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Abstract

The Minimum Circuit Size Problem (MCSP) asks, given the truth table of a Boolean function f and
an integer s, if there is a circuit computing f of size at most s. It has been an open question since
Levin’s seminal work on NP-completeness whether MCSP is NP-complete. This question has drawn
further interest in light of connections between MCSP and other areas, such as learning theory, average-
case complexity, cryptography, and proof complexity. These connections arise from seemingly special
properties of MCSP that are not currently known for any NP-complete problem.

We give, in our view, the strongest evidence yet that MCSP is in fact NP-complete. Specifically, we
show that, with probability one, there is a P/poly reduction from the NP-hard problem of approximating
vertex cover on hypergraphs to MCSP on circuits that have access to a uniformly random oracle O (the
reduction can be made uniform if it is given access to O). This resolves an open question of Huang,
Ilango, and Ren (STOC 2023), who conjectured such a reduction exists. Curiously, a key part of our
reduction is computing a cryptographic proof of work.

Our reduction yields near-optimal additive hardness of approximation and extends to computing time-
bounded Kolmogorov complexity (Kt). Heuristically “instantiating” O with real-world cryptographic
hash functions, we get a plethora of candidate uniform deterministic polynomial-time many-one reduc-
tions from SAT to MCSP and Kt in the standard unrelativized world. To our knowledge, no candidate
reduction from SAT to MCSP or Kt was known previously. Moreover, our results hold in the regime where
Kt has a non-black-box worst-case to average-case reduction (Hirahara, FOCS 2018). Thus, intriguingly,
the existence of sufficiently “unstructured” functions implies a problem with a known (non-black-box)
worst-case to average-case reduction is NP-complete.
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1 Introduction

The Minimum Circuit Size Problem (MCSP) [KC00] is the following computational task:

• Given: a Boolean function f : {0, 1}n → {0, 1} (represented by its truth table1 of length 2n) and a
size parameter s

• Decide: if there is a Boolean circuit2 that computes f of size at most s.

MCSP has a fascinating history, which we now informally discuss, both to give the reader context and
because it is interesting in its own right. Theoretical study of MCSP first began in the Soviet Union in the
1950s [Tra84]. At the time, researchers were interested in problems that required “perebor” (which roughly
translates to “exhaustive search”) to solve. They conjectured that MCSP was such a problem. (In fact, the
conjecture was even once “explicitly claimed as a proven fact” [Tra84]. Had this proof been correct, it would
have resolved P ̸= NP before the question was even formally asked!) At least so far, this conjecture has proved
accurate. MCSP remains one of the few problems (another prominent example is Circuit Satisfiability) for
which there are no known algorithms significantly improving over brute-force search.

Interest in MCSP continued in the 1970s. In a fascinating blog post [Lev], Levin recounts that when
he first discovered the phenomenon of NP-completeness, he felt (at the time) that the problems he showed
NP-complete (e.g., formula satisfiability, subgraph isomorphism, set cover) were of “narrow interest.” Levin
delayed publishing his results [Lev73] “for a long time,” hoping to show a stronger result that included at
least one “popular” problem, focusing on factoring, graph isomorphism, and MCSP. Over fifty years later,
we now have evidence that factoring and graph isomorphism are unlikely3 to NP-complete, but the question
of whether MCSP is NP-complete remains open. Indeed, even basic facts about the complexity of MCSP
are unknown. For example, it is consistent with current knowledge that the decision version of MCSP is
solvable in linear time but the search version (where one needs to output an optimal circuit) cannot be solved
any faster than brute-force search. Some researchers have speculated4 that MCSP may be NP-intermediate
(meaning that it is neither in P nor NP-complete).

The “modern” era of MCSP research began with the work of Kabanets and Cai in 2000 [KC00]. Prior to
this, interest in MCSP was mainly motivated from two points of view: first, as a natural problem of practical
importance (for building hardware), and second, as a seemingly intractable problem whose complexity was
unknown. Beginning largely with the work of Kabanets and Cai, a new motivation emerged: MCSP has
intriguing properties not known for any NP-complete problem.5 Furthermore, these properties have led to
connections with other areas of theoretical computer science, including average-case complexity, learning
theory, proof complexity, and cryptography. We will give a brief, informal, and non-exhaustive survey of
some of these developments in the next subsection. As a taste, using these connections one can, for example,
connect the NP-completeness of MCSP (and related problems) to showing that P ̸= NP implies:

• NP is hard on average (i.e., giving a worst-case to average-case reduction for SAT).

• There is no “natural proof” of certain circuit lower bound statements.

• PAC-learning functions computable by small circuits using membership queries is intractable.

• Cryptographic one-way functions exist.6

1The truth table of f is the 2n bit string f(0n) . . . f(1n).
2To make this definition precise we need to specify a model of circuits and a specific notion of circuit size. Our results hold

for most reasonable choices, but, for concreteness, consider the circuits with fan-in two AND and OR gates as well as NOT
gates. The size of a circuit is the number of AND and OR gates.

3This is because factoring is in coNP and graph isomorphism is in quasi-polynomial time [Bab16].
4For example, MCSP is currently listed as a candidate NP-intermediate problem on Wikipedia.
5Of course, if MCSP turns out to be NP-complete, then many of these properties will carry over to every other NP-complete

problem.
6In contrast to the other bullet points (where the connections are completely formal), this connection is still an active area

of research, as we will discuss later.
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1.1 Background: MCSP and Metacomplexity

MCSP is an example of a metacomplexity problem. In general, a metacomplexity problem asks one to
determine the complexity of a given object according to some complexity measure. In the case of MCSP,
this complexity measure is circuit complexity. There are several other important metacomplexity problems,
such as the problem of computing time-bounded Kolmogorov complexity [Sip83; Ko86; Har83; Ko91]. For a
Boolean string x, the t-time-bounded Kolmogorov complexity of x, denoted Kt(x), is the length of the shortest
program that outputs x in time at most t (see Section 2 for a formal definition).

Metacomplexity and Learning Theory. Carmosino, Impagliazzo, Kabanets, and Kolokolova [CIKK16]
show that average-case algorithms for MCSP on a restricted circuit class C imply learning algorithms for func-
tions computable in C. Using this connection, they give a PAC-learning algorithm for AC0[p] on the uniform
distribution with membership queries, resolving a longstanding open question in learning theory. Their
learning algorithm relies on an average-case AC0[p]-MCSP algorithm given by Razborov and Rudich [RR97],
which is based on the lower bounds methods of Razborov [Raz87] and Smolensky [Smo87]. Connections
between metacomplexity and learning are explored in several other papers (e.g. [IL90; CIKK17; HN21;
BCK+22]).

Metacomplexity and Cryptography. Kabanets and Cai [KC00] show that if MCSP ∈ P, then one-way
functions do not exist. As a result, under a widely believed cryptographic assumption, MCSP is intractable.

A natural question to ask is whether a converse holds. In a breakthrough result, Liu and Pass [LP20]
show that one-way functions exist if and only if computing time-bounded Kolmogorov complexity is mildly
hard on average on the uniform distribution. Connections with the existence of one-way functions have been
proved for several other metacomplexity problems [IL90; San20; ACM+21; LP21a; LP21b; RS21; IRS22;
LP22; HIL+23; Hir23; LP23].

Metacomplexity and Average-Case Complexity. A basic open question in complexity theory is to
show that if SAT is hard to solve in the worst-case, then SAT is also hard to solve on average. In the language
of Impagliazzo’s five worlds [Imp95], this corresponds to showing we do not live in “Heuristica.” There are
several barrier results (e.g. [FF93; BT06]) showing that to resolve this question one needs to use “non-black
box” techniques. In an influential paper, Hirahara [Hir18] gives a non-black box worst-case to average-case
reduction for approximating MCSP and Kt. Building on this metacomplexity approach, Hirahara [Hir21]
shows that an exponential worst-case lower bound on UP implies the average-case hardness of NP. This is
a very active area of research [San20; Hir20; HN21; HN22; HS22; Hir22b; GKLO22; GK22; CHV22].

Metacomplexity and Proof Complexity. A central question in proof complexity is understanding
the difficulty of proving circuit lower bounds. The famous “natural proofs barrier” of Razborov and
Rudich [RR97] is perhaps the best explanation we have so far of why proving circuit lower bounds is diffi-
cult. One can interpret Razborov and Rudich’s result as saying that any “natural proof” of a circuit lower
bound for a class C implies an average-case algorithm for solving MCSP on C-circuits, a consequence that
is considered unlikely even for relatively weak circuit classes. Moreover, using a worst-case to average-case
reduction, Hirahara [Hir18] shows the worst-case hardness of approximating MCSP implies the non-existence
of “natural proofs” of certain circuit lower bound statements.

Hardness of Metacomplexity: Progress and Barriers. The best known unconditional hardness for
MCSP is a result by Allender and Das [AD17] showing that all problems in the cryptographically important
class SZK (statistical zero knowledge) reduce to MCSP. We also know lower bounds for computing MCSP
against weak circuit classes, almost matching the best known for explicit functions [GII+19; CKLM19;
KKL+20; GR22]. These results are essentially all that is known (unconditionally) about the hardness of
MCSP.
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To explain the difficulty of showing hardness for MCSP, researchers have proved several barrier results.
One line of research [KC00; MW17; HP15; SS20] shows that proving MCSP is NP-complete under certain
types of reductions implies widely-believed, but seemingly difficult to show, lower bounds. For example,
Murray and Williams [MW17] show that if MCSP is NP-complete under deterministic polynomial-time
many-one reductions, then EXP ̸= ZPP. We stress that it is widely believed that EXP ̸= ZPP is true, but,
at least so far, it seems beyond the reach of current techniques to prove it.

Another line of research [HW16; AHK17; AH19; RS22] looks at relativization barriers and oracle versions
of MCSP. For example, Ren and Santhanam [RS22] construct an oracle relative to which MCSP is in P but
NP requires exponential time. Hirahara and Wantanabe [HW16] show, under a plausible assumption, that
any “oracle independent” randomized many-one reduction cannot show that MCSP is NP-hard.

A third line of research constrains what properties reductions from SAT to MCSP can have. For example,
Murray and Williams [MW17] unconditionally rule out the possibility of a “local” reduction from SAT
to MCSP. Saks and Santhanam show that, under a plausible assumption, any randomized polynomial-time
many-one reduction from SAT to approximating Kt needs to run in time that grows (essentially) polynomially
with t.

Despite these barrier results, significant progress has been made on showing hardness for variations of
MCSP. For example, we know NP-hardness for all the following problems:

• MCSP on DNF formulas [Mas79; Czo99; UVS06; AHM+08; Fel09; KS08]

• MCSP on circuits with O-oracle gates where O is a PSPACE-complete problem [ABK+06]7

• MCSP on DNF-XOR formulas [HOS18]

• Conditional string versions (i.e., corresponding to the following problem: given two strings x and y,
how hard is it to compute x given access to y) of MCSP [Ila20a; HIR23], Kt [LP22; Hir22b; HIR23],
and another complexity measure KT [ACM+21]

• MCSP for multi-output functions [ILO20]

• MCSP on constant-depth formulas [Ila20b] (under quasipolynomial-time reductions)

• MCSP on (unbounded) formulas [Ila21] (under subexponential-time reductions)

• Partial function versions (i.e., one is given a truth table of a partial function f : {0, 1}n → {0, 1, ⋆}) of
MCSP [Hir22a; Ila20b]8 and Kt [Hir22a]

Before we go on to discuss our results, we discuss a subset of the prior work above that is especially
relevant to this paper. First is the recent tour-de-force result by Hirahara [Hir22a]. Hirahara shows that
the partial function versions of MCSP and Kt complexity are NP-hard under randomized polynomial-time
reductions. Hirahara’s tools include state-of-the-art hardness of approximation, secret sharing schemes for
monotone access structures, and one-time information-theoretic encryptions.

In light of Hirahara’s breakthrough result, a tantalizing possibility is that perhaps it is within reach to
show, unconditionally, that MCSP (on total functions) is NP-hard under, say, polynomial-time randomized
reductions. Unfortunately, Hirahara’s proof crucially relies on using partial functions, and the seemingly
minor leap from partial functions to total functions causes (at least for now) major problems. Indeed, there
are even formal barriers. Hirahara’s proof that the partial function version of computing Kt is NP-hard
is “oracle independent.” On the other hand, Hirahara and Wantanabe [HW16] show that a similar oracle
independent reduction is not possible for the total function version.

A commonly studied [ABK+06; AHK17; AH19] version of MCSP is MCSPO, where one considers circuits
with O-oracle gates.9 For example, as mentioned previously, MCSPPSPACE is PSPACE-complete [ABK+06].

7Actually, this problem is even hard for PSPACE.
8[Ila20b] only showed NP-hardness under subexponential time reductions. [Hir22a] shows NP-hardness under polynomial

time reductions.
9We note that the problem MCSPO is different from the related problem MOCSP [Ila20a] (Minimum Oracle Circuit Size

Problem). In MCSPO, the oracle is fixed in the definition of the problem while in MOCSP the oracle is an input.
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A recent paper by Huang, Ilango, and Ren [HIR23] introduces the idea of studying the case where O is
a uniformly random oracle (we will more carefully define what this means in the next subsection). Many
conjectures in complexity theory are provable relative to a random oracle (e.g., P ̸= NP [BG81]), and this
is often viewed as good evidence that the corresponding conjectures are true (with a few notable exceptions
that we discuss in the next subsection).

Huang, Ilango, and Ren show that for a metacomplexity problem called mvMCSP, one can prove strong
hardness of approximation for mvMCSPO when O is a random oracle. In more detail, mvMCSP asks,
given a relation R ⊆ {0, 1}n × {0, 1}m what is the minimum circuit complexity of any function f such that
(x, f(x)) ∈ R for all x. Since partial functions are a special case of relations, Hirahara’s [Hir22a] recent result
also shows that mvMCSP is NP-hard unconditionally. Huang, Ilango, and Ren show that with probability
one over a random oracle O that 3-SAT reduces (under quasipolynoimal time O-oracle reductions) to large
approximations (size s versus sk for all constants k) of mvMCSPO. Intriguingly, this result follows almost
directly from Micali’s construction [Mic00] of succinct non-interactive arguments in the random oracle model.

Furthermore, they conjecture a similar statement holds for MCSP and that this “would give strong
evidence that MCSP is indeed NP-complete” (we will discuss why in the next subsection).

Conjecture 1 (Huang, Ilango, and Ren [HIR23]). With probability one over the choice of a random oracle
O, 3-SAT reduces to MCSPO under quasipolynomial-time reductions with O-oracle access.

1.2 Our Results

Our main result is to prove Conjecture 1.10 Specifically, our hardness results are proven in a model where
we equip all circuits and Turing machines with oracle access to a uniformly random function11 O : {0, 1}⋆ →
{0, 1}. This model is often referred to as the Random Oracle Model [BR93].

Informally, our main result is the following.

Theorem 2 (Informal). In the Random Oracle Model, there is a (black-box) uniform polynomial-time de-
terministic many-one reduction from an NP-hard variant of vertex cover to both MCSP and computing Kt.
Moreover, these reductions give optimal (up to a constant factor) additive hardness of approximation.

At the cost of introducing non-uniformity, we can state our result more succinctly (an analogous result
also holds for Kt).

Theorem 3 (Informal). With probability one over a random oracle O,

NP ⊆ PMCSPO
/poly.

We believe that Theorem 2 and Theorem 3 are the strongest evidence yet that MCSP and Kt are in
fact NP-complete. We discuss some aspects of this result before formally stating our theorems and defining
MCSPO.

The Reduction. We emphasize that the notion of reduction in Theorem 2 is the standard one: a uniform
deterministic polynomial-time many-one reduction, with the caveat that the reduction gets oracle access to
O (this caveat is removed in Theorem 3 using non-uniformity).

Our reduction is from approximating vertex cover on τ -uniform hypergraphs (which we reformulate12

as a variant of set cover called Gap τ -Frequency Set Cover). Strong NP-hardness of approximation is
known [DGKR05] for this problem even when τ is constant (which is our setting).

The reduction is the same for both MCSP and Kt but with a different size threshold. We state (a
randomized version13 of) the reduction in Theorem 2 below and give detailed intuition for each step in the
reduction. In our view, a significant feature is that, although our proof of correctness is rather technical, the
reduction itself is quite simple!

