
Towards P 6= NP from Extended Frege lower bounds

Ján Pich
University of Oxford

Rahul Santhanam
University of Oxford

December 9, 2023

Abstract

We give a new approach to the fundamental question of whether proof complex-
ity lower bounds for concrete propositional proof systems imply super-polynomial
Boolean circuit lower bounds.

For any poly-time computable function f , we define the witnessing formulas
wkn(f), which are propositional formulas stating that for any circuit C of size nk on
n variables and for any formula φ of size n, either C computes a satisfying assign-
ment to φ or f verifiably refutes that C computes SAT on instances of length n.
We show that if the witnessing formulas are tautologies, then any super-polynomial
lower bound for Extended Frege augmented with wkn(f) axioms implies that SAT re-
quires super-polynomial size Boolean circuits. We also give an unconditional equiv-
alence between proof complexity lower bounds for a concretely defined strong (non-
uniform) propositional proof system and super-polynomial circuit lower bounds for
the Discrete Logarithm problem.

We give consequences for the meta-mathematics of several major questions in
computational complexity, including whether one-way functions can be based on the
worst-case hardness of NP, whether there is a dichotomy between one-way functions
and worst-case learning with membership queries over the uniform distribution, and
whether there are feasibly constructible anti-checkers for Satisfiability. We show
that for each of these questions, provability of a positive answer in any system
of bounded arithmetic would imply new connections between propositional proof
complexity and circuit complexity.

Our results rely on a new notion of “self-provability” of upper bounds, which
might be independently interesting.

1 Introduction

Proof complexity studies the lengths of proofs of tautologies in propositional proof sys-
tems. One of the motivations for studying proof complexity is that the P versus NP

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 199 (2023)

problem can be approached by showing proof complexity lower bounds. Cook and Reck-
how [22] showed that NP 6= coNP iff every propositional proof system has a hard sequence
of tautologies that require superpolynomial proof size. The Cook-Reckhow program [6, 38]
proceeds by proving lower bounds on proof size for increasingly powerful proof systems.
One issue with this program is that it is unclear if there is a concrete proof system such
that lower bounds for that system would imply P 6= NP, as the separation is only known
to follow if we have lower bounds for every proof system, including very powerful proof
systems that are not studied in practice. In contrast, the circuit complexity approach
to the P versus NP problem only requires super-polynomial lower bounds for a concrete
circuit model, namely general Boolean circuits.

In this paper, we present a new approach to the question of whether superpolynomial
lower bounds for concrete proof systems have implications for longstanding open problems
in complexity theory such as P versus NP. Our approach is based on the new concept of
self-provability of Boolean formulas, and on the use of feasible witnessing of lower bounds
to establish self-provability. In the first part of our paper, we use this approach to connect
proof complexity lower bounds for propositional proof systems to strong computational
complexity lower bounds such as P 6= NP. In the second part of our paper, we derive
some intriguing meta-mathematical consequences of our results in the first part. We show
that any approach to certain foundational questions in cryptography and learning, such
as the question of whether one-way functions can be based on P 6= NP, or whether there
is a dichotomy between cryptographic pseudo-randomness and efficient learning, is also
an approach to deriving strong Boolean complexity lower bounds from proof complexity
lower bounds!

In the rest of this introduction, we first discuss the question of connecting proof com-
plexity and circuit complexity. We then present our approach and the connections we
derive from it. In the final subsection, we present the meta-mathematical implications of
our approach in detail.

1.1 Proof Complexity vs Circuit Complexity

On the surface, there are differences between proof complexity and circuit complexity. In
proof complexity, we are interested in the sizes of proofs where every line is a tautology,
and hence it is unclear how computational complexity could be relevant. Also, we know
that strong circuit lower bounds hold for most Boolean functions by a simple counting
argument, while super-polynomial proof complexity lower bounds for any sequence of
tautologies, whether explicit or not, is unknown for strong proof systems.

Despite this, proof complexity and circuit complexity are closely linked together, es-
pecially for weak proof systems. Lower bound techniques for proof systems such as Reso-
lution [26] and AC0-Frege [4, 14, 40] are closely related to circuit complexity lower bound
techniques for circuit models such as monotone circuits and constant-depth circuits. More

2

formally, there are “feasible interpolation” results for weak proof systems such as Reso-
lution and Cutting Planes which allow us to derive proof complexity lower bounds from
circuit lower bounds [35]. In the other direction, there has been much progress on “lifting”
theorems [23], which yield monotone circuit lower bounds from lower bounds for Resolu-
tion and monotone span program lower bounds from lower bounds for the Nullstellensatz
proof system. Such connections are thus far confined to weak proof systems, and there is
cryptographic evidence that stronger proof systems - AC0-Frege and above - do not have
feasible interpolation [12, 11].

There are also known connections between algebraic circuit complexity and proof com-
plexity [49]. Grochow and Pitassi [24] defined the Ideal Proof System (IPS): an algebraic
proof system where the verification of proofs can be done by an efficient randomized al-
gorithm for Polynomial Identity Testing. They showed that any super-polynomial lower
bounds on IPS-proofs of propositional tautologies would imply VNP 6= VP - the major
open problem in algebraic circuit complexity. There has been follow-up work on variants
and subsystems of IPS, including a version involving non-commutative algebraic formulas
which is closely related to the Frege proof system [41]. Recently, an equivalence between
VNP 6= VP and IPS lower bounds for a certain explicit sequence of formulas was shown
in [53]. There are also strong connections known between lower bounds for QBF proof
systems and circuit lower bounds [7, 8].

However this still leaves open the question of formal connections between proof com-
plexity lower bounds for strong propositional proof systems such as Extended Frege sys-
tem EF and Boolean circuit lower bounds. No implications are known in either direction.
Razborov [51] has proposed a set of conjectures connecting average-case circuit lower
bounds to proof complexity lower bounds for Frege and EF, but we seem very far from
establishing these conjectures.

We first observe that an implication from super-polynomial proof complexity lower
bounds for any concrete propositional proof system to strong Boolean circuit lower bounds
would yield unconditional circuit lower bounds we don’t yet know how to prove.

Proposition 1. Suppose that Q is a propositional proof system such that super-polynomial
lower bounds on the Q-proof size for any sequence of tautologies implies that NP 6⊆ P/poly.
Then we have unconditionally that NEXP 6⊆ P/poly.

Proof. We consider two cases. The first is that there are polynomial-size Q-proofs for any
sequence of tautologies. In this case NP = coNP, and hence the Polynomial Hierarchy
collapses to NP. Suppose for the sake of contradiction that NEXP ⊆ P/poly. Then, by
the main result of [29], NEXP = MA. Since MA is in the Polynomial Hierarchy, we have
that MA = NP, and hence that NEXP = NP. But this contradicts the hierarchy theorem
for non-deterministic time, and hence we must have that NEXP 6⊆ P/poly.

The second case is that there are super-polynomial lower bounds on the Q-proof size
for some sequence of tautologies. By the assumption in Proposition 1, we have that
NP 6⊆ P/poly, and hence that NEXP 6⊆ P/poly.

3

Since the NEXP vs P/poly problem seems out of reach of current lower bound tech-
niques, it seems unlikely that we will be able to prove an unconditional connection from
super-polynomial lower bounds for a propositional proof system to strong circuit lower
bounds any time soon. However, there are still several possibilities for establishing con-
nections. First, we can still hope to establish a connection under the assumption that
NEXP 6⊆ P/poly, or similar assumptions for exponential-time classes, which seem like
much weaker lower bound assumptions than super-polynomial circuit lower bounds for
NP. Second, we can hope to establish a connection unconditionally from super-polynomial
lower bounds for a proof system with randomized or non-uniform verification - the proof
of Proposition 1 needs that proofs are deterministically verifiable. Third, we can hope to
establish a connection with a weaker conclusion, e.g., that NP 6= P, which is not ruled out
by the argument above. Fourth, we can hope to establish a connection that doesn’t work
for any sequence of tautologies but only for certain specific sequences.

In this paper, we explore all four of these possibilities, and show several results that
make progress towards realizing these possibilities. The new idea that is used in all of
these results is the idea of self-provability of lower bounds, which we explain next.

1.2 Self-Provability and Witnessing

Is it possible that NP = P but this fact is not provable in any standard theory, such as
ZFC (Zermelo-Fraenkel Set Theory with Choice)? There have been investigations into the
possibility that NP vs P is independent of ZFC [1], which if true would imply a positive
answer to the question above. One might speculate that if NP = P or similar upper
bounds hold, there should also be efficient proofs of such upper bounds. In cases where this
intuition is true, we say that the upper bound is self-provable. Self-provability in theories
of bounded arithmetic is strongly relevant to the research direction of proving consistency
of complexity lower bounds with a theory T . Indeed, if a complexity upper bound were
self-provable in T , then the consistency of its negation with T would immediately imply
that the negation holds unconditionally.

We study self-provability for circuit upper bounds in the propositional setting. Let
S be an NP search problem on inputs of size n, and C a circuit of size poly(n). We
can formalize that C solves S on inputs of size n using a propositional statement φC,n,
which asserts that for each x of length n, either S has no solutions on x, or C outputs a
solution to S. The question we pose is: if φC,n is a tautology, i.e., S is indeed solved by
the polynomial-size circuit C on inputs of length n, does this imply that φC,n has short
proofs in some concrete proof system Q?

Our goal is to show self-provability for interesting NP search problems S, either uncon-
ditionally or under reasonable assumptions. Note that if we show such a self-provability
for some proof system Q, we immediately get an implication from proof complexity lower
bounds to strong Boolean circuit lower bounds: if φC,n requires super-polynomial size

4

Q-proofs for each poly(n)-size circuit C, then S does not have poly-size circuits. Indeed,
it’s easy to see that this is an equivalence - the converse follows from soundness of the
proof system Q.

The approach we use to show self-provability is feasible witnessing. We say that there
is feasible witnessing of circuit lower bounds for a NP search problem S if there is an
efficiently computable function f such that, given any circuit C that does not solve S
correctly on inputs of length n, f produces a “counter-example” x together with a string
z such that z is a solution to S on x and moreover C does not produce a valid solution on
input x 1. Note that we can assume without loss of generality that C only fails on instances
of S that have valid solutions, as we can easily verify whether the output of C is a solution
to S and hence enforce that C outputs ⊥ on instances of S that do not have solutions.
Intuitively, what we ask from a feasible witnessing procedure is a counter-example to the
claim that C solves S, together with a way to verify the counter-example.

Feasible witnessing is related to several other notions that have been studied in
bounded arithmetic and in computational complexity. Systems of bounded arithmetic
such as Cook’s theory PV1 and Buss’s theory S1

2 enjoy witnessing theorems [13, 38] for
provable statements of low quantifier complexity. For example, a proof of ∀x∃yR(x, y) in
S1
2 for a polynomial-time computable relation R yields an efficiently computable witness
y for each x. Such witnessing theorems can be used to show unprovability results in
the theory using complexity hardness assumptions. In contrast, we aim to reverse the
implication and derive provability results for propositional proof systems from complexity
easiness assumptions. Witnessing of complexity lower bounds has also been considered in
purely computational contexts, through the notion of a “refuter” [33, 25, 5, 10, 17].

How do we use feasible witnessing to show self-provability for a search problem S?
We argue by contradiction. Assume that the circuit C fails to solve S. Then we can run
the feasible witnessing procedure f on C to produce a pair of strings x and z. By the
correctness of the feasible witnessing procedure, we have that z is a solution to S on x
and also that C does not produce a valid solution on input x. Note that both of these
conditions can be checked efficiently, hence if either of them does not hold, we know that
our original assumption that C fails to solve S must be flawed. This argument can be
used to get short proofs in a sufficiently strong proof system of circuit upper bounds for
S. Indeed, suppose that the correctness of the procedure f is provable in some theory
T of bounded arithmetic. Then we show that if the propositional translation PT of T
simulates EF, we get short PT -proofs of φC,n by translating the correctness proof of f and
simulating the verification process for the failure of the feasible witnessing on C.

