega_{d}^{\ell} \alpha_{d}\right)^{\mu_{j}}\right) q_{\ell}(v)
$$

Since α_{d} will be chosen from W_{d}, we can write $\omega_{d}^{\ell} \alpha_{d}=\omega_{0}^{j_{1}} \omega_{d}^{j_{2}}$ for some j_{1}, j_{2}. Now, $\sigma^{(j-1) p^{d-1}}\left(f_{1}\left(\omega_{0}^{j_{1}} \omega_{d}^{j_{2}}\right)\right)=f_{1}\left(\sigma^{(j-1) p^{d-1}}\left(\omega_{0}^{j_{1}} \omega_{d}^{j_{2}}\right)\right)$ as $\sigma^{p^{d-1}}$ fixes all coefficients of f_{1} (because $f_{1}(u) \in$ $\left.K_{d-1}[u]\right)$. Now,

$$
\sigma^{(j-1) p^{d-1}}\left(\omega_{0}^{j_{1}} \omega_{d}^{j_{2}}\right)=\omega_{0}^{j_{1}} \cdot \omega_{d}^{j_{2} \cdot\left(\Lambda p^{\kappa}+1\right)^{(j-1) p^{d-1}}}=\omega_{0}^{j_{1}} \omega_{d}^{\left.j_{2}\left(1+\Lambda p^{d-1+\kappa}\right)\right)^{j-1}}=\left(\omega_{0}^{j_{1}} \omega_{d}^{j_{2}}\right)^{\mu^{j-1}},
$$

since $\omega_{0}^{\mu^{j-1}}=\omega_{0}$. It verifies that the choice of μ in Lemma 34 is $1+\Lambda p^{d-1+\kappa}$.

As already discussed, the parameter v (whose place holder is α_{d+1} in the description of \mathcal{G}_{d}) should vary over a set of size $O\left(\left(p^{d} n m r\right)^{p}\right)$. This way we ensure that $f_{i+1}=\sigma\left(f_{i}\right)$ for $1 \leqslant i \leqslant p^{d}-1$. Now define $f_{p^{d}+j}=\sigma\left(f_{p^{d}+j-1}\right)$ for $1 \leqslant j \leqslant \ell_{2}-p^{d}$. The fact that \mathcal{G}_{d} is indeed a generator follows from the span preserving property and the proof is identical to the proof given in of [FS13]. For our case it uses Lemma 34. To see the final hitting set size, we note that the seed $\left(\alpha_{1}, \ldots, \alpha_{d}, \alpha_{d+1}\right) \in$ $S_{1} \times S_{2} \times \cdots \times S_{d+1}$, where $S_{i} \subseteq W_{i}$ and $\left|S_{i}\right|=\left(p^{d} n m r\right)^{O(d p)}$. Each seed $\left(\alpha_{1}, \ldots, \alpha_{d+1}\right)$ defines a n-tuple over D_{2}^{n} in the hitting set. So the size of the hitting set is $\left(p^{d} n m r\right)^{O(d p)}$. After simplification, $\left|\widehat{H}_{n, r, \tilde{d}}\right| \leqslant(n r \tilde{d})^{O(p \log \tilde{d})}$.

5.2.3 Improving the dependency on the number of variables

In the hitting set construction of Theorem 33, we ensure that the dimension of the hitting set is independent of the width of the input ABP. Recall that, the number of variables is now the only source of dependency of $\ell_{\theta-1}$ on ℓ. In this subsection, we fix this by modifying the hitting set construction further which improves the dimension of the hitting set sacrificing in the hitting set size slightly.
Theorem 36. Let p be any prime number. For the class of n-variate degree \tilde{d} noncommutative polynomials computed by homogeneous ABPs of width r, we can construct a hitting set $\widehat{\mathcal{H}}_{n, r, \tilde{d}} \subseteq D_{2}^{n}$ of size $(n r \tilde{d})^{O(p \log (\tilde{d} \log n))}$ in $(n r \tilde{d})^{O(p \log (\tilde{d} \log n))}$ time. Here D_{2} is a cyclic division algebra of index $\ell_{2}=p^{L}$ where $L=O\left(p \log _{p}(\tilde{d} \log n)\right)$.

Proof. The proof is exactly same as the proof of Theorem 33 with an additional trick to reduce the number of variables in the ABP. Introduce two new noncommuting variables y_{0} and y_{1}. Now use the following mapping:

$$
\text { For each } 1 \leqslant i \leqslant n: \quad x_{i} \mapsto \prod_{j=1}^{\log n} y_{b_{j}},
$$

where $b_{\log _{n} \cdots b_{2}} b_{1}$ is the binary representation of i. This modification will increase the degree (and hence the ABP depth) to $\tilde{d} \log n$. The width of the resulting ABP increases to $n r^{2}$. We now apply Theorem 33 on this bivariate degree $\tilde{d} \log n$ ABP of width $n r^{2}$ to obtain the desired bounded on the dimension ℓ_{2} of the division algebra.

5.3 Final hitting set

We now explicitly define the final hitting set where the base field $F=\mathbb{Q}\left(\omega_{0}, z\right)$. As before, we can express it as:

$$
\begin{align*}
\mathcal{H}_{n, s, \theta} & =\bigcup_{\underline{p} \in \mathcal{H}_{n, s, \theta-1} \subseteq D_{\theta-1}^{n}} \widetilde{\mathcal{H}}_{n, 2 s+1, \ell_{\theta-1}}^{p} \tag{8}\\
\widetilde{\mathcal{H}}_{n, 2 s+1, \ell_{\theta-1}}^{p} & =\left\{\left(t q_{1}+p_{1} \otimes I_{\ell_{2}}, \ldots, t q_{n}+p_{n} \otimes I_{\ell_{2}}\right): \underline{q} \in \widehat{\mathcal{H}}_{n, 2 s, 2 s+1}^{D_{\theta-1}} \text { and } t \in \Gamma\right\}, \tag{9}\\
\widehat{\mathcal{H}}_{n, 2 s, 2 s+1}^{D_{\theta-1}} & =\left\{\left(q_{1}, \ldots, q_{n}\right): q_{i}=\sum_{j, k} C_{j k} \otimes q_{i j k}:\left(q_{111}, \ldots, q_{n \ell_{\theta-1} \ell_{\theta-1}}\right) \in \widehat{\mathcal{H}}_{\ell_{\theta-1}^{2} n, 2 \ell_{\theta-1} s, 2 s+1}\right\}, \tag{10}
\end{align*}
$$

where we recall that $\mathcal{H}_{n, s, \theta}$ is the hitting set for n-variate rational formulas of size s and inversion height $\theta, \widetilde{\mathcal{H}}_{n, 2 s+1, \ell_{\theta-1}}^{\underline{p}}$ is the hitting set, as defined in Equation (6), for n-variate linear matrices of dimension $2 s+1$ with witness tuple \underline{p} from an $\ell_{\theta-1}$ dimensional cyclic division algebra, and $\widehat{\mathcal{H}}_{n, 2 s, 2 s+1}^{D_{\theta-1}}$, as defined in Equation (3), is the hitting set for n-variate $D_{\theta-1}-\mathrm{ABP}$ of width $2 s$ and degree $2 s+1$.