10In fact, our result is stronger than Conjecture 1 since we use polynomial-time reductions.
11Formally, this means that for all x the value of O(x) is independently sampled uniformly from {0, 1}.
12This reformulation is not for any technical reason. We felt that thinking about set covers was more intuitive than hyper-

graphs.
13One can easily derandomize it using the random oracle.
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Reduction from Gap τ-Frequency Set Cover to MCSP and Kt

Parameter: a power of two λ = Θ(log n).

Oracles: For all powers of two n, we have oracle access to On : [n]× {0, 1}λ × {0, 1}2λ → {0, 1}λ.

Given: a set cover instance S1, . . . , Sm ⊆ [n] with τ -frequencya where n and τ are powers of two.

1. Pick sk1, . . . , skm ∈ {0, 1}λ uniformly at random.

• Intuition: One can think of each skj as a “secret key” associated with a set in the set cover
instance. These secret keys will be used in an “encryption scheme” later.

2. For all i ∈ [n] pick vi ∈ {0, 1}λ uniformly at random.

• Intuition: One can think of vi as a uniformly random message (that we will later encrypt)
associated with each element of the ground set [n].

3. For all i ∈ [n] and k ∈ [τ ], let ci,k be a uniformly random element (chosen using rejection sampling)
of the set {c ∈ {0, 1}2λ : On(i, skj , c) = vi} where j is the index of the kth set containing i.

• Intuition: This is the crucial part of the reduction. There are two things that are happening
here. First, one can think of ci,k as an encryption of the message vi using the secret key for the
set Sj that contains i. (This allows one to decrypt encrypting the message vi if one knows at
least one secret key for a set that contains i, since On(i, skj , ci,k) = vi.) The second (more subtle
but critical) thing is that the specific encryption scheme we use has the property that the cipher
texts are in some strong sense incompressible, even if one knows the secret key skj and the value
vi it decrypts to. In part, this is because the rejection sampling procedure is effectively doing an
idealized cryptographic proof of work. It may not be clear why this property is important yet,
but we dedicate the entirety of Section 1.3 to giving intuition about why we use this encryption
scheme and why this property is useful. We also note that because λ = O(log n) the rejection
sampling step runs in polynomial time with high probability.

4. Output the 4τnλ-bit truth table of the function f : [n]× [τ ]× {0, 1} × [2λ]→ {0, 1} given byb

f(i, k, b, d) =

{
d’th bit of ci,k, if b = 0

d’th bit of vi, if b = 1
.

We also output some complexity threshold that depends on the precise problem we are reducing
to.

• Intuition: the truth table of f is essentially the string that concatenates all the encryptions
ci,k and all the messages vi. Ideally, one might hope that the “optimal” way to compute f is
to have memorized all the ci,k as well as the secret keys skj for all j in an optimal set cover.
Then one can decrypt “on the fly” to find the values of vi. This would relate the complexity of
computing f to the size of the optimal set cover. Unfortunately, this bound fails badly in the
information-theoretic setting: one can instead memorize all the vi and save on describing each ci,k
knowing that it decrypts to vi. But, crucially, this may require a lot of time (i.e., queries to the
oracle). In particular, this is where we need the incompressibility property of the ci,k.

aThis means that every i ∈ [n] is contained in exactly τ sets.
bSince each vi is a λ-bit string, and d ∈ [2λ], we must adopt a convention for what the d’th bit of vi is when d > λ.

Any reasonable choice suffices, but for concreteness we say to output 0 when this is the case.
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Is this good evidence MCSP is NP-complete? As mentioned previously, we believe our results are strong
evidence thatMCSP and Kt are indeed NP-complete. A skeptic might wonder why these results are compelling
given that we know counterexamples [Kur83; Har83; CCG+94] to the random oracle hypothesis [BG81] (the
hypothesis that structural results that hold relative to a random oracle hold in the unrelativized world). Of
course, being “strong evidence” is an informal claim, so we cannot give a truly rigorous answer, but, still,
we try to illustrate three aspects of our thinking.

1. First, we address the known counterexamples to the random oracle hypothesis.

Arguably, the most compelling counterexample is that IP = PSPACE [Sha92] but IPO ̸= PSPACEO for
a random oracle O [CCG+94]. Note that IP and PSPACE are two equal classes in the unrelativized
world that become unequal in the random oracle model. In contrast, to the best of our knowledge,
there is no known example of inclusions in the random oracle model which fail in the unrelativized

model. Our result, NP ⊆ PMCSPO
/poly, is an inclusion.

Moreover, in our inclusion, the random oracle O is only given to the class we are lower bounding.
It is easy to see that the IP versus PSPACE counterexample fails in this setting, since IP = PSPACE
immediately implies that PSPACE ⊆ IPO and IP ⊆ PSPACEO.

Next, as argued in [KMR95], perhaps the strongest reason for believing the random oracle heuristic
is the idea that sufficiently “pseudorandom” cryptographic functions exist in P which mimic random
oracles. This reasoning does not apply to extremely strong adversaries such as those corresponding to
IP and PSPACE, who can easily break such pseudorandom functions.

On the other hand, in our setting our adversaries are precisely those cryptographic functions are
meant to be secure against: circuits of a bounded size. Moreover, this setting is well-studied: the
random oracle methodology [BR93] in cryptography is widely used to give heuristic constructions of
cryptography protocols. In particular, if a protocol is secure in the random oracle model, one can
heuristically “instantiate” the protocol by replacing the oracle O with a real-world hash function, like
a version of AES handling arbitrarily long inputs [BRS02; DR20].

This paradigm is extremely successful in practice and is the basis for many real-world cryptographic
systems. Unfortunately, it is known that there are protocols that are secure in the random oracle
model, but are insecure when instantiated by any efficiently computable function [CGH04]. However,
as noted by Bitansky, Kalai, and Paneth [BKP18] these examples are somewhat unsatisfying:

“For several cryptographic hash functions used in practice, the only known separations from
random oracles are highly contrived.”

It is a longstanding open question to give non-contrived separations between random oracles and hash
functions used in practice. As a result, we get a win-win: either (as we suspect) our reduction can be
instantiated by real-world hash functions, or it can be used to separate real-world hash functions from
random oracles.

2. We feel instantiating O looks especially plausible. We give formal and informal reasons for this.

Formally, we observe that the reduction has an extremely nice property: as one may be able to see
from the pseudocode above, we only need to evaluate the oracle on inputs of length O(log n).14 As
a result, our reduction is very insensitive to the running time of the oracle O. Because of our large
additive hardness of approximation, this means randomized versions of our reductions hold even if
O can only be evaluated on an input x in time, say, O(2ϵ|x|) for a sufficiently small ϵ. In fact, if
one instead aims for a non-uniform reduction, it even suffices for the oracle to have a non-uniform
circuit of size O(2ϵ|x|). Since every function has a circuit of size O(2|x|), and our proof shows that
most functions have the properties we need, this could make replacing the random oracle O with some
concrete function significantly easier.

14Actually this is only true for randomized versions of our reductions. To also derandomize the reduction, one needs to
evaluate the oracle on longer inputs.
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Relatedly, because our reductions are allowed to be randomized or non-uniform, we have significantly
more flexibility in instantiating O than is usually the case when using the random oracle methodology.
For example, it is perfectly okay for the reduction to sample a random key k and set O = Fk where Fk

is a pseudorandom function family. In contrast, usually when using the random oracle methodology
one has to choose a single uniform oracle function O that works for all inputs.

Finally, informally, we feel the reduction is rather intuitive and uses the oracle O in a natural way. It
seemingly lacks the circularity that can preclude instantiation.

3. It seems even easier to instantiate the reduction in Theorem 3. By utilizing non-uniformity, the
reduction in Theorem 3 simplifies to just one line!

Non-Uniform Reduction from Gap τ-Frequency Set Cover to Kt and MCSP

Parameter: power of two λ = poly(n)

Advice: hardcoded values vi ∈ {0, 1}λ and c⋆i,j ∈ {0, 1}2λ for all i ∈ [n] and j ∈ [m]

Given: a τ -frequency set cover instance S1, . . . , Sm ⊆ [n] where n and τ are powers of two

1. Output the complexity thresholda 2λnτ + nλ/8 − 1 and the 4τnλ-bit truth table of the
function f : [n]× [τ ]× {0, 1} × [2λ]→ {0, 1} given by

f(i, k, b, d) =

{
d’th bit of c⋆i,j , if b = 0, where Sj is the k’th set containing i

d’th bit of vi, if b = 1
.

aFor MCSP we use a different threshold.

Observe that, intriguingly, the circuit implementing this reduction does not need oracle access to O.
All the information it needs about O is non-uniformly provided in its polynomial bits of advice (oracle
access to O is just needed for the reduction’s correctness). Perhaps because of this, instantiating this
non-uniform reduction seems even more plausible than instantiating our uniform reduction. “All one
needs to do” is prove the existence of advice such that this reduction succeeds. Our work shows that
such advice exists in the random oracle model. We see no reason why such advice should not exist in
the unrelativized world.

How do we avoid the barrier results? We now discuss how our reduction overcomes the aforementioned
barrier results. We roughly split the barrier results into three categories.

The first category is barrier results showing that any “natural” reduction from SAT to MCSP implies
lower bounds, such as EXP ̸= ZPP. Our use of the random oracle allows us to bypass these barriers. This is
because, for example, relative to a random oracle EXP is indeed not equal to ZPP.15

The second category is related to relativization. This includes the usual relativization barriers (i.e., oracle
worlds where MCSPO is easy but NPO is not) as well the limitations of oracle independent reductions (i.e.,
reductions that work from a language L to MCSPO for all oracles O). We avoid these barriers because our
results do not hold for all oracles O, but instead only for random oracles O.

The last category includes a result of Saks and Santhanam [SS22]. Saks and Santhanam show that, under
a plausible assumption, any randomized polynomial-time many-one reduction from SAT to approximating
Kt needs to run in time (roughly speaking) that grows polynomially with t. This essentially means that the
reduction itself needs to be doing some roughly t-time hard task. In our reduction described above, this is
accomplished in step 3, where the reduction essentially does a cryptographic proof of work! In particular, it
finds a pre-image of a random string vi under a hash function (On(i, skj , ·)).

15In more detail, one can use the random oracle to show ZPPO = PO. On the other hand, PO ̸= EXPO because the
time-hierarchy theorem relativizes.
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Worst-case to Average-case Reductions. A basic open question in complexity theory is connecting the
worst-case and average-case complexities of NP. Hirahara [Hir18] shows (roughly) that solving the problem
of approximating Kt complexity up to an additive O(

√
n) in the worst-case reduces in a non-black-box way

to solving Kt on average (with zero error) on the uniform distribution.
Thus, if one could show that this problem is NP-complete, NP has a worst-case to average-case reduction.

Should we expect this problem to be NP-complete? An immediate corollary of Theorem 40 is that it is
NP-complete in the random oracle model.

Corollary 4 (Informal). The approximation of Kt that Hirahara [Hir18] gives a worst-case to average-case
reduction for is NP-complete in the random oracle model.

We also get the following corollary about “instantiating” the random oracle.

Corollary 5 (Informal). There is a problem Π in NP with a known (non-black-box) worst-case to average-
case reduction, such that if one can successfully “instantiate” the random oracle in Theorem 2, then Π is
NP-complete.

What we find most interesting about this result is that it connects the properties of (ideally) unstructured
hash functions like SHA and AES to basic questions about the structure of NP (in particular, does Hirahara’s
worst-case to average-case apply to NP?).

It is worth noting that the order of the statement in Corollary 5 is important. If one could provably
instantiate the reduction in Corollary 5, then one might (although perhaps not necessarily) also be able to
prove that NP is hard on average. As a result, one could argue that SAT has a non-black-box worst-case to
average-case reduction: this is because assuming SAT is easy on average is a contradiction, so you can prove
any consequence.

Finally, a good comparison with Corollary 5 is the result by Huang, Ilango, and Ren [HIR23] showing
that the conditional string version of Kt is NP-complete in the “superlinear regime” assuming a strong
cryptographic primitive called witness encryption [GGSW13] exists. Hirahara [Hir22b] shows that this
problem also has a non-black-box worst-case to average-case reduction.

1.2.1 Formal Theorem Statements

We now give a formal statement of Theorem 2 using the relativized versions of MCSP and Kt. The O-oracle
circuit complexity of a function f is the size of the smallest circuit that computes f where one allows AND,
OR, NOT, and O-oracle gates. Similarly, let Kt,O(x) denote the size of the smallest description for outputting
x in time at most t given oracle access to O. (See Section 2 for formal definitions.)

We first state our theorem for circuit complexity.

Theorem 6. There is a deterministic polynomial-time algorithm A such that with probability one (over a
random oracle O) AO is a many-one reduction from 3-SAT to the promise problem of, given a string x,
outputting:

• YES: if the O-oracle circuit complexity of x is at most θ(|x|) (and moreover, this is witnessed by a
constant-depth circuit)

• NO: if the O-oracle circuit complexity of x is at least θ(|x|) + Ω( |x|log |x| )

where θ is some function of |x|.

Now we state our theorem for time-bounded Kolmogorov complexity.

Theorem 7. Let p(·) be any polynomial satisfying p(t) ≥ t. There is a deterministic polynomial-time
algorithm A such that with probability one (over a random oracle O), AO is a many-one reduction from
3-SAT to the promise problem of, given a string x, outputting:

• YES: if Kt,O(x) ≤ θ(|x|)

10



• NO: if Kp(t),O(x) ≥ θ(|x|) + Ω(|x|)

where t is some polynomial in |x| and θ is some function of |x|.

We discuss a few more aspects of our theorems.

Hardness of Approximation. We note that our additive hardness of approximation is within a constant factor
of optimal. This is because for all strings x, Kt(x) ≤ |x| + O(1) when t ≥ poly(|x|). Similarly, the circuit

complexity of any function f : {0, 1}n → {0, 1} is at most O( 2
n

n ) which is O( |T |log |T | ) where T is the truth

table of f .

Hardness for NP not NPO. Our proofs use non-relativizing properties of SAT (specifically, the PCP theorem).
As a result, we do not show a reduction from SATO to MCSPO or Kt,O. We instead show a reduction from
(the usual) SAT to MCSPO or Kt,O.

A Simpler, Non-Uniform Reduction with Larger Time Gaps and without Oracle Access. One
deficiency in Theorem 7 is that the gap in the time-bound from t to t′ is only polynomial. At a high
level, the reason for this is that the reduction needs to spend a lot of time finding “collision” in a hash
function built from O (indeed, this is in some sense inherent because of the aforementioned result of Saks
and Santhanam [SS22]). By instead considering non-uniform reductions and hardcoding in these collisions,
we show NP-hardness for Kt with an exponential gap in the time bounds.

Theorem 8. Let ϵ > 0 be any sufficiently small constant. Let O be a uniformly random oracle. With prob-
ability one there is a non-uniform polynomial-time many-one reduction (where the circuit implementing the
reduction does not get oracle access to O) from SAT to the promise problem of, given a string x, outputting:

• YES: if Kt,O(x) ≤ θ(|x|)

• NO: if K2|x|1−ϵ
,O(x) ≥ θ(|x|) + Ω(|x|)

where t is a polynomial in x and θ is some function of |x|.

Although we presented the reduction earlier, we state it again so that we can make a remark. This
reduction also works for MCSP with a different setting of the complexity threshold.

Non-Uniform Reduction from Gap τ-Frequency Set Cover to Kt and MCSP

Parameter: power of two λ = poly(n)

Advice: hardcoded values vi ∈ {0, 1}λ and c⋆i,j ∈ {0, 1}2λ for all i ∈ [n] and j ∈ [m]

Given: a τ -frequency set cover instance S1, . . . , Sm ⊆ [n] where n is a power of two

1. Output the complexity thresholda 2λnτ + nλ/8− 1 and the 4τnλ-bit truth table of the function
f : [n]× [τ ]× {0, 1} × [2λ]→ {0, 1} given by

f(i, k, b, d) =

{
d’th bit of c⋆i,j , if b = 0, where Sj is the k’th set containing i

d’th bit of vi, if b = 1
.

aFor MCSP we use a different threshold.

Observe that this reduction can be computed extremely easily: in non-uniform AC0. Allender, Ilango,
and Vafa [AIV21] prove that approximating MCSPO to a super constant factor is not NP-hard under non-
uniform AC0 reductions.16 In contrast, we show the existence of oracles O such that NP reduces to large

16Actually, they show this for MCSP, but their result relativizes.
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additive approximations of MCSPO under non-uniform AC0 many-one reductions. The non-hardness result
in [AIV21] perhaps suggests a barrier to achieving better, multiplicative, hardness of approximation using
our techniques.