Interestingly, we reason using bounded arithmetic to get self-provability for proposi-
tional proof systems, but it is unclear how to get self-provability for theories of bounded

1We also need the correctness of f to be provable efficiently in the propositional proof system Q in
which we show self-provability.

5

arithmetic.2

As a first application, we consider the Discrete Logarithm problem, which is widely
believed to be hard for polynomial-size circuits. By using the random self-reducibility of
Discrete Logarithm, together with a suitable derandomization assumption, we get feasible
witnessing for the problem, and hence self-provability. This yields the following result.
In the statement of the result below, by a “non-uniform” propositional proof system, we
mean a sound and complete proof system where the verification of proofs can be done by
polynomial-size circuits.

Theorem 1. (Equivalences between Proof Complexity Lower Bounds and Circuit Lower
Bounds for Discrete Logarithm)

1. Suppose there is a Boolean function f ∈ E such that f requires circuit size 2Ω(n) on
average over the uniform distribution over inputs of length n, for all large enough
n. Then there is a strong propositional proof system Q (simulating EF) and for each
k, n ∈ N a set of formulas Fk,n where each formula in Fk,n is of size nO(k), such
that the Discrete Logarithm problem for multiplicative groups Z×q of integers modulo
a prime q ∈ (2n−1, 2n] does not have polynomial size circuits iff for each k ∈ N the
sequence of (sets of) formulas {Fk,n}n does not have polynomial size Q-proofs.3

2. There is a concrete strong non-uniform propositional proof system Q (simulating
EF) and for each k, n ∈ N a set of formulas {Fk,n}, where each set Fk,n consists of
formulas of size nO(k), such that the Discrete Logarithm problem for multiplicative
groups Z×q of integers modulo a prime q ∈ (2n−1, 2n] does not have polynomial size
circuits iff for each k ∈ N the sequence of (sets of) formulas {Fk,n}n does not have
polynomial size Q-proofs.

The first item of Theorem 1 gives an equivalence between propositional proof com-
plexity lower bounds for a strong propositional proof system and strong circuit lower
bounds for Discrete Logarithm, but conditional on the assumption that E requires large
circuits (which is a complexity-theoretic assumption that is intuitively much weaker than
the super-polynomial hardness of Discrete Logarithm). The second item gives an uncon-
ditional equivalence, but for a concrete strong non-uniform propositional proof system.
[53] earlier give an unconditional equivalence between algebraic circuit lower bounds and
proof complexity lower bounds for a non-uniform (in fact, randomized) proof system.

Indeed, the two items of Theorem 1 have essentially the same proof, involving consid-
eration of a concrete proof system Q which is defined as EF with added axioms including a

2We could also eliminate the use of bounded arithmetic completely and work purely with propositional
proof systems, but this would make our arguments far more lengthy and cumbersome.

3We use the natural convention that a sequence {Fn}n of sets of formulas does not have polynomial
size proofs if there is a sequence of formulas {fn}n, where fn ∈ Fn for each n ∈ N, such that {fn}n does
not have polynomial size proofs.

6

sequence of truth-table tautologies asserting that Boolean functions fn are exponentially
hard on average for Boolean circuits. The only reason that Item 1 is conditional is that
we need lower bounds for E to be able to recognise the truth-table axioms in polynomial
time. However, since exponentially hard fn exist unconditionally, we are also able to get
an unconditional equivalence for a non-uniform propositional proof system for which the
truth tables of hard fn are hardcoded into the verification procedure.
{Fk} is a family containing a sequence of formulas encoding the correctness of circuits

C for Discrete Logarithm, for each possible sequence of knk-size circuits C. The interesting
direction of the equivalences in Theorem 1 follows from self-provability, while the other
direction follows immediately from the soundness of the proof system Q.

We remark that some formulas in sequences Fk are not tautologies, indeed if Dis-
crete Logarithm was hard, all sequences Fk would include non-tautologies. Similar recent
results about strong proof systems [48, 53] also involve formulas that are possibly non-
tautologies. We remark that this seems unavoidable in the context of strong proof systems,
since formulas that we know to be tautologies also tend to have short proofs in strong proof
systems, so we are unlikely to be able to say anything interesting about their hardness.
Moreover, if we try to prove a proof complexity lower bound in order to derive a strong
circuit lower bound using the connection in Theorem 1, we can assume for free that the
lower bound we are proving is for a tautology, as otherwise the lower bound holds trivially
by soundness of the proof system.

Witnessing NP 6⊆ P/poly. We next consider whether circuit upper bounds for SAT
are self-provable. This corresponds to feasible witnessing of SAT 6∈ P/poly. The advan-
tage of self-provability for SAT is that it would allow us to argue that strong circuit lower
bounds follow from proof complexity lower bounds for any sequence of tautologies for
some concrete proof system Q. In contrast, the connection in Theorem 1 is for a specific
family of formulas.

Similar kinds of witnessing for SAT have been considered before in the literature,
using diagonalization techniques [25, 5, 10]. Indeed, Bogdanov, Talwar and Wan [10]
call a similar feasible witnessing in the uniform setting a “dreambreaker” (citing Adam
Smith) and show that such a feasible witnessing can be constructed. However, in their
result, there is no guarantee on the lengths of counter-examples that are produced by the
witnessing function. In our applications, it is crucial that the witnessing function finds
an error on the input length of the given circuit assuming just that the circuit errs on the
given input length.

A witnessing function f for SAT (described at the beginning of Section 1.2) exists
under the assumption of the existence of a one-way function and a function in E hard
for subexponential-size circuits [46, 44], as formalized in Lemma 2 in this paper. Is it
however possible to construct it without assuming more than the assumption we want to
witness? Formally, we are asking if there is a p-time function f such that for each big

7

enough n propositional formula wkn(f), defined by

wkn(f) := [SATn(x, y)→ SATn(x,C(x))]∨[SATn(f1(C), f2(C))∧¬SATn(f1(C), C(f1(C)))],

is a tautology. Here, SATn(x, y) is a p-time predicate saying that x is an n-bit string
encoding a propositional formula satisfied by assignment y, C(z) says that free variables
C represent a circuit with n inputs, ≤ n outputs and size nk which outputs C(z) on z,
and f(C) outputs a pair of strings 〈f1(C), f2(C)〉.

Intuitively, wkn(f) states that for all formulas x of length n and circuits C of size nk on
n inputs, either C finds a satisfying assignment to every satisfiable x, or the witnessing
function f outputs a “counter-example” f1(C) together with a satisfying assignment f2(C)
to f1(C) such that C does not output a correct witness to f1(C). We do not specify the
precise encoding of the formula wkn(f). The proof systems we work with simulate EF and
are therefore strong enough to reason efficiently with any natural encoding of wkn(f).

If we had a function f such that for some n0 and all n > n0, wkn(f) would be a
tautology, we could define an extension of EF, denoted EF+wk(f), such that EF+wk(f)
proofs are EF-proofs which are, in addition, allowed to derive substitutional instances of
wkn(f), for n > n0.

We prove the following theorem. Formulas W k
n0

(f) in the statement of Theorem 2
denote a natural ∀Πb

1-formalization of the statement “∀n > n0, w
k
n(f)”, see §2.2 for the

definition of Πb
1. By the correspondence between S1

2 and EF, cf. [38], if W k
n0

(f) was
provable in S1

2, for some p-time f , then tautologies wkn(f), for n ≥ n0, would have p-size
proofs in EF.

Theorem 2 (Circuit complexity from proof complexity & witnessing of NP 6⊆ P/poly).
Let k ≥ 1 be a constant.

1. Suppose that there is a p-time function f such that for each big enough n, wkn(f) is
a tautology. If EF + wk(f) is not p-bounded, then SATn /∈ Circuit[nεk] for infinitely
many n.

2. Suppose that there is a p-time function f such that for some n0, S1
2 ` W k

n0
(f). If EF

is not p-bounded, then SATn /∈ Circuit[nεk] for infinitely many n.

In Items 1 and 2, ε > 0 is a universal constant (independent of k).

The idea of the proof of Theorem 2 is to use the witnessing tautologies to argue
self-provability for SAT. Item 2 uses the standard result that EF is the propositional
translation of Buss’s theory S1

2.
Notably, if for all k ≥ 1 there is a p-time function fk such that for each big enough n,

wkn(fk) is a tautology, then NEXP 6⊆ P/poly. This follows from Theorem 2 and Proposition
1.

8

Corollary 1 (Circuit lower bounds from witnessing).
If for all k ≥ 1 there is a p-time function fk such that for each big enough n, wkn(fk) is
a tautology, then NEXP 6⊆ P/poly.

Nonuniform witnessing. If we allow f to be nonuniform, we obtain a version of
formulas wkn(f) which are unconditionally tautological. This follows from a theorem of
Lipton and Young [42], who showed that for each sufficiently big n and each Boolean
function f with n inputs which is hard for circuits of size s3, s ≥ n3, there is a set
Af,sn ⊆ {0, 1}n of size poly(s) such that no s-size circuit computes f on Af,sn . The set Af,sn
is the set of anticheckers of f w.r.t. s. Let n be sufficiently big and αsn be tautologies
defined by

αsn :=
(
SATn(x, y)→ SATn(x,B(x))

)
∨
(∨
z∈A

C(z) 6= SATn(z)
)
,

where SATn(z) ∈ {0, 1} is such that SATn(z) = 1 ⇔ ∃y, SATn(z, y). A is ASATn,s
n if

SATn /∈ Circuit[s3] and an arbitrary poly(s)-size subset of {0, 1}n otherwise. C(z) in the
right disjunct of αsn stands for the output of a single-output s-size circuit C with input
z. The circuit C is represented by free variables. The circuit B in the left disjunct is a
fixed poly(s)-size circuit, with n inputs and ≤ n outputs, obtained from a fixed s3-size
single-output circuit B′ with n inputs such that

SATn ∈ Circuit[s3]⇔ ∀x ∈ {0, 1}n, B′(x) = SATn(x).

The circuit B′ exists by considering two cases: I. If SATn /∈ Circuit[s3], we can take
arbitrary s3-size circuit B′; II. If SATn ∈ Circuit[s3], we can let B′ be an s3-size circuit
computing SATn. B is obtained from B′ in a standard way so that B solves the search
version of SATn if SATn ∈ Circuit[s3]. Analogously to Theorem 2, we get the following.

Theorem 3 (Circuit complexity from nonuniform proof complexity).
Let k ≥ 3 be a constant. If there are tautologies without p-size EF-derivations from
substitutional instances of tautologies αn

k

n , then SATn /∈ Circuit[nk] for infinitely many n.

Theorem 3 shows that EF + αn
k
, defined analogously as EF + wk(f), is in certain sense

optimal: If ∀n, SATn ∈ Circuit[nk], then EF+αn
k

has poly(n)-size proofs of all tautologies.
In fact, there is a p-size circuit which given a tautology φ of size n outputs its proof in EF+
αn

k
. Cook and Kraj́ıček [21] constructed an optimal proof system with 1 bit of nonuniform

advice. Their system differs from EF + αn
k

in that it is based on a diagonalization
simulating all possible proof systems.

9

1.3 Metamathematical Implications

We use the results from the previous section to shed light on some classical questions
in complexity theory. Specifically, we show that provability of efficient anticheckers for
SAT, of efficient reductions collapsing Impagliazzo’s worlds Heuristica and Pessiland, or of
efficient reductions from the non-existence of one-way functions to learning, would imply
new connections between proof complexity and circuit complexity.

I. Feasible anticheckers.
Below, we use ’CC ← PC’ to abbreviate that strong circuit lower bounds follow from

proof complexity lower bounds.