Let ℓ be the dimension of the matrices in $\widehat{\mathcal{H}}_{\ell_{\theta-1}^{2} n, 2 \ell_{\theta-1} s, 2 s+1}$. By Theorem 36 we obtain $\ell=$ $\left(s \log \left(n \ell_{\theta-1}\right)\right)^{O(p)}$ where p is the prime number used for the construction for the inversion height θ. As we can choose p to be the $(\theta+2)^{t h}$ prime for this stage which is bounded by θ^{2}, noting that $\ell_{\theta}=\ell \cdot \ell_{\theta-1}$, we have the bound

$$
\ell_{\theta} \leqslant \ell_{\theta-1}\left(s \log n+s \log \ell_{\theta-1}\right)^{O\left(\theta^{2}\right)} .
$$

We claim $\ell_{\theta}=(n s)^{O\left(\theta^{3}\right)}$. The base case holds as $\ell_{0}=(n s)^{O(1)}$. Now $\ell_{\theta-1}=(n s)^{c(\theta-1)^{3}}$ for some sufficiently large constant c, from the inductive hypothesis. Therefore,

$$
\begin{aligned}
\ell_{\theta} & \leqslant \ell_{\theta-1}\left(s \log n+(\theta-1)^{3} s \log (n s)\right)^{O\left(\theta^{2}\right)} \\
& \leqslant \ell_{\theta-1}(n s)^{O\left(\theta^{2}\right)} \leqslant(n s)^{c \theta^{3}}
\end{aligned}
$$

We also have from Equation (8), Equation (9), Equation (10) that,

$$
\left|\mathcal{H}_{n, s, \theta}\right|=\left|\mathcal{H}_{n, s, \theta-1}\right| \cdot\left|\widehat{\mathcal{H}}_{\ell_{\theta-1}^{2} n, 2 \ell_{\theta-1} s, 2 s+1}\right| \cdot|\Gamma| .
$$

Inductively (on θ), we prove that $\left|\mathcal{H}_{n, s, \theta}\right| \leqslant(n s)^{O\left(\theta^{6} \log ^{2}(n s)\right)}$.
Recall that in Theorem 26 we bounded $|\Gamma|$ by $\left(n s \ell_{\theta-1}\right)^{O(p)}$. Combined with Theorem 36, we obtain

$$
\begin{aligned}
\left|\widehat{\mathcal{H}}_{\ell_{\theta-1}^{2} n, 2 \ell_{\theta-1} s, 2 s+1}\right| \cdot|\Gamma| & \leqslant\left(n s \ell_{\theta-1}\right)^{O\left(\theta^{2} \log s \log \log \left(\ell_{\theta-1} n\right)\right)} \\
& \leqslant(n s)^{O\left(\theta^{5} \log s \log \left(c \theta^{3}+\log (n s)\right)\right)} \\
& \leqslant(n s)^{O\left(\theta^{5} \log ^{2}(n s)\right)} .
\end{aligned}
$$

Unfolding the recursion and using the fact that $\mathcal{H}_{n, s, \theta} \leqslant(n s)^{O\left((\theta-1)^{6} \log ^{2}(n s)\right)}$, we now obtain,

$$
\mathcal{H}_{n, s, \theta} \leqslant(n s)^{O\left(\theta^{6} \log ^{2}(n s)\right)} .
$$

Final steps Finally, as done in the proof of Theorem 29, we can use the same trick to obtain a hitting set over \mathbb{Q} itself. Firstly, we need to bound the parameter $\Lambda=2^{\tau}$ which is the order of the root of unity ω_{0} (as described in the construction of Theorem 33). As observed there, it suffices to choose $\Lambda>r^{3 p}$ for all the ABP widths r and primes p that arise in the recursive construction. For rational formulas of inversion height θ, we have $r=O\left(s \ell_{\theta}\right) \leqslant(n s)^{O\left(\theta^{3}\right)}$. As $p \leqslant \theta^{2}$, it suffices to choose $\Lambda \geqslant(n s)^{O\left(\theta^{5}\right)}$.

In the hitting set points we replace (as discussed in Section 1.2) $\omega_{0}, \underline{\omega}$ and \underline{z} by commuting indeterminates $t_{1}, \underline{t}_{2}, \underline{t}_{3}$. Notice that all these are of degree $\leqslant(n s)^{O\left(\theta^{5}\right)}$. Then, for any nonzero rational formula Φ of size s there is a matrix tuple in the hitting set on which Φ evaluates to a
nonzero matrix $M\left(t_{1}, \underline{t}_{2}, \underline{t}_{3}\right)$ of dimension quasipolynomial over the commutative function field $\mathbb{Q}\left(t_{1}, \underline{t}_{2}, \underline{t}_{3}\right)$. Each entry of $M\left(t_{1}, \underline{t}_{2}, \underline{t}_{3}\right)$ is a commutative rational expression of the form a / b, where a and b are polynomials in t_{1}, \underline{t}_{2} and \underline{t}_{3} and the degrees of both a and b are quasipolynomial. We can now vary the parameters in $t_{1}, \underline{t}_{2}, \underline{t}_{3}$ over a $(n s)^{O\left(\theta^{5}\right)}$ large set $\widetilde{T} \subseteq \mathbb{Q}$ such that we avoid the roots of the numerator and denominator polynomials involved in the computation. Therefore, finally we obtain the hitting set $\mathcal{H}_{n, s, \theta} \subseteq \operatorname{Mat}_{\ell_{\theta}}(\mathbb{Q})$ (with a slight abuse of notation) where

$$
\ell_{\theta} \leqslant(n s)^{O\left(\theta^{3}\right)} \quad \text { and, } \quad\left|\mathcal{H}_{n, s, \theta}\right| \leqslant(n s)^{O\left(\theta^{6} \log ^{2}(n s)\right)} .
$$

It completes the proof of Theorem 2.

5.4 RIT is in quasi-NC

Recall that, NC is the class of problems which can be solved in poly-logarithmic time using polynomially many processors in parallel. Similarly, quasi-NC is the class of problems which can be solved in poly-logarithmic time using quasipolynomially many processors in parallel. We now prove Corollary 4, a quasi-NC RIT algorithm in the white-box setting. The proof consists of two steps. Firstly we show that the hitting set presented in the last section can be constructed in quasiNC. We then show that given a matrix tuple, a noncommutative rational formula can be evaluated in NC. We now describe each step.

