
Hard Languages in NP ∩ coNP and NIZK Proofs

from Unstructured Hardness∗

Riddhi Ghosal† Yuval Ishai‡ Alexis Korb§ Eyal Kushilevitz¶ Paul Lou‖

Amit Sahai∗∗

June 2023

Abstract

The existence of “unstructured” hard languages in NP ∩ coNP is an intriguing open question.
Bennett and Gill (SICOMP, 1981) asked whether P is separated from NP ∩ coNP relative to a
random oracle, a question that remained open ever since. While a hard language in NP ∩ coNP
can be constructed in a black-box way from a one-way permutation, for which only few (struc-
tured) candidates exist, Bitansky et al. (SICOMP, 2021) ruled out such a construction based on
an injective one-way function, an unstructured primitive that is easy to instantiate heuristically.
In fact, the latter holds even with a black-box use of indistinguishability obfuscation.

We give the first evidence for the existence of unstructured hard languages in NP ∩ coNP by
showing that if UP ̸⊆ RP, which follows from the existence of injective one-way functions, the
answer to Bennett and Gill’s question is affirmative: with probability 1 over a random oracle
O, we have that PO ̸= NPO ∩ coNPO. Our proof gives a constructive non-black-box approach
for obtaining candidate hard languages in NP ∩ coNP from cryptographic hash functions.

The above conditional separation builds on a new construction of non-interactive zero-
knowledge (NIZK) proofs, with a computationally unbounded prover, to convert a hard promise
problem into a hard language. We obtain such NIZK proofs for NP, with a uniformly random
reference string, from a special kind of hash function which is implied by (an unstructured) ran-
dom oracle. This should be contrasted with previous constructions of such NIZK proofs that are
based on one-way permutations or other structured primitives, as well as with (computationally
sound) NIZK arguments in the random oracle model.

∗This is the full version of [GIK+23].
†UCLA. Email: riddhi@cs.ucla.edu.
‡Technion. Email: yuvali@cs.technion.ac.il
§UCLA. Email: alexiskorb@cs.ucla.edu.
¶Technion. Email: eyalk@cs.technion.ac.il
‖UCLA. Email: pslou@cs.ucla.edu.

∗∗UCLA. Email: sahai@cs.ucla.edu.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 213 (2023)

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Related Work . 3

2 Technical Overview 5
2.1 Separating P from NP ∩ coNP Using NIZK . 5
2.2 NIZK Proofs from Unstructured Hardness . 8

3 Preliminaries 14
3.1 Random Oracles . 15
3.2 Non-Interactive Zero-Knowledge Proofs . 15

4 Definitions 17
4.1 Z-Tamperable-Hidden-Bits (ZHB) Model . 17
4.2 δ-Dense-PRHFs . 19

5 NIZK Proofs for NP in the Z-Tamperable-Hidden-Bits Model 20
5.1 Construction . 20
5.2 Completeness . 23
5.3 Zero Knowledge . 24
5.4 Soundness . 26

6 NIZK Proofs for NP in the Random Oracle Model 33
6.1 Construction . 34
6.2 Completeness . 35
6.3 Soundness . 36
6.4 Zero Knowledge . 37

7 NIZK Proofs for NP in the URS Model from δ-Dense-PRHFs 48
7.1 Construction . 49
7.2 Completeness . 50
7.3 Soundness . 50
7.4 Zero Knowledge . 50

8 Separating P from NP ∩ coNP 57
8.1 Explicit “Unstructured” Candidates for Hard Languages in NP ∩ coNP 65

9 Acknowledgements 65

10 References 66

A Preliminaries Continued 71

B A Random Oracle is a
(
1− 1

e

)
-Dense-PRHF 71

C Completeness and Soundness for NIZK Proofs in the URS model. 75
C.1 Completeness . 75
C.2 Soundness . 76

2

D Non-interactive Witness Hiding 77

E Average-case Hardness 79

3

1 Introduction

What makes us believe that a complexity class contains hard problems that cannot be solved in
polynomial time?

One source of confidence is the existence of concrete computational problems in the class for
which no efficient algorithms were found, despite years of intensive efforts. For instance, inte-
ger factorization is an example of one such problem. However, the same kind of structure and
mathematical elegance that attracts scientists to study a problem also makes this problem more
susceptible to algorithmic shortcuts. Indeed, the best known (classical) factoring algorithms are
super-polynomially faster than the naive algorithm, and some experts believe that a polynomial-
time algorithm is likely to exist. In cryptography, such structured problems from number theory
or linear algebra serve as the basis of existing candidates for public-key encryption.

A better source of confidence is the existence of unstructured candidates for hard problems in the
class. These can be obtained by first constructing a provably hard problem based on an unstructured
(but computationally inefficient) random function, and then heuristically replacing the random
function by a “random-looking” efficiently computable function. For example, this methodology
can yield candidates for hard-on-average NP languages from every practical1 cryptographic hash
function or private-key encryption scheme. This gives us more confidence in the P ̸= NP conjecture.
In the same vein, the ability to use unstructured hardness for derandomizing BPP [NW94, IW97]
gives us more confidence in the P = BPP conjecture.