Theorem 4 (‘CC ← PC’ from feasible anticheckers - Informal, cf. Theorem 10).
Let k ≥ 3 be a constant and assume that there is a p-time function f such that S1

2 proves
that for all integers n either f(1n) outputs a poly(n) circuit B solving SAT on inputs of
length n, or f(1n) outputs an antichecker of SAT on inputs of length n with respect to size
nk, together with satisfying assignments for all YES instances of the antichecker.

Then, EF is not p-bounded implies SATn /∈ Circuit[nk] for infinitely many n.

Theorem 4 follows from the proof of Theorem 2, see §4.
Similarly as in Corollary 1, if for each k ≥ 3 there is a p-time function f such that S1

2

proves the statement about the existence of anticheckers from the assumption of Theorem
4, then NEXP 6⊆ P/poly.

II. One-way functions from NP 6⊆ P/poly.

Denote by tt(fn, s) a propositional formula expressing that Boolean function fn : {0, 1}n 7→
{0, 1} represented by its truth-table is not computable by a Boolean circuit of size s rep-
resented by free variables, see §2.4. So tt(fn, s) is a tautology if and only if fn is hard for
circuits of size s. The size of the formula tt(fn, s) is poly(2n, s). Similarly, let tt(fn, s, t)
be a formula expressing that circuits of size s fail to compute f on ≥ t-fraction of inputs.

Given a function h ∈ E such that for some n0, for each n ≥ n0, each s(2n)-size circuit
with n inputs fails to compute hn on ≥ t(2n)-fraction of inputs, where s, t are p-time
functions in 2n, we define a proof system EF + tt(h, s, t) as an extension of EF which is
allowed to derive in its proofs substitutional instances of tt(hn, s(2

n), t(2n)), for n ≥ n0.

Theorem 5 (‘CC← PC’ from ‘OWF← NP 6⊆ P/poly’ & hard E - Informal, cf. Theorem
11). Assume that there is h′ ∈ E such that for each sufficiently big n, each 2n/4-size circuit
fails to compute h′ on ≥ 1/2 − 1/2n/4 fraction of all inputs of length n. Further assume
that there are p-time functions h and f such that S1

2 proves that for each integer n and
each fixed-polynomial size circuit C, f(C) either outputs a poly(n)-size circuit B solving
SAT, or C fails to invert h with significant probability over a uniformly random input to
h. Then, if EF + tt(h′, 2n/4, 1/2− 1/2n/4) is not p-bounded, we have that SAT /∈ P/poly.

10

We remark that if there is a p-time function f ′ and constant n0 such that S1
2 proves

that for each n ≥ n0, f ′(12n) outputs the truth-table of a function h′ with n inputs which
is hard on average for 2n/4-size circuits, then EF and EF + tt(h′, 2n/4, 1/2 − 1/2n/4) are
p-equivalent. (Note that h′ ∈ E.)

The proof of Theorem 5 is based on a formalization of the already-mentioned fact that
given a one-way function h and a function in E hard for subexponential-size circuits, we
can construct a p-time function witnessing errors of p-size circuits attempting to solve
SAT. (The witnessing function outputs formulas encoding the statement h(x) = b, with
free variables x and suitable constants b, cf. Lemma 2.) We formalize the conditional
witnessing in a theory S1

2 + dWPHP (PV), where dWPHP (PV) stands for a dual weak
pigeonhole principle, see §2.2. Combining this with the assumption that S1

2 proves that
a one-way function can be obtained from the hardness of SAT, we obtain the ‘ideal’
(S1

2 + dWPHP (PV))-provable witnessing similar to the tautology wkn(f). Having the
ideal witnessing statement we proceed as in the proof of Theorem 2 with the difference
that the axiom dWPHP (PV) and the assumed hardness of E lead to the system EF +
tt(h′, 2n/4, 1/2− 1/2n/4) instead of EF, see §5.

III. Learning from the non-existence of OWFs.

Theorem 6 (‘CC ← PC’ from ‘Learning ← 6 ∃ OWF’ & hardness of E - Informal, cf.
Theorem 12). Let k ≥ 1 be an arbitrary constant. Assume that there is h′ ∈ E such that
for each sufficiently big n, each 2n/4-size circuit fails to compute h′ on ≥ 1/2 − 1/2n/4

fraction of all inputs of length n. Further assume that there are p-time functions h and
f such that S1

2 proves that for all integers n and fixed-polynomial size circuits C, either
f(C) outputs an efficient circuit B that weakly learns Boolean circuits with membership
queries over the uniform distribution, or C fails to invert h with significant probability.

Then the existence of a function gn : {0, 1}n 7→ {0, 1} that is average-case hard for
polynomial-size circuits and such that EF+ tt(h′, 2n/4, 1/2− 1/2n/4) does not have a poly-
size proof of the hardness of gn (represented by truth table formulas) implies that SATn /∈
Circuit[nk].

Theorem 6 is proved similarly as Theorem 5 with the difference that the provability
of efficient learning allows us to prove efficiently only circuit lower bounds instead of all
tautologies, see §6.

[47, Lemma 4] shows that, assuming E is S1
2-provably hard as in Theorem 6, learning

algorithms for small circuits can be S1
2-provably constructed from circuits automating EF

on tt-formulas.4 Theorem 6 thus implies that (assuming E is S1
2-provably hard) S1

2-deriving
automatability of EF from the non-existence of one-way functions would reduce circuit
complexity to EF lower bounds.

4[47, Lemma 4] assumes also the existence of a prime. The assumption can be removed after moving
to the propositional setting.

11

Generalization to stronger proof systems. S1
2 in Theorems 2 & 4-6 can be replaced by

essentially an arbitrary first-order theory T containing S1
2 and satisfying some basic prop-

erties, if we simultaneously replace EF in conclusions of Theorems 2 & 4-6 by a suitable
propositional proof system PT such that propositional translations of Πb

1 theorems of T
have p-size proofs in PT .

Weakening the assumptions. The core component of Theorems 2 & 4-6 is the existence
of a suitable reduction. For example, in case of Theorem 6 we need a p-time reduction
constructing learning algorithms from circuits breaking one-way functions. If such a
reduction exists, even without assuming its provability in S1

2, we can build a propositional
proof system P by adding tautologies encoding the correctness of the reduction to EF.
Then, showing that the resulting proof system P + tt(h′, 2n/4, 1/2 − 1/2n/4) is not p-
bounded on tt-tautologies would separate P and NP. This shows that the S1

2-provability
in the assumptions of our theorems can be weakened just to the validity of the respective
statements, if we use stronger systems than EF in their conclusions. It also shows that
most of the technicalities in the present paper stem from making the presented approach
work for EF.

This has interesting metamathematical implications, in that provability of several
important open questions in complexity theory within any system of bounded arithmetic
would yield new connections between proof complexity and circuit complexity.

Moreover, we remark that if our final goal is to prove that P 6= NP, then the first
assumption of Theorems 5-6 postulating the existence of a hard Boolean function in
E is given to us ‘for free’, as otherwise, if all functions in E can be approximated by
subexponential-size circuits, it is not hard to show that P 6= NP.

1.3.1 Plausibility of the assumptions

Impagliazzo’s worlds. In a famous survey of Impagliazzo [28], he described 5 possible
worlds of average-case complexity: Algorithmica, Heuristica, Pessiland, Minicrypt and
Cryptomania. Recently, there have been various approaches proposed to rule out Heuris-
tica and Pessiland (see, for example, [27, 52, 43]) by studying the complexity of problems
about compression, such as the Minimum Circuit Size Problem (MCSP) and the problem
of computing time-bounded Kolmogorov complexity. Our results have implications for
the feasibility of such efforts - provable collapses of Impagliazzo’s worlds would imply a
new and surprising link between proof complexity and circuit complexity. For example,
the reduction assumed in Theorem 6 asks for a construction of learning algorithms from
circuits breaking one-way functions. Morally, the existence of such a reduction would rule
out Pessiland out of Impagliazzo’s worlds. Similarly, the reduction assumed in Theorem
5 would rule out Pessiland and Heuristica. The question of basing one-way functions on
the worst-case hardness of NP has received much attention, and there are barriers known
for restricted black-box reductions [16, 2, 15]. However, the reductions we consider are

12

white-box, and we only require provability of the reduction.

Feasible MinMax theorem. The proofs of the existence of anticheckers we are aware
of use the efficient MinMax theorem [3, 42, 45] or similar methods. If we had a proof
of MinMax which would use counting with only polynomial precision (formally, APC1-
counting) and if we could replace p-time f in Theorem 4 by the existential quantifiers
(see §4 for a discussion of the issue), we could prove the existence of anticheckers in APC1

and obtain the desired reduction of circuit complexity to proof complexity. Here, APC1

is Jeřábek’s theory of approximate counting, see §2.2.

S1
2-provability of a circuit lower bound. If we want to replace EF + tt(h′, 2n/4, 1/2−

1/2n/4) in Theorems 5 & 6 by EF, it suffices to assume the S1
2-provability of a subexpo-

nential circuit lower bound for E. This assumption has an interesting status. Razborov’s
conjecture about hardness of Nisan-Wigderson generators implies a conditional hardness
of formulas tt(h, nO(1)) for Frege (for every h), cf. [51], and it is possible to consider exten-
sions of the conjecture to all standard proof systems, even set theory ZFC. A conditional
hardness of tt-formulas (for EF) follows also from a conjecture of Kraj́ıček [36, Conjecture
7.9]. If the tt-formulas expressing subexponential lower bounds for E are hard for EF,
then S1

2 cannot prove the lower bounds either. On the other hand, it is not known how to
prove hardness of tt(h, 2n/4), for all h, for Frege, under any standard complexity-theoretic
hardness assumption. Moreover, all major circuit lower bounds for weak circuit classes
and explicit Boolean functions are known to be provable in S1

2, cf. [50, 44].5 It is thus
perfectly possible that subexponential average-case circuit lower bounds for E are provable
in a theory such as S1

2.
6

1.3.2 Revising the status of the Cook-Reckhow program

Showing that statements like P 6= NP follow from proof complexity lower bounds for
concrete proof systems is considered so challenging that there have not been practically
any conscious attempts to approach it. Our results show that the significant efforts that
have been made in order to address some of the central problems in cryptography and
learning theory are, in fact, aiming to establish precisely that. This can be interpreted
as an evidence for the hardness of resolving the relevant problems in cryptography and
learning theory, but alternatively as a step toward realizing the Cook-Reckhow program
successfully. In any case, the presented results demonstrate a new fundamental connection
between proof complexity, cryptography and learning theory.

5This has not been verified for lower bounds obtained via the algorithmic method of Williams [54].
6We emphasize that Theorems 5 & 6 do not require that S12 proves a circuit lower bound. Further, we

can replace the system EF + tt(h′, 2n/4, 1/2 − 1/2n/4) in Theorems 5 & 6 by, say, a propositional proof
system corresponding to ZFC, if we assume that a subexponential circuit lower bound for E is provable
in (the set theory) ZFC.

13

2 Preliminaries

2.1 Learning algorithms

[n] denotes {1, . . . , n}. 1n stands for a string of n 1s. Circuit[s] denotes fan-in two Boolean
circuits of size at most s. The size of a circuit is the number of its gates. A function
f : {0, 1}n 7→ {0, 1} is γ-approximated by a circuit C, if Prx[C(x) = f(x)] ≥ γ.

Definition 1 (PAC learning). A circuit class C is learnable over the uniform distribution
by a circuit class D up to error ε with confidence δ, if there are randomized oracle circuits
Lf from D such that for every Boolean function f : {0, 1}n 7→ {0, 1} computable by
a circuit from C, when given oracle access to f , input 1n and the internal randomness
w ∈ {0, 1}∗, Lf outputs the description of a circuit satisfying

Pr
w

[Lf (1n, w) (1− ε)-approximates f] ≥ δ.