Step 1. Quasi-NC hitting set construction: Firstly, note that the matrix operations like additions, and tensor products are trivially inside NC. Now from the description of the hitting set $\mathcal{H}_{n, s, \theta}$ given in Section 5.3 via Equation (8), Equation (9), Equation (10), it is easy to observe that to build the hitting set in quasi-NC by induction on θ, it suffices to show (independently) such a quasi-NC construction for the hitting set $\widehat{H}_{\hat{n}, \hat{r}, \hat{d}}$ for \hat{n}-variate noncommutative ABPs of width \hat{r} and \hat{d} many layers. As before, we can assume that $\hat{d}=p^{d}$ for a prime p. Moreover, observe that the modifications in the hitting set construction in Theorem 36 over Theorem 33 do not change the parallel complexity of the construction, since the binary encoding for the variables can be trivially implemented in NC. Thus it suffices to notice that the hitting set construction in Theorem 33 can be carried out in quasi-NC.
Now the main idea behind the hitting set construction for noncommutative ABPs is that, at the $j^{t h}$ level, the hitting set generator \mathcal{G}_{j} combines and extends partially computed hitting set tuples by satisfying $p-1$ boundary conditions (to embed in the division algebra). Such partial computations can be done inductively (and in parallel) in quasi-NC using \mathcal{G}_{j-1}.
Moreover, to carry out the extensions, it is sufficient to vary the parameter α_{j} (for each boundary condition) over a set of size $\left(p^{d} \hat{n} \hat{r}\right)^{O(p)}$. Here, α_{j} is the variable that the generator substitutes at the $j^{t h}$ level of the recursion. This is explained in Lemma 34 and Theorem 33. Clearly, using quasipolynomial number of processors, such extensions can be performed in quasi-NC to build the generator at the $j^{\text {th }}$ level. Since $j \leqslant d$, the height of the recursion is $O(\log \hat{d})$. Since $\theta=O(\log s)$ and $\hat{d} \leqslant s \ell_{\theta}=(n s)^{O\left(\log ^{3} s\right)}$, the entire computation can be performed within quasi-NC.

Step 2. Parallel evaluation of rational formulas:

Let $\Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a rational formula of size s in the noncommuting variables x_{i}. Given a matrix tuple $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of $\ell \times \ell$ matrices over \mathbb{Q}, our aim is to give an NC algorithm for evaluating $\Phi\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ if Φ is defined at this matrix tuple and otherwise detecting that it is undefined.

We first note that if the formula Φ has depth $O(\log s)$ then it is amenable to parallel evaluation on the input ($p_{1}, p_{2}, \ldots, p_{n}$) using the formula structure. Matrix multiplication, addition, and matrix inversion are all in NC^{2} [Csa76, Ber84]. Hence evaluation of $\Phi\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is in NC^{3} in this case.

In general, the formula Φ may have depth $O(s)$. Hrubes and Wigderson, in [HW15], have described a polynomial-time algorithm for depth reduction that transforms Φ into an equivalent rational formula $\widehat{\Phi}$ that has size $\operatorname{poly}(s)$ and depth $O(\log s)$. Their algorithm is essentially based on Brent's classical result [Bre74] on depth reduction for commutative arithmetic formulas. ${ }^{8}$ However, there are some new aspects. It turns out that if Ψ is a rational formula in noncommuting variables $z, y_{1}, y_{2}, \ldots, y_{m}$ with z occurring exactly once as input then Ψ has a z-normal form expression:

$$
\Psi=(A z+B)(C z+D)^{-1}
$$

where A, B, C, D are small rational formulas with no occurrence of z. They exploit this structure in their divide and conquer algorithm for constructing the equivalent formula $\widehat{\Phi}$ in polynomial time.

Following the construction in [HW15], it is also possible to parallelize it and obtain an NC algorithm for computing the depth-reduced formula $\widehat{\Phi}$ [Jog23]. We can use that to evaluate $\widehat{\Phi}$, and hence Φ, on ($p_{1}, p_{2}, \ldots, p_{n}$). However, we sketch a simpler self-contained NC algorithm [Jog23] for evaluation of $\Phi\left(p_{1}, p_{2}, \ldots, p_{n}\right)$.

1. The input rational formula Φ is a binary tree. Let r denote its root. By standard NC computation we can find a gate v in Φ such that the size of the subformula Φ_{v} rooted at v has size between $s / 3$ and $2 s / 3$.
2. We compute the path $P=\left(v, v_{1}, v_{2}, \ldots, v_{t}=r\right)$ of all gates from v to r in Φ. Then we find all the gates u in Φ such that $u \notin P$ and u is input to some gate $v_{i} \in P$. Notice that for $v_{i} \in P$ such that $v_{i} \in\{+, \times\}$ has exactly one such input u. The inversion gates v_{i} are unary.
3. Recursively evaluate Φ_{v} and each such Φ_{u} on the input ($p_{1}, p_{2}, \ldots, p_{n}$).
4. We are left with the problem of evaluation a skew rational formula Φ^{\prime} consisting of the gates along path P with the already computed Φ_{u} and Φ_{v} as inputs. Using z-normal forms [HW15] (defined above) it is easy to obtain a simple divide-and-conquer parallel algorithm for evaluating skew rational formulas (in particular, evaluating Φ^{\prime}).

We sketch an analysis of the running time of the above parallel algorithm. Let $T(s)$ bound the number of rounds of parallel matrix multiplications, additions, inversions required to evaluate a size s rational formula. Then, the above algorithm yields the bound

$$
T(s) \leqslant T(2 s / 3)+O(\log s),
$$

[^6]which implies $T(s) \leqslant O\left(\log ^{2} s\right)$. Notice that the term $T(2 s / 3)$ bounds the running time for recursive evaluation of Φ_{v} and each Φ_{u}, all in parallel, because each of these subformulas have size at most $2 s / 3$. The term $O(\log s)$ is the bound ${ }^{9}$ for the separate parallel algorithm, mentioned above, for evaluating the skew rational formula $\Phi^{\prime} .{ }^{10}$

As each matrix operation can be performed in NC^{2}, it follows that rational formula evaluation is in NC^{4}. We obtain the following.

Lemma 37. There is an NC^{4} algorithm for evaluating a noncommutative rational formula Φ on a given matrix input $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$.

Remark 38. Notice that the NC algorithm described above, with minor changes, will yield an $O\left(\log ^{2} s\right)$ depth, poly(s) size rational formula equivalent to Φ.

The size of our final hitting set is $(n s)^{O\left(\theta^{6} \log ^{2}(n s)\right)}=(n s)^{O\left(\log ^{8}(n s)\right)}$ and the dimension of the matrices in the hitting set is $(n s)^{O\left(\theta^{3}\right)}=(n s)^{O\left(\log ^{3} s\right)}$. Using the rational formula evaluation procedure, on each such matrix tuple, it can be evaluated within quasi-NC. This is in parallel repeated for $(n s)^{O\left(\log ^{8}(n s)\right)}$ points in the hitting set. This completes the proof of Corollary 4.