The curious case of NP∩coNP. Unlike the case of NP, candidate hard languages in NP∩coNP are
highly structured and scarce. It is known that the existence of a cryptographic one-way permutation
(OWP) implies such a language [Bra79, BG81], but the only candidate constructions for OWP rely
on the hardness of factoring or discrete logarithm. To make things worse, the class NP ∩ coNP
is not known to contain complete languages [Sip82, HI85], and most current candidates for hard
languages in the class are known to have polynomial-time quantum algorithms.2 Finally, the
equality P = NP ∩ coNP holds for simple computational models such as decision trees [IN88]. The
above state of affairs has led to doubts about whether P ̸= NP ∩ coNP is the “right” conjecture to
make [Sta].

Random oracle separation? A natural approach for using unstructured hardness to separate
between classes C1 and C2 is to show a separation relative to a random oracle. That is, with
probability 1 over a random oracleO : {0, 1}∗ → {0, 1}, we have that CO1 ̸= CO2 . Using cryptographic
hash functions as a heuristic substitute for O, this may give an explicit candidate separation based
on unstructured hardness.3 Originating from the work of Bennett and Gill [BG81], many such
separations were obtained. In particular, a breakthrough work by Rossman et al. [RST15] showed
that the polynomial hierarchy is infinite relative to a random oracle, and a very recent breakthrough

1Practical hash functions and block ciphers are typically defined only for a fixed level of hardness. However,
it is relatively easy to come up with explicit candidates that are meaningful in an asymptotic setting. See [MV15,
AGR+16, AGP+19] for some concrete examples.

2The only exceptions we are aware of are variants of the stochastic games problem [Con92]. In contrast, there are
many natural candidate hard problems in the promise version of NP∩ coNP, and in fact such hard promise problems
can be based on the assumption that P ̸= NP [ESY84]. Our main result is based on such hard promise problems in
which the promise set is in NP, whose existence follows from P ̸= UP or an injective one-way function.

3The so-called “random oracle hypothesis,” asserting that natural separations relative to a random oracle apply
also in the unrelativized world, was refuted by Chang et al. [CCG+94], who showed that relative to a random oracle
IP ̸= PSPACE. However, the hypothesis is still plausible for “low-end” separations between P and other natural
complexity classes, in the spirit of the random oracle methodology in cryptography.

1

work by Yamakawa and Zhandry [YZ22] separated BQP machines from BPP machines with respect
to NP search problems. However, the question of separating NP∩coNP from P relative to a random
oracle remains open since it was posed in 1981 by Bennett and Gill. Tardos [Tar89] offered a partial
explanation for the difficulty of obtaining such a separation. Furthermore, techniques from more
recent works on random oracle separations, such as those developed in [RST15], do not seem helpful.
See [Bar] for discussion.

Black-box separation? Another natural approach for obtaining hard languages in NP ∩ coNP
is to construct them from standard cryptographic primitives. Constructions of this kind are almost
always (fully) black-box [RTV04], in the sense that both the construction and the hardness reduction
make an oracle use of the primitive. Indeed, the aforementioned construction of a hard language
in NP ∩ coNP based on a OWP is black-box in this sense, where in particular the NP and coNP
verifiers make a black-box use of the OWP. However, as discussed above, OWP is a highly structured
primitive: a random function is a permutation with only negligible probability. In contrast, a one-
way function (OWF) or even an injective OWF, are unstructured primitives that can be realized from
random functions. Indeed, a random length-tripling function f : {0, 1}n → {0, 1}3n is both one-way
and injective except with negligible probability. Blum and Impagliazzo [BI87] and Rudich [Rud88]
ruled out a black-box construction of a hard language in NP ∩ coNP from a OWF. Bitansky et
al. [BDV21] strengthened this impossibility to rule out (perfectly correct) constructions making a
black-box use of an injective OWF. A similar result for UP∩coUP is implied by the work of Rosen et
al. [RSS21]. The result of [BDV21] was shown to hold even when additionally allowing a black-box
use of indistinguishability obfuscation. This implies a similar black-box impossibility based on a
host of other cryptographic primitives, including public-key encryption. Altogether, the prospects
of using cryptography to get unstructured hardness in NP ∩ coNP seemed low.

1.1 Our Results

We give the first evidence for the existence of unstructured hard languages in NP ∩ coNP. Con-
cretely, we show that if UP ̸⊆ RP, which follows from the existence of injective one-way functions,
the answer to Bennett and Gill’s question is affirmative.

Theorem 1.1. If UP ̸⊆ RP, then with probability 1 over the choice of a random oracle O, PO ̸=
NPO ∩ coNPO.

Similarly to the previous separation between P and NP∩ coNP based on one-way permutations,
the conclusion is in fact stronger: PO ̸= UPO ∩ coUPO. Moreover, if we make the stronger assump-
tion that an injective one-way function exists, the conclusion holds with average-case hardness.
What makes our conditional separation interesting is the unstructured assumption. Indeed, as dis-
cussed above, an injective one-way function (which implies UP ̸⊆ RP) is unstructured in the sense
that it can be obtained with overwhelming probability from a random function.