Lf uses non-adaptive membership queries if the set of queries which Lf makes to the
oracle does not depend on the answers to previous queries. Lf uses random examples if
the set of queries which Lf makes to the oracle is chosen uniformly at random.

In this paper, PAC learning always refers to learning over the uniform distribution.
While, a priori, learning over the uniform distribution might not reflect real-world sce-
narios very well (and on the opposite end, learning over all distributions is perhaps overly
restrictive), as far as we can tell it is possible that PAC learning of p-size circuits over the
uniform distribution implies PAC learning of p-size circuits over all p-samplable distribu-
tions. Binnendyk, Carmosino, Kolokolova, Ramyaa and Sabin [9] proved the implication,
if the learning algorithm in the conclusion is allowed to depend on the p-samplable dis-
tribution.

2.2 Bounded arithmetic and propositional logic

Theories of bounded arithmetic capture various levels of feasible reasoning and present a
uniform counterpart to propositional proof systems.

The first theory formalizing p-time reasoning was introduced by Cook [19] as an equa-
tional theory PV. We work with its first-order conservative extension PV1 from [39]. The
language of PV1, denoted PV as well, consists of symbols for all p-time algorithms given
by Cobham’s characterization of p-time functions, cf. [18]. A PV-formula is a first-order
formula in the language PV. Σb

0 (=Πb
0) denotes PV-formulas with only sharply bounded

quantifiers ∃x, x ≤ |t|, ∀x, x ≤ |t|, where |t| is “the length of the binary representation of
t”. Inductively, Σb

i+1 resp. Πb
i+1 is the closure of Πb

i resp. Σb
i under positive Boolean com-

binations, sharply bounded quantifiers, and bounded quantifiers ∃x, x ≤ t resp. ∀x, x ≤ t.

14

Predicates definable by Σb
i resp. Πb

i formulas are in the Σp
i resp. Πp

i level of the polynomial
hierarchy, and vice versa. PV1 is known to prove Σb

0(PV)-induction:

A(0) ∧ ∀x (A(x)→ A(x+ 1))→ ∀xA(x),

for Σb
0-formulas A, cf. Kraj́ıček [34].

Buss [13] introduced the theory S1
2 extending PV1 with the Σb

1-length induction:

A(0) ∧ ∀x < |a|, (A(x)→ A(x+ 1))→ A(|a|),

for A ∈ Σb
1. S1

2 proves the sharply bounded collection scheme BB(Σb
1):

∀i < |a| ∃x < a,A(i, x)→ ∃w ∀i < |a|, A(i, [w]i),

for A ∈ Σb
1 ([w]i is the ith element of the sequence coded by w), which is unprovable in PV1

under a cryptographic assumption, cf. [20]. On the other hand, S1
2 is ∀Σb

1-conservative
over PV1. This is a consequence of Buss’s witnessing theorem stating that S1

2 ` ∃y, A(x, y)
for A ∈ Σb

1 implies PV1 ` A(x, f(x)) for some PV-function f .
Following a work by Kraj́ıček [36], Jeřábek [30, 31, 32] systematically developed a

theory APC1 capturing probabilistic p-time reasoning by means of approximate counting.7

The theory APC1 is defined as PV1 + dWPHP (PV) where dWPHP (PV) stands for the
dual (surjective) pigeonhole principle for PV-functions, i.e. for the set of all formulas

x > 0→ ∃v < x(|y|+ 1)∀u < x|y|, f(u) 6= v,

where f is a PV-function which might involve other parameters not explicitly shown. We
devote §2.3 to a more detailed description of the machinery of approximate counting in
APC1.

Any Πb
1-formula φ provable in S1

2 can be expressed as a sequence of tautologies ||φ||n
with proofs in the Extended Frege system EF which are constructible in p-time (given
a string of the length n), cf. [19]. We refer to Kraj́ıček [38] for basic notions in proof
complexity such as EF. As it is often easier to present a proof in a theory of bounded
arithmetic than in the corresponding propositional system, bounded arithmetic functions,
so to speak, as a uniform language for propositional logic.

2.3 Approximate counting

In order to prove our results we will need to use Jeřábek’s theory of approximate counting.
This section recalls the properties of APC1 we will need.

7Kraj́ıček [36] introduced a theory BT defined as S12 + dWPHP (PV) and proposed it as a theory for
probabilistic p-time reasoning.

15

By a definable set we mean a collection of numbers satisfying some formula, possibly
with parameters. When a number a is used in a context which asks for a set it is assumed
to represent the integer interval [0, a), e.g. X ⊆ a means that all elements of set X are
less than a. If X ⊆ a, Y ⊆ b, then X × Y := {bx + y | x ∈ X, y ∈ Y } ⊆ ab and
X∪̇Y := X ∪ {y + a | y ∈ Y } ⊆ a + b. Rational numbers are assumed to be represented
by pairs of integers in the natural way. We use the notation x ∈ Log ↔ ∃y, x = |y| and
x ∈ LogLog ↔ ∃y, x = ||y||.

Let C : 2n → 2m be a circuit and X ⊆ 2n, Y ⊆ 2m definable sets. We write C : X � Y
if ∀y ∈ Y ∃x ∈ X, C(x) = y. Jeřábek [32] gives the following definitions in APC1, but
they can be formulated in PV1 as well.

Definition 2. Let X, Y ⊆ 2n be definable sets, and ε ≤ 1. The size of X is approximately
less than the size of Y with error ε, written as X �ε Y , if there exists a circuit C, and
v 6= 0 such that

C : v × (Y ∪̇ε2n) � v ×X.

X ≈ε Y stands for X �ε Y and Y �ε X.

Since a number s is identified with the interval [0, s), X �ε s means that the size of
X is at most s with error ε.

The definition of X �ε Y is an unbounded ∃Πb
2-formula even if X, Y are defined by

circuits so it cannot be used freely in bounded induction. Jeřábek [32] solved this problem
by working in HARDA, a conservative extension of APC1, defined as a relativized theory
PV1(α) + dWPHP (PV(α)) extended with axioms postulating that α(x) is a truth-table
of a function on ||x|| variables hard on average for circuits of size 2||x||/4, see §2.4.2. In
HARDA there is a PV1(α) function Size approximating the size of any set X ⊆ 2n defined
by a circuit C so that X ≈ε Size(C, 2n, 2ε

−1
) for ε−1 ∈ Log, cf. [32, Lemma 2.14]. If

X ∩ t ⊆ 2|t| is defined by a circuit C and ε−1 ∈ Log, we can define

Pr
x<t

[x ∈ X]ε :=
1

t
Size(C, 2|t|, 2ε

−1

).

The presented definitions of approximate counting are well-behaved:

Proposition 2 (Jeřábek [32]). (in PV1) Let X,X ′, Y, Y ′, Z ⊆ 2n and W,W ′ ⊆ 2m be
definable sets, and ε, δ < 1. Then

i) X ⊆ Y ⇒ X �0 Y ,
ii) X �ε Y ∧ Y �δ Z ⇒ X �ε+δ Z,
iii) X �ε X ′ ∧W �δ W ′ ⇒ X ×W �ε+δ+εδ X ′ ×W ′.
iv) X �ε X ′∧Y �δ Y ′ and X ′, Y ′ are separable by a circuit, then X∪Y �ε+δ X ′∪Y ′.

Proposition 3 (Jeřábek [32]). (in APC1)
1. Let X, Y ⊆ 2n be definable by circuits, s, t, u ≤ 2n, ε, δ, θ, γ < 1, γ−1 ∈ Log. Then

16

i) X �γ Y or Y �γ X,
ii) s �ε X �δ t⇒ s < t+ (ε+ δ + γ)2n,
iii) X �ε Y ⇒ 2n\Y �ε+γ 2n\X,
iv) X ≈ε s ∧ Y ≈δ t ∧X ∩ Y ≈θ u⇒ X ∪ Y ≈ε+δ+θ+γ s+ t− u.

2. (Disjoint union) Let Xi ⊆ 2n, i < m be defined by a sequence of circuits and ε, δ ≤ 1,
δ−1 ∈ Log. If Xi �ε si for every i < m, then

⋃
i<m(Xi × {i}) �ε+δ

∑
i<m si.

When proving Σb
1 statements in APC1 we can afford to work in S1

2 + dWPHP (PV) +
BB(Σb

2) and, in fact, assuming the existence of a single hard function in PV1 gives us the
full power of APC1. Here, BB(Σb

2) is defined as BB(Σb
1) but with A ∈ Σb

2.

Lemma 1 ([44]). Suppose S1
2 + dWPHP (PV) +BB(Σb

2) ` ∃yA(x, y) for A ∈ Σb
1. Then,

for every ε < 1, there is k and PV-functions g, h such that PV1 proves

|f | ≥ |x|k ∧ ∃y, |y| = ||f ||, Ch(y) 6= f(y)→ A(x, g(x, f))

where f(y) is the yth bit of f , f(y) = 0 for y > |f |, and Ch is a circuit of size ≤ 2ε||f ||

generated by h on f, x. Moreover, APC1 ` ∃yA(x, y).

2.4 Formalizing complexity-theoretic statements

2.4.1 Circuit lower bounds

An ‘almost everywhere’ circuit lower bound for circuits of size s and a function f says
that for every sufficiently big n, for each circuit C with n inputs and size s, there exists
an input y on which the circuit C fails to compute f(y).

If f : {0, 1}n → {0, 1} is an NP function and s = nk for a constant k, this can be
written down as a ∀Σb

2 formula LB(f, nk),

∀n, n > n0 ∀ circuit C of size ≤ nk ∃y, |y| = n, C(y) 6= f(y),

where n0 is a constant and C(y) 6= f(y) is a Σb
2 formula stating that a circuit C on input

y outputs the opposite value of f(y). The intended meaning of ‘∃y, |y| = n’ is to say that
y is a string from {0, 1}n. This is a slight abuse of notation as, formally, |y| = n fixes the
first bit of y to 1.

If we want to express s(n)-size lower bounds for s(n) as big as 2O(n), we add an extra
assumption on n stating that ∃x, n = ||x||. That is, the resulting formula LBtt(f, s(n))
has form ‘∀x, n;n = ||x|| → . . . ’. Treating x, n as free variables, LBtt(f, s(n)) is Πb

1 if f
is, for instance, SAT because n = ||x|| implies that the quantifiers bounded by 2O(n) are
sharply bounded. Moreover, allowing f ∈ NE lifts the complexity of LBtt(f, s(n)) just
to ∀Σb

1. The function s(n) in LBtt(f, s(n)) is assumed to be a PV-function with input x
(satisfying ||x|| = n).

17

In terms of the Log-notation, LB(f, nk) implicitly assumes n ∈ Log while LBtt(f, n
k)

assumes n ∈ LogLog. By chosing the scale of n we are determining how big objects are
going to be ‘feasible’ for theories reasoning about the statement. In the case n ∈ LogLog,
the truth-table of f (and everything polynomial in it) is feasible. Assuming just n ∈ Log
means that only the objects of polynomial-size in the size of the circuit are feasible.
Likewise, the theory reasoning about the circuit lower bound is less powerful when working
with LB(f, nk) than with LBtt(f, n

k). (The scaling in LBtt(f, s) corresponds to the choice
of parameters in natural proofs and in the formalizations by Razborov [50].)

We can analogously define formulas LBtt(f, s(n), t(n)) expressing an average-case lower
bound for f , where f is a free variable (with f(y) being the yth bit of f and f(y) = 0 for
y > |f |). More precisely, LBtt(f, s(n), t(n)) generalizes LBtt(f, s(n)) by saying that each
circuit of size s(n) fails to compute f on at least t(n) inputs, for PV-functions s(n), t(n).
Since n ∈ LogLog, LBtt(f, s(n), t(n)) is Πb

1.