6 Conclusion

In this paper, we nearly settle the black-box complexity of the RIT problem. However, designing a black-box algorithm for the NSingular problem remains wide open. The connection of this problem to the parallel algorithm for bipartite matching [FGT21] is already discussed in Section 1. We believe that the techniques introduced in this paper might be useful in designing efficient hitting sets for the NSingular problem.

Recall that, the result of Derksen and Makam [DM17] implies that for a nonzero rational formula of size s, there is a $2 s \times 2 s$ matrix tuple such that the evaluation is nonzero. Therefore, the quasipolynomial bound on the dimension of the hitting set point obtained in Theorem 2 is far from the optimal bound known. An interesting open problem is to construct a hitting set where the dimension is polynomially bounded in the size of the formula.

Another interesting problem is to show that, in the white-box setting RIT can be solved in NC. Recall that, the identity testing of noncommutative formulas can be performed in NC in the white-box setting [AJS09, For14].

Acknowledgment. We thank Pushkar S. Joglekar for discussions concerning depth reduction of rational formulas in parallel, and for sharing his observation [Jog23].

References

[$\left.\mathrm{ACG}^{+} 23\right]$ Vikraman Arvind, Abhranil Chatterjee, Utsab Ghosal, Partha Mukhopadhyay, and C. Ramya. On identity testing and noncommutative rank computation over the free skew field. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer

[^7]Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume 251 of LIPIcs, pages 6:1-6:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
[ACM22] Vikraman Arvind, Abhranil Chatterjee, and Partha Mukhopadhyay. Black-box identity testing of noncommutative rational formulas of inversion height two in deterministic quasipolynomial time. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022, September 19-21, 2022, University of Illinois, UrbanaChampaign, USA (Virtual Conference), volume 245 of LIPIcs, pages 23:1-23:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
[AJS09] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic circuits and the hadamard product of polynomials. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT Kanpur, India, pages 25-36, 2009.
[AL50] A. S. Amitsur and J. Levitzki. Minimal identities for algebras. Proceedings of the American Mathematical Society, 1(4):449-463, 1950.
[Ami66] S.A Amitsur. Rational identities and applications to algebra and geometry. Journal of Algebra, 3(3):304-359, 1966.
[BBJP19] Vishwas Bhargav, Markus Bläser, Gorav Jindal, and Anurag Pandey. A Deterministic PTAS for the Algebraic Rank of Bounded Degree Polynomials, pages 647-661. 012019.
[Ber76] George M Bergman. Rational relations and rational identities in division rings. Journal of Algebra, 43(1):252-266, 1976.
[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using a small number of processors. Inf. Process. Lett., 18(3):147-150, 1984.
[$\left.\mathrm{BFG}^{+} 19\right]$ Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Mendes de Oliveira, Michael Walter, and Avi Wigderson. Towards a theory of non-commutative optimization: Geodesic 1st and 2nd order methods for moment maps and polytopes. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 845-861. IEEE Computer Society, 2019.
[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201-206, 1974.
[BW05] Andrej Bogdanov and Hoeteck Wee. More on noncommutative polynomial identity testing. In 20th Annual IEEE Conference on Computational Complexity (CCC 2005), 11-15 June 2005, San Jose, CA, USA, pages 92-99, 2005.
[CM23] Abhranil Chatterjee and Partha Mukhopadhyay. The noncommutative edmonds' problem re-visited. CoRR, abs/2305.09984, 2023.
[Coh71] P. M. Cohn. The Embedding of Firs in Skew Fields. Proceedings of the London Mathematical Society, s3-23(2):193-213, 101971.
[Coh95] P. M. Cohn. Skew fields: Theory of general division rings. 1995.
[Csa76] L. Csanky. Fast parallel matrix inversion algorithms. SIAM J. Comput., 5(4):618-623, 1976.
[DK21] Manfred Droste and Dietrich Kuske. Weighted automata. In Jean-Éric Pin, editor, Handbook of Automata Theory, pages 113-150. European Mathematical Society Publishing House, Zürich, Switzerland, 2021.
[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program testing. Information Processing Letters, 7(4):193-195, 1978.
[DM17] Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semiinvariants. Advances in Mathematics, 310:44-63, 2017.
[DM20] Harm Derksen and Visu Makam. Algorithms for orbit closure separation for invariants and semi-invariants of matrices. Algebra \& Number Theory, 14(10):2791-2813, 2020.
[Eil74] Samuel Eilenberg. Automata, Languages, and Machines (Vol A). Pure and Applied Mathematics. Academic Press, 1974.
[FGT21] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in quasi-NC. SIAM J. Comput., 50(3), 2021.
[For14] Michael Andrew Forbes. Polynomial Identity Testing of Read-Once Oblivious Algebraic Branching Programs. PhD Thesis, 2014.
[FR04] MARC FORTIN and Christophe Reutenauer. Commutative/noncommutative rank of linear matrices and subspaces of matrices of low rank. Séminaire Lotharingien de Combinatoire [electronic only], 52, 012004.
[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of noncommutative and read-once oblivious algebraic branching programs. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 243-252, 2013.
[GGdOW16] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. A deterministic polynomial time algorithm for non-commutative rational identity testing. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 109-117. IEEE Computer Society, 2016.
[GGdOW20] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. Operator scaling: Theory and applications. Found. Comput. Math., 20(2):223-290, 2020.
[GR08] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields. Comb., 28(4):415-440, 2008.
[GT20] Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-nc. Comput. Complex., 29(2):9, 2020.
[HH21] Masaki Hamada and Hiroshi Hirai. Computing the nc-rank via discrete convex optimization on CAT(0) spaces. SIAM J. Appl. Algebra Geom., 5(3):455-478, 2021.
[Hua49] Loo-Keng Hua. Some properties of a sfield. Proceedings of the National Academy of Sciences of the United States of America, 35(9):533-537, 1949.
[HW15] Pavel Hrubeš and Avi Wigderson. Non-commutative arithmetic circuits with division. Theory of Computing, 11(14):357-393, 2015.
[IQS18] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Constructive noncommutative rank computation is in deterministic polynomial time. Computational Complexity, 27(4):561-593, Dec 2018.
[Jog23] Pushkar S. Joglekar. Personal communication. 2023.
[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds. Comput. Complex., 13(1-2):1-46, 2004.
[Lam01] T.Y. Lam. A First Course in Noncommutative Rings (Second Edition). Graduate Texts in Mathematics. Springer, 2001.
[MW19] Visu Makam and Avi Wigderson. Singular tuples of matrices is not a null cone (and, the symmetries of algebraic varieties). Electron. Colloquium Comput. Complex., TR19-114, 2019.
[Pie82] Richard S. Pierce. Associative Algebras. Springer-Verlag, 1982.
[Row80] Louis Halle Rowen. Polynomial identities in ring theory. Pure and Applied Mathematics. Academic Press, 1980.
[Sch80] Jacob T. Schwartz. Fast probabilistic algorithm for verification of polynomial identities. J. ACM., 27(4):701-717, 1980.
[Str73] Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte Mathematik, 264:184-202, 1973.
[Vol18] Jurij Volčič. Matrix coefficient realization theory of noncommutative rational functions. Journal of Algebra, 499:397-437, 042018.
[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. of the Int. Sym. on Symbolic and Algebraic Computation, pages 216-226, 1979.