The proof of Theorem 1.1 departs from the black-box impossibility framework of [BDV21] in
two ways. First, it only provides a probabilistic rather than perfect correctness guarantee. Second,
it inherently makes a non-black-box use of a hard UP language. In fact, the proof gives us a
constructive separation in the random oracle model that makes a non-black-box use of any injective
OWF. If we further instantiate the injective OWF and the random oracle using a cryptographic hash
function, we get an explicit algorithm for converting the code of the hash function into the code of
an NP-verifier and a coNP-verifier which are heuristically conjectured to define a hard language in
NP ∩ coNP.

2

The curious case of NIZK proofs. The proof of Theorem 1.1 relies on a novel connection with
another intriguing open question: the possibility of constructing non-interactive zero-knowledge
(NIZK) proofs for NP from unstructured hardness assumptions. We consider here NIZK proofs in
the “uniform random string” (URS) model [BFM88], where the prover and verifier share a uniformly
random reference string,4 and allow both an honest and a malicious prover to be computationally
unbounded. Even in this rather liberal setting, all previous NIZK proofs for NP relied on structured
assumptions (see Section 1.2). The Fiat-Shamir heuristic [FS87] can be used to obtain NIZK
for NP in the random oracle model, without requiring any structure. However, the protocols
obtained via this approach are currently limited to arguments that only guarantee soundness against
computationally bounded provers, except for very special NP languages [IV19]. Our second main
result gives the first construction of NIZK proofs for NP from unstructured hardness.

Theorem 1.2. There exists an (unbounded-prover, URS-based) NIZK proof system for NP in the
random oracle model.

In fact, here we can instantiate the random oracle by an explicit hash function, or family of
hash functions, that has simple to state (but nonstandard) properties of a random function (see
Definition 4.6 for more details). Roughly speaking, we need H : {0, 1}n → {0, 1}n to satisfy three
properties: (1) The image size H({0, 1}n) covers a δ-fraction of the co-domain, where 0 < δ < 1 can
be approximated to a high level of precision in time poly(n); (2) The outputH(x) on a random input
x is pseudorandom; (3) It is hard to distinguish between (x,H(x)) for a random x and (H−1(y), y),
where y is a uniformly random image of H and H−1(y) is a random preimage of y. While this
new primitive is implied by the existence of a one-way permutation, what makes it useful for our
purposes is the fact that it can be constructed from a random oracle.

From NIZK proofs to a conditional separation. Finally, our main conditional separation
(Theorem 1.1) is obtained by applying the NIZK proof to a language defined by the hard UP-
relation. This inherently makes non-black-box use of the relation. The high-level idea is to use the
NIZK proof to convert a hard promise problem in NP∩ coNP, naturally defined by the UP-relation,
into a hard language in NP∩ coNP. Here we rely on the fact that the language defining the promise
is in NP. The statistical soundness of the NIZK is used to eliminate the promise, whereas the zero-
knowledge property of the NIZK ensures that hardness is maintained. See the technical overview
in Section 2 for more details.

Open problems. Our work gives the first evidence that unstructured hardness implies the exis-
tence of hard languages in NP ∩ coNP. However, because we make essential non-black-box use of
unstructured hardness, our techniques do not yield an unconditional separation in the random ora-
cle model. Resolving this 42-year-old question remains open. On the NIZK side, we leave open the
questions of instantiating our construction from standard cryptographic assumptions and obtaining
efficient-prover variants.

1.2 Related Work

Hard languages in NP ∩ coNP. A language in (NP ∩ coNP) \ P is easy to construct directly
based on the conjectured hardness of factoring integers or computing discrete logarithms. For

4Allowing a structured reference string would make (unbounded-prover) NIZK proofs realizable from any one-way
function [Ps05]. However, in the context of our main application, this relaxation would only lead to a hard promise
problem in NP ∩ coNP, which is easy to obtain directly from any hard UP language.

3

instance, a factoring-based language can include the pairs (x, i) such that the i-th bit of (a canonical
representation of) the factorization of x is 1.

A similar approach can be used to construct a hard language in NP ∩ coNP from any one-
way permutation (OWP): a length-preserving, injective one-way function [Bra79, BG81]. While
a deterministic OWP can be constructed assuming the one-wayness of factoring and variants of
the discrete logarithm problem [GLN11], it is much easier to construct randomized families of
OWPs, where each permutation is specified by a key. However, in order to directly obtain a hard
language in NP ∩ coNP from such a family, it is crucial that the family be certifiable in the sense
that one can efficiently recognize valid keys. All known constructions of such OWP families rely
on the hardness of factoring or discrete logarithm. While a OWP family can also be constructed
from indistinguishability obfuscation and a one-way function [BPW16], this OWP family is not
certifiable.

A very different candidate for a hard language in NP∩coNP was given by Condon [Con92], who
showed that the problem of deciding which player has the greatest chance of winning a stochastic
two-player game is in NP ∩ coNP. The best known (randomized) algorithms for this language run
in time 2O(

√
n) [Lud95].

Complexity theoretic applications of NIZK. Our work uses NIZK proofs for NP to convert
a hard promise problem in NP∩ coNP into a hard language. There are several previous works that
use different flavors of NIZK proofs in complexity theoretic contexts. In particular, variants of NIZK
were used by Naor [Nao96] to separate two notions of learning distributions, by Hsiao et al. [HLR07]
to separate two notions of computational entropy, by Ishai et al. [IKOS10] to rule out invertible
sampling algorithms for general distributions, and by Hubácek et al. [HNY17] to construct a hard
search problem in TFNP with at most two solutions. These works are similar to ours in that NIZK
is used to enforce some promise while respecting hardness. However, whereas these works relied
on prior constructions of NIZK that were based on structured hardness assumptions, our current
application requires a new flavor of NIZK proofs based on unstructured hardness.