Propositional version. An s(n)-size circuit lower bound for a function f : {0, 1}n →
{0, 1} can be expressed by a poly(2n, s)-size propositional formula tt(f, s),∨

y∈{0,1}n
f(y) 6= C(y)

where the formula f(y) 6= C(y) says that an s(n)-size circuit C represented by poly(s)
variables does not output f(y) on input y. The values f(y) are fixed bits. That is, the
whole truth-table of f is hard-wired in tt(f, s).

The details of the encoding of the formula tt(f, s) are not important for us as long as the
encoding is natural because systems like EF considered in this paper can reason efficiently
about them. We will assume that tt(f, s) is the formula resulting from the translation of
Πb

1 formula LBtt(h, s), where n0 = 0, n, x are substituted after the translation by fixed
constants so that x = 22n , and h is a free variable (with h(y) being the yth bit of h and
h(y) = 0 for y > |h|) which is substituted after the translation by constants defining f .

Analogously, we can express average-case lower bounds by propositional formulas
tt(f, s(n), t(n)) obtained by translating LBtt(h, s(n), t(n)2n), with n0 = 0, fixed x = 22n

and h substituted after the translation by f .

2.4.2 Learning algorithms

A circuit class C is defined by a PV-formula if there is a PV-formula defining the predicate
C ∈ C. Definition 1 can be formulated in the language of HARDA: A circuit class C
(defined by a PV-formula) is learnable over the uniform disribution by a circuit class D
(defined by a PV-formula) up to error ε with confidence δ, if there are randomized oracle
circuits Lf from D such that for every Boolean function f : {0, 1}n 7→ {0, 1} (represented
by its truth-table) computable by a circuit from C, for each γ−1 ∈ Log, when given oracle

18

access to f , input 1n and the internal randomness w ∈ {0, 1}∗, Lf outputs the description
of a circuit satisfying

Pr
w

[Lf (1n, w) (1− ε)-approximates f]γ ≥ δ.

The inner probability of approximability of f by Lf (1n, w) is counted exactly. This is
possible because f is represented by its truth-table, which implies that 2n ∈ Log.

Propositional version. In order to translate the definition of learning algorithms to
propositional formulas and to the language of PV1 we need to look more closely at the
definition of HARDA.

PV1 can be relativized to PV1(α). The new function symbol α is then allowed in the
inductive clauses for introduction of new function symbols. This means that the language
of PV1(α), denoted also PV(α), contains symbols for all p-time oracle algorithms.

Proposition 4 (Jeřábek [30]). For every constant ε < 1/3 there exists a constant n0

such that APC1 proves: for every n ∈ LogLog such that n > n0, there exist a function
f : 2n → 2 such that no circuit of size 2εn computes f on ≥ (1/2 + 1/2εn)2n inputs.

Definition 3 (Jeřábek [30]). The theory HARDA is an extension of the theory PV1(α) +
dWPHP (PV(α)) by the axioms

1. α(x) is a truth-table of a Boolean function in ||x|| variables,
2. LBtt(α(x), 2||x||/4, 2||x||(1/2− 1/2||x||/4)), for constant n0 from Proposition 4,
3. ||x|| = ||y|| → α(x) = α(y).

By inspecting the proof of Lemma 2.14 in [32], we can observe that on each input
C, 2n, 2ε

−1
the PV1(α)-function Size calls α just once (to get the truth-table of a hard

function which is then used as the base function of the Nisan-Wgiderson generator). In
fact, Size calls α on input x which depends only on |C|, the number of inputs of C
and w.l.o.g. also just on |ε−1| (since decreasing ε leads only to a better approximation).
In combination with the fact that the approximation Size(C, 2n, 2ε

−1
) ≈ε X, for X ⊆ 2n

defined by C, is not affected by a particular choice of the hard boolean function generated
by α, we get that APC1 proves

LBtt(y, 2
||y||/4, 2||y||(1/2− 1/2||y||/4)) ∧ ||y|| = S(C, 2n, 2ε

−1

)→ Sz(C, 2n, 2ε
−1

, y) ≈ε X,

where Sz is defined as Size with the only difference that the call to α(x) on C, 2n, 2ε
−1

is
replaced by y and S(C, 2n, 2ε

−1
) = ||x|| for a PV-function S. (S is given by a subcompu-

tation of Size specifying ||x||, for x on which Size queries α(x).)
This allows us to express Prx<t[x ∈ X]ε = a, where ε−1 ∈ Log and X ∩ t ⊆ 2|t| is

defined by a circuit C, without a PV1(α) function, by formula

∀y (LBtt(y, 2
||y||/4, 2||y||(1/2−1/2||y||/4))∧||y|| = S(C, 2|t|, 2ε

−1

)→ Sz(C, 2|t|, 2ε
−1

, y)/t = a).

19

We denote the resulting formula by Pryx<t[x ∈ X]ε = a. We will use the notation
Pryx<t[x ∈ X]ε in equations with the intended meaning that the equation holds for
the value Sz(·, ·, ·, ·)/t under corresponding assumptions. For example, t · Pryx<t[x ∈
X]ε �δ a stands for ‘∀y,∃v,∃ circuit Ĉ (defining a surjection) which witnesses that
LBtt(y, 2

||y||/4, 2||y||(1/2−1/2||y||/4))∧||y|| = S(C, 2|t|, 2ε
−1

) implies Sz(C, 2|t|, 2ε
−1
, y) �δ a’.

The definition of learning can be now expressed without a PV1(α) function: If circuit
class C is defined by a PV-function, the statement that a given oracle algorithm L (given
by a PV-function with oracle queries) learns a circuit class C over the uniform distribution
up to error ε with confidence δ can be expressed as before with the only difference that
we replace Prw[Lf (1n, w) (1− ε)-approximates f]γ ≥ δ by

y

Pr
w

[Lf (1n, w) (1− ε)-approximates f]γ ≥ δ.

Since the resulting formula A defining learning is not Πb
1 (because of the assump-

tion LBtt) we cannot translate it to propositional logic. We will sidestep the issue by
translating only the formula B obtained from A by deleting subformula LBtt (but leaving
||y|| = S(·, ·, ·) intact) and replacing the variables y by fixed bits representing a hard
boolean function. In more detail, Πb

1 formula B can be translated into a sequence of
propositional formulas learyγ(L, C, ε, δ) expressing that “if C ∈ C is a circuit computing
f , then L querying f generates a circuit D such that Pr[D(x) = f(x)] ≥ 1 − ε with
probability ≥ δ, which is counted approximately with precision γ”. Note that C, f are
represented by free variables and that there are also free variables for error γ from ap-
proximate counting and for Boolean functions y. As in the case of tt-formulas, we fix
|f | = 2n, so n is not a free variable. Importantly, learyγ(L, C, ε, δ) does not postulate that
y is a truth-table of a hard boolean function. Nevertheless, for any fixed (possibly non-
uniform) bits representing a sequence of Boolean functions h = {hm}m>n0 such that hm
is not (1/2 + 1/2m/4)-approximable by any circuit of size 2m/4, we can obtain formulas
learhγ(L, C, ε, δ) by substituting bits h for y.

Using a single function h in learhγ(L, C, ε, δ) does not ruin the fact that (the transla-
tion of function) Sz approximates the respective probability with accuracy γ because Sz
queries a boolean function y which depends just on the number of atoms representing γ−1

and on the size of the circuit D defining the predicate we count together with the number
of inputs of D. The size of D and the number of its inputs are w.l.o.g. determined by the
number of inputs of f .

If we are working with formulas learhγ(L, C, ε, δ), where h is a sequence of bits repre-
senting a hard boolean function, in a proof system which cannot prove efficiently that h
is hard, our proof system might not be able to show that the definition is well-behaved
- it might not be able to derive some standard properties of the function Sz used inside
the formula. Nevertheless, in our theorems this will never be the case: our proof systems
will always know that h is hard.

20

In formulas learyγ(L, C, ε, δ) we can allow L to be a sequence of nonuniform circuits, with
a different advice string for each input length. One way to see that is to use additional
input to L in Πb

1 formulaB, then translate the formula to propositional logic and substitute
the right bits of advice for the additional input. Again, the precise encoding of the formula
learyγ(L, C, ε, δ) does not matter very much to us but in order to simplify proofs we will
assume that learyγ(L,Circuit[n

k], ε, δ) has the from ¬tt(f, nk) → R, where n, k are fixed,
f is represented by free variables and R is the remaining part of the formula expressing
that L generates a suitable circuit with high probability.

2.4.3 Nisan-Wigderson generators

The core theorem underlying approximate counting in APC1 is the following formalization
of Nisan-Wigderson generators (NW), cf. [30, Proposition 4.7].

Theorem 7 (Jeřábek [30]). Let 0 < γ < 1. There are constants c > 1 and δ′ > 0 such
that for each δ < δ′ there is a poly(2m)-time function

NW : {0, 1}cm × {0, 1}2m 7→ {0, 1}b2δmc

such that S1
2 proves: “If 2m ∈ Log and f : {0, 1}m 7→ {0, 1} is a Boolean function

such that no circuit of size 2εm computes f on > (1/2 + 1/2εm)2m inputs, then for each
(2εm − d2(δ+γ)me − 1)-size circuit D with b2δmc inputs,

2b2
δmc × {z < 2cm | D(NWf (z)) = 1} �e 2cm × {x < 2b2

δmc | D(x) = 1},

where e := d2δme/2εm and NWf (z) := NW (z, f).”

Theorem 7 shows that Pryx[D(x) = 1]θ is S1
2-provably similar to Pryz [D(NWf (z)) = 1]θ,

for θ−1 ∈ Log. To see this, note that

2cm
y

Pr
z

[D(NWf (z)) = 1]θ ≈θ {z < 2cm | D(NWf (z)) = 1}.

Hence, by Proposition 2 iii),

2b2
δmc2cm

y

Pr
z

[D(NWf (z)) = 1]θ �θ 2b2
δmc × {z < 2cm | D(NWf (z)) = 1}.

Similarly,

2cm × {x < 2b2
δmc | D(x) = 1} �θ 2b2

δmc2cm
y

Pr
x

[D(x) = 1]θ.

Therefore, by Proposition 2 ii), the conclusion of Theorem 7 implies

2b2
δmc2cm

y

Pr
z

[D(NWf (z)) = 1]θ �2θ+e 2b2
δmc2cm

y

Pr
x

[D(x) = 1]θ.

If the size of D is ≤ 2εm − d2(δ+γ)me − 2, the same inequality holds for ¬D instead of D.

21

3 Self-Provability via Feasible Witnessing

3.1 Self-Provability for Discrete Logarithm

We show that the random self-reducibility of the discrete logarithm problem can be used to
derive a conditional self-provability of the statement that the discrete logarithm problem
can be solved by p-size circuits.