A Appendix

A. 1 Division algebra hitting set for noncommutative ABPs

Fix a prime number p. In particular, p is independent of the input ABP. The main result of this section shows that the quasipolynomial-size hitting set construction for noncommutative ABPs by

Forbes and Shpilka [FS13] can be adapted to a more general setting where the hitting set points lie in a finite-dimensional cyclic division algebra whose index is a power of p. We note that such construction is already known when the index is a power of 2 [ACM22].

Let F be a characteristic zero field. Let $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ be commuting indeterminates. The ring $\operatorname{Mat}_{r}\left(F\left[u_{i}\right]\right)$ consists of $r \times r$ matrices whose entries are univariate polynomials in u_{i} over F. Equivalently, an element $M \in \operatorname{Mat}_{r}\left(F\left[u_{i}\right]\right)$ can be seen as a univariate polynomial with matrix coefficients in $\mathrm{Mat}_{r}(F)$. Its degree $\operatorname{deg}(M)$ is the largest integer such that the matrix coefficient of $u_{i}^{\operatorname{deg}(M)}$ in M is nonzero. Let \bar{F} denote the algebraic closure of F. The following lemma is a straightforward generalization of [FS13, Lemma 3.5].

Lemma 39. For each $i \in[p]$, let $M_{i} \in \operatorname{Mat}_{r}\left(F\left[u_{i}\right]\right)$ be of degree $<n$ and $\omega \in \bar{F}$ be a root of unity whose (finite) order is at least n^{p}. Let $K=F(\omega)$ be the field extension by ω. Then for any $\alpha \in F$ and any $\mu \geqslant n$,

$$
\operatorname{span}_{K}\left\{\left[u_{1}^{j_{1}} u_{2}^{j_{2}} \cdots u_{p}^{j_{p}}\right] \prod_{i=1}^{p} M_{i}\left(u_{i}\right)\right\} \supseteq \operatorname{span}_{K}\left\{M_{1}\left(\omega^{\ell} \alpha\right) M_{2}\left(\left(\omega^{\ell} \alpha\right)^{\mu}\right) \cdots M_{p}\left(\left(\omega^{\ell} \alpha\right)^{\mu^{p-1}}\right)\right\} .
$$

Moreover, except for $<n^{p} r^{2}$ many values of α in F,

$$
\operatorname{span}_{K}\left\{\left[u_{1}^{j_{1}} u_{2}^{j_{2}} \cdots u_{p}^{j_{p}}\right] \prod_{i=1}^{p} M_{i}\left(u_{i}\right)\right\}=\operatorname{span}_{K}\left\{\left\{M_{1}\left(\omega^{\ell} \alpha\right) M_{2}\left(\left(\omega^{\ell} \alpha\right)^{\mu}\right) \cdots M_{p}\left(\left(\omega^{\ell} \alpha\right)^{\mu^{p-1}}\right)\right\} .\right.
$$

Here ℓ varies from $\left\{0,1, \ldots, r^{2}-1\right\}$.
Proof. By span we will always mean the K-linear span.

$$
\begin{gather*}
\prod_{i=1}^{p} M_{i}\left(u_{i}\right)=\sum_{j_{1}, j_{2}, \ldots, j_{p}}\left(\left[u_{1}^{j_{1}} u_{2}^{j_{2}} \cdots u_{p}^{j_{p}}\right] \prod_{i=1}^{p} M_{i}\left(u_{i}\right)\right) \cdot u_{1}^{j_{1}} u_{2}^{j_{2}} \cdots u_{p}^{j_{p}} . \\
\text { Therefore, } \prod_{i=1}^{p} M_{i}\left(\left(\omega^{\ell} \alpha\right)^{i^{i-1}}\right)=\sum_{j_{1}, j_{2}, \ldots, j_{p}}\left(\left[u_{1}^{j_{1}} u_{2}^{j_{2}} \cdots u_{p}^{j_{p}}\right] \prod_{i=1}^{p} M_{i}\left(u_{i}\right)\right) \cdot\left(\omega^{\ell} \alpha\right)^{j_{1}+j_{2} \mu+\ldots+j_{p} \mu^{p-1}}, \tag{11}
\end{gather*}
$$

which proves the first part of the lemma.
We now define a rectangular matrix $C \in \operatorname{Mat}_{n^{p}, r^{2}}(F)$ as follows. Each row of C is indexed by a tuple $\left(j_{1}, j_{2}, \ldots, j_{p}\right) \in\{0,1, \ldots, n-1\}^{p}$. For each such tuple $\left(j_{1}, j_{2}, \ldots, j_{p}\right)$, treating the $r \times r$ matrix $\left[u_{1}^{j_{1}} u_{2}^{j_{2}} \cdots u_{p}^{j_{p}}\right] \prod_{i=1}^{p} M_{i}\left(u_{i}\right)$ as an r^{2}-dimensional vector, we define it as the corresponding row $C_{\left(j_{1}, j_{2}, \ldots, j_{p}\right)}$. By definition,

$$
\text { row-span }(C)=\operatorname{span}\left\{\left[u_{1}^{j_{1}} u_{2}^{j_{2}} \cdots u_{p}^{j_{p}}\right] \prod_{i=1}^{p} M_{i}\left(u_{i}\right)\right\} .
$$

Now consider the matrix $A_{\alpha} \in \operatorname{Mat}_{r^{2}, n^{p}}(K)$ whose columns are indexed by tuples $\left(j_{1}, j_{2}, \ldots, j_{p}\right) \in$ $\{0,1, \ldots, n-1\}^{p}$ and let

$$
\left(A_{\alpha}\right)_{\ell,\left(j_{1}, j_{2}, \ldots, j_{p}\right)}=\left(\omega^{\ell} \alpha\right)^{j_{1}+j_{2} \mu+\ldots+j_{p} \mu^{\mu-1}} .
$$

We note that this is used in the rank extractor construction by Gabizon and Raz [GR08]. Applying their result it follows that, except for at most $n^{p} r^{2}$ values of α, the rank of the product matrix $\operatorname{rank}\left(A_{\alpha} C\right)=\operatorname{rank}(C)$. Multiplying the $\ell^{\text {th }}$ row of A_{α} with C we get

$$
\left(A_{\alpha}\right)_{\ell} C=\sum_{j_{1}, j_{2}, \ldots, j_{p}}\left(\left[u_{1}^{j_{1}} u_{2}^{j_{2}} \cdots u_{p}^{j_{p}}\right] \prod_{i=1}^{p} M_{i}\left(u_{i}\right)\right) \cdot\left(\omega^{\ell} \alpha\right)^{j_{1}+j_{2} \mu+\ldots+j_{p} \mu^{\rho-1}}=\prod_{i=1}^{p} M_{i}\left(\left(\omega^{\ell} \alpha\right)^{\mu^{i-1}}\right) .
$$