1.3 Our Approach (Conceptually): Pseudo Symmetry of Information

Here we give an overview of the main conceptual idea that led to our results. We do this with the aim of
giving as much intuition as possible. We caution the reader that to actually execute the idea in this section,
our proofs will diverge significantly from what is described and are more involved. Nevertheless, we feel that
what we write below is the “root” of our results.

As mentioned earlier, prior work shows that the conditional string versions of MCSP and Kt are NP-
hard [Ila20a; LP22; ACM+21; Hir22b; HIR23] (we will review what this means in a few sentences). Thus,
one way to show NP-hardness is to give a reduction from these conditional string problems to the original
(non-conditional) problems.

For concreteness, let us consider time-bounded Kolmogorov complexity, which turns out to be the simpler
case for us. The conditional time-bounded Kolmogorov complexity of a string x given y, denoted Kt(x|y), is
the length of the shortest program for computing x given access to y in time at most t (see Section 2 for a
formal definition). Suppose one wants to estimate the quantity Kt(x|y) using an oracle that computes Kt(·).
A natural idea is to hope for symmetry of information to hold. That is to hope that

Kt(xy) ≈ Kt(x|y) + Kt(y)

with perhaps some loss in the time bounds. Intuitively, symmetry of information says that the “best” way
of computing the concatenation xy is to first compute y and then compute x using information about y.

If symmetry of information were true, then we could estimate Kt(x|y) by Kt(xy) − Kt(y), and hope to
use this to prove NP-hardness of computing Kt using the existing NP-hardness for computing conditional Kt.
Unfortunately, while symmetry of information holds for time-unbounded Kolmogorov complexity [ZL70], it
is known to fail for time-bounded Kolmogorov complexity if one-way functions exist [LM93; LW95]. To get
some intuition for this, consider the case where x is chosen uniformly at random from {0, 1}n and y = f(x)
where f : {0, 1}n → {0, 1}n is a cryptographic one-way function. Then it is plausible that Kt(x|y) ≈ n
(because f is one-way) but also that

Kt(xy)− Kt(y) ≈ n− n ≈ 0,

so in this case symmetry of information fails quite badly. Intuitively, this is because the “one-way-ness” of
f makes it much cheaper to describe x first and then compute y

Our main idea is to try to replace y with some encoding ỹ of y such that one can easily recover y from
ỹ but such that symmetry of information will now hold. In other words, our goal is to construct ỹ from y
such that

Kt(xỹ) ≈ Kt(x|y) + Kt(ỹ),

allowing for some slack in the time bounds. We refer to this idea as Pseudo Symmetry of Information.
Our original intuition for constructing ỹ was guided by the idea of encryption. Suppose we let ỹ be

an encryption of y according to some ideal (secret key) encryption scheme where the secret key is chosen
randomly but then publicly revealed. Then one could decrypt ỹ to obtain y using the publicly known secret
key. On the other hand, one could hope that the encryption ỹ is so good that it only reveals the value y
and essentially looks essentially random otherwise. Then one could hope that the optimal way to describe
xỹ is to first describe ỹ, then decrypt using the publicly known secret key to obtain y, and then describe x
knowing y. If this were the case, then we would have

Kt(xỹ) ≈ Kt(x|y) + Kt(ỹ)

and thus that
Kt(x|y) ≈ Kt(xỹ)− Kt(ỹ).
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A first attempt is to see if the above approach works using Shannon’s one-time-pad encryption scheme.
Let O : {0, 1}λ → {0, 1} denote a uniformly random function (we will use O as our “one-time pad”). For
each i ∈ [n], we encrypt yi (the ith bit of y) by picking some uniformly random ri ∈ {0, 1}λ and outputting
(ri,O(ri)⊕ yi). We then let ỹ be the concatenation of (ri,O(ri)⊕ yi) for all i ∈ [n]. Note that ỹ is a string
of length n(λ+ 1) = nλ+ n.

Now, we can ask: is it true that Kt(xỹ) ≈ Kt(x|y) + Kt(ỹ) when we equip all Turing machines with
oracle access to O? Unfortunately, no. Consider again the case where x ∈ {0, 1}n is uniformly random and
y = f(x) for a one-way function f . Then it is plausible that Kt(x|ỹ) ≈ n and that Kt(ỹ) ≈ nλ+ n. On the
other hand, one can describe xỹ by first describing x and then describing each ri for all i ∈ [n]. To see that
this allows one to quickly recover xỹ, note that one can compute y = f(x), and then compute O(ri) ⊕ yi.
This plausibly gives

Kt(xỹ) ≈ n+ nλ.

So
Kt(xỹ)− Kt(ỹ) ≈ n+ nλ− (nλ+ n) ≈ 0,

so symmetry of information still fails!
Why does the above approach fail? The problem seems to be that in the encryption the bit O(ri) ⊕ yi

is completely revealed once y and ri are known. This gives a non-trivial way of computing xỹ by describing
x first.

This led us to a second attempt using a different encryption construction that removes the O(ri) ⊕ yi
bit. Again let O : {0, 1}λ → {0, 1} denote a uniformly random function. The new encryption scheme is as
follows: for each i ∈ [n], we encrypt yi (the ith bit of y) by picking some uniformly random ri ∈ {0, 1}λ
satisfying O(ri) = yi. We then let ỹ be the nλ length string that is the concatenation of ri, for all i ∈ [n].

Unfortunately, symmetry of information still might not hold in the one-way function example. Again
when y = f(x), it is plausible that Kt(x|ỹ) ≈ n and that Kt(ỹ) ≈ nλ. But one can show that

Kt(xỹ) ≈ n+ n(λ− 1) = nλ.

The reason for this bound is that you can hardcode in x, then compute y, and then by using query access to
the oracle O one can on average compress each ri by one bit by using the fact that O(ri) = yi. This means
that

Kt(xỹ)− Kt(ỹ) ≈ nλ− nλ ≈ 0,

so it appears we have made no progress.
However, note there is one thing nice about this attempt. In order to compress each ri by one bit, one

needs to make (on average two) queries to the oracle. This gives us a computational lever to exploit. If
instead of encrypting a single bit of y at a time, we encrypt ℓ bits of y at a time, one might expect that in
order to compress the corresponding cipher text by ℓ bits, one might need to make on the order of 2ℓ queries
to the oracle. If ℓ is large, this could take far too much time!17

This leads us to our third (and final) attempt. The main difference is to use the above scheme but instead
of encrypting a single bit of y at a time, encrypt λ bits of y at a time. In more detail, let O : {0, 1}2λ → {0, 1}λ
denote a uniformly random function and assume λ evenly divides n. We divide y into n/λ blocks of λ bits.
For each i ∈ [n/λ], let yi denote the i’th block, and we encrypt yi by picking a uniformly random ri ∈ {0, 1}2λ
such that O(ri) = yi (one can do this efficiently via rejection sampling if λ = O(log n), but let us ignore
time complexity considerations for now). Then let ỹ be the length 2n string given by concatenating all these
encryptions.

Now let us look at the one-way function case where y = f(x). Then it is plausible that Kt(x|ỹ) ≈ n and
that Kt(ỹ) ≈ 2n. On the other hand, it appears that the best bound we can give on Kt(xỹ) is to hardcode
in x, then compute y given x, and then, because we are limited to at most t oracle queries by our running
time bound, to compress about log t bits of each ri. This gives

Kt(xỹ) ≤ n+ 2n/λ(λ−O(log t)) ≤ n+ 2n−O(2n/λ log t).

17One way to view this is that, while in the information-theoretic regime pseudorandomness and incompressibility are equiv-
alent, in the computational regime they are (likely) not!
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Now let ϵ > 0 be arbitrary. Then setting λ = γ log t for a sufficiently large constant γ that depends on ϵ,
we get

Kt(xỹ) ≤ (3− ϵ)n.

If this bound is tight, then we get that

Kt(xỹ)− Kt(ỹ) ≈ (3− ϵ)n− 2n ≈ (1− ϵ)n ≈ (1− ϵ)Kt(x|y)

and thus that symmetry of information holds on this example (approximately)! Of course, this is just a test
case and not at all a formal proof.

With this in mind, we return to our original goal of showing that computing Kt is NP-hard. At this point
there are two main problems:

1. the known NP-hardness of conditional time-bounded Kolmogorov complexity is not sufficient for our
purposes, and

2. one needs to actually prove that Kt(xỹ)− Kt(ỹ) ≈ Kt(x|y).

We now discuss the first problem. While we stated earlier that the conditional versions of circuit complex-
ity and time-bounded Kolmogorov complexity are NP-hard to compute, all known (unconditional) reductions
only hold in the sublinear time-bound regime. For example, we only know how to prove NP-hardness of
Kt(x|y) when the time-bound t is much shorter than the string y (i.e. one does not even have the opportunity
to even look at all the bits in y). This is a significant obstacle for the “pseudo symmetry of information”
approach we describe above. This is because it only makes sense to consider Kt(xy) when t ≥ |x|+ |y|, as one
needs at least this much time to print all of x and y. Thus, we seem to require the NP-hardness of conditional
time-bounded Kolmogorov complexity in the superlinear regime (i.e., where t ≥ |y|). Such NP-hardness is
known if one assumes the existence of cryptographic witness encryption [HIR23], but we would like to avoid
making another assumption.

It turns out one can use the random oracle to get around this. At a high level, this is done by replacing
information theoretic encryption schemes in prior reductions [LP22; Hir22a] with an encryption scheme using
the random oracle. Because of the strong security of the random oracle encryption scheme, one can prove
that computing conditional Kt complexity is NP-hard in the superlinear regime.

Now, the second problem is actually proving pseudo symmetry of information

Kt(xỹ)− Kt(ỹ) ≈ Kt(x|y).

We show a version of this is true for the version of time-bounded Kolmogorov complexity equipped with
“public randomness” (pK) introduced by Goldberg, Kabanets, Lu, and Oliveira [GKLO22]. In one (very
high-level) sentence, the idea behind the proof is to use a hybrid argument to replace the oracle O with a
highly biased oracle O′ and then use O′ to construct small descriptions of x given y.

Theorem 9 (Informal version of Corollary 19). Let O be a uniformly random oracle. Let x, y ∈ {0, 1}n.
Then with probability 1− 2−Ω(n) we have that

pKt′′(x|y)− n/100 ≤ pKt′,O(xỹ)− |ỹ| ≤ pKt(x|y) + n/100

where t′ = poly(t) and t′′ = poly(t′).

However, proving a similar result for other complexity measures like circuit complexity seems quite
difficult (and potentially even false). As a result, our actual approach diverges significantly. We carefully
combine the ideas described in this subsection with Hirahara’s reduction [Hir22a] for the partial function
version of MCSP. We then prove this reduction is correct “by hand,” using a somewhat technical random
oracle argument.
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1.4 Related Work

Our results build on techniques and ideas developed in a long sequence of work showing conditional and
unconditional NP-hardness of problems related to MCSP [Mas79; Czo99; UVS06; ABK+06; AHM+08; Fel09;
HOS18; Ila20a; ILO20; Ila20b; Ila21; ACM+21; LP22; Hir22b; Hir22a; HIR23].

In particular, as stated earlier, we arrived at our reductions by carefully applying the idea of pseudo
symmetry of information to the reduction used in Hirahara’s recent result [Hir22a], which itself builds on
prior reductions. The problem we reduce from, τ -frequency Set Cover, is a special case of Collective Minimum
Monotone Satisfying Assignment (the problem reduced from in [Hir22a]). This special case is especially nice
as it does not require us to use any secret sharing scheme.

It is also worth noting that τ -frequency Set Cover seems closely related to the r-bounded Set Cover prob-
lem which was first used to prove hardness in metacomplexity by Hirahara, Oliveira, and Santhanam [HOS18]
and then in several other results [Ila20a; ILO20; ACM+21; LP22].

As mentioned previously, the recent paper of Huang, Ilango, and Ren [HIR23] first introduced the idea
of using a random oracle to prove hardness of metacomplexity problems, and they conjectured that one can
show that with probability one 3-SAT reduces to MCSPO under O-oracle quasipolynomial-time reductions.

One can view our results as showing that the conditional string versions of MCSP (i.e., MOCSP [Ila20a])
and Kt are NP-hard even when the conditional string is chosen uniformly at random. In contrast, previous
NP-hardness results for these problems [Ila20a; ACM+21; LP22; Hir22b; HIR23] required the conditional
string to depend on the instance fed to the reduction.

Impagliazzo, Kabanets, and Volkovich [IKV18] show that if cryptographic indistinguishability obfuscators
exist, then MCSP is in ZPP if and only if NP is in ZPP. One can view this as a non-black-box reduction
from SAT to MCSP under the assumption that indistinguishability obfuscators exist.

1.5 Open Questions

Our main open question is to give a plausible assumption under which our reduction works without assuming
a random oracle. It would also be useful to better understand what properties of a random oracle are truly
necessary to carry out our proof. We remark that the notions of keyless hash functions [BKP18] and
extremely lossy functions [Zha19] seem potentially relevant.

It is worth noting that for the purpose of, say, eliminating Heuristica it suffices to instantiate the oracle
under the assumption that approximating MCSP and Kt are in P. Could such an assumption be helpful?

Another interesting direction is to explore further extensions. Is it possible, for example, to show mul-
tiplicative hardness of approximation in the random oracle model? What can be shown in other generic
models, where one assumes access to some idealized function?

While our techniques extend to many metacomplexity problems, one exception is formula complexity. At
a high level, the difficulty with formula complexity is that it does not interact nicely with pseudo symmetry
of information. In particular, one would like to say that if one has computed ỹ, then one can recover y by
“decrypting,” but this could cause a large blowup in the case of formulas. Can one extend our results to
capture formula complexity as well?

2 Preliminaries

We assume basic familiarity with computational complexity theory and Kolmogorov complexity, as can be
found in the textbooks [AB09] and [LV19] respectively.

For a positive integer n, let [n] denote the set {1, . . . , n}. For a finite set S, we let s← S denote sampling
a uniformly random element from S. For two binary strings x and y, we let xy denote their concatenation.
{0, 1}⋆ denotes the set of all finite binary strings. The abbreviation i.i.d. stands for independently identically
distributed. For an event E, we let 1[E] denote the indicator event on E.

For parameters p1, . . . , pk, we write Op1,...,pk
and Ωp1,...,pk

to denote that the hidden constant can depend
on p1, . . . , pk. If no parameters are specified in the subscript, then the hidden constant is independent of all
other parameters. We write poly(p1, . . . , pk) to denote some polynomial in the parameters p1, . . . , pk.
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2.1 Random Oracles

A random oracle O : {0, 1}⋆ → {0, 1} is a random variable where for all x the value of O(x) is set indepen-
dently to a uniformly random element of {0, 1}.

While, strictly speaking, a random oracle only outputs one bit, one can easily extend the number of
outputs of O through concatenation. For example, for any polynomial p, one can construct from O a new
function O′ : {0, 1}⋆ → {0, 1}⋆ that maps n bit inputs to p(n) bit outputs by setting

O′(x) = O(1|x|, 0, x, 0) . . .O(1|x|, 0, x, p(n)− 1)

where p(n)−1 is the binary representation of the corresponding integer. Observe that O′ is a random variable
where for all x the value of O′(x) drawn i.i.d. from the uniform distribution on {0, 1}p(|x|). Moreover, O′
can be computed in polynomial time given oracle access to O.

Another similar idea is that one can construct multiple independent random oracles given access to a
single random oracle O : {0, 1}⋆ → {0, 1}. For example, to construct two independent oracles O0 and O1

from O, let O0 be given by O0(x) = O(0, x), and let O1 be by O1(x) = O(1, x). We will use both of these
ideas in our reduction.

A basic tool for analyzing events in the presence of a random oracle is the Borel-Cantelli Lemma. In
particular, one can use the Borel-Cantelli Lemma to show an event occurs with probability one (or zero)
when an oracle is chosen uniformly at random.

Lemma 10 (Borel-Cantelli Lemma). Let En be a sequence of events. If
∑∞

n=1 Pr[En] < ∞, then the
probability that infinitely many of the events occur is zero.

2.2 Circuits and The Minimum Circuit Size Problem

We will consider circuits that use NOT gates and fan-in two AND and OR gates. The size of a circuit is
the number of AND and OR gates in the circuit. We note that, for our results, any reasonable variation on
these definitions is okay (e.g., gates over the binary basis or size measured by the number of wires).