For simplicity, we consider the discrete logarithm problem for Z×q , multiplicative groups
of integers modulo a prime q. Let G be such a cyclic group. Then there are p-time
algorithms A1, A2 such that A1(g, h, q) = g · h ∈ G, for g, h ∈ G, and A2(g, q) = g−1,
for g ∈ G. That is, A1 (given q) defines the multiplication of two elements in G and A2

outputs the inverse of each g ∈ G.
The discrete logarithm problem for a cyclic group G generated by g is defined as

follows. Given b ∈ G, we want to find a such that ga = b. The discrete logarithm problem
is ‘random self-reducible’: If we have a circuit C which solves the problem for a p-fraction
of all b ∈ G, we can turn it efficiently into a randomized circuit C ′ which solves the
problem on each b ∈ G with probability ≥ p. The circuit C ′ interprets its random bits
r as r ∈ [|G|]. Then C ′ applies C on bgr. Since bgr is a uniformly random element of
G, C succeeds in finding ` such that g` = bgr with probability ≥ p. Finally, C ′ outputs
` − r, which is the correct answer with probability ≥ p. In other words, the following
implication holds

Pr
b∈G

[gC(b) = b] ≥ p→ ∀b ∈ G, Pr
r∈[|G|]

[gC
′(b,r) = b] ≥ p, (3.1)

where C ′ is generated from C and g by a p-time function.
We want to express (3.1) by a propositional formula. To do so, we approximate

probabilities by a Nisan-Wigderson generator based on a hard function f ∈ E. Fix a
constant k and assume that q ∈ (2n−1, 2n], n ∈ N. Then, for each nk-size circuit C, the
predicate gC(b) = b with input b and the predicate gC

′(b,r) = b with input r are computable
respectively by circuits D1 and D2 with n inputs and size poly(n). Circuits D1, D2 reject
all inputs not in G, so in particular Prr∈[|G|][g

C′(b,r) = b] ≤ 2 Prr∈{0,1}n [D2(r) = 1]. Further,
for each ε < 1, there are constants c′, c′′ and poly(n)-time computable generator NWf :
{0, 1}c′dlogne 7→ {0, 1}n such that if f : {0, 1}c′′dlogne 7→ {0, 1} is hard to (1/2+1/2εc

′′dlogne)-
approximate by circuits of size 2εc

′′dlogne, then∣∣∣∣ Pr
z∈{0,1}c′dlogne

[D1(NWf (z)) = 1]− Pr
b∈{0,1}n

[D1(b) = 1]

∣∣∣∣ ≤ 1/n,

∣∣∣∣ Pr
z∈{0,1}c′dlogne

[D2(NWf (z)) = 1]− Pr
r∈{0,1}n

[D2(r) = 1]

∣∣∣∣ ≤ 1/n.

22

Therefore, if f is hard, we have

Pr
z∈{0,1}c′dlogne

[D1(NWf (z)) = 1] ≥ p→ ∀b ∈ G, Pr
z∈{0,1}c′dlogne

[D2(NWf (z)) = 1] ≥ p

2
− 3

2n
.

(3.2)
The advantage of (3.2) is that it can be expressed by poly(n)-size tautologies selfn(p, b, C)

with free variables for nk-size circuits C, n-bit strings b and n-bit parameters p (among
other extension variables). The tautologies have p-size proofs in some proof system which
includes a p-size proof of the primality of q and a p-size proof of the fact that g is a gen-
erator of G. Here, we use the property that g generates G if and only if g(q−1)/d 6≡ 1 (mod
q) for every prime d dividing q − 1. We can thus define a Cook-Reckhow propositional
proof system Pε as EF with the additional axioms which allow the system Pε to derive
any substitutional instance of selfn(p, b, C) and tt(f, 2εn, 1/2 − 1/2εn) in a single step of
the proof, for each sufficiently big n.

Theorem 8 (Self-provability for the discrete logarithm).
Let k be a constant. Assume that for some ε < 1 we have a Boolean function f ∈ E such
that for each sufficiently big n, f is not (1/2+1/2εn)-approximable by any 2εn-size circuit.
Let Pε be the propositional proof system defined above. If there are nk-size circuits solving
the discrete logarithm problem for Z×q , where q ∈ (2n−1, 2n], then there are p-size circuits D

such that Pε has p-size proofs of tautologies encoding the statement “∀b ∈ Z×q , gD(b) = b.”

Proof. Given an nk-size circuit B solving the discrete logarithm problem for Z×q , where q ∈
(2n−1, 2n], Pε can derive selfn(1/2−1/n, b, B). Since the assumption of selfn(1/2−1/n, b, B)
is true and since it contains essentially no free variables, it can be proven efficiently in
EF. (Essentially, in order to do so, it suffices to evaluate a P/poly-predicate inside EF.)
Consequently, Pε proves efficiently ∀b ∈ Z×q , gD(b) = b, for a suitable p-size circuit D

obtained by simulating C ′ on all z ∈ {0, 1}c′dlogne.

Theorem 8 establishes a conditional equivalence between a circuit lower bound and a
proof complexity lower bound (for propositional formulas which might not be tautologi-
cal). We formulate it for a proof system P ′ε defined analogously as Pε. The only difference
is that instead of formulas selfn(p, b, C), system P ′ε uses more general formulas selfsn(p, b, C)
in which the circuit C is allowed to have arbitrary size s ≥ n (and the parameters of f
are adjusted accordingly).

Corollary 2. Assume that for some ε < 1 we have a Boolean function f ∈ E such that
for each sufficiently big n, f is not (1/2 + 1/2εn)-approximable by any 2εn-size circuit. Let
P ′ε be the propositional proof system defined above.

Then, there are poly(n)-size circuits solving the discrete logarithm problem for group
Z×q , where q ∈ (2n−1, 2n], if and only if there are poly(n)-size circuits D such that P ′ε has

p-size proofs of formulas encoding the statement “∀b ∈ Z×q , gD(b) = b.”

23

Proof. The implication ‘→’ follows by Theorem 8. The opposite implication follows from
the soundness of P ′ε .

Using the same argument as in Corollary 2, we derive an unconditional equivalence
between hardness of Discrete Logarithm and super-polynomial P ′′ε lower bounds for the
circuit upper bound formulas in the statement of the Corollary. Here P ′′ε is a proof system
which is verifiable by polynomial-size circuits, and is defined the same way as P ′ε but using
axioms tt(fn, 2

εn, 1/2− 1/2εn) for unconditionally hard functions fn, which can be shown
to exist by a standard counting argument.

Item 1 of Theorem 1 follows by setting Q = P ′ε and the set Fk,n to be the circuit upper
bound formulas for Discrete Logarithm for each knk-size circuit D. Item 2 follows by
setting Q = P ′′ε with Fk,n the same as before.

3.2 Conditional Self-Provability for SAT

We prove Theorem 2 from the Introduction, restated here for convenience.

Theorem 9 (Circuit complexity from proof complexity & witnessing of NP 6⊆ P/poly).
Let k ≥ 1 be a constant.

1. Suppose that there is a p-time function f such that for each big enough n, wkn(f) is
a tautology. If EF + wk(f) is not p-bounded, then SATn /∈ Circuit[nεk] for infinitely
many n.

2. Suppose that there is a p-time function f such that for some n0, S1
2 ` W k

n0
(f). If EF

is not p-bounded, then SATn /∈ Circuit[nεk] for infinitely many n.

In Items 1 and 2, ε > 0 is a universal constant (independent of k).

Proof. First we show Item 1.
Suppose that ∀n > 1, SATn ∈ Circuit[nk

′
], where Circuit[s(n)] stands for the set of all

single-output circuits with n inputs and size ≤ s(n). Then, there is a sequence of circuits
C with n inputs, ≤ n outputs and size nk falsifying the right disjunct in wkn(f), for some
k > k′ and all n > 1. Therefore, EF + wk(f) admits p-size proofs of SATn(x, y) →
SATn(x,C(x)). That is, the mere validity of SATn ∈ Circuit[nk

′
] implies an efficient

propositional provability of SATn ∈ P/poly. The efficient provability of SATn(x, y) →
SATn(x,C(x)) further implies that EF + wk(f) is p-bounded: To prove a tautology φ of
size n in EF + wk(f) it suffices to check out that ¬SATn(¬φ,C(¬φ)) (which implies that
SATn(φ, y) and φ hold).

To see Item 2, note that by the correspondence between S1
2 and EF, cf. [38], if W k

n0
(f)

was provable in S1
2, for some p-time f , then tautologies wkn(f), for n ≥ n0, would have

p-size proofs in EF.

24

Restricting nonuniformity. In Theorem 2, we can restrict the number of nonuniform
bits in the concluded lower bounds by adapting formulas wkn(f): Assume that the circuit
C includes a hardwired description of a fixed universal Turing machine U . Moreover,
interpret C as encoding an algorithm A described by ≤ log n bits with u(n) ≤ nk nonuni-
form bits of advice a(n). The algorithm A and its nonuniform advice are described by free
variables. We assume that u is p-time. On each input z ∈ {0, 1}n, C(z) uses U to simulate
the computation of A on z with access to a(n) up to nk steps. That is, now the size of
C is poly(nk). Denote the resulting formulas by wk,un (f). If we have a p-time function
f which witnesses errors of nk-time algorithms described by log n bits with u(n) bits of
advice attempting to solve the search version of SAT, i.e. such that formulas wk,un (f) are
tautologies for big enough n, we can define proof system EF + wk,u(f). Further, we can
define ∀Πb

1 formulas W k,u
n (f) expressing “∀n > n0, w

k,u
n (f).” Denote by Time[nk]/u(n) the

class of problems solvable by uniform algorithms with ≤ u(n) bits of nonuniform advice
running in time O(nk). The proof of Theorem 2 works in this case as well.

Corollary 3 (Circuit complexity from proof complexity & witnessing of P 6= NP).
Let k ≥ 1 be a constant and u a p-time function such that u(n) ≤ nk.

1. Suppose that there is a p-time function f such that for each big enough n, wk,un (f)
is a tautology. If EF + wk,u(f) is not p-bounded, then SAT /∈ Time[nΩ(k)]/u(n).

2. Suppose that there is a p-time function f such that for some n0, S1
2 ` W k,u

n0
(f). If

EF is not p-bounded, then SAT /∈ Time[nΩ(k)]/u(n).

The significance of Corollary 3 is that in the uniform setting, a similar kind of feasible
witnessing is known to exist using diagonalization techniques [25, 10]. It is unclear whether
diagonalization techniques will suffice to establish that wk,un (f) is a tautology for large
enough n within some concrete proof system, but there is at least a strong motivation
for considering the question, given its implications for deriving strong computational
complexity lower bounds from proof complexity lower bounds.

4 Feasible anticheckers.

If there is an nk-size circuit computing SATn, there is a poly(nk)-size circuit B with n
inputs and ≤ n outputs such that ∀x, y ∈ {0, 1}n, (SATn(x, y)→ SATn(x,B(x))). We use
this to formulate the existence of anticheckers for SAT as a ∀Πb

1 statement.

Theorem 10 (‘CC ← PC’ from feasible anticheckers).
Let k ≥ 3 be a constant and assume that there is a p-time function f such that S1

2 proves:

“∀1n, f(1n) is a poly(nk)-size circuit B such that

∀x, y ∈ {0, 1}n, [SATn(x, y)→ SATn(x,B(x))]

25

or
(
f(1n) outputs sets ASATn,nk

n , A′ ⊆ {0, 1}n, D ⊆ ASATn,nk

n × A′ of size poly(nk)
such that

∀x ∈ ASATn,nk

n [∃yx ∈ A′, 〈x, yx〉 ∈ D ∧ ∀z, y ∈ A′, (〈x, y〉 ∈ D ∧ 〈x, z〉 ∈ D → y = z)]

and ∀ nk-size circuit C,

∀x ∈ ASATn,nk

n ∀y ∈ {0, 1}n [SATn(x, y)→ SATn(x, yx)]∧

∃x ∈ ASATn,nk

n , SATn(x, yx) 6= C(x)
)
.”

Then, proving that EF is not p-bounded implies SATn /∈ Circuit[nk] for infinitely many n.

Proof. The statement assumed to have an S1
2-proof is ∀Πb

1, so there are p-size EF-proofs of
its propositional translation. If we now assume that ∃n0∀n > n0, SATn ∈ Circuit[nk], there
are circuits C and y ∈ {0, 1}n falsifying the second disjunct of the translated assumption
for n > n0. Consequently, EF proves efficiently that the circuits generated by f(1n) solve
SATn, which implies that EF is p-bounded.