Assumptions for NIZK proofs. Unlike most cryptographic applications of NIZK proofs, in this
work we allow the honest prover to be computationally unbounded. Pass and shelat [Ps05] construct
such NIZK proofs for NP (in fact, AM) from any one-way function. Unlike our construction, which
only requires a uniform reference string (URS), this construction inherently relies on a structured
reference string which is picked from a special distribution. This makes it unsuitable for our
complexity theoretic application. A technical similarity between the construction from [Ps05] and
ours is that both use each segment of the reference string to define a hidden bit that depends on
whether the segment belongs to the image of some function. Finally, Ball et al. [BDK20] show how
to convert any unbounded-prover NIZK proof in the URS model into a ZAP (2-message witness-
indistinguishable proof), extending the bounded-prover construction of Dwork and Naor [DN07].

Allowing structured assumptions, NIZK proofs for NP in the URS model can be based on OWP
families [FLS90, BY96, CL18] (hence on the hardness of factoring and discrete logarithm), the deci-
sion linear assumption on bilinear groups [GOS06], or indistinguishability obfuscation and one-way
functions [BP15]. Known lattice-based constructions of NIZK proofs [CCH+19, PS19] require a
structured reference string. This requirement can be eliminated by settling for (computationally
sound) arguments, which do not suffice for our purposes. Similarly, we cannot rely on NIZK argu-
ments in the random oracle model [FS86]. Instead, we present a new construction of NIZK proofs
in the random oracle model.

Finally, we note that all of the above NIZK constructions except those based on one-way func-

4

tions and discrete logarithm satisfy the stronger property of efficient-prover NIZK, where the prover
can be implemented efficiently given an NP-witness. Such NIZK arguments are also known under
the (subexponential) decisional Diffie-Hellman (DDH) assumption [JJ21]. The existence of efficient-
prover NIZK proofs for NP in the random oracle model remains open.

Randomness vs. structure. While a random function has many useful properties that are hard
to (provably) realize by explicit constructions, in this work we view a uniformly random function
f : {0, 1}n → {0, 1}m(n) as an “unstructured” object. This view is common both in theoretical
computer science and mathematics (see, e.g., [Bar, Tao]). Following this view, is useful to draw
a dividing line between “unstructured” and “structured” cryptographic primitives or hardness
assumptions depending on whether they can be based on a random oracle. Beyond the well-known
separation between OWF and public-key encryption [IR89], this dichotomy is also useful when
considering different flavors of OWF. To illustrate this, consider the following three flavors of OWF:

1. An injective OWF f : {0, 1}n → {0, 1}n, namely a OWP;

2. An injective OWF f : {0, 1}n → {0, 1}1.5n;

3. An injective OWF f : {0, 1}n → {0, 1}3n.

It is clear that 1 ⇒ 2 ⇒ 3. But is there a qualitative separation? The above dichotomy puts
(3) in the “unstructured” category, since a random f : {0, 1}n → {0, 1}3n is injective with over-
whelming probability, whereas (1) and (2) seem to be in the “structured” category, since it is
not clear how to efficiently build such functions from a random oracle. In particular, a random
f : {0, 1}n → {0, 1}1.5n is not injective, except with negligible probability. This taxonomy also
suggests a qualitative difference in the abundance and concrete efficiency of explicit candidates.
Indeed, candidates for (3) can be based on any of the many practical proposals for cryptographic
hash functions and block ciphers, whereas known candidates for (1) and (2) are based on specific
“public-key” assumptions, leading to significantly worse concrete efficiency and polynomial-time
quantum attacks.

2 Technical Overview

In this section we give a high-level technical overview of our results. We start, in Section 2.1, by
describing the general strategy of using NIZK to construct a hard language in NP ∩ coNP. Then,
in Section 2.2, we describe our construction of NIZK proofs in the random oracle model, which is
our main technical contribution.

2.1 Separating P from NP ∩ coNP Using NIZK

Our primary contribution is achieving a separation between PO and NPO∩coNPO, with probability
1 over the choice of the random oracle O, assuming an unstructured source of hardness. An example
of an unstructured source of hardness that suffices for our separation result is the existence of an
injective one-way function.5 In fact, it will suffice to merely assume UP ̸⊆ RP, which is implied by
the existence of injective one-way functions. Formally, our main theorem is the following:

5Recall that we view an injective one-way function as an “unstructured” primitive because a random oracle
O : {0, 1}n → {0, 1}3n is both injective and one-way with overwhelming probability. “Unstructured hardness” is
typically associated with random functions: see, e.g., [Bar, BDV21] for discussion.

5

Theorem 2.1. Assuming UP ̸⊆ RP, we have:

Pr
O

[
PO ̸= NPO ∩ coNPO

]
= 1.