For a function O : {0, 1}⋆ → {0, 1}, an O-oracle circuit is a circuit using NOT gates, fan-in two AND
and OR gates, and gates Gn for all n ∈ N that take as input x ∈ {0, 1}n about output O(x). The size of an
oracle circuit is the total number of AND and OR gates plus the total number of wires that feed into any
Gn gate. Again, our results hold for most reasonable definitions of O-oracle circuits and their size.

Definition 11 (MCSPO [ABK+06]). The O-oracle Minimum Circuit Size Problem (MCSPO) is the following
computational task:

• Given: a Boolean function f : {0, 1}n → {0, 1} (represented by its truth table of length 2n) and a
size parameter s,

• Decide: if there is an O-oracle Boolean circuit that computes f of size at most s.

When the oracle is empty, this problem is the usual MCSP.

2.3 Kolmogorov Complexity

Fix a time-optimal universal Turing machine U with random access to its input. (We refer the reader
to [LV19] for a formal definition. Essentially, the machine U takes two inputs (M,x) interprets M as the
description of a Turing machine and simulates running M on x. The machine being time-optimal essentially
means the simulation blow-up is not too large.)

Definition 12 (Time-Bounded Kolmogorov Complexity [Sip83; Ko86; Har83; Ko91]). For an oracle O, a
binary string x ∈ {0, 1}n and a (possibly empty) binary string y, the O-oracle t-time bounded Kolmogorov
complexity of x given y, denoted Kt,O(x|y), is the minimum length of any d such that UO(d, y) outputs x in
time at most t.
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In the case where O is empty, this is the usual definition of conditional time-bounded Kolmogorov
complexity, and we omit the O superscript. In the case when y is empty, we will also omit y. We refer to d
as a t-time description.

We will also use a generalization of time-bounded Kolmogorov complexity introduced by Goldberg,
Kabanets, Lu, and Oliveira [GKLO22] that allows for U to take as input “public coin” randomness r on
a separate tape (to visually separate r from the other inputs we use a colon “;”). Goldberg, Kabanets,
Lu, and Oliveira [GKLO22] show that pKt coincides with Kt (up to an additive logarithmic term) under a
derandomization assumption. An excellent exposition on probabilistic time-bounded Kolmogorov complexity
can be found in a recent survey by Lu and Oliveira [LO22].

Definition 13 (Probabilistic Time-Bounded Kolmogorov Complexity [GKLO22]). For an oracle O, a bi-
nary string x ∈ {0, 1}n and a (possibly empty) binary string y, the O-oracle probabilistic t-time bounded
Kolmogorov complexity of x given y denoted pKt,O(x|y), is the minimum length ℓ such that for all least
two-thirds of all “public randomness” r ∈ {0, 1}t there exists a dr ∈ {0, 1}ℓ such that UO(dr, y; r) outputs x
in time at most t.

If O or y is empty, we omit writing them. It will sometimes be useful to fix a specific choice of public
randomness r ∈ {0, 1}t. To do this, we let pKt,O(x|y ; r) denote the length of the smallest d such that
UO(d, y; r) outputs x in time at most t.

The following proposition follows from the definition of pK.

Proposition 14. If pKt,O(x|y) ≤ α, then

Pr
r←{0,1}t
ℓ←[α]

d←{0,1}ℓ

[UO(d, y; r)outputs x in time t] ≥ 2

3

1

α2α

An important property about pK is that it has a coding theorem. Informally, this says that if one can
sample a string x with probability p in time t, then one can upper bound its pK complexity by roughly 1/p.

Theorem 15 (Coding Theorem for pK [LOZ22]). Let y be a (possibly empty) binary string. Let A be a
randomized Turing machine that runs in time T ≥ n on inputs of length n. Let x ∈ {0, 1}n and let p be the
probability that A(1n0y) outputs x. Then

pKt(x | y) ≤ log(1/p) +O(|A|+ log(nT ))

where t = poly(T ) and |A| denotes the length of the code to describe A. We stress that the hidden constants
in this statement are universal and do not depend on any parameters.

Proof (Sketch). We give a brief sketch. See [LOZ22] for the full details.
Since A runs in time T , A uses at most T bits of randomness. Let r ∈ {0, 1}poly(T ) denote our public

randomness. Let α be a parameter we set later.
Let hr : {0, 1}α → {0, 1}T be some seeded pseudorandom generator construction (with some “nice”

properties that we will not specify in this sketch) against AC0 with its seed set to r. Then for if α ≥
log(1/p) + Ω(1), one can prove that with probability at least 2/3 (over r) there exists a string dr ∈ {0, 1}α
such that A run on input (1n, y) with randomness hr(dr) outputs x. Thus one can describe x conditioned
on y by describing d, the code for h (whose length is bounded by some universal constant), the code for A,
and the values n and T . Moreover, one can show this description runs in time polynomial in T .

3 Pseudo Symmetry of Information

In this section, we show that pseudo symmetry of information holds for pK with a random oracle. While,
ultimately, we do not rely on this result in our final reductions, we feel it is a conceptually important building
block and is interesting in its own right.
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3.1 Weak Symmetry of Information

To begin, we first show that symmetry of information holds unconditionally for pK when one of the strings
is chosen uniformly at random. This special case, first studied by Hirahara [Hir21] for (non-probabilistic)
time-bounded Kolmogorov complexity, is referred to as weak symmetry of information. In more detail, it is
easy to see that for any strings x ∈ {0, 1}n and z ∈ {0, 1}q that

pKpoly(t,n,q)(xz) ≤ pKt(x) + q +O(log nqt)

by giving a t-time description for x and then hardcoding in z. Weak symmetry of information essentially
says that for any fixed x this upper bound is approximately tight (with some loss in the time bound) when
z is chosen at random.

Weak symmetry of information is an important building block in recent results in average-case complex-
ity [Hir21; HN21; GK22; Hir22b; CHV22], where it is shown that weak symmetry of information holds if NP
is easy on average. To our knowledge, it was not known previously that weak symmetry of information can
be proved unconditionally for pK.

Theorem 16 (Weak symmetry of information for pK). Let x ∈ {0, 1}n, ∆ ≥ 0, q ∈ N, and t ≥ 1. Let
z ← {0, 1}q. With probability at least 1− 2−∆ the following holds

pKt(xz) ≥ pKt′(x) + q −∆−O(log nqt)

where t′ = poly(n, q, t).

Proof. Let α ∈ N be a parameter we set later. Let

p = Pr
z←{0,1}q

[pKt(xz) ≤ α].

Our goal is to show that p is small.
By Proposition 14, we know that if pKt(xz) ≤ α, then

Pr
ℓ←[α]

d←{0,1}ℓ
r←{0,1}t

[U(d; r) = xz in time t] ≥ 2

3

1

α2α
.

By the definition of p, we then get that∑
z∈{0,1}q

Pr
ℓ←[α]

d←{0,1}ℓ
r←{0,1}t

[U(d; r) = xz in time t] ≥ 2q p
2

3

1

α2α
.

By the disjointness of the events that U(d; r) = xz for distinct z, we get

Pr
ℓ←[α]

d←{0,1}ℓ
r←{0,1}t

[U(d; r) = xz in time t for some z ∈ {0, 1}q] ≥ 2q p
2

3

1

α2α

which implies that

Pr
ℓ←[α]

d←{0,1}ℓ
r←{0,1}t

[U(d; r) outputs a string in time t whose first n bits are x ] ≥ 2q p
2

3

1

α2α
. (1)

Observe that Equation (1) implies there is a distribution (sample ℓ, d, and r as described and output the
first n bits of U(d; r)) that outputs x with probability at least 2q p 2

3
1

α2α . Moreover this distribution can be
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sampled in time poly(t, α) and the code of the sampler has length at most O(log nqαt). Thus, by the coding
theorem (Theorem 15), we have

pKt′(x) ≤ −q + α+ log(1/p) +O(log(αnqt))

for some t′ = poly(t, n, q, α). Rearranging, we get

p ≤ 2−q+α−pKt′ (x)+O(logαnqt).

The theorem then follows by setting α = q + pKt′(x)−∆−O(log nqt). Note that with this setting of α, we
have that α ≤ q + n+O(1), so t′ = poly(t, n, q) and O(logαnqt) = O(log nqt).

3.2 Pseudo Symmetry of Information

We will now build on the ideas used to prove weak symmetry of information to prove pseudo symmetry of
information. We begin by introducing some notation we will use throughout this subsection. Let x ∈ {0, 1}n.
Let y ∈ {0, 1}m. Let λ ∈ N be some parameter. While our theorems hold in a more general setting, to
reduce the number of parameters and simplify notation we will concentrate on the case when n = Θ(m) and
assume that λ divides m. For all i ∈ [m/λ], let yi ∈ {0, 1}λ be the string such that y is the concatenation of
y1, . . . , ym/λ. To simplify our presentation, we will also only consider oracles O : {0, 1}2λ → {0, 1}λ with a
fixed input and output length.

We define a distribution Encode[y,O] on 2m-bit strings as follows:

Sampling procedure for Encode[y,O]

1. For each i ∈ [m/λ], let ỹi ∈ {0, 1}2λ be a uniformly random element of the set {r : O(r) = yi}.
(If this set is ever empty, then “fail” and output 02m.)

2. Let ỹ ∈ {0, 1}2λ be the concatenation of all the ỹi.
3. Output ỹ.

In this section, we will not worry about time complexity (since our final reductions are proved using different
methods), but we do note that Encode[y,O] is samplable, with high probability over a uniformly random O,
in time poly(m, 2λ) using rejection sampling.

Our goal is to show that pseudo symmetry of information holds when one samples ỹ from Encode[y,O].
In particular, ideally we would like that when O : {0, 1}2λ → {0, 1}λ is chosen uniformly at random and
ỹ ← Encode[y,O] that the following (informal statement) holds with high probability:

pKt,O(xỹ) ≈ pKt(x|y) + |ỹ| ≈ pKt(x|y) + 2m

where we allow for a polynomial gap in the time bound between the upper and lower bounds.
On the one hand, it is easy to see that the upper bound holds.

Proposition 17. Let O : {0, 1}2λ → {0, 1}λ be a uniformly random function and ỹ ← Encode[y,O]. Then
with probability 1−m exp(−2λ) we have that

pKpoly(t),O(xỹ) ≤ pKt(x|y) + 2m+O(log tλnm).

Proof (Sketch). To describe xỹ, we do the following. First describe ỹ (which costs roughly |ỹ| bits). Then,
assuming that the sampling algorithm for Encode[y,O] did not fail when sampling ỹ, we can use the oracle
O to obtain y (using that yi = O(ỹi)). Then we can compute x given y (using a description witnessing
pKt(x|y)). This yields the desired upper bound (if sampling did not fail). The probability (over O) that the
sampling from Encode[y,O] fails is at most

m(1− 2−λ)2
2λ

≤ m exp(−2λ)
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We will show a corresponding lower bound. In the proof we will need to introduce several distributions
from which to sample oracles O (we will use a hybrid argument over these distributions). Let Oracle.Uniform
denote the uniform distribution on oracles O : {0, 1}2λ → {0, 1}λ.

Theorem 18. Let x ∈ {0, 1}n, y ∈ {0, 1}m, and λ ≥ Ω(logm). Assume λ divides m. Then for all ∆ ≤ 2m

Pr
O←Oracle.Uniform
ỹ←Encode[y,O]

[pKt′,O(xỹ) ≥ pKt(x|y) + 2m−∆] ≥ 1− 2−∆+O(m
λ log(tmn))

where t′ = poly(n,m, t).

Before we prove Theorem 18, we show its power with the following immediate corollary by setting m = n
and λ ≥ Ω(log n).

Corollary 19 (Pseudo Symmetry of Information for pK). Let n be a power of two. Let x ∈ {0, 1}n,
y ∈ {0, 1}n and t = poly(n). Let λ ≥ Ω(log n) be a divisor of n. Let ∆ = n

100 . Then with probability at least

1−O(2−∆/2) over O ← Oracle.Uniform and ỹ ← Encode[y,O] we have that

pKt′′(x|y)−∆ ≤ pKt′,O(xỹ)− 2n ≤ pKt(x|y) + ∆

where t′ = poly(t) and t′′ = poly(t′).

We now prove Theorem 18.

Proof of Theorem 18. Let α be a parameter we set later. Let

p = Pr
O←Oracle.Uniform
ỹ←Encode[y,O]

[pKt,O(xỹ) ≤ α].

Our goal is to show that p is small.
We will argue essentially using a hybrid argument where we change the distributions on O and ỹ twice

without changing the probability that pKt,O(xỹ) ≤ α by much (multiplicatively). Then we will apply the
coding theorem (in a similar manner as in the proof of weak symmetry of information) in order to upper
bound p.

Our first change will be to “swap” the order of sampling. Instead of first sampling O and then sampling
ỹ from a distribution that depends on O, we will change to sampling ỹ first (uniformly at random from
{0, 1}2m) and then sampling the oracle O from a distribution that depends on ỹ. In particular, for any
ỹ ∈ {0, 1}2m we define the distribution Oracle.Swapped[y, ỹ] on oracles as follows:

Sampling Procedure for Oracle.Swapped[y, ỹ]

1. Pick a uniformly random function O : {0, 1}2λ → {0, 1}λ satisfying that for all i ∈ [m/λ] that
O(ỹi) = yi⋆ where i⋆ isa the least integer such that ỹi = ỹi⋆ .

2. Output O.
aThe choice of i⋆ is so we smoothly handle the case when there is an i and j such that ỹi = ỹj but yi ̸= yj .

Using a Chernoff bound, one can show that swapping the order does not affect the probability that
pKt,O(xỹ) ≤ α by much multiplicatively. The proof is a straightforward calculation that we defer to the end
of the subsection.

Proposition 20. Assume λ ≥ Ω(logm). Then

Pr
ỹ←{0,1}2m

O←Oracle.Swapped[y,ỹ]

[pKt,O(xỹ) ≤ α] ≥ p/4− 2−2m
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Our next step is to “decouple” the dependence between sampling ỹ and O. Currently, the distribution
Oracle.Swapped[y, ỹ] depends on ỹ. As we will see later, it will be useful to remove this dependence. To do
this while still maintaining the probability that pKt,O(xỹ) ≤ α multiplicatively, we will sample functions O
that are “biased” towards outputting y. Formally, we define Oracle.Biased[y] to be the following distribution
on oracle functions O:

Sampling Procedure for Oracle.Biased[y]

1. Construct O : {0, 1}2λ → {0, 1}λ where for all z ∈ {0, 1}2λ the value of O(z) is drawn i.i.d. from
the following distribution:{

a uniformly random element of {0, 1}λ, with probability 1− 1/t2

yi for a uniformly random i ∈ [m/λ], with probability 1/t2.

2. Output O.

We claim that changing to Oracle.Biased[y] does not change the probability that pKt,O(xỹ) ≤ α by much
multiplicatively, as long as one also includes the choice of public randomness into the probability. Intuitively,
this is because t-time adversaries cannot distinguish between the biased oracle and a uniformly random oracle
since the biasing only occurs with probability 1/t2 and because with not too small probability O(ỹi) = yi
occurs.

Claim 21.

Pr
ỹ←{0,1}2m

O←Oracle.Biased[y]

r←{0,1}t

[pKt,O(xỹ; r) ≤ α] ≥ (
λ

t2m
)m/λ(p/4− 2−2m)

2

3
(1− 1/t).

Proof. Consider the following procedure for sampling ỹ, r, and O.

1. For each i ∈ [m/λ], let vi be drawn i.i.d. from the following distribution (it is the same one we use to
sample the outputs of O in Oracle.Biased):{

a uniformly random element of {0, 1}λ, with probability 1− 1/t2

yi for a uniformly random i ∈ [m/λ], with probability 1/t2.

2. Sample ỹ uniformly at random from {0, 1}2λ.

3. Sample a uniformly random function O′ : {0, 1}2λ → {0, 1}λ satisfying O′(ỹi) = vi⋆ where i⋆ is the
least integer satisfying ỹi = ỹi⋆ .

4. Pick r ∈ {0, 1}t uniformly at random.

5. Construct O via the following process for each z ∈ {0, 1}2λ: If z = ỹi for some i, let O(z) = O′(z).
Otherwise, then let O(z) be drawn from the distribution{

O′(z), with probability 1− 1/t2

yi for a uniformly random i ∈ [m/λ], with probability 1/t2.