Therefore, row-span $\left(A_{\alpha} C\right)=\operatorname{span}\left\{M_{1}\left(\omega^{\ell} \alpha\right) M_{2}\left(\left(\omega^{\ell} \alpha\right)^{\mu}\right) \cdots M_{p}\left(\left(\omega^{\ell} \alpha\right)^{\mu^{p-1}}\right)\right\}$.
As row-span (C) contains row-span $\left(A_{\alpha} C\right), \operatorname{if} \operatorname{rank}(C)=\operatorname{rank}\left(A_{\alpha} C\right)$ then we have row-span $(C)=$ row-span $\left(A_{\alpha} C\right)$. Therefore, barring at most $n^{p} r^{2}$ values of α, row-span $(C)=$ row-span $\left(A_{\alpha} C\right)$.

Now we informally discuss how Lemma 39 is used for the hitting set construction. W.l.o.g, we can assume that the degree of the ABP is p^{d} for some integer d. We group the ABP layers into p sets where each set has p^{d-1} consecutive matrix products (over different variables for each of the sets). Then, roughly speaking, the next lemma gives a method to show that the span of the full matrix product can be captured by span of the matrix products over a single variable. A crucial component will be Lemma 39. The next lemma is again a straightforward generalization of [FS13, Lemma 3.7].

Lemma 40. Consider p many families of $r \times r$ matrices $\mathcal{M}_{1}=\left\{M_{1,1}, M_{1,2}, \ldots, M_{1, p^{d-1}}\right\}, \ldots, \mathcal{M}_{p}=$ $\left\{M_{p, 1}, M_{p, 2}, \ldots, M_{p, p^{d-1}}\right\}$ where for the $j^{\text {th }}$ family the entries are univariate polynomials over $F\left[u_{j}\right]$ of degree less than n. Let $\left(f_{1}(u), f_{2}(u), \ldots, f_{p^{d-1}}(u)\right) \in F[u]$ be polynomials of degree at most m. Let $\omega \in \bar{F}$ be a root of unity of order more than $\left(p^{d-1} n m\right)^{p}$ and $K=F(\omega)$. Define polynomials in indeterminate v :

$$
\begin{aligned}
f_{i}^{\prime}(v) & =\sum_{\ell=1}^{r^{2}} f_{i}\left(\left(\omega^{\ell} \alpha_{d}\right)^{\mu_{1}}\right) q_{\ell}(v), 1 \leqslant i \leqslant p^{d-1} \\
f_{i+p^{d-1}}^{\prime}(v) & =\sum_{\ell=1}^{r^{2}} f_{i}\left(\left(\omega^{\ell} \alpha_{d}\right)^{\mu_{2}}\right) q_{\ell}(v), 1 \leqslant i \leqslant p^{d-1} \\
& \vdots \\
f_{i+(p-1) p^{d-1}}^{\prime}(v) & =\sum_{\ell=1}^{r^{2}} f_{i}\left(\left(\omega^{\ell} \alpha_{d}\right)^{\mu_{p}}\right) q_{\ell}(v), 1 \leqslant i \leqslant p^{d-1}
\end{aligned}
$$

where $\mu_{j}=\mu^{j-1}, \mu=1+p^{d-1} n m$, and $q_{\ell}(v)$ is the corresponding Lagrange interpolation polynomial.
Then, for all but $\left(p^{d-1} n m r\right)^{p}$ many values of α_{d}, the K-linear span of the matrix coefficients of the matrix product $\prod_{j=1}^{p} \prod_{i=1}^{p^{d-1}} M_{j, i}\left(f_{i}\left(u_{j}\right)\right)$ is contained in the K-linear span of the matrix coefficients of the product $\prod_{j=1}^{p} \prod_{i=1}^{p^{d-1}} M_{j, i}\left(f_{i}^{\prime}(v)\right)$.

Proof. As before, all spans are K-linear spans. Let $\gamma=p^{d-1}$ and for each j, let $R_{j}\left(u_{j}\right)=$ $\prod_{i=1}^{p^{d-1}} M_{j, i}\left(f_{i}\left(u_{j}\right)\right)$. Note that $R_{j}\left(u_{j}\right)$ is a matrix of univariate polynomials in u_{j} of degree less
than $\gamma n m$. By definition,

$$
\prod_{j=1}^{p} \prod_{i=1}^{p^{d-1}} M_{j, i}\left(f_{i}\left(u_{j}\right)\right)=\prod_{j=1}^{p} R_{j}\left(u_{j}\right) .
$$

Lemma 39 implies that the span of the coefficients of $\prod_{j=1}^{p} R_{j}\left(u_{j}\right)$ is contained in the span of $\prod_{j=1}^{p} R_{j}\left(\left(\omega^{\ell} \alpha\right)^{\mu_{j}}\right)$, where $\mu_{j}=\mu^{j-1}$ for $\mu>p^{d-1} n m$.

For each j, let $T_{j}(v)=\prod_{i=1}^{p^{d-1}} M_{j, i}\left(f_{i+(j-1) p^{d-1}}^{\prime}(v)\right)$. By the definition of the Lagrange interpolation polynomials, letting $q_{\ell}\left(\beta_{k}\right)=\delta_{\ell k}$ where each β_{k} is distinct, we have

$$
\begin{aligned}
& T_{j}\left(\beta_{\ell}\right)=\prod_{i=1}^{p^{d-1}} M_{j, i}\left(f_{i}\left(\left(\omega^{\ell} \alpha_{d}\right)^{\mu_{j}}\right)\right)=R_{j}\left(\left(\omega^{\ell} \alpha_{d}\right)^{\mu_{j}}\right) . \\
& \text { Hence, span }\left\{\prod_{j=1}^{p} R_{j}\left(u_{j}\right)\right\} \subseteq \operatorname{span}\left\{\prod_{j=1}^{p} T_{j}(v)\right\}_{v \in K} .
\end{aligned}
$$

Now we are ready to prove the main theorem of the section which is a restatement of Theorem 19.

Theorem 41. Let p be any prime number. For the class of n-variate degree \tilde{d} noncommutative polynomials computed by homogeneous $A B P$ s of width r, we can construct a hitting set $\widehat{\mathcal{H}}_{n, r, \tilde{d}} \subseteq D_{2}^{n}$ ofsize $(n r \tilde{d})^{O(p \log \tilde{d})}$ in $(n r \tilde{d})^{O(p \log \tilde{d})}$ time. Here D_{2} is a cyclic division algebra of index $\ell_{2}=p^{L}$ where $L=O\left(p \log _{p}(n r \tilde{d})\right)$.