Towards a hard language in NP∩coNP. We begin by considering any language L0 in UP\RP.
Thus, all statements in L0 have a unique witness, and all statements not in L0 have no witnesses.
The first task is to construct a new language whose statements have both NP and coNP certificates.
With the hope of making progress in this aspect, let us define

L1 = {(x, i) : ∃w, (x,w) ∈ RL0 ∧ wi = 1} ,

where RL0 is the efficiently recognizable Boolean relation for L0. The corresponding complement
language is

L1 = {(x, i) : (∃w, (x,w) ∈ RL0 ∧ wi = 0) ∨ (∄w, (x,w) ∈ RL0)} .

Observe that for all statements (x, i) where x ∈ L0, there is valid certificate for the membership
of (x, i) in both L1 and L1. This certificate is the unique witness w for x’s membership in L0:
Given w, simply check that (x,w) ∈ RL0 , then the ith bit of this witness is the evidence that either
(x, i) ∈ L1 or (x, i) /∈ L1. Unfortunately, for statements of the form (x, i) where x /∈ L0, there is no
clear coNP certificate (for membership in L1).

Can proofs be useful? The issue above can however be resolved if we could attach an additional
component to the instance which would act as a proof for the fact that x ∈ L0. Specifically, consider
the existence of a non-interactive proof system defined by a pair of machines (P, V), consisting
of an (unbounded) prover P and an efficient deterministic verifier V , for the language L0. We
require perfect completeness and perfect soundness (for all x /∈ L0, there is no string π such that
V (x, π) = 1). This gives us a new language

L2 = {(x, i, π) : (∃w, (x,w) ∈ RL0 ∧ wi = 1) ∧ V (x, π) = 1} .

We now observe that this language is in both NP and coNP. Whenever x ∈ L0, both the NP
and coNP certificate are the unique witness w such that (x,w) ∈ RL0 . When x /∈ L0, there does not
exist any w, such that (x,w) ∈ RL0 , but V (x, π) must always output 0 due to the perfect soundness
of our proof system. Thus, our coNP verifier runs this polynomial time proof verification algorithm
and outputs 1 if V (x, π) = 0. In this case, any string can serve as a coNP certificate because it is
never used by the coNP verifier.

What about hardness? With what we have written so far, there is no reason for L2 to be hard,
since the proof π above could simply consist of the (unique) witness for x ∈ L0, in which case of
course no hardness would exist for L2. Clearly, we need to ask more from our proof system to
prevent the proof π from destroying hardness.

Indeed, we want to actually be able to prove hardness for L2. Namely, we would like to show
that if L2 ∈ P then it must be the case that L0 ∈ RP, resulting in a contradiction. Here’s a natural
reduction idea: Suppose D is a polynomial time Turing machine that decides L2. Then we might
try to construct an efficient Turing machine M , which given input x, attempts to decide if x ∈ L0,
in the following manner,

1. Somehow, create a valid “fake” proof π for proving x ∈ L0, even if in fact x might not actually
be in L0.

6

2. Attempt to recover a witness w for x by iterating through all indices i up to some polynomial
bound on the witness length, p(|x|), and setting wi ←− D(x, i, π).

3. Assuming M was able to complete Step 1, M checks if (x,w) ∈ RL0 and if so, outputs 1.

Obviously, Step 1 above looks highly suspicious. If the proof system is sound, how can it allow for
such “fake” proofs?

Zero knowledge to the rescue? This seeming contradiction is exactly what the notion of (Non-
Interactive) Zero Knowledge (NIZK) protocols [BFM88] seem to have been created to solve. In a
NIZK protocol, there is indeed a simulator that can create the kinds of valid “fake” proofs that
we seek. Since we are seeking a separation in the random oracle model, we need to construct such
NIZK proofs for UP, with (near)-perfect soundness6.

In fact, it turns out that in the random oracle model, no such NIZK proofs were known prior to
our work. The main technical tool that we contribute in this work is indeed the construction of such
NIZK proofs for NP with near-perfect soundness in the random oracle model. We also show how
to obtain them from a concrete unstructured hardness conjecture we call a δ-Dense-Pseudorandom-
Hash-Function (δ-Dense-PRHF). We will return to this below in Section 2.2, but for now, let us
assume that we have built such a near-perfectly sound NIZK proof system in the random oracle
model.

A hard language in NPO ∩ coNPO. We are now ready to put it all together. Let ΠNIZK =
(P(·),V(·)) be a NIZK proof system for membership in the language L0 ∈ UP \ RP in the ran-
dom oracle model such that V(·) is deterministic and ΠNIZK satisfies perfect completeness, near-
perfect soundness, and zero-knowledge against computationally unbounded oracle Turing ma-
chines restricted to polynomially many oracle queries. For syntax purposes below, let Sim :=
(SimProof,SimRO) be the zero knowledge simulator for this proof system. Here, SimProof upon
input an instance x, outputs a proof π and some state st. SimRO gets this state st from SimProof
and simulates random oracle queries (see Def. 3.10 for the security definition). We now construct
our hard language that depends on the random oracle O:

LO :=

{
(x, i, π) : (∃w, (x,w) ∈ RL0 and wi = 1) ∧ (ΠNIZK.VO(x, π) = 1)

}
The intuition for why PrO

[
LO ∈ NPO ∩ coNPO

]
= 1 is identical to the reasoning for why L2 ∈

NP ∩ coNP. We now explain why PrO
[
LO /∈ PO

]
= 1 by following the reduction template laid

out above. For the sake of contradiction assume, PrO
[
LO ∈ PO

]
> ε for some constant ε > 0.