6. Output ỹ, r and O.

Observe that this procedure is equivalent to sampling ỹ and r uniformly at random and sampling O from
Oracle.Biased.
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We will now analyze the sampling procedure in stages to prove the claim. When one runs the sampling
procedure, we say step 1 in the sampling procedure is good if after step 1 finishes, the following event occurs:
for all i ∈ [m/λ], we have vi = yi. By construction, step 1 is good with probability at least ( λ

t2m )m/λ.
Next, we say that step 3 in the sampling procedure is good if after step 3 is completed the following

event occurs: pKt,O′
(xỹ) ≤ α. The key observation is that, conditioned step 1 being good, the resulting

distribution on ỹ and O′ after step 3 finishes is exactly the distribution obtained by sampling ỹ uniformly
and sampling O′ from Oracle.Swapped[y, ỹ]. As a result, using Proposition 20, we get that conditioning on
step 1 being good, step 3 is good with probability at least p/4− 2−2m.

We say that step 4 in the sampling procedure is good if pKt,O′
(xỹ; r) ≤ α. Conditioning on step 3 being

good, step 4 is good with probability at least 2/3 by the definition of pK.
Finally, we say that step 5 is good if pKt,O(xỹ; r) ≤ α. If step 4 is good, then let d be the description

such that UO
′
(d; r) = xỹ in time at most t. Note that when U is run on d, it makes at most t queries to O’

(since it runs for time at most t). By construction of O, we get that for any fixed query q, the probability
that O(q) ̸= O′(q) is at most 1/t2. Thus a union bound implies that the probability that UO(d; r) = xỹ is
at least 1− 1/t.

Putting this all together, we get that the probability that pKt,O(xỹ; r) ≤ α is at least

(
λ

t2m
)m/λ(p/4− 2−2m)

2

3
(1− 1/t)

Now that we have Claim 21 our goal is to mimic the proof of weak symmetry of information and use
Claim 21 to give a way of sampling x. A direct consequence of Claim 21 is that

Pr
ỹ←{0,1}2m

O←Oracle.Biased[y]

r←{0,1}t
ℓ←[α]

d←{0,1}ℓ

[UO(d; r) = xỹ in time t] ≥ 1

α2α
(

λ

t2m
)m/λ(p/4− 2−2m)

2

3
(1− 1/t).

Thus, as in the proof of weak symmetry of information, we can sum over the disjoint events for each ỹ (here
is where we need that Oracle.Biased is decoupled from ỹ) to get that

Pr
O←Oracle.Biased[y]

r←{0,1}t
ℓ←[α]

d←{0,1}ℓ

[UO(d; r) outputs a string whose first n bits are x in time t] (2)

≥ 22m
1

α2α
(

λ

t2m
)m/λ(p/4− 2−2m)

2

3
(1− 1/t)

We want to use the above probability bound to obtain a distribution that is efficiently samplable given
access to y and that outputs x with somewhat high probability. At first glance, this may seem problematic
because one needs to sample O ← Oracle.Biased[y] which could take a long time. Luckily, this is not a
problem because Oracle.Biased[y] is an extremely simple distribution: every bit in the truth table output by
Oracle.Biased[y] is an i.i.d. sample from a distribution that is known (assuming one knows y). As a result,
instead of sampling O all at once, we can sample the responses to individual queries to O “on the fly.” In
particular, consider the distribution sampled as follows:

1. Pick r ← {0, 1}t and ℓ← [α] and d← {0, 1}ℓ

2. Simulate running UO(d; r) for at most t steps with an oracle O that constructed “on the fly” to match
the distribution as if O is sampled from Dbiased[y, λ, k]. In particular, whenever U queries O on a point
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q, do the following. If O was previously queried on q, respond to the query with whatever the previous
response was. If O has never been queried on q previously, then respond with{

a uniformly random element of {0, 1}λ, with probability 1− 1/t2

yi for a uniformly random i ∈ [m/λ], with probability 1/t2.

3. Output the first n bits that UO(d; r) outputs

Observe that the output of this distribution is the same as the one in Equation (2)! Thus, we get that
this distribution outputs x with probability at least

22m
1

α2α
(

λ

t2m
)m/λ(p/4− 2−2m)

2

3
(1− 1/t).

Moreover, if one has access18 to y, then this distribution can be sampled in time at most poly(t, n,m, λ)
using a sampler whose code length is at most O(log tnmλ). Then, applying the coding theorem (Theorem 15)
with the conditional string y, we get that

pKt′(x|y) ≤ −2m+ α logα+ log(
1

p/4− 2−2m
) +O(

m

λ
log(tmnλ))

for some t′ = poly(t, n,m). Rearranging, we get that

p ≤ 2−2m+α−pKt′ (x|y)+O(m
λ log(tmn)) + 2−2m+2,

so setting α = 2m+ pKt′(x|y)−∆ gives

p ≤ 2−∆+O(m
λ log(tmn)) + 2−2m+2.

Finally since ∆ ≤ 2m (by assumption), we get

p ≤ 2−∆+O(m
λ log(tmn)) + 2−2m+2 ≤ 2−∆+O(m

λ log(tmn)),

as desired.

It remains to prove Proposition 20, which we restate below.

Proposition 20. Assume λ ≥ Ω(logm). Then

Pr
ỹ←{0,1}2m

O←Oracle.Swapped[y,ỹ]

[pKt,O(xỹ) ≤ α] ≥ p/4− 2−2m

In fact Proposition 20 is a specific case of a more general fact, that says the analogous statement holds
for all events E.

Proposition 22. Assume λ ≥ Ω(logm). Let E be any set. Then

Pr
ỹ←{0,1}2m

O←Oracle.Swapped[y,ỹ]

[(O, ỹ) ∈ E] ≥ 1

4
Pr

O←Oracle.Uniform
ỹ←Encode[y,O]

[(O, ỹ) ∈ E]− 2−2m

18Access to y is needed for step (2) where on a fresh query we may need to respond with yi.
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Proof. Throughout this proof, O and ỹ will always denote a function from 2λ bits to λ bits and an element
of {0, 1}2m respectively. We say a pair (O, ỹ) is valid if O(ỹi) = yi for all i. We say a pair (O, ỹ) is good if
(O, ỹ) is valid and ∏

i∈[m/λ]

|O−1(yi)| ≥ 2m/4.

Let E′ be the subset of E consisting of elements of E that are good. Then we can directly calculate

Pr
ỹ←{0,1}2m

O←Oracle.Swapped[y,ỹ]

[(O, ỹ) ∈ E]

≥ Pr
ỹ←{0,1}2m

O←Oracle.Swapped[y,ỹ]

[(O, ỹ) ∈ E′]

≥|E′|2−2m(2−λ)2
2λ−m/λ

=|E′|2−λ2
2λ−m.

On the other hand, we have that

Pr
O←Oracle.Uniform
ỹ←Encode[y,O]

[(O, ỹ) ∈ E]

≤ Pr
O←Oracle.Uniform
ỹ←Encode[y,O]

[(O, ỹ) is not good] + Pr
O←Oracle.Uniform
ỹ←Encode[y,O]

[(O, ỹ) ∈ E′]

We bound both these terms separately. For the second term, we can directly calculate

Pr
O←Oracle.Uniform
ỹ←Encode[y,O]

[(O, ỹ) ∈ E′]

=
∑

(O⋆,ỹ⋆)∈E′

Pr
O←Oracle.Uniform
ỹ←Encode[y,O]

[1[O = O⋆ and ỹ = ỹ⋆]

=
∑

(O⋆,ỹ⋆)∈E′

2−λ2
2λ ∏

i∈[m/λ]

1

|(O⋆)−1(yi)|

≤2−λ2
2λ ∑

(O⋆,ỹ⋆)∈E′

4 · 2−m

=4|E′|2−λ2
2λ−m

where the inequality comes from (O, ỹ) being good.
Next, we bound the first term

Pr
O←Oracle.Uniform
ỹ←Encode[y,O]

[(O, ỹ) is not good]

= Pr
O←Oracle.Uniform
ỹ←Encode[y,O]

[
∏

i∈[m/λ]

|O−1(yi)| < 2m/4]

≤ Pr
O←Oracle.Uniform
ỹ←Encode[y,O]

[ there exists i such that |O−1(yi)| < 2λ4−λ/m]

≤ Pr
O←Oracle.Uniform
ỹ←Encode[y,O]

[ there exists i such that |O−1(yi)| ≤ 2λ(1− 1

2m
)]

≤m

λ
· exp(− 2λ

8m2
)

≤2−2m
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where the first equality uses that the only way that (ỹ,O) is not valid when ỹ is sampled from Encode[y,O] is if
|O−1(yi) = 0| for some i, the second inequality comes from 4−λ/m ≤ 4−1/m ≤ (1−2/m), the third inequality
comes from applying a Chernoff bound to the random variable |O−1(yi)| which is the sum of independent
Bernoulli random variables with expectation 2λ, and the last inequality comes from the assumption that
λ ≥ Ω(logm) for a sufficiently large hidden constant.

Putting our bounds together, we have that

Pr
O←Oracle.Uniform
ỹ←Encode[y,O]

[(O, ỹ) ∈ E] ≤ 4|E′|2−λ2
λ−m + 2−2m

and that
Pr

ỹ←{0,1}2m
O←Oracle.Swapped[y,ỹ]

[(O, ỹ) ∈ E] ≥ |E′|2−λ2
λ−m.

Combining the two inequalities above, we have that

Pr
ỹ←{0,1}2m

O←Oracle.Swapped[y,ỹ]

[(O, ỹ) ∈ E] ≥ 1

4
Pr

O←Oracle.Uniform
ỹ←Encode[y,O]

[(O, ỹ) ∈ E]− 2−2m

as desired.

4 Reduction

Our hardness results are proved using a single reduction with different settings of parameters and amounts
of non-uniformity. We describe the reduction in this section. To begin, we state the problem we reduce from:
a variant of Set Cover.

4.1 Bounded Frequency Set Cover

Many restrictions of set cover are known to be NP-complete. In our case, we use a restriction that will
eventually enable near-optimal additive hardness of approximation and ensure the reduction works for MCSP
(for MCSP, good hardness of approximation is crucial because the best known bound on the complexity of
a random function is only tight to a (1− o(1)) factor).

Definition 23 (τ -Frequency Set Cover). Let τ ∈ N. τ -Frequency Set Cover is the following problem:

• Given: a threshold θ ∈ [m] and subsets S1, . . . , Sm of [n] with the property that for all i ∈ [n] the
number of subsets that contain i is exactly τ (i.e., |{j : i ∈ Sj}| = τ).

• Decide: does there exist a J ⊆ [m] of size at most θ such that
⋃

j∈J Sj = [n].

We note that, without loss of generality, one can assume that m ≤ τn (since each element of the ground
set is in at most τ sets, the number of non-empty sets is at most τn). We also define some notation now that
we will use later: for i ∈ [n] and k ∈ [τ ], let Index(i, k) denote the lexicographically kth j such that i ∈ Sj .

The τ -frequency set cover problem is easily seen to be equivalent to vertex cover on τ -uniform hyper-
graphs,19 and near-optimal inapproximability is known for vertex cover on τ -uniform hypergraphs. Although
we do not need the full strength of it, we state (a slightly weaker, easier-to-state version of) the best-known
hardness of approximation.

19To translate a τ -frequency set cover instance to a vertex cover instance, let the vertex set be [m] and for each i ∈ [n] create
a hyperedge that contains the indices of all sets that contain i.
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Theorem 24 (Dinur, Guruswami, Khot, and Regev [DGKR05]). Let τ be any sufficiently large integer
constant. Then given an instance of τ -frequency set cover on a universe of size n where n is a power of
two20 it is NP-hard to distinguish:

• YES case: there is a set cover of size 2
τ n

• NO case: there is no set cover of n/3

We will refer to the above problem as Gap τ -Frequency Set Cover.

4.2 Reduction

We now describe a randomized version of our reduction. We then show how to modify it to get our final
deterministic reduction. For convenience, assume τ is a power of two (we have the freedom to set τ so this is
without loss of generality). We will also assume we have access to oracles we call On. We will later describe
how to construct On from O.

Reduction from Gap τ-Frequency Set Cover to MCSP and Kt

Parameters: a secret key length λ that is a function of n computable in time O(log λ(n)) and that is
always a power of two.

Oracles: For all powers of two n, we have oracle access to On : [n]× {0, 1}λ × {0, 1}2λ → {0, 1}λ.

Given: an instance S1, . . . , Sm ⊆ [n] of Gap τ -Frequency Set Cover where n is a power of two

1. Pick sk1, . . . , skm ∈ {0, 1}λ uniformly at random.

• One can think of skj as a “secret key” that is associated with each set in the set cover
instance.

2. For all i ∈ [n], pick vi ∈ {0, 1}λ uniformly at random.

• One can think of vi as a random “message” value that is associated with each element of the
ground set we want to cover.

3. For all i ∈ [n] and k ∈ [τ ], let ci,k be a uniformly random element of the set {c ∈ {0, 1}2λ :
On(i, skj , c) = vi} where j is the indexa of the kth set containing i.

• More specifically, we sample ci,k using rejection sampling: run On(i, skj , ·) on uniformly
random inputs until it evaluates to vi. (This is essentially a cryptographic proof of work!)
We note, however, that this step could potentially not halt.

• One can think of ci,k as a random “encoding” of an “encryption” of the message vi using the
secret key associated with the set Sj . Note that one can “decrypt” ci,k to recover vi if one
knows the secret key skj since On(i, skj , ci,k) = vi.

4. Output the 4τnλ-bit truth table of the function f : [n]× [τ ]× {0, 1} × [2λ]→ {0, 1} given byb

f(i, k, b, d) =

{
d’th bit of ci,k, if b = 0

d’th bit of vi, if b = 1
.

20We can assume that n is a power of two by a padding argument. In particular, pad instances with m extra ground set
elements until it is a power of two. Then add τ identical sets each containing all of the m new ground set elements. The size of
the optimal set cover will change by exactly an additive τ . We have implicitly absorbed this additive τ into the stated hardness
of approximation.
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We also output some complexity threshold, but this will depend on the precise problem we are
reducing to.

• Ideally, one might hope that the “optimal” way to compute f is to have memorized all the
ci,k as well as the secret keys skj for all j in an optimal set cover. Then one can decrypt
to find the values of vi. This would relate the complexity of computing f to the size of
the optimal set cover. This bound fails badly in the information-theoretic setting: one can
instead memorize all the vi and save on describing each ci,k knowing that it decrypts to vi,
but, crucially, this may require a lot of time.

ai.e., j = Index(i, k).
bSince each vi is a λ-bit string, and d ∈ [2λ], we must adopt a convention for what the d’th bit of vi is when d > λ.

Any reasonable choice suffices, but for concreteness we say to output 0 when this is the case.

This completes the description of the (randomized) reduction.
We now describe how to modify the above reduction to turn it into our final deterministic reduction. The

deterministic reduction just simulates running the randomized reduction above, but whenever the randomized
reduction asks for its i’th random bit, the deterministic reduction uses the bit given by evaluating a random
oracle Rn (that outputs one bit and is independent from all On random oracles) on input i.

We stress that while we have described a sequence of distinct and independent oracles Rn and On for all
powers of two n, in reality there is just a single random oracle O : {0, 1}⋆ → {0, 1} from which these other
oracles are derived from. Specifically, for any power of two n, we let

On(x) = O(0, 1logn, 0, 11, 0, x) . . .O(0, 1logn, 0, 1λ, 0, x)

for any x of the appropriate length, and we let

Rn(x) = O(1, 1n, 0, 12
λ

, 0, x).

Since λ (as a function of n) is computable in time O(log λ(n)), note that we can evaluate Rn and On on
any input x in time at most O(|x|+ n+ 2λ) and O(|x|+ λ+ log n) respectively given oracle access to O. It
will be important (for derandomizing the reduction) that the “random” coins generated by Rn come from
evaluating O on long (> 2λ) input lengths.

4.3 Analysis

First, we analyze the running time of the reduction. The dominant factor in the running time is the amount
of time it takes to generate each ci,k using rejection sampling.

Proposition 25. Fix any instance of Gap τ -Frequency Set Cover. With probability at least 1− 2−n2
λ

over
a uniformly random oracle O, the reduction on this instance runs in time at most poly(n, 2λ).