Proof. We will set $\ell_{2}=p^{L}$ as the index of the division algebra D_{2}, where p is the given prime and L will be determined in the analysis below. One of the necessary conditions is that $p^{L}>\tilde{d}$.

One of the key ideas in [FS13] is to convert the given ABP into a set-multilinear form and eventually a read-once form. More specifically, they replace the noncommutative variable x_{i} by the matrix $M\left(x_{i}\right)$:

$$
M\left(x_{i}\right)=\left[\begin{array}{ccccc}
0 & x_{i 1} & 0 & \cdots & 0 \\
0 & 0 & x_{i 2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & x_{i \tilde{d}} \\
0 & 0 & \cdots & 0 & 0
\end{array}\right] .
$$

and the variables $x_{i 1}, x_{i 2}, \ldots, x_{i \tilde{d}}$ will be replaced by $u_{1}^{i}, u_{2}^{i}, \ldots, u_{\tilde{d}}^{i}$. Obviously, these matrices are nilpotent matrices and they are not elements of any division algebra. These variables will be finally substituted by the output of a generator $\mathcal{G}_{\log \tilde{d}}$ that streches a seed $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\log \tilde{d}+1}\right)$ to $\left(f_{1}(\underline{\alpha}), f_{2}(\underline{\alpha}), \ldots, f_{\tilde{d}}(\underline{\alpha})\right)$.

Here, our plan will be to replace x_{i} by the following matrix $M\left(x_{i}\right)$:

$$
M\left(x_{i}\right)=\left[\begin{array}{ccccc|ccc}
0 & f_{1}^{i}(\underline{\alpha}) & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & f_{2}^{i}(\underline{\alpha}) & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & f_{\tilde{d}}^{i}(\underline{\alpha}) & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & f_{\tilde{d}+1}^{i}(\underline{\alpha}) & \cdots & 0 \\
\hline \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & \cdots & f_{\ell_{2}-1}^{i}(\underline{\alpha}) \\
z f_{\ell_{2}}^{i}(\underline{\alpha}) & 0 & 0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right],
$$

where the tuple $\left(f_{1}(\underline{\alpha}), \ldots, f_{\ell_{2}}(\underline{\alpha})\right)$ will be the output of a generator of seed length $O\left(\log \ell_{2}\right)$. Additionally, if we can maintain the property that each such matrix is a circulant matrix that represent a cyclic division algebra element of the form shown in Proposition 11, we will be able to implement the construction. Now we discuss the implementation of these ideas.

Choose $\omega=e^{\frac{2 \pi t}{p^{L}}}$, a primitive root of unity of order p^{L}. Let $F=\mathbb{Q}(z)$ and $K=F(\omega)$ be its (finite) extension by ω. Using the construction described in Section 2.3, we consider the cyclic division algebra $D_{2}=(K / F, \sigma, z)$. We fix the K-automorphism σ as

$$
\sigma(\omega)=\omega^{p^{\kappa}+1}
$$

where the positive integer κ will be suitably chosen in the following analysis, fulfilling the constraints of Lemma 40 and some additional requirements.

Let $d=\log _{p} \tilde{d}$, where we assume (without loss of generality) that \tilde{d} is a power of p. Let $\omega_{i}=\omega^{p^{a_{i}}}$ for $a_{1}>a_{2}>\cdots>a_{d}>a_{d+1}>0$, where a_{i} are positive integers to be chosen. We denote by K_{i} the cyclic Galois extension $K_{i}=F\left(\omega_{i}\right)$ of F by ω_{i}, for $1 \leqslant i \leqslant d+1$. This gives a tower of field extensions

$$
F \subset F\left(\omega_{1}\right) \subset F\left(\omega_{2}\right) \subset \cdots \subset F\left(\omega_{d}\right) \subset F\left(\omega_{d+1}\right) \subset F(\omega)=K .
$$

We require two properties of $\omega_{i}, 1 \leqslant i \leqslant d+1$.

1. For the hitting set generator \mathcal{G}_{i} we will choose the root of unity as ω_{i} and the variable α_{i} will take values only in the set

$$
W_{i}=\left\{\omega_{i}^{j} \mid 1 \leqslant j \leqslant p^{L-a_{i}}\right\} .
$$

2. We require that the K-automorphism σ has the property that for all $1 \leqslant i \leqslant d+1$ the map $\sigma^{p^{i}}$ fixes ω_{i}. It is enough to ensure that $\sigma^{p^{i}}$ has $F\left(\omega_{i}\right)$ as its fixed field.

We take up the second property. As $\sigma(\omega)=\omega^{p^{k}+1}$, we have $\sigma\left(\omega_{i}\right)=\omega^{p^{d_{i}}\left(\rho^{k}+1\right)}$. Therefore,

$$
\sigma^{p^{i}}\left(\omega_{i}\right)=\omega^{p^{a_{i}}\left(\rho^{\kappa}+1\right)^{p^{i}}} .
$$

Now, $\left(p^{\kappa}+1\right)^{p^{i}}=\sum_{j=0}^{p^{i}}\binom{p^{i}}{j} p^{\kappa j}$. Choosing $\kappa=L / 2$, we have $\omega^{p^{\kappa j}}=1$ for $j \geqslant 2$. Therefore,

$$
\sigma^{p^{i}}\left(\omega_{i}\right)=\omega^{p^{a_{i}}\left(p^{i+\kappa}+1\right)}=\omega_{i} \cdot \omega^{p^{a_{i}+i+\kappa}} .
$$

We can set $a_{i}+i+\kappa=L$ for $1 \leqslant i \leqslant d+1$ to ensure that $\sigma^{p^{i}}$ fixes ω_{i}. Putting $L=2 \kappa$, we obtain

$$
\begin{equation*}
a_{i}=\kappa-i \text { for } 1 \leqslant i \leqslant d+1 . \tag{12}
\end{equation*}
$$

It remains to choose κ. In the construction of our hitting set generator \mathcal{G}_{i}, the parameter α_{i} will take values only in W_{i} defined above. We note that $\left|W_{i}\right|=p^{L-a_{i}}=p^{\kappa+i}$. By Lemma 40 there are at most $\left(p^{d} n m r\right)^{p}$ many bad values of α_{i} for any i. Thus, it suffices to choose κ such that $p^{\kappa}>\left(p^{d} n m r\right)^{p}$. It suffices to set

$$
\kappa=p d+\left\lceil p \log _{p}(n m r)\right\rceil+1 .
$$

The choice of κ determines the value of parameter μ in Lemma 34. Since $L=2 \kappa$, it follows that $p^{L}>\tilde{d}$ holds.