The classic Bennett-Gill paper [BG81] shows that this assumption implies the existence of some
polynomial-time oracle Turing machine D(·) such that DO(x, i, π) correctly decides the membership
of (x, i, π) with probability 1 over the choice of O. Now we construct a probabilistic polynomial-time
Turing machine M that, upon given an input x,

1. Use SimProof(x) to generate a proof π and some state st.

2. For each index i ∈ [p(|x|)], where p(|x|) is the polynomial bound on the witness length
guaranteed by the definition of UP, set wi ←− DSimRO(st,·)(x, i, π) (when D queries q on its
oracle tape, M simulates the oracle responses with SimRO(st, q)).

6More formally, what we need is that with probability 1 over the choice of random oracle, only a finite number
of statements not in L0 admit valid proofs.

7

3. Finally, if (x,w) ∈ RL0 (or if a prefix w1 . . . wt is a witness, for some t ∈ [p(|x|)]), then M
outputs 1. Otherwise M outputs 0.

Observe that if x /∈ L0, then there is no witness w such that (x,w) ∈ RL0 so M will always
correctly output 0. If x ∈ L0, the perfect completeness and zero-knowledge property of ΠNIZK

guarantees that M will recover a valid witness w and output 1 with all but negligible probability.
This implies that M is a RP decider for L0 contradicting our assumption that L0 ∈ UP \ RP.

The only thing that remains is to describe how to construct our main technical tool, which we
believe will be of independent interest: a NIZK proof system with near-perfect soundness in the
random oracle model.

2.2 NIZK Proofs from Unstructured Hardness

NIZK arguments for NP, satisfying computational soundness, have been known to exist in the
random oracle model since the classic work of Fiat and Shamir [FS87]. However, the Fiat-Shamir
paradigm inherently results in NIZK protocols that admit proofs for false statements. We instead
look elsewhere for inspiration.

Our starting point is [FLS90] which constructs NIZK proofs with near-perfect soundness in the
uniform common random string (URS) model from one-way-permutations (OWPs). Unfortunately,
we know of no unstructured sources of hardness that yield OWPs. Our initial idea is to try to
look into the protocol of [FLS90], and see what happens if we replace the OWP found there with a
random oracle7. Let us see what happens if we do so.

The construction of [FLS90] proceeds in two steps. First, they show how to construct NIZK
proofs in an intermediate model, which they call the Hidden-Bits models. In this model, the prover
has access to a private uniformly random bit string r, and can choose which bits of r to reveal to
or hide from the verifier. The verifier learns only the bits of r selected by the prover. As their
second step, they show how to instantiate this hidden bit string functionality using a URS and
a OWP. At a high level, the prover interprets the URS as a sequence of output values y1 . . . yt,
where each yi constitutes a commitment to the ith bit ri of the hidden bit string. Each ri is set to
be equal to h(xi) where h is a hardcore bit function of the OWP and xi is the unique value such
that OWP(xi) = yi. Thus, each bit of r is uniquely determined by the OWP and the URS. The
prover can open any bit ri by simply sending over the corresponding pre-image xi. However, by
the one-way-ness of the OWP, the verifier is unable to learn any value of ri unless it is revealed by
the prover.

Now, suppose we were to replace the OWP in the above construction with a random oracle.
The resulting NIZK proof now fails in several ways. First, a random function will not be surjective
on a constant fraction of its codomain with high probability. Thus, the above protocol is no longer
complete as ri is undefined whenever yi does not have a pre-image. Secondly, as a random function
need not be injective, then the proof is no longer sound since whenever there exist multiple pre-

images x
(1)
i and x

(2)
i of yi such that h(x

(1)
i) ̸= h(x

(2)
i), then the prover can choose to open ri to

either value. Even if the random oracle were to only be 2-to-1, this would still lead to exponentially
many choices of possible hidden bit strings r, breaking soundness. Thus, we must use a different
manner to determine r from the URS and the random oracle.

A new way of determining the hidden bit string. Our key idea is to determine ri by whether
or not there exists any pre-image for yi under the random oracle. In particular, we set ri = 1 if
there exist no pre-images for yi, and set ri = 0 if there exists at least one pre-image for yi. Observe

7Note that replacing the URS with a random oracle is trivial.

8

that the resulting string r may not be uniformly random as its distribution depends on the density
of the image in the co-domain. However, if the random oracle is a function from n bits to n bits,
then we can show that each bit of r is 1 with probability roughly equal to e−1. Now, the prover
can reveal that ri = 0 by sending over a pre-image xi for yi (which the verifier can check), and can
claim that ri = 1 by simply stating that “there is no pre-image”. Observe that the prover cannot lie
about the value of ri whenever ri = 1 because he cannot invent a pre-image when no such pre-image
exists. However, the prover can easily lie about the value of ri whenever ri = 0 by simply claiming
that “there is no pre-image” even if one exists. Thus, a cheating prover can lie in a one-sided
manner. This idea leads us to invent a new model for NIZK proofs. As the one-sided nature of this
tampering resembles a Z-channel in information theory, we call it the Z-Tamperable-Hidden-Bits
model.