Proof. It is easy to see that every step in the reduction runs in time poly(n, 2λ) except perhaps generating
each ci,k. The time it takes to generate ci,k is poly(n, 2λ) multiplied by the number of times one needs to
rejection sample. The probability that one rejection samples T times without succeeding when On and each
vi is chosen uniformly at random is at most

(1− 2−λ)T ≤ e−T2−λ

.

Thus, the proposition follows by setting T to be a sufficiently large polynomial in n and 2λ and then union
bounding over all values of i ∈ [n] and k ∈ [τ ].

In Section 6, we show the following upper bounds on the complexity of f on YES instances.

Lemma 26. On a YES instance of Gap τ -Frequency Set Cover, if the reduction outputs21 f , then

21We say this because the reduction could fail to halt, in which case we give no guarantee.
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• Kt,O(f) ≤ 2λnτ + 2λn/τ + 3n log(τn) +O(log(τλn)) for some t = poly(n, τ, λ), and

• there is a constant-depth O-oracle circuit for f of size at most

(1 + o(1))[2λnτ
1

log(nτ log(2λ))
+ 2λn

1

τ log 2n/τ
+ 2 log(τn)n

1

log n
+O(τ + λ+ log n)]

In Section 7, we show the following lower bounds on the complexity of f on NO instances.

Lemma 27. Assume λ ≥ Ωτ (log n). Fix any NO instance of Gap τ -Frequency Set Cover. With probability
at least 1− 2−(1−oτ (1))nλ/8 over the choice of O the reduction on this instance outputs an f satisfying

• Kt,O(f) ≥ 2λnτ + nλ/8 where t = 2λ/O(τ) , and

• the O-oracle circuit complexity of f is at least 2λnτ+nλ/8
log(2λnτ+nλ/8) .

5 Hardness Results

Using the reduction and analysis in Section 4, we prove our main theorems. We restate the theorems below
for the reader’s convenience.

Theorem 7. Let p(·) be any polynomial satisfying p(t) ≥ t. There is a deterministic polynomial-time
algorithm A such that with probability one (over a random oracle O), AO is a many-one reduction from
3-SAT to the promise problem of, given a string x, outputting:

• YES: if Kt,O(x) ≤ θ(|x|)

• NO: if Kp(t),O(x) ≥ θ(|x|) + Ω(|x|)

where t is some polynomial in |x| and θ is some function of |x|.

Proof. We run the reduction in Section 4.2, setting τ to be some sufficiently large power of two and setting
λ to be the smallest power of two greater than γ log n for some sufficiently large constant γ (that can depend
on τ).

We will show that with probability one over the choice of random oracle that this reduction is correct
(i.e., it runs in polynomial time and is sound and complete) for all but finitely many input lengths. To do
this we show that for all n, the probability that there exists an instance of Gap τ -Frequency Set Cover on
the ground set [n] on which the reduction fails to be efficient, sound, or complete is at most 2−Ω(n). Then
the Borel-Cantelli lemma implies that with probability 1 over the choice of O that the reduction fails on at
most finitely many input lengths, proving the theorem.

Now fix any instance of Gap τ -Frequency Set Cover on the ground set [n] where n is a power of two. By
Proposition 25, the probability that the reduction on this instance does not finish in time

poly(n, 2λ) = poly(n)

is at most 2−n2
λ

.
If this instance is a YES instance and the reduction outputs f , Lemma 26 implies

Kt,O(f) ≤ 2λnτ + 2λn/τ + 3n log(τn) +O(log(τλn))

for some t = poly(n, λ, τ).
On the other hand, if this instance is a NO instance and the reduction outputs f , then Lemma 27 says

that with probability 1− 2−(1−o(1))nλ/8 over the choice of O that

Kt′,O(f) ≥ 2λnτ + nλ/8
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where
t′ ≥ 2λ/O(τ) ≥ 2γ log(n)/O(τ) = nγ/O(τ) ≥ p(t)

by setting γ to be sufficiently large compared to τ and using that t = poly(n, λ, τ).
Observe that, when the two bounds hold, the difference between the complexity of f on NO instances

and YES instances is at least

2λnτ + nλ/8− (2λnτ + 2λn/τ + 3n log(τn) +O(log(τλn)))

=nλ(1/8− 2/τ)− 3n log(τn)−O(log(τλn))

≥Ωτ (nλ)

≥Ωτ,γ(|f |)

by setting τ and γ to be sufficiently large constants.
Thus, putting it all together, the probability (over O) that there exists an instance of Gap τ -Frequency

Set Cover on the ground set [n] where the reduction fails (either it does not run in time poly(n) or the desired
lower bound does not hold for a NO instance), is at most

nτm(2−(1−o(1))nλ/8 + 2−n2
λ

) ≤ nτ2n2−(1−o(1))nλ/8 ≤ 2−(1−o(1))nλ/8+τ2n logn ≤ 2−Ω(n)

where we are union bounding over all nτm many instances of τ -frequency set cover and using that m ≤ τn
and setting γ to be a constant sufficiently larger than τ .

Next, we prove hardness for MCSP.

Theorem 6. There is a deterministic polynomial-time algorithm A such that with probability one (over a
random oracle O) AO is a many-one reduction from 3-SAT to the promise problem of, given a string x,
outputting:

• YES: if the O-oracle circuit complexity of x is at most θ(|x|) (and moreover, this is witnessed by a
constant-depth circuit)

• NO: if the O-oracle circuit complexity of x is at least θ(|x|) + Ω( |x|log |x| )

where θ is some function of |x|.

Proof. The proof is essentially the same as the proof of Theorem 7. As before, we set τ to be some sufficiently
large power of two, and after choosing τ we set λ to be the smallest power of two greater than γ log n for
some sufficiently large constant γ (that can depend on τ).

The only change to the proof is the complexity bounds on YES and NO instances. On YES instances,
Lemma 26 says that there is a constant-depth O-oracle for f of size at most

(1 + o(1))[2λnτ
1

log(nτ log(2λ))
+ 2λn

1

τ log(2λn/τ)
+ 2 log(τn)n/ log n+O(τ + λ+ log n)]

≤(1 + oτ,γ(1))
1

log n
[2λnτ + 2λn/τ ]

by setting γ to be sufficiently large compared to τ .
On the other hand, Lemma 27 says with probability 1− 2−(1−o(1))nλ/8 on NO instances we get that the

O-oracle circuit complexity of f is at least

2λnτ + nλ/8

log(2λnτ + nλ/8)

≥(1− oτ,λ(1))
2λnτ + nλ/8

log(n)
.
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Thus, the difference between the complexity of f on NO instances (when the bound holds) and YES
instances is at least

(1− oτ,γ(1))
1

log n
[2λnτ + nλ/8− 2λnτ − 2λn/τ ]

≥(1− oτ,γ(1))
1

log n
nλ(1/8− 2/τ)

≥Ωτ,γ(
|f |

log |f |
)

by setting τ and γ to be sufficiently large constants. The remainder of the proof is the same as the proof of
Theorem 7.

One deficiency in our reduction is that it runs in time poly(n, 2λ). As a result, one can only afford to set
λ = O(log n) in order to get a polynomial time reduction. This limits the time gap between the YES and
NO instances of time-bounded Kolmogorov complexity in Theorem 7. At a high level, the reduction spends
most of its time “finding collisions” in O. We show one can replace the exponential dependence on λ with
a polynomial dependence if one uses polynomial-time non-uniform reductions. Essentially, the idea is that
a non-uniform reduction can instead hardcode in collisions.

Theorem 8. Let ϵ > 0 be any sufficiently small constant. Let O be a uniformly random oracle. With prob-
ability one there is a non-uniform polynomial-time many-one reduction (where the circuit implementing the
reduction does not get oracle access to O) from SAT to the promise problem of, given a string x, outputting:

• YES: if Kt,O(x) ≤ θ(|x|)

• NO: if K2|x|1−ϵ
,O(x) ≥ θ(|x|) + Ω(|x|)

where t is a polynomial in x and θ is some function of |x|.

Proof. We make a slight modification to the original reduction. The only difference between this reduction
and the original reduction is in step 3, highlighted in blue. For comparison, the old step 3 is also included
highlighted in red.

Modified Reduction from Gap τ-Frequency Set Cover to Kt

Parameters: a secret key length λ that is a function of n and that is always a power of two.

Oracles: For all n ∈ N, we have oracle access to a function On : [n]× {0, 1}λ × {0, 1}2λ → {0, 1}λ.

Given: a set cover instance S1, . . . , Sm ⊆ [n] with τ -frequency where n is a power of two

1. Pick sk1, . . . , skm ∈ {0, 1}λ uniformly at random.

2. For all i ∈ [n] pick vi ∈ {0, 1}λ uniformly at random.

3. (Previously: For all i ∈ [n] and k ∈ [τ ], let ci,k be a uniformly random element of the set
{c ∈ {0, 1}2λ : On(i, skj , c) = vi} where j = Index(i, k).

(a) For all i ∈ [n] and j ∈ [m], let c⋆i,j be a uniformly random element of the set {c ∈ {0, 1}2λ :
On(i, skj , c) = vi}.

(b) For all i ∈ [n] and k ∈ [τ ], let ci,k = c⋆i,j where j = Index(i, k).

30



4. Output the 4τnλ-bit truth table of the function f : [n]× [τ ]× {0, 1} × [2λ]→ {0, 1} given by

f(i, k, b, d) =

{
d’th bit of ci,k, if b = 0

d’th bit of vi, if b = 1
.

We also output some complexity threshold, which we set later.

We use the same trick as before to make this reduction deterministic. The deterministic reduction simulates
running the randomized reduction above, but whenever the randomized reduction asks for its i’th random
bit, the deterministic reduction just uses the bit given by evaluating a random oracle Rn (that outputs one
bit and is independent from all On random oracles) on input i. Importantly, note that the sequence of
“random” bits we deterministically generate is, by construction, the same for any instance of τ -frequency
set cover on the same ground set [n]. We will use this observation later. This completes the description of
the new reduction.

It is easy to see that this reduction is functionally equivalent to the old reduction. The only difference is
that we generate some extra c⋆i,j values that are not used. Thus, we can reuse our analysis of the previous
reduction to show that with probability one over the choice of O this is indeed a reduction from Gap
τ -Frequency Set Cover to Kt. However, we will now consider a different setting of λ.

Set τ to be a sufficiently large power of two and set λ to be the smallest power of two greater than nγ

for some sufficiently large constant γ (that can depend on ϵ and τ). Our setting of λ makes the reduction
run in exponential time, but we will fix this later.

On a YES instance, Lemma 26 implies

Kt,O(f) ≤ 2λnτ + 2λn/τ + 3n log(τn) +O(log(τλn))

for some t = poly(n, λ, τ).
On the other hand, using Lemma 27 and the Borel-Cantelli lemma, with probability one over the choice

of O for all NO instances where n is sufficiently large we have that

Kt′,O(f) ≥ 2λnτ + nλ/8

where
t′ ≥ 2λ/O(τ) ≥ 2|f |

1−ϵ

using that |f | = 4τnλ = 4τn1+γ and setting γ to be sufficiently large (depending on ϵ and τ). Thus, as
before, we have that the complexity gap between the YES and NO case is at least Ωγ,τ (|f |). But now the
time gap is significantly larger.

The key new observation is that on every instance with the same ground set [n], the values of the
secret keys sk1, . . . , skm and the messages v1, . . . , vn and the strings c⋆i,j for all i ∈ [n] and j ∈ [m] that
the reduction generates are all the same! This is because, as we noted previously, the “random coins” the
reduction deterministically generates using Rn are the same on any instance with ground set [n]. Looking
at the code for the reduction, this means that all the sk1, . . . , skm and v1, . . . , vn and c⋆i,j will be the same.

Thus, we can obtain a non-uniform reduction by hardcoding all these values into the reduction. The new
reduction is extremely simple. We state it below.

Non-Uniform Reduction from Gap τ-Frequency Set Cover to Kt

Parameters: a secret key length λ that is a power of two.

Advice: hardcoded values vi ∈ {0, 1}λ and c⋆i,j ∈ {0, 1}2λ for all i ∈ [n] and j ∈ [m]

Given: a τ -frequency set cover instance S1, . . . , Sm ⊆ [n] where n is a power of two

1. Output the complexity threshold 2λnτ + nλ/8 − 1 and the 4τnλ-bit truth table of the function
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f : [n]× [τ ]× {0, 1} × [2λ]→ {0, 1} given by

f(i, k, b, d) =

{
d’th bit of c⋆i,Index(i,k), if b = 0

d’th bit of vi, if b = 1
.

It is easy to see that after all this information is hardcoded in, the reduction is computable in (non-uniform)
polynomial time. In fact, it is computable by a non-uniform AC0 circuit.

The same argument also gives a non-uniform reduction for MCSP. However, unlike for Kt, we do not
appear to improve any parameters over the uniform reduction.

Theorem 28. Let O be a uniformly random oracle. With probability one there is a non-uniform polynomial-
time many-one reduction (where the reduction does not get oracle access to O) from SAT to the promise
problem of, given a string x, outputting:

• YES: if the O-oracle circuit complexity of x is at most θ(|x|)

• NO: if the O-oracle circuit complexity of x is at least θ(|x|) + Ω( |x|log |x| )

where θ is some function of |x|.

6 Reduction Completeness: Complexity Upper Bounds

In this section, we prove Lemma 26, which we restate below.

Lemma 26. On a YES instance of Gap τ -Frequency Set Cover, if the reduction outputs22 f , then

• Kt,O(f) ≤ 2λnτ + 2λn/τ + 3n log(τn) +O(log(τλn)) for some t = poly(n, τ, λ), and

• there is a constant-depth O-oracle circuit for f of size at most

(1 + o(1))[2λnτ
1

log(nτ log(2λ))
+ 2λn

1

τ log 2n/τ
+ 2 log(τn)n

1

log n
+O(τ + λ+ log n)]

Proof. Fix any YES instance. Let Sj1 , . . . , SjOPT
be an optimal set cover. Since this is a YES instance,

OPT ≤ 2n/τ . We will argue about the cases of time-bounded Kolmogorov complexity and circuit complexity
separately in the following subsections.

6.1 Time-Bounded Kolmogorov Complexity

To get a description of f we hardcode in:

• ci,k ∈ {0, 1}2λ for all i ∈ [n] and k ∈ [τ ]. Cost: 2τnλ bits.

• skj1 , . . . , skjOPT
∈ {0, 1}λ. Cost: OPT · λ bits.

• For each element of i ∈ [n], a tuple (i, q, k) with the property that i ∈ Sjq and jq = Index(i, k). Such a
tuple must exist because Sj1 , . . . , SjOPT

is an optimal set cover. Cost: at most 3n log(τn) bits.

• The values n, λ, OPT , and τ as well as some other minor encoding overhead. Cost: O(log τλn) bits.

22We say this because the reduction could fail to halt, in which case we give no guarantee.
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Thus, we have hardcoded in everything needed to compute f except the values vi for all i ∈ [n]. We can
compute any vi using the above information by first retrieving the tuple (i, q, k) starting with i (recall this
tuple satisfies i ∈ Sjq and jq = Index(i, k)), second retrieving the secret key skjq and then lastly “decrypting”
ci,k by running On(i, skjq , ci,k) which evaluates to vi by construction.

This gives a description of f of size at most

2λnτ + λOPT + 3n log(τn) +O(log(λn)) ≤ 2λnτ + 2λn/τ + 3n log(τn) +O(log(τλn))

Moreover, this description runs in time poly(n, τ, λ). (Recall, we can query On on an input x given access
to O in time O(|x|+ λ+ log n).)

6.2 Circuit Complexity

Here we use Lupanov’s construction [Lup58] of near-optimal circuits for random Boolean functions. Lu-
panov’s original construction only considers the case where the Boolean function has a single output, but it
readily generalizes to the multi-output case, which we state below.23 For completeness, we give a proof of
Theorem 29 in Appendix A.

Theorem 29 (Multi-Output Lupanov). Let f : {0, 1}n → {0, 1}m with m ≥ 2 . Then there is a constant-
depth circuit computing f of size (1 + o(1)) m2n

n logm .