Existential quantifiers instead of witnessing. If we used the existential quantifiers
instead of function f in Theorem 10, the resulting statement S formalizing the existence
of anticheckers would be ∀Σb

2. By the KPT theorem [39], PV1-provability of S would then
imply the existence of p-time functions f1, . . . , fc, for a constant c, with a PV1-proof of:

“∀1n, ∀x1, . . . , xc, y1, . . . , yc, ỹ1, . . . , ỹc ∈ {0, 1}n,∀nk-size circuits C1, . . . , Cc,
f1(1n) outputs a poly(nk)-size circuit B and ASATn,nk

n , A′ ⊆ {0, 1}n, D ⊆ ASATn,nk

n ×A′
of size poly(nk) such that the following predicate, denoted Pf1(x

1, y1, C1, ỹ1), holds:(
SATn(x1, y1)→ SATn(x1, B(x1))

)
∨
(
D′(ỹ1) ∧ ∃x̃ ∈ ASATn,nk

n , SATn(x̃, yx̃) 6= C(x̃)
)
,

where D′(ỹ1) stands for the remaining part of the Σb
0 subformula of S,

or f2(1n, x1, y1, C1, ỹ1) outputs a poly(nk)-size circuit B and ASATn,nk

n , A′, D of size
poly(nk) such that Pf2(x

2, y2, C2, ỹ2) holds, or
. . .
or fc(1

n, x1, . . . , xc−1, y1, . . . , yc−1, C1, . . . , Cc−1, ỹ1, . . . , ỹc−1) outputs a poly(nk)-size
circuit B and ASATn,nk

n , A′, D of size poly(nk) such that Pfc(x
c, yc, Cc, ỹc).”

The resulting ∀Πb
1-statement could be translated to propositional tautologies with p-size

EF-proofs. However, given ∀n, SATn ∈ Circuit[nk], we could not directly obtain p-size EF-
proofs of tautologies stating that one of the functions f1, . . . , fc generates a circuit solving
SATn. This is because B and ASATn,nk

n generated by f2 depend on y1. For the same reason,
it seems possible for EF to prove efficiently SAT ∈ P/poly (using the formalization based
on the KPT witnessing) without proving efficiently all tautologies.

26

5 One-way functions from NP 6⊆ P/poly

Theorem 11 (‘CC ← PC’ from ‘OWF ← NP 6⊆ P/poly’ & hardness of E).
Assume that for each sufficiently big n, each 2n/4-size circuit fails to compute h′ ∈ E
on ≥ (1/2 − 1/2n/4) of all inputs. Further, assume that there is a p-time function h :
{0, 1}n 7→ {0, 1}u(n) such that for each constants c, d, there is a p-time function f2 and a
constant 0 < ε < 1 such that S1

2 proves:

“∀n,∀ cnc-size circuit C with u(m) inputs and m outputs such that n ≤ dmd,(
f2(C) is a poly(n)-size circuit B such that

∀x, y ∈ {0, 1}bnεc, [SATbnεc(x, y)→ SATbnεc(x,B(x))]

or
y

Pr
x∈{0,1}m

[h(C(h(x))) = h(x)] 1
m
< 1/2

)
.”

Then, proving that EF + tt(h′, 2n/4, 1/2− 1/2n/4) is not p-bounded implies SAT /∈ P/poly.

The system EF + tt(h′, 2n/4, 1/2 − 1/2n/4) is defined in the same way as in the in-
troduction. That is, EF + tt(h′, 2n/4, 1/2 − 1/2n/4) is an extension of EF which can use
substitutional instances of tt(h′n, 2

n/4, 1/2− 1/2n/4), for sufficiently big n, in its proofs.

The proof of Theorem 11 is based on the following lemma formalizing a conditional
witnessing of NP 6⊆ P/poly, cf. [46, 44].

Lemma 2 (Formalized witnessing of NP 6⊆ P/poly from OWF & hardness of E).
Let k ≥ 1 be a constant. For each p-time functions h : {0, 1}n 7→ {0, 1}u(n) and f1, there
are p-time functions f0, f−1, f−2 and constants b, n1 such that S1

2 + dWPHP (PV) proves:
“∀1n > n1, ∀m such that n/2b ≤ 2bm ≤ n, if

LBtt
′(f1(12m), 2m/4, 2m(1/2− 1/2m/4)),

then f0(1n,m) outputs sets A,A′ ⊆ {0, 1}n of size poly(n) such that

∀x ∈ A ∃yx ∈ A′ SATn(x, yx)

and
(
∀ nk-size circuit C with n inputs and ≤ n outputs,

∃x ∈ A,¬SATn(x,C(x))

or f−1(C,m) outputs a poly(n)-size circuit C ′ with u(n′) inputs and n′ outputs, where
n ≤ f−2(1n

′
), such that

y

Pr
x∈{0,1}n′

[h(C ′(h(x))) = h(x)] 1
n′
≥ 1/2

)
.”

Here, LBtt
′ is obtained from LBtt by setting m0 = 0 and skipping the universal quantifier on

m (so m in LBtt
′ is the same as the universally quantified m in the S1

2-provable statement).

27

Proof of Theorem 11 from Lemma 2. Intuitively, Theorem 11 assumes that the hardness
of SAT yields a function h which is hard to invert. Lemma 2 shows that such h can be
used to find an error of each small circuit attempting to compute SAT. Combining the
assumption of Theorem 11 with Lemma 2 we obtain a p-time function f such that for
each small circuit C, either C solves SAT or f(C) finds an error of C. Moreover, this
holds provably in S1

2 + dWPHP (PV), so the propositional translation of the correctness
of the witnessing statement has short proofs in EF + tt(h′, 2n/4, 1/2 − 1/2n/4). This will
allow us to derive the desired implication similarly as in the proof of Theorem 2.

We proceed with a formal proof.

The assumption of Theorem 11 in combination with Lemma 2 implies that for each
k ≥ 1, for p-time f1 generating the truth-table of h′, there is 0 < ε < 1 and b, n1 such
that S1

2 + dWPHP (PV) proves the following statement S:

“∀1n > n1, ∀m,n/2b ≤ 2bm ≤ n, if

LBtt
′(f1(12m), 2m/4, 2m(1/2− 1/2m/4)),

then f0(1n,m) outputs A,A′ ⊆ {0, 1}n such that

∀x ∈ A ∃yx ∈ A′ SATn(x, yx)

and
(
∀nk-size circuit C with n inputs and ≤ n outputs,

∃x ∈ A,¬SATn(x,C(x))

or f2(f−1(C,m)) outputs a circuit B such that

∀x, y ∈ {0, 1}bnεc, [SATbnεc(x, y)→ SATbnεc(x,B(x))]

or y′ does not satisfy the assumption of Pry
′

x [·]1/n′ ≥ 1/2
)
.”

Since S is ∀Σb
1, by Lemma 1, there is a p-time function f3 and a constant ` such

that PV1 proves: “∀1n > n1,∀m,n/2b ≤ 2bm ≤ n, if |h′| ≥ n` and a 2||h
′||/4-size circuit

generated by a p-time function fails to compute h′, then f3(1n,m, h′, C, x, y, y′) outputs a
circuit falsifying

LBtt
′(f1(12m), 2m/4, 2m(1/2− 1/2m/4)),

or f3(1n,m, h′, C, x, y, y′) outputs a circuit falsifying the assumption of Pry
′

x [·]1/n′ ≥ 1/2
or F ′ holds,” where F ′ is the rest of the statement S.

Consequently, EF proves efficiently the propositional translation of the PV1-theorem.
Substituting h′ for y′, EF+ := EF+ tt(h′, 2n/4, 1/2−1/2n/4) proves the formula F encoding
F ′. We now proceed as in the proof of Theorem 2. Assuming that SAT ∈ P/poly, there
is some k such that for all 1n > n1 ≥ 1 we can efficiently falsify the first disjunct of
F . Therefore, there is a p-size circuit B such that EF+ proves efficiently SATbnεc(x, y)→
SATbnεc(x,B(x)), which means that EF+ is p-bounded.

28

Proof of Lemma 2. Let f0(1n,m) output the set of propositional formulas A := {φz(x) |
z ∈ {0, 1}cm}, where φz(x) uses free variables x together with some auxiliary variables
and encodes the statement

h(x) = h(NWf (z)).

Here, NWf : {0, 1}cm 7→ {0, 1}b2δmc and c are given by Theorem 7, for some 0 < γ, δ < 1
specified later, and f = f1(12m). The size of φz(x) is b2Kδmc, for a constant K depending
only on h. We set m so that n/2Kδ ≤ 2Kδm ≤ n and treat formulas φz(x) as formulas of
size n. Let A′ := {NWf (z) | z ∈ {0, 1}cm}.

We reason in S1
2 +dWPHP (PV). Suppose that an nk-size circuit C with n inputs and

≤ n outputs finds a satisfying assignment for all formulas in A. Then, there is an nk-size
circuit C ′ with u(b2δmc) inputs such that

2b2
δmc × {z ∈ {0, 1}cm | h(C ′(h(NWf (z)))) 6= h(NWf (z))} �0 0. (5.1)

The circuit C ′ is obtained from C by a p-time algorithm f−1 depending on δ, h and m.
The predicate h(C ′(h(x))) 6= h(x) is computable by a 2K

′δm-size circuit D with b2δmc
inputs, for a constant K ′ depending only on k and h. Now, we set a sufficiently small γ
and δ so that 2K

′δm ≤ 2m/4 − d2(δ+γ)me − 1. Therefore, by Theorem 7, the assumption
that f is hard on average for 2m/4-size circuits implies that

2b2
δmc × {z < 2cm | D(NWf (z)) = 1} �e 2cm × {x < 2b2

δmc | D(x) = 1},

where e = d2δme/2m/4. Consequently, by (5.1) and Proposition 2 ii),

0 �e 2cm × {x < 2b2
δmc | h(C ′(h(x))) 6= h(x)}. (5.2)

We want to show that Pry
x∈{0,1}b2δmc

[h(C ′(h(x))) = h(x)] 1

b2δmc
≥ 1/2. For the sake

of contradiction, assume that this is not the case. Then, {x < 2b2
δmc | h(C ′(h(x)) =

h(x)} �1/b2δmc 2b2
δmc−1. By Item 1 iii) of Proposition 3,

{x < 2b2
δmc | h(C ′(h(x)) 6= h(x)} �2/b2δmc 2b2

δmc−1.

By Proposition 2 iii),

2cm × {x < 2b2
δmc | h(C ′(h(x)) 6= h(x)} �2/b2δmc 2b2

δmc−1+cm. (5.3)

By Proposition 2 ii), (5.2) and (5.3) yield 0 �2/b2δmc+e 2b2
δmc−1+cm. Hence, by Item 1 ii)

of Proposition 3, 2b2
δmc−1+cm < (3/b2δmc + e)2b2

δmc−1+cm, which is a contradiction for a
sufficiently big m.

29

6 Learning from the non-existence of OWFs

Theorem 12 (‘CC ← PC’ from ‘Learning ← 6 ∃ OWF’ & hardness of E).
Let k, t ≥ 1 be constants. Assume that for each sufficiently big n, each 2n/4-size circuit
fails to compute h′ ∈ E on ≥ 1/2 − 1/2n/4 of all inputs. Further, assume that there is a
p-time function h : {0, 1}n 7→ {0, 1}u(n) such that for each constants c, d, there is a p-time
function f2 and constants n0 and 0 < ε < 1 such that S1

2 proves:

“∀n, ∀ cnc-size circuit C with u(m) inputs and m outputs such that n ≤ dmd,(
f2(C) outputs a poly(n)-size circuit B learning bnεct-size circuits with bnεc inputs

over the uniform distribution, up to error 1/2 − 1/bnεc, with confidence 1/bnεc;
formally, ∀f : {0, 1}bnεc 7→ {0, 1}, ∀ bnεct-size circuit D computing f ,

y

Pr
w

[B(1bn
εc, w) (1/2 + 1/bnεc)-approximates f]1/2bnεc ≥ 1/bnεc;

or
y

Pr
x∈{0,1}m

[h(C(h(x))) = h(x)] 1
m
< 1/2

)
.”

Then there are constants b and a (depending on k, t, h, h′, c, d, f2, n0, ε) such that for each
n the existence of a function gn : {0, 1}n 7→ {0, 1} such that no circuit of size bnb computes
gn on (1/2 + 1/n) fraction of inputs and such that EF+ tt(h′, 2n/4, 1/2− 1/2n/4) does not
have 2an-size proofs of tt(gn, n

t) implies that SATn /∈ Circuit[nk].