The Z-Tamperable-Hidden-Bits Model. The Z-Tamperable-Hidden-Bits model (Definition 4.2) is
identical to the Hidden-Bits model except that a cheating prover can lie about the hidden bit string
r at every index where ri = 0, and r can be sampled from a fixed biased distribution. In particular,
the prover is given access to a bit string r where each bit of r is independently and identically
sampled from a Bernoulli distribution. The (honest) prover can choose which bits of r to reveal or
hide from the verifier, and the verifier learns only the bits of r selected by the prover. However, a
cheating prover can first modify the hidden bit string r by changing any ‘0’s of his choice in r to
‘1’s. This results in a new string r̃. The prover then chooses which bits of the resulting string r̃ to
reveal or hide from the verifier, and the verifier receives the corresponding bits of r̃.

This model gives a lot of power to the cheating prover. Nevertheless, as we will show below,
we can modify the protocol and enforce certain statistical tests to limit the power of the cheating
prover, and actually achieve near-perfect soundness, while preserving zero knowledge.

Instantiating the Z-Tamperable-Hidden-Bits Model. Observe that using the method detailed
above, we can use a random oracle to instantiate the functionality of the Z-Tamperable-Hidden-Bits
model. In fact, we only need a hash function that satisfies several simple properties, which are
satisfied (with overwhelming probability) by a random function. We capture these properties by
a new primitive which we call a δ-Dense-Pseudorandom-Hash-Function (Definition 4.6). Roughly
speaking, this is a hash function HPRHF : {0, 1}n → {0, 1}n which is (1) pseudorandom, (2) has
an image which is approximately δ-Dense in the co-domain, and (3) satisfies a property we call
pre-image pseudorandomness, which guarantees indistinguishability between two ways of sampling
(x, y) such that HPRHF(x) = y.

2.2.1 NIZK Proofs in the Z-Tamperable-Hidden-Bits Model

It now remains to show how to construct NIZK proofs in the Z-Tamperable-Hidden-Bits model. Our
construction modifies the proof system of [FLS90] in that we alter key parameter sizes, sample r
from a biased distribution, and add specific statistical checks to the verifier’s algorithm.

Warmup: A Proof for Graph Hamiltonicity from Structured Hidden Bit Strings. As
a warmup, we first build a NIZK proof for the NP-complete language Graph-Hamiltonicity in an
artificial variant of the Z-Tamperable-Hidden-Bits model where the hidden bit string is chosen from
a structured distribution. In particular, if the instance G is graph on n-nodes, then r is chosen
uniformly from the set of all adjacency matrices of n-cycle graphs on n-nodes.8

8This is identical to the setup in [FLS90].

9

The idea is to have the prover prove in zero-knowledge that the graph H represented by r is a
subgraph of some permutation of G. To show that H is a subgraph of G, the prover first finds a
Hamiltonian cycle CG in G and a permutation π such that π(CG) = H. Then, the prover shows
that every edge of H is contained in π(G), by showing that all non-edges of π(G) are not edges of
H: this is done by revealing that the matrix elements corresponding to non-edges of π(G) in the
adjacency matrix r of H are ‘0’.

For completeness, observe that a Hamiltonian graph always contains an n-cycle subgraph (i.e.
the Hamiltonian cycle). For soundness, first observe that, by definition, no non-Hamiltonian graph
has an n-cycle subgraph. Additionally, although a cheating prover can cheat by changing ‘0’s in r
to ‘1’s (which adds edges to H), this does not help the cheating prover, since if H is not a subgraph
of some permutation π of G, then neither is any graph H ′ formed by adding edges to H. So, in fact
the Z-Tamperability of the cheating prover does not help in this case. For zero knowledge, observe
that the verifier only learns a permutation π and that the elements of r corresponding to π(G) are
‘0’s. If r is chosen uniformly from the set of adjacency matrices of all n-cycle graphs, then π is
uniform over the set of all permutations. Thus, a simulator need only pick a random permutation
π and set the corresponding edges of r to be ‘0’.

10

Figure 1: Proving that H is a subgraph of G

How to actually sample n-cycle graphs. Now, in the Z-Tamperable-Hidden-Bits model, in-
stead of having r sampled from the set of all n-cycle graphs, each bit of r is sampled from i.i.d.
Bernoulli distributions. Thus, if we simply interpret r as an n × n adjacency matrix, then we
have only a negligible probability of getting an n-cycle. The work of [FLS90] solved this issue by
introducing a clever matrix sampling technique, which allows us to generate n-cycle graphs with
inverse polynomial probability. Let c > 1 be some constant parameter, which was presented as the
fixed value c = 2 in the work of [FLS90]. We will modify this constant because of difficulties that
arise in the Z-Tamperable-Hidden-Bits model, as we will explain shortly.

We use r to sample a sequence of nc × nc matrices M (i), where each element of M (i) is set
to 1 with probability 1

n2c−1 so that the expected number of ‘1’s in M (i) is n. We will say that

M (i) ∈ Type-H if M (i) contains an n×n submatrix S(i) which is the adjacency matrix of an n-cycle
graph H(i), and contains ‘0’s everywhere else. The prover will add all matrices of Type-H to a set
CycleSet which will be dealt with in a special way.

For all indices i /∈ CycleSet, the prover will simply discard the corresponding matrices by fully

11

revealing them to the verifier. The verifier will check that prover does not discard any valid matrices
M (i) ∈ Type-H.