To construct a circuit for f , we use Lupanov’s result to build the following subcircuits (below it is useful
to recall that n, τ and λ are all powers of two):

1. A subcircuit that given (i, k) ∈ [n]× [τ ] outputs ci,k. This is a function with log(nτ) bits of inputs and
2λ bits of output, so it can be implemented by a circuit of size at most

(1 + o(1))2λ · 2log(nτ)

log(nτ log(2λ))
= (1 + o(1))2λnτ

1

log(nτ log(2λ))

2. A subcircuit that given q ∈ [OPT ] outputs skjq . The input length is24 logOPT and the output length
is λ. Thus, it can be implemented by a circuit of size

(1 + o(1))λ
2logOPT

logOPT
= (1 + o(1))λ

OPT

logOPT
.

3. A subcircuit that given i ∈ [n] outputs (q, k) such that i ∈ Sjq (the existence of such a q is guaranteed
by being a set cover) and jq = Index(i, k). It can be implemented by a circuit of size

(1 + o(1))2 log(τn)n/ log n.

To compute f using these subcircuits we can use the following procedure on input (i, k, b, d):

1. Run subcircuit (3) on input i above to obtain (q, k⋆) satisfying i ∈ Sjq and jq = Index(i, k⋆).

2. Run subcircuit (2) on input q to obtain sk⋆ = skjq

3. If b = 0, run subcircuit (1) on input (i, k) to obtain ci,k. If b = 1, run subcircuit (1) on input (i, k⋆)
to obtain ci,k⋆ . For efficiency, it is important that we only make one call to subcircuit (1), so the
branching on b = 0 and b = 1 will happen before subcircuit (1) is run to determine what input to run
it on.

23For the setting of parameters in our reduction, it actually suffices to just use a naive way of constructing multi-output
circuits where one just treats each output bit as an independent single-output function and apply Lupanov’s construction for
each one. This will not be a near-optimal circuit, but for our setting of parameters, this loss is tolerable because of the hardness
of approximation we have. Nevertheless, we decided to apply Lupanov’s near-optimal construction here.

24This assumes that OPT is a power of two, which may not be true. Luckily, in our analysis, we will substitute OPT with
the upper bound nτ/2 which is a power of two, so this will not affect our final calculation.
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4. If b = 0, then output the d’th bit of ci,k.

5. Otherwise, b = 1, so run O on input (i, sk⋆, ci,k⋆) to get vi and output the d’th bit of vi.

Observe that this procedure requires at most one call to each of the subcircuits and can be implemented by
a circuit of size O(τ + λ+ log n) plus the complexity of each subcircuit.

Thus, using that OPT ≤ 2n/τ , the circuit complexity of f is at most

(1 + o(1))[2λnτ
1

log(nτ log(2λ))
+ λOPT/ logOPT + 2 log(τn)n/ log n+O(τ + λ+ log n)]

=(1 + o(1))[2λnτ
1

log(nτ log(2λ))
+ 2λn/τ

1

log 2n/τ
+ 2 log(τn)n/ log n+O(τ + λ+ log n)]

Finally, we remark that this circuit can also be made to have constant depth. This is because Lupanov’s
construction has constant depth.

7 Reduction Soundness: Complexity Lower Bounds

In this section, we will prove Lemma 27. To do this, we will prove a more general result that bounds the
probability a deterministic adversary with a limited number of O-oracle queries outputs f .

Lemma 30. Assume λ ≥ Ωτ (log n). Fix any (deterministic) decision tree P that makes q ≤ 2λ/O(τ) oracle
queries of length at most 2λ/O(τ) to O and then outputs a string. Fix any NO instance of Gap τ -Frequency
Set Cover. Let f be the output of the reduction with oracle O on this instance.25 Then

Pr
O
[PO outputs f ] ≤ 2−(1−o(1))(2λnτ+nλ/4).

We will prove Lemma 30 in Section 7.1. Assuming that Lemma 30 is true, we prove Lemma 27, which
we restate below.

Lemma 27. Assume λ ≥ Ωτ (log n). Fix any NO instance of Gap τ -Frequency Set Cover. With probability
at least 1− 2−(1−oτ (1))nλ/8 over the choice of O the reduction on this instance outputs an f satisfying

• Kt,O(f) ≥ 2λnτ + nλ/8 where t = 2λ/O(τ) , and

• the O-oracle circuit complexity of f is at least 2λnτ+nλ/8
log(2λnτ+nλ/8) .

Proof. Let s be a parameter we set later. First, we show the Kt,O lower bound. The number of descriptions
of length at most s is at most 2s+1. Any program that runs in time 2λ/O(τ) can make at most 2λ/O(τ) queries
to O and each of these queries will be of length at most 2λ/O(τ). Thus, using Lemma 30, the probability
that there is a description of size at most s that computes f in time 2λ/O(τ) is at most

2s+12−(1−o(1))(2λnτ+nλ/4).

Setting s = 2λnτ + nλ/8, we get that this probability is at most

2−(1−oτ (1))nλ/8.

Next, we argue about circuit complexity. The number of fan-in two, AND, OR, NOT gate circuits of size
at most s ≥ n is (e.g. [FM05]) at most

2(1+o(1))s log s.

25Note that the reduction might not output any f (it may not halt). In the probability bound below, we take “PO outputs
f” to mean that the reduction halts and outputs f and PO also outputs f .
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Setting s = 2λnτ+nλ/8
log(2λnτ+nλ/8) , we get that the number of circuits of size at most s is at most

2(1+o(1))(2λnτ+nλ/8)

Any circuit of size s can make at most s oracle queries and every query will be of length at most s. By
setting the hidden constant large enough in the assumption that λ ≥ Ωτ (log n), we get that s ≤ 2λ/O(τ).
Thus, by Lemma 30, the probability that there is a circuit of size at most s that computes f is at most

2(1+o(1))(2λnτ+nλ/8)2−(1−o(1))(2λnτ+nλ/4) ≤ 2−(1−oτ (1))nλ/8

7.1 Proof of Lemma 30

In this subsection, we will prove Lemma 30 except for some straightforward probability calculations that we
defer to Section 7.2.

Our argument is divided into five steps. In each step, we reveal some of the randomness used to generate
On, Rn, and f (which are all implicitly derived from the random choice of O) and analyze a few important
random variables. In the last step, On, Rn, and f will be fully revealed, and we will show that the probability
that PO outputs f is small.

Step 1: Reveal only the values of O and On that P queries.

In step 1, we run P with the random oracle O. Whenever P queries O, we respond with a uniformly random
bit b and set O on that input to that value b (this is a common random oracle technique called lazy query
evaluation).

To simplify our analysis, if the program happens to query a point that corresponds to one of the bits of
On(x) for some x, then we will reveal all the bits of On(x). More specifically, recall that

On(x) = O(1, 1logn, 0, 11, 0, x) . . .O(1, 1logn, 0, 1λ, 0, x).

If P ever queries a point of the form (1, 1logn, 0, 1i, 0, x) for some i ∈ [λ], then we will pretend the program
also queries (1, 1logn, 0, 1j , 0, x) for all j ∈ [λ] and reveal all corresponding values of O.

After step 1 finishes, the output of PO is determined. We interpret the output of PO as the truth table
of a Boolean function f ′ : [n] × [τ ] × {0, 1} × [2λ] → {0, 1}. (If the output of PO is not the truth table of
such a function, then the probability that f ′ equals the f is zero and we are done. So we assume this is not
the case.) For all i ∈ [n] and k ∈ [τ ], we let

• c′i,k ∈ {0, 1}2λ denote the string whose dth bit is given by f ′(i, k, 0, d), and

• v′i ∈ {0, 1}λ denote the string whose dth bit is given by f ′(i, k, 1, d).

Before we move on to the next step, we introduce some notation and a few random variables that will be
useful later. Let Q denote the set of strings that the value of On has been revealed on (the size of Q is at
most q).

We say a prefix26 i ∈ [n] has a w-collision, if there is a v such that

|{(i, sk, c) ∈ Q : On(i, sk, c) = v}| ≥ w.

Let Cw be the random variable given by the number of prefixes i ∈ [n] with a w-collision. We show tail
bounds on Cw.

Proposition 31. The probability (over the randomness in step 1) that Cw ≥ tw for all 2 ≤ w ≤ τ is at most

2τn log(2τq)−
∑

2≤w≤τ twλ.

We defer the proof of Proposition 31, which is a direct calculation, to Section 7.2.

26We call this a prefix because i is the first input taken by f .
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Step 2: Reveal the values of Rn that determine the secret keys.

Recall, the ith “random” coin used in the reduction is deterministically generated by the value of

Rn(i) = O(0, 1n, 0, 12
λ

, 0, i)

In step 2, we reveal all the values of O needed to “randomly sample” the values of sk1, . . . , skm in the
reduction.

After step 2 finishes, we let skHit ⊆ [m] be the set given by

skHit = {k ∈ [m] : there exists i and c such that (i, skk, c) ∈ Q }.

Intuitively, skHit is the collection of set indices that P “successfully found the secret keys for.”
Crucially, the values ofRn are determined by running O on inputs of length greater than 2λ. On the other

hand, P only queries O on inputs of length at most 2λ/O(τ). Thus, the values sk1, . . . , skm are still uniformly
random even conditioned on any information revealed in step 1. Using this, we can show a probability bound
on |skHit| using tail bounds on the binomial distribution. We defer the proof to Section 7.2.

Proposition 32. The probability (over the randomness in step 2 conditioned on all the information revealed
in step 1) that |skHit| = t is at most 2−tλ+m log(4mq).

We introduce one more random variable. For any i ∈ [n] and k ∈ [τ ], we say c′i,k is confirmed if
(i, skIndex(i,k), c

′
i,k) is in Q and On(i, skIndex(i,k), c

′
i,k) = v′i. Intuitively, this means that based on queries that

P has made, it has confirmed that c′i,k will decrypt to v′i. Let B be the number (i, k) tuples such that c′i,k
is not confirmed.

We will argue that B must be large. Let Missed ⊆ [n] be the set

Missed = [n] \
⋃

d∈skHit

Sd.

In other words, Missed is the subset of the ground set that is not covered by sets whose indices are in skHit.
Intuitively, this corresponds to the set of ground set elements for which P does not know the “secret keys”
needed to decrypt the message corresponding to the ground set element.

We lower bound B in terms of the size of Missed and the number of collisions PO finds.

Proposition 33.

B ≥ n(τ − 1) + |Missed| −
τ∑

w=2

Cw

Proof. The total number of confirmed queries is at most∑
i∈[n]

∑
k∈[τ ]

1[ci,k is confirmed]

=
∑

i∈[n]\Missed

∑
k∈[τ ]

1[ci,k is confirmed]

≤
∑

i∈[n]\Missed

1 + 1[i has a 2-collision] + · · ·+ 1[i has a τ -collision]

≤n− |Missed|+
τ∑

w=2

Cw
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where the first equality comes from Proposition 34 below and the middle inequality comes from Proposition 35
below. Using this, we get that

B =
∑

i∈[n],k∈[τ ]

1[ci,k is not confirmed] ≥ n(τ − 1) + |Missed| −
τ∑

w=2

Cw.

Proposition 34. Let i ∈ [n] and k ∈ [τ ]. If i ∈Missed, then c′i,k is not confirmed.

Proof. We prove the contrapositive. Suppose c′i,k is confirmed. Then (by definition) (i, skIndex(i,k), c
′
i,k) is in

Q. Then Index(i, k) is in skHit (by construction of skHit). Then SIndex(i,k) contains i and Index(i, k) ∈ skHit,
so i ̸∈Missed.

Proposition 35. Fix i. If c′i,k is confirmed for w distinct values of k, then there is a w-collision on i.

Proof. For every c′i,k that is confirmed we have that

O(i, skk, c′i,k) = v′i

and (i, skk, c
′
i,k) ∈ Q. Thus, if c′i,k is confirmed for w distinct values of k, then there is a w-collision on i.

Step 3: Reveal the oracle On on inputs to corresponding to each c′i,k

In step 3, we reveal, for all i ∈ [n] and k ∈ [τ ], the value of On on the input (i, skIndex(i,k), c
′
i,k). In other

words, for any i ∈ [n] and k ∈ [τ ], if On on input (i, skIndex(i,k), c
′
i,k) was not already revealed before step 3,

it is set to a uniformly random element of {0, 1}λ. This completes the description of step 3.
After step 3 finishes, we define the following event. We say f ′ is a valid encoding if for all i ∈ [n] and

k ∈ [τ ] we have On(i, skIndex(i,k), c
′
i,k) = v′i. Intuitively, this says that all the encryptions c

′
i,k correctly decrypt

to v′i. (Note that any f output by the reduction will have the valid encoding property by construction.)
We can bound the probability that f ′ is a valid encoding using the B random variable.

Proposition 36. Conditioned on the value of B and all the information revealed in prior steps, the proba-
bility (over the randomness in step 3) that f ′ is a valid encoding is at most 2−Bλ.

Proof. For each c′i,k that is not confirmed, the probability that O(i, skIndex(i,k), c′i,k) = v′i is at most 2−λ

(either the point was not queried before, in which case the probability is exactly 2−λ or it was queried
before in which case the probability is zero since it must be that O(i, skIndex(i,k), c′i,k) ̸= v′i for it not to be
confirmed).

Since the non-zero probabilities are independent, we get that the probability of f ′ being a valid encoding
is at most 2−Bλ.

Combining the lower bound on B in Proposition 33 with the probability bounds on |skHit| and Cw given
in Proposition 32 and Proposition 31, we can bound the probability that f ′ is a valid encoding. The proof
is a somewhat tedious calculation, and we defer it to Section 7.2.

Proposition 37. The probability (over the randomness in steps 1, 2, and 3) that f ′ is a valid encoding is
at most

2−λn(τ−1)−OPT ·λ+m log(4mq)+τn log(τq)+τ log(n)+logm.

Here OPT denotes the size of the optimal set cover.
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Step 4: Reveal the rest of On.

We now reveal On on all remaining inputs. In other words, we set the value of On on any input not already
set to a uniformly random element of {0, 1}λ.

After this step 4 finishes, we say that On is good if for all i ∈ [n] and k ∈ [τ ] we have that

|{c : On(i, skIndex(i,k), c) = v′i}| ≥ 2(1−o(1))λ.

We show that On must be good except with extremely small probability using a Chernoff bound. We
defer the proof to Section 7.2.

Proposition 38. The probability (over the randomness in step 4 conditioned on all the information revealed
in prior steps) that O is not good is at most

2−(1−o(1))λn(τ+1).

Step 5: Reveal the remaining values of Rn that determine f .

We now finish sampling f completely (up until now we have just sampled the secret keys). In particular,
this means fully revealing the “random” coins deterministically generated by Rn in order to choose each
vi ∈ {0, 1}λ and each ci,k.

By the same query length argument as in step 2, we get that, even conditioned on the information revealed
in the prior steps, these coins are i.i.d. uniform. This means that in step 5 each vi is uniformly random from
{0, 1}λ for all i ∈ [n] and each ci,k is chosen uniformly from the set {c ∈ {0, 1}2λ : On(i, skIndex(i, k), c) = vi}
for all i ∈ [n] and k ∈ [τ ].

We can bound the probability that f = f ′ given that f ′ is a valid encoding.

Proposition 39. Conditioned on the event that f ′ is a valid encoding, the probability (over the randomness
in steps 4 and 5) that f = f ′ is at most

2−(1−o(1))λn(τ+1)

Proof. Since each vi is chosen independently uniformly at random independently from {0, 1}λ and since each
ci,k is chosen independently uniformly at random from the set {c : O(i, skIndex(i,k), c) = vi}, we get that the
probability f = f ′ is at most

2−λn
∏

i∈[n],k∈[τ ]

1

|{c : O(i, skIndex(i,k), c) = v′i}|
.

In the event that O is good, we get that the above quantity is at most

2−λn
∏

i∈[n],k∈[τ ]

1

2λ(1−o(1))
= 2−λn−(1−o(1))nτλ = 2−(1−o(1))λn(τ+1).

On the other hand, the event that O is not good occurs with probability at most 2−(1−o(1))λn(τ+1). Putting
these two bounds together gives the desired bound.