Note that the S1
2-theorem in the assumption of Theorem 12 assumes 2bn

εc ∈ Log.

Proof. The assumption of Theorem 12 in combination with Lemma 2 implies that for any
given k, t ≥ 1, for p-time f1 generating the truth-table of h′, there are constants 0 < ε < 1
and b, n1 such that S1

2 + dWPHP (PV) proves the following statement S:

“∀1n > n1, ∀m,n/2b ≤ 2bm ≤ n, if

LBtt
′(f1(12m), 2m/4, 2m(1/2− 1/2m/4)),

then f0(1n,m) outputs A,A′ ⊆ {0, 1}n such that

∀x ∈ A ∃yx ∈ A′ SATn(x, yx)

and
(
∀nk-size circuit C with n inputs and ≤ n outputs,

∃x ∈ A,¬SATn(x,C(x))

30

or f2(f−1(C,m)) outputs a circuit B such that ∀f : {0, 1}bnεc 7→ {0, 1}, ∀ bnεct-size circuit
D computing f ,

y

Pr
w

[B(1bn
εc, w) (1/2 + 1/bnεc)-approximates f]1/2bnεc ≥ 1/bnεc,

or y′ does not satisfy the assumption of Pry
′

x [·]1/n′ ≥ 1/2
)
.”

Since S is ∀Σb
1, by Lemma 1, there is a p-time function f3 and a constant ` such

that PV1 proves: “∀1n > n1,∀m,n/2b ≤ 2bm ≤ n, if |h′| ≥ 2`bn
εc and a 2||h

′||/4-size circuit
generated by a p-time function fails to compute h′, then f3(1n,m, h′, C, f,D, y, y′) outputs
a circuit falsifying

LBtt
′(f1(12m), 2m/4, 2m(1/2− 1/2m/4)),

or f3(1n,m, h′, C, f,D, y, y′) outputs a circuit falsifying the assumption of Pry
′

x [·]1/n′ ≥ 1/2
or it outputs a circuit falsifying the assumption of Pryw[·]1/2bnεc ≥ 1/bnεc or F ′ holds,”
where F ′ is the rest of the statement S.

Consequently, EF+ := EF+ tt(h′, 2n/4, 1/2−1/2n/4) proves efficiently the propositional
translation of F ′. If we now fix n > 1 and assume that SATn ∈ Circuit[nk

′′
], then there is

some k = O(k′′) such that we can efficiently falsify the first disjunct of the propositional
translation of F ′ in EF+. Therefore, there is a poly(n)-size circuit B and a 2Kn-size EF+

proof of learh
′

1/2n(B,Circuit[nt], 1/2− 1/n, 1/n), for a constant K independent of n. Recall

that this means that EF+ proves efficiently ¬tt(f, nt)→ R, for a formula R.
Let b ≥ t be such that B has size ≤ bnb. We claim that for each Boolean function

gn : {0, 1}n 7→ {0, 1}n which is not (1/2 + 1/n)-approximable by any circuit of size bnb,
there is a 2an-size EF+-proof of tt(gn, n

t), for a constant a independent of n. This is
because in order to prove tt(gn, n

t) in EF+, it suffices to check in EF+ that ¬R holds for
f = gn. ¬R holds for f = gn as otherwise there would be a bnb-size circuit (1/2 + 1/n)-
approximating gn. Moreover, the fact that ¬R holds for f = gn is efficiently provable in
EF+ as w.l.o.g. ¬R, for f = gn, does not contain any free variables (we can assume that
the auxiliary variables are substituted by suitable constants).

References

[1] Aaronson S.; Is P Versus NP Formally Independent?; Bulletin of EATCS, 81: 109-
136, 2003.

[2] Akavia A., Goldreich O., Goldwasser S., Moshkovitz D.; On basing one-way functions
on NP-Hardness; STOC, 2006.

[3] Althöfer I.; On sparse approximations to randomized strategies and convex combina-
tions; Linear Algebra and its Applications, 199(1):339-355, 1994.

31

[4] Ajtai M.; The Complexity of the Pigeonhole Principle; Combinatorica 14(4): 417-433,
1994.

[5] Atserias A.; Distinguishing SAT from polynomial-size circuits, through black-box
queries; Computational Complexity Conference (CCC), 2006.

[6] Beame P., Pitassi T.; Propositional Proof Complexity: Past, Present and Future;
Current Trends in Theoretical Computer Science, Entering the 21st Century, 42-70,
2001.

[7] Beyersdorff O., Bonacina I., Chew L.; Lower Bounds: From Circuits to QBF Proof
Systems; ITCS, 2016.

[8] Beyersdorff O., Pich J.; Understanding Gentzen and Frege Systems for QBF; LICS,
2016.

[9] Binnendyk E., Carmosino M., Kolokolova A., Ramyaa R., Sabin M.; Learning with
distributional inverters; Algorithmic Learning Theory (ALT), 2022.

[10] Bogdanov A., Talwar K., Wan A.; Hard instances for satisfiability and quasi-one-way
functions; ICS, 2010.

[11] Bonet M. L., Domingo C., Gavaldá R., Maciel A., Pitassi T.; Non-automatizability
of bounded-depth Frege proofs; Computational Complexity, 13(1-2):47-68, 2004.

[12] Bonet M. L., Pitassi T., Raz R.; On interpolation and automatization for Frege proof
systems; SIAM Journal of Computing, 29(6):1939-1967, 2000.

[13] Buss S.; Bounded arithmetic; Bibliopolis, 1986.

[14] Beame P., Impagliazzo R.; Pitassi T.; Exponential Lower Bounds for the Pigeonhole
Principle; Computational Complexity, 3:97-140, 1993.

[15] Bogdanov A., Brzuska; On Basing Size-Verifiable One-Way Functions on NP-
Hardness; TCC (1), 2015.

[16] Bogdanov A., Trevisan L.; On Worst-Case to Average-Case Reductions for NP Prob-
lems; SIAM Journal on Computing, 36(4): 1119-1159, 2006.

[17] Chen L., Jin C., Santhanam R., Williams R.; Constructive Separations and Their
Consequences; FOCS, 2021.

[18] Cobham A.; The intrinsic computational difficulty of functions; Proceedings of the
2nd International Congress of Logic, Methodology and Philosophy of Science, North
Holland, pp. 24-30, 1965.

32

[19] Cook S.A.; Feasibly constructive proofs and the propositional calculus; Symposium
on Theory of Computing (STOC), 1975.

[20] Cook S.A., Thapen N.; The strength of replacement in weak arithmetic; ACM Trans-
actions on Computational Logic, 7(4):749-764, 2006.

[21] Cook S.A., Kraj́ıček J.; Consequences of the Provability of NP⊆P/poly; Journal of
Symbolic Logic, 72:1353-1357, 2007.

[22] Cook S.A., Reckhow R.; The Relative Efficiency of Propositional Proof Systems;
Journal of Symbolic Logic, 44(1):36-50, 1979.

[23] de Rezende S., Göös M., Robere R.; Proofs, Circuits and Communication; SIGACT
News Complexity Theory Column, 2022.

[24] Grochow J., Pitassi T.; Circuit Complexity, Proof Complexity, and Polynomial Iden-
tity Testing: The Ideal Proof System; Journal of the ACM, 65(6), 37:1-59, 2018.

[25] Gutfreund D., Shaltiel R., Ta-Shma A.; If NP languages are hard in the worst-case
then it is easy to find their hard instances; Computational Complexity, 16(4), 412-
441, 2007.

[26] Haken A.; The Intractability of Resolution; Theoretical Computer Science, 39: 297-
308, 1985.

[27] Hirahara S.; Non-black-box worst-case to average-case reductions within NP; Foun-
dations of Computer Science (FOCS), 2018.

[28] Impagliazzo R.; A personal view of average-case complexity; Structure in Complexity
Theory (SCT), 1995.

[29] Impagliazzo R., Kabanets V., Wigderson A.; In search of an easy witness: exponential
time vs. probabilistic polynomial time; J.Comp.Syst.Sci., 65(4), 672-694, 2002.

[30] Jeřábek E.; Dual weak pigeonhole principle, Boolean complexity and derandomization;
Annals of Pure and Applied Logic, 129:1-37, 2004.

[31] Jeřábek E.; Weak pigeonhole principle and randomized computation; Ph.D. thesis,
Charles University in Prague, 2005.

[32] Jeřábek E.; Approximate counting in bounded arithmetic; Journal of Symbolic Logic,
72:959-993, 2007.

[33] Kabanets V.; Easiness Assumptions and Hardness Tests: Trading Time for Zero
Error; Journal of Computer and System Sciences, 63(2): 236-252, 2001.

33

[34] Kraj́ıček J.; Bounded arithmetic, propositional logic, and complexity theory; Cam-
bridge University Press, 1995.

[35] Kraj́ıček J.; Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic; Journal of Symbolic Logic, 66(2):457-486, 1997.

[36] Kraj́ıček J.; On the weak pigeonhole principle; Fundamenta Mathematicae, 170(1-
3):123-140, 2001.

[37] Kraj́ıček J.; Forcing with random variables and proof complexity; Cambridge Univer-
sity Press, 2011.

[38] Kraj́ıček J.; Proof complexity; Cambridge University Press, 2019.

[39] Kraj́ıček J., Pudlák P., Takeuti G.; Bounded arithmetic and the polynomial hierarchy;
Annals of Pure and Applied Logic, 52:143-153, 1991.

[40] Kraj́ıček J., Pudlák P., Woods A.; An Exponential Lower Bound to the Size of
Bounded Depth Frege Proofs of the Pigeonhole Principle; Random Structures and
Algorithms 7(1): 15-40, 1995.

[41] Li, F., Tzameret I., Wang, Z.; Characterizing Propositional Proofs as Noncommuta-
tive Formulas; SIAM Journal on Computing 47(4): 1424-1462, 2018.

[42] Lipton R.J., Young N.E.; Simple strategies for large zero-sum games with applications
to complexity theory; Symposium on Theory of Computing (STOC), 1994.

[43] Liu Y., Pass R.; On one-way functions from NP-complete problems; Computational
Complexity Conference (CCC), 2022.

[44] Müller M., Pich J.; Feasibly constructive proofs of succinct weak circuit lower bounds;
Annals of Pure and Applied Logic, 2019.

[45] Newman I.; Private vs common random bits in communication complexity; Informa-
tion Processing Letters, 39:67-71, 1991.

[46] Pich J.; Circuit lower bounds in bounded arithmetics; Annals of Pure and Applied
Logic, 166(1):29-45, 2015.

[47] Pich J., Santhanam R.; Learning algorithms versus automatability of Frege systems;
arXiv, 2021.

[48] Pich J., Santhanam R.; Why are Proof Complexity Lower Bounds Hard?; FOCS,
2019.

34

[49] Pitassi T., Tzameret I.; Algebraic proof complexity: progress, frontiers and challenges;
ACM SIGLOG News 3(3): 21-43, 2016

[50] Razborov A.A.; Bounded arithmetic and lower bounds in boolean complexity; Feasible
Mathematics II, 344-386, 1995.

[51] Razborov A.A.; Pseudorandom generators hard for k-DNF Resolution and Polyno-
mial Calculus; Annals of Mathematics, 181(2):415-472, 2015.

[52] Santhanam R.; Pseudorandomness and the Minimum Circuit Size Problem; Innova-
tions in Theoretical Computer Science (ITCS), 2020.

[53] Santhanam R., Tzameret I.; Iterated lower bound formulas: a diagonalization-based
approach to proof complexity; STOC, 2021.

[54] Williams R.; Non-uniform ACC circuit lower bounds; Computational Complexity
Conference (CCC), 2011.

35
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