Coming back to the modified construction of \mathcal{G}_{d}, inductively, we can assume that we have already constructed hitting set generators for each window of length p^{d-1}. More precisely, let $\mathcal{G}_{d-1}:\left(\alpha_{1}, \ldots, \alpha_{d-1}, u\right) \mapsto\left(f_{1}(u), f_{2}(u), \ldots, f_{p^{d-1}}(u)\right)$ (where the polynomial $f_{i}(u) \in K_{d-1}[u]$, for $1 \leqslant i \leqslant p^{d-1}$) with the above two properties has already been constructed. Namely for each window, suppose $f_{i+1}(u)=\sigma\left(f_{i}(u)\right)$ holds for all $i \leqslant p^{d-1}-1$. Now define $\mathcal{G}_{d}:\left(\alpha_{1}, \ldots, \alpha_{d}, v\right) \mapsto$ $\left(f_{1}^{\prime}(v), f_{2}^{\prime}(v), \ldots, f_{p^{d}}^{\prime}(v)\right)$ using Lemma 40.

Since the Lagrange interpolation polynomial $q_{\ell}(v)$ has only integer coefficients, $\sigma\left(q_{\ell}(v)\right)=q_{\ell}(v)$. Therefore, for every $j^{\text {th }}$ window (where $j \in\{1,2, \ldots, p\}$) we have that $1+(j-1) p^{d-1} \leqslant i \leqslant j p^{d-1}-1$, we have $f_{i+1}^{\prime}(v)=\sigma\left(f_{i}^{\prime}(v)\right)$.

Now, consider each boundary condition, i.e. $i=j p^{d-1}$. We need to ensure that $\sigma\left(f_{j p^{d-1}}^{\prime}(v)\right)=$ $f_{1+j p^{d-1}}^{\prime}(v)$. Equivalently, we need to ensure that

$$
\sigma\left(\sum_{\ell=1}^{r^{2}} f_{p^{d-1}}\left(\left(\omega_{d}^{\ell} \alpha_{d}\right)^{\mu_{j-1}}\right) q_{\ell}(v)\right)=\sum_{\ell=1}^{r^{2}} f_{1}\left(\left(\omega_{d}^{\ell} \alpha_{d}\right)^{\mu_{j}}\right) q_{\ell}(v) .
$$

We prove it by induction on j. Inductively, we can enforce it by requiring that

$$
\sigma^{(j-1) p^{d-1}}\left(\sum_{\ell=1}^{r^{2}} f_{1}\left(\omega_{d}^{\ell} \alpha_{d}\right) q_{\ell}(v)\right)=\sum_{\ell=1}^{r^{2}} f_{1}\left(\left(\omega_{d}^{\ell} \alpha_{d}\right)^{\mu_{j}}\right) q_{\ell}(v) .
$$

Since α_{d} will be chosen from W_{d} (all powers of ω_{d}), we can write $\omega_{d}^{\ell} \alpha_{d}=\omega_{d}^{j^{\prime}}$ for some j^{\prime}. Now, $\sigma^{(j-1) p^{d-1}}\left(f_{1}\left(\omega_{d}^{j^{\prime}}\right)\right)=f_{1}\left(\sigma^{(j-1) p^{d-1}}\left(\omega_{d}^{j^{\prime}}\right)\right)$ as $\sigma^{p^{d-1}}$ fixes all coefficients of f_{1} (because $\left.f_{1}(u) \in K_{d-1}[u]\right)$. Now,

$$
\sigma^{(j-1) \rho^{d-1}}\left(\omega_{d}^{j^{\prime}}\right)=\omega_{d}^{j^{\prime} \cdot\left(p^{k}+1\right)^{(j-1) \rho^{d-1}}}=\omega_{d}^{j^{\prime}\left(1+p^{d-1+\kappa}\right)^{j-1}}=\left(\omega_{d}^{\ell} \alpha_{d}\right)^{\mu^{j-1}},
$$

which verifies that the choice of μ in Lemma 40 is $1+p^{d-1+\kappa}$.
This way we ensure that $f_{i+1}=\sigma\left(f_{i}\right)$ for $1 \leqslant i \leqslant p^{d}-1$. Now define $f_{p^{d}+j}=\sigma\left(f_{p^{d}+j-1}\right)$ for $1 \leqslant j \leqslant \ell_{2}-p^{d}$. The fact that \mathcal{G}_{d} is indeed a generator follows from the span preserving property and the proof is identical to the proof given in [FS13]. For our case, it uses Lemma 40. To see the final hitting set size, we note that the seed $\left(\alpha_{1}, \ldots, \alpha_{d}, \alpha_{d+1}\right) \in S_{1} \times S_{2} \times \cdots \times S_{d+1}$, where
$S_{i} \subseteq W_{i}$ and $\left|S_{i}\right|=p^{\kappa}$. Each seed $\left(\alpha_{1}, \ldots, \alpha_{d+1}\right)$ defines a n-tuple over D_{2}^{n} in the hitting set. So the size of the hitting set is $\left(p^{d} n m r\right)^{O(d p)}$. Since m is the degree of the generators at every stage which is bounded by the degree of the Lagrange interpolation polynomial r^{2}, we can simplify, $\left|\widehat{H}_{n, r, \tilde{d}}\right| \leqslant(n r \tilde{d})^{O(p \log \tilde{d})}$.

[^0]: ＊Institute of Mathematical Sciences（HBNI），and Chennai Mathematical Institute，Chennai，India．Email： arvind＠imsc．res．in．
 ${ }^{\dagger}$ Indian Statistical Institute，Kolkata，India．Email：abhneil＠gmail．com．Research Supported by the INSPIRE Faculty Fellowship provided by the Department of Science and Technology，Government of India．
 \ddagger Chennai Mathematical Institute，Chennai，India．Email：partham＠cmi．ac．in．

[^1]: ${ }^{1}$ Similarly NSingular is also in randomized NC via the determinant computation [Ber84, DM17].

[^2]: ${ }^{2}$ Division algebras also come up in [IQS18] as part of the regularity lemma and their noncommutative rank algorithm. Roughly speaking, after each rank-increment step, if the matrix substitutions are d-dimensional these are replaced by d-dimensional division algebra elements. This is a rank rounding step which ensures that the rank is always a multiple of d after each increment. This is a white-box process as it crucially uses the structure of the linear matrix. In contrast, our paper deals with the black-box setting where we do not have an explicit description of the rational formula (and the corresponding linear matrix).

[^3]: ${ }^{5}$ In fact, $\lceil d / 2\rceil+1$-dimensional matrix substitutions will suffice [AL50].

[^4]: ${ }^{6}$ In a recent work [CM23], a similar idea is used to show a polynomial-time reduction form NSingular to identity testing of noncommutative ABPs in the white-box setting.

[^5]: ${ }^{7} u^{t}$ denotes the transpose of u.

[^6]: ${ }^{8}$ We note that Brent actually describes a detailed parallel algorithm for carrying out the depth reduction.

[^7]: ${ }^{9}$ Here again we mean $O(\log s)$ rounds of parallel matrix inversions, multiplications, and additions.
 ${ }^{10} \mathrm{~A}$ skew rational formula is a rational formula in which at least one input to each binary gate is a formula input.