We are now ready to complete the proof of Lemma 30. We have that

Pr
O
[f = f ′]

≤Pr
O
[f = f ′|f ′ is a valid encoding] Pr

O
[f ′ is a valid encoding] + Pr

O
[f = f ′|f ′ is not a valid encoding]

=Pr
O
[f = f ′|f ′ is a valid encoding] Pr

O
[f ′ is a valid encoding]

≤ 2−(1−o(1))λn(τ+1)2−λn(τ−1)−OPTλ+m log(4mq)+τn log(τq)+τ log(n)+logm

≤ 2−(1−o(1))2λnτ−OPTλ+m log(4mq)+τn log(τq)+τ log(n)+logm.
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On a NO instance, recall that we have that OPT ≥ n/3. Also, using that m ≤ τn and q ≤ 2λ/(128τ)

(recall, our assumption is that q ≤ 2λ/O(τ)) and the assumption that λ ≥ Ωτ (log n) for some sufficiently
large hidden constant (that can depend on τ), we have that

m log(4mq) + τn log(τq) + τ log(n) + logm

≤τn log(4τnq) + τn log(τq) + τ log n+ log(τn)

≤4τn log(4τnq)

≤4τn log(4τn2λ/(128τ))

≤4τn log(2λ/(64τ))

≤λn/16

Substituting in both these bounds, we get that on a NO instance

Pr
O
[f = f ′]

≤2−(1−o(1))2λnτ−OPTλ+m log(4mq)+τn log(τq)+τ log(n)+logm

≤2−(1−o(1))2λnτ−λn/3+λn/16

≤2−(1−o(1))2λnτ−λn/4

This completes the proof of Lemma 30.

7.2 Probability Bounds

Proposition 31. The probability (over the randomness in step 1) that Cw ≥ tw for all 2 ≤ w ≤ τ is at most

2τn log(2τq)−
∑

2≤w≤τ twλ.

Proof. Recall P is some arbitrary decision tree and Q is the set of at most q queries that P has made to the
oracle On. Recall we say that PO finds a w-collision on prefix i ∈ [n] has a if there is a v such that

|{(i, sk, c) ∈ Q : On(i, sk, c) = v}| ≥ w.

We say PO finds at least tw distinct w-collisions if PO finds a w-collision on at least tw distinct prefixes.
In words, our goal is to bound the probability that

Pr
O
[ PO finds at least tw distinct w-collisions for all 2 ≤ w ≤ τ ]

We will analyze a different decision tree P ′ that queries On on each prefix i ∈ [n] on q distinct inputs
(i, sk, c). Thus, in total, P ′ makes qn queries. It is easy to see that P ′ will be only better than P at finding
collisions because On is a uniformly random function. Formally, we have that

Pr
O
[Cw ≥ tw for all 2 ≤ w ≤ τ ]

=Pr
O
[ PO finds at least tw distinct w-collisions for all 2 ≤ w ≤ τ ]

≤Pr
O
[ (P ′)O finds at least tw distinct w-collisions for all 2 ≤ w ≤ τ ]

We now begin analyzing P ′. To do this, it will be useful to introduce the following definition. Say a
function g : [n]→ [τ ] is good if for all 2 ≤ w ≤ τ we have that

tw ≤
∑
i∈[n]

1[g(i) ≥ w].
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We now return to analyzing P ′. Observe that if (P ′)O finds at least tw distinct w-collisions for all
2 ≤ w ≤ τ , then there exists a good g such that (P ′)O finds an g(i)-collision on prefix i. (To see this, for
each value of i set g(i) to be the max value of w ∈ [τ ] such that (P ′)O finds an w-collision on prefix i.) As
a result, we have that

Pr
O
[ (P ′)O finds at least tw distinct w-collisions for all 2 ≤ w ≤ τ ]

≤Pr
O
[exists good g such that for all i ∈ [n] we have that (P ′)O finds an g(i)-collision on prefix i]

≤
∑

good g

Pr
O
[for all i we have (P ′)O finds an g(i)-collision on prefix i]

Then by the construction of P ′ (in particular, using that its queries are non-adaptive and independent), we
get that ∑

good g

Pr
O
[for all i we have (P ′)O finds an g(i)-collision on prefix i]

≤
∑

good g

∏
i∈[n]

Pr
O
[(P ′)O finds an g(i)-collision on prefix i]

≤
∑

good g

∏
i∈[n]

qg(i)2−λ(g(i)−1)

≤
∑

good g

∏
i∈[n]

qτ2−λ(g(i)−1)

≤
∑

good g

qτn
∏
i∈[n]

2−λ(g(i)−1)

≤
∑

good g

qτn2−λ
∑

i∈[n](g(i)−1)

Now, recall the definition of a function g : [n]→ [τ ] being good is if for all 2 ≤ w ≤ τ we have that

tw ≤
∑
i∈[n]

1[g(i) ≥ w].

Summing over 2 ≤ w ≤ τ , the above condition implies that∑
2≤w≤τ

tw ≤
∑

2≤w≤τ

∑
i∈[n]

1[g(i) ≥ w] =
∑
i∈[n]

∑
2≤w≤τ

1[g(i) ≥ w] =
∑
i∈[n]

(g(i)− 1).

Substituting this in we get that ∑
good g

qτn2−λ
∑

i∈[n](g(i)−1)

≤
∑

good g

qτn2−λ
∑

2≤w≤τ tw

≤τnqτn2−λ
∑

2≤w≤τ tw

≤2τn log(2τq)−
∑

2≤w≤τ twλ.

Thus, finally, we have that

Pr
O
[ (P ′)O finds at least tw distinct w-collisions for all 2 ≤ w ≤ τ ] ≤ 2τn log(2τq)−

∑
2≤w≤τ twλ
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Proposition 32. The probability (over the randomness in step 2 conditioned on all the information revealed
in step 1) that |skHit| = t is at most 2−tλ+m log(4mq).

Proof. Recall, by the query length argument, the strings sk1, . . . , skm are each chosen uniformly at random
from {0, 1}λ after Q is determined in step 1. Thus

|skHit| =
∑
d∈[m]

1[(i, skd, c) ∈ Q for some i, c]

is the sum of m independent Bernoulli random variables, each with expectation at most q2−λ (since Q
contains at most q points).

Applying the Chernoff-Hoeffding bound, we get that the probability that |skHit| ≥ t is at most

2−mD(m−t
m ||1−q2−λ)

where D(a||b) = a log a
b + (1− a) log 1−a

1−b denotes Kullback–Leibler divergence.
We can calculate that

mD(
m− t

m
||1− q2−λ)

=mD(1− t/m||1− q2−λ)

=m[(1− t/m) log(
1− t/m

1− q2−λ
) + (t/m) log

t

mq2−λ
]

≥m[(1− t/m) log(1− t/m) + (t/m) log
t

mq2−λ
]

≥m[−2t/m+ (t/m) log
t

mq2−λ
]

=− 2t+ t log
t

mq2−λ

≥− 2t+ t(λ− log(mq))

=tλ− t log(4mq)

≥tλ−m log(4mq)

where we use the fact that (1 − x) log(1 − x) ≥ −2x for all x ≥ 0 and the fact that t ≤ m (since otherwise
the proposition is vacuously true).

Proposition 37. The probability (over the randomness in steps 1, 2, and 3) that f ′ is a valid encoding is
at most

2−λn(τ−1)−OPT ·λ+m log(4mq)+τn log(τq)+τ log(n)+logm.

Proof. Proposition 36 says the probability that f ′ is a valid encoding conditioned on the value of B is at
most 2−Bλ.

Then applying the lower bound on B in Proposition 33 we know that conditioned on skHit (which
determines Missed) and Cw that the probability f ′ is a valid encoding is at most

2−λn(τ−1)−λ|Missed|+
∑τ

w=2 Cwλ.

Still conditioning on the values of Cw, but summing over all possible values of |skHit| and multiplying
by the probability bounds on |skHit| in Proposition 32, we get the probability that f ′ is a valid encoding
given the values of Cw is at most27

27In the expression below, |Missed| is really a random variable that depends on skHit, but for simplicity we omit writing
this dependence.
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∑
|skHit|∈[m]

2−λn(τ−1)−λ|Missed|+
∑τ

w=2 Cwλ2−|skHit|λ+m log(4mq).

We split this sum into two parts: the part of the sum when |skHit| < OPT and the part when |skHit| ≥
OPT . For the first part, we can bound∑

|skHit|<OPT

2−λn(τ−1)−λ|Missed|+
∑τ

w=2 Cwλ2−|skHit|λ+m log(4mq)

≤
∑

|skHit|<OPT

2−λn(τ−1)−λ(OPT−|skHit|)+
∑τ

w=2 Cwλ2−|skHit|λ+m log(4mq)

≤
∑

|skHit|<OPT

2−λn(τ−1)−λOPT+
∑τ

w=2 Cwλ+m log(4mq)

where the first inequality comes from observing that the union of OPT − α sets from a set cover instance
must be missing at least α elements of the ground set (otherwise one could create a set cover smaller than
OPT ).

For the second part, we can bound∑
|skHit|≥OPT

2−λn(τ−1)−λ|Missed|+
∑τ

w=2 Cwλ2−|skHit|λ+m log(4mq)

≤
∑

|skHit|≥OPT

2−λn(τ−1)−λOPT+
∑τ

w=2 Cwλ+m log(4mq)

Putting these bounds together, we get that the probability that f ′ is a valid encoding given the values
of Cw is at most

m2−λn(τ−1)−OPTλ+
∑τ

w=2 Cwλ+m log(4mq)

We now sum over the potential values of Cw and multiply by the tail bounds on Cw in Proposition 31 to
obtain the following bound on the probability that f ′ is a valid encoding.∑

C2,...,Cτ∈[n]

m2−λn(τ−1)−OPTλ+
∑τ

w=2 Cwλ+m log(4mq) · 2τn log(2τq)−
∑

2≤w≤τ Cwλ

=
∑

C2,...,Cτ∈[n]

m2−λn(τ−1)−OPTλ+m log(4mq)+τn log(τq)

≤(n)τm2−λn(τ−1)−OPTλ+m log(4mq)+τn log(τq)

≤2−λn(τ−1)−OPTλ+m log(4mq)+τn log(τq)+τ log(n)+logm.

Proposition 38. The probability (over the randomness in step 4 conditioned on all the information revealed
in prior steps) that O is not good is at most

2−(1−o(1))λn(τ+1).

Proof. Fix any i and k. We will bound the probability of the event that

|{c : O(i, j, skIndex(i,k), c) = v′i}| < 2λ−
√
λ

and then union bound over all i and k.
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Recall that prior to step 4, O has only been revealed on only a small number of points. Namely, O is
revealed on at most q′ ≤ λq+nτ points (λq points from running P in step 1 (the extra factor of λ is because
we reveal all of On if it queries just one bit of On) and nτ points from revealing the values of O on all c′i,k
in step 3). Moreover, we have that

q′ ≤ λq + nτ ≤ (1 + o(1))2λ/2 + (1 + o(1))2λ/2 = (1 + o(1))2λ

using the assumptions in the statement of Lemma 30 that q ≤ 2λ/O(τ) and that λ ≥ Ωτ (log n), setting the
hidden constants to be large enough. During step 4 the value of O on the remaining points is independently
set to a uniformly random element of {0, 1}λ.

Thus the random variable |{c : O(i, skIndex(i,k), c) = v′i}| is the sum of at least 22λ − q′ = (1 − o(1))22λ

independent Bernoulli random variables with mean 2−λ. Thus, by a Chernoff bound, we get that the

probability that |{c : O(i, skIndex(i,k), c) = v′i}| ≤ (1− (1− 2−
√
λ))2λ is at most

exp(−(1− o(1))
(1− 2−

√
λ)2

2
2λ) ≤ exp(−(1− o(1))2λ−1).

Union bounding over i and k, we get the probability O is not good is at most

nτ exp(−(1− o(1))2λ−1) ≤ exp(−(1− o(1))2λ−1 + log(nτ)) ≤ exp(−(1− o(1))2λ−1) ≤ 2−(1−o(1))λn(τ+1)

again by setting the hidden constant in the assumption λ ≥ Ω(log n) to be sufficiently large enough.
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A Lupanov for Multiple Outputs

Here, we show how Lupanov’s near-optimal construction of circuits for random Boolean functions with one
output bit easily generalizes to multiple output bits. To begin, we recall Lupanov’s original construction.
Our presentation is based on [BCB13].

Theorem 40 (Lupanov [Lup58]). Let f : {0, 1}n → {0, 1}. Then there is a constant-depth circuit computing
f of size (1 + o(1)) 2

n

n .

Proof. Let k ∈ [n] and s ∈ N be parameters we set later. We break up the inputs to f and view f :
{0, 1}k × {0, 1}n−k → {0, 1}. We also fix a partition of {0, 1}k into sets A1, . . . , Ap of size at most s where
p ≤ (2k/s+ 1).

Then, we can write

f(x, y) =
∨
i∈[p]

1[x ∈ Ai] ∧ f(x, y)

For any i ∈ [p] and any string y ∈ {0, 1}n−k, we write f(Ai, y) as shorthand for the function g : Ai → {0, 1}
given by g(x) = f(x, y). Then, we can write

f(x, y) =
∨
i∈[p]

∨
g:Ai→{0,1}

1[x ∈ Ai and g(x) = 1] ∧ 1[f(Ai, y) = g]
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We now bound the circuit complexity of computing f in this way (which is clearly implementable in
constant-depth). First, we compute once and for all the minterms28 on x and minterms on y. This costs
(1+o(1))(2k+2n−k) upfront, but we can reuse these gates in later computations (which will give us savings).

For each i ∈ [p] and g : Ai → {0, 1}, the function 1[x ∈ Ai and g(x) = 1] takes k-bit inputs and accepts
at most |Ai| ≤ s strings. We will compute this function using a DNF. Since we have already computed the
minterms on x, the cost of computing each 1[x ∈ Ai and g(x) = 1] is at most s (we just need to pay for the
OR gates in the DNF). Summing over all p possibilities for i and all 2s possibilities for g gives a total cost
of at most p2ss

Next, we compute 1[f(Ai, y) = g] also by a DNF. The number of inputs this function accepts is exactly∑
y∈{0,1}n−k 1[f(Ai, y) = g]. Since this is only a function on the y variable and we have already paid for

computing all the y minterms, the cost of computing this function is at most
∑

y∈{0,1}n−k 1[f(Ai, y) = g].

Thus, summing over all i ∈ [p] and all g, the total cost is at most∑
i∈[p]

∑
g:Ai→{0,1}

∑
y∈{0,1}n−k

1[f(Ai, y) = g] =
∑
i∈[p]

∑
y∈{0,1}n−k

∑
g:Ai→{0,1}

1[f(Ai, y) = g]

=
∑
i∈[p]

∑
y∈{0,1}n−k

1

= p2n−k.

Finally, now that we have subcircuits computing 1[x ∈ Ai and g(x) = 1] and 1[f(Ai, y) = g], we need to
compute ∨

i∈[p]

∨
g:Ai→{0,1}

1[x ∈ Ai and g(x) = 1] ∧ 1[f(Ai, y) = g].

This requires at most p gates for the outer OR, p2s gates for the inner OR and p2s gates for the inner AND.
Thus, we need at most 3p2s extra gates.

In total, this gives us a bound of

(1 + o(1))(2k + 2n−k) + p2ss+ p2n−k + 3p2s

Setting k = 3 log n and s = n− 5 log n yields the theorem (the dominant term is p2n−k).

Theorem 29 (Multi-Output Lupanov). Let f : {0, 1}n → {0, 1}m with m ≥ 2 . Then there is a constant-
depth circuit computing f of size (1 + o(1)) m2n

n logm .

Proof. For each j ∈ [m], let fj : {0, 1}n → {0, 1} be the j’th output of the f function.
Let k and s be parameters we set later. We repeat the construction in Theorem 40 using this k and s to

compute each fj for all j ∈ [m]. Doing this naively would give a cost of

m[(1 + o(1))(2k + 2n−k) + p2ss+ p2n−k + 3p2s].

However, note that we only need to compute the minterms on x and y once (they will be the same no
matter which fj we are computing). Similarly, we only need to compute 1[x ∈ Ai and g(x) = 1] once for
each i ∈ [p] and g : Ai → {0, 1} (these functions do not depend on fj).

Thus, we instead get the bound

(1 + o(1))(2k + 2n−k) + p2ss+mp2n−k + 3mp2s.

Now we set s = n log(m)−5 log(n logm) and k = 3 log(n logm). In this case, p ≤ 2k/s+1 ≤ (1+o(1))2k/s.
We have

(1 + o(1))(2k + 2n−k) + p2ss+mp2n−k + 3mp2s

≤(1 + o(1))(2k + 2n−k) + (1 + o(1))2s+k +m2n/s+ 3m2k+s/s

≤(1 + o(1))m2n/(n logm)

28A minterm of x is just the AND of some subset of variables in x.

51



52

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