For all indices i ∈ CycleSet, the prover will specify and reveal all rows and columns that are not
part of the submatrix S(i). The prover will then prove that the graph H(i) represented by S(i) is
a subgraph of some permutation of G using the protocol described above. The verifier will check
that the rows and columns not in the specified submatrix S(i) contain only ‘0’s, and will check that
the subgraph protocol verifies on S(i).

Figure 2: Sampling submatrices that contain n-cycles.

Now, for c = 2, the probability a matrix M (i) is in type Type-H is Ω(n−1.5). Thus, if we sample
enough such matrices, we will get sufficiently many matrices of type Type-H. This is sufficient for
constructing a NIZK proof in the regular Hidden-Bits model. For soundness, observe that the prover
must perform the subgraph protocol on every matrix M (i) ∈ Type-H since the verifier will check
that the prover does not discard any valid matrices. Therefore, as long as there is at least one
matrix M (i) ∈ Type-H, then we have soundness in the Hidden-Bits model. Zero knowledge follows
as the simulator can easily simulate random matrices M (i) /∈ Type-H and can simulate the revealed
indices of M (i) ∈ Type-H by picking a random submatrix S(i), a random permutation π and setting
all rows and columns not in S(i) and all non-edges of π(G) in S(i) to be ‘0’.

Unfortunately, this is insufficient for proving soundness in the Z-Tamperable-Hidden-Bits model.
Recall that the one-sided tamperability means that the cheating prover can add ‘1’s to any matrix

12

M (i), but cannot remove9 any ‘1’s. Thus, a cheating prover can simply invalidate all matrices
M (i) ∈ Type-H by adding additional ‘1’s to them. This allows the prover to discard any troublesome
Type-H matrices.

Constraining the cheating prover. In order to prevent the cheating prover from simply inval-
idating all Type-H matrices, we will add a statistical check to the verifier.

As a first attempt, we try having the verifier check that CycleSet contains at least a Ω(n−1.5)
fraction of the matrices. This way, if the prover simply invalidates all matrices of Type-H, then
CycleSet will become empty, and the verifier will reject. However, observe that for every matrix in
CycleSet, the prover only has to pass the subgraph check (by showing that the ‘1’s of the matrix
are contained in an n × n submatrix which defines a subgraph of some permutation of G). Thus,
the cheating prover can fill the empty spots in CycleSet with any matrices not in Type-H which can
pass the subgraph check. As there are enough such matrices to make up for the difference, we will
need a different type of statistical check.

Now, since a cheating prover cannot pass the subgraph check with any matrix M (i) ∈ Type-H
(as G is not Hamiltonian), then the prover must invalidate each of these matrices. But the only
way the prover can invalidate these matrices is by adding ‘1’s to them. Thus, this will increase
the number of discarded matrices (i.e. matrices M (i) where i /∈ CycleSet) with at least n + 1 ‘1’s.
This leads us to the idea for our statistical check: We will have the verifier count the number of
discarded matrices with at least n+1 ‘1’s, and reject if the number if much greater than expected.

Now, since the cheating prover cannot remove ‘1’s from matrices, then he cannot decrease the
count of discarded matrices with at least n+1 ‘1’s by simply removing ‘1’s. However, the cheating
prover can instead decrease this count by adding into CycleSet the indices of all matrices M (i) that
can pass the subgraph check and have at least n + 1 ‘1’s . Now, in order to pass the subgraph
check, a matrix M (i) must have all of its ‘1’s contained within an n× n submatrix.

Our key insight is that if we increase the dimensions of our matrices (by increasing the parameter
c specified above), then the matrices become very sparse. Therefore, the vast majority of matrices
will not have any ‘1’s fall into the same row or column, i.e., the ‘1’s of the matrix will form a
permutation submatrix. But if a matrix has at least n+ 1 ‘1’s, and these ‘1’s form a permutation
submatrix, then these ‘1’s cannot be contained within an n×n submatrix! Therefore, such a matrix
cannot pass the subgraph check (even if the prover adds additional ‘1’s to the matrix). To complete
the proof of soundness, it suffices to show that the expected number of matrices M (i) with at least
n+1 ‘1’s whose ‘1’s do not form a permutation submatrix, and thus could pass the subgraph check,
is much smaller than the expected number of matrices M (i) ∈ Type-H. Thus, with overwhelming
probability over the choice of the hidden bit string, a cheating prover must either inflate the count
of discarded matrices M (i) with at least n+ 1 ‘1’s or get caught by the subgraph check. In either
case, the verifier will reject.

These statistical checks therefore preclude cheating by the prover that would enable the prover
to avoid dealing with the matrices in Type-H. As we observed above, if the cheating prover is forced
to reveal the permutation π and all the non-edges of π(G) in the cycle-subgraph in even one matrix
in Type-H, we have soundness. Then, with a standard application of the Borel–Cantelli lemma, we
obtain near-perfect soundness, together with zero knowledge.

9We will set matrix elements to ‘1’ iff the corresponding bits of r are all ‘1’s. Since the cheating prover can only
change ‘0’s in r to ‘1’s, this means that the cheating prover can also only change ‘0’s in M (i) to ‘1’s.

13

3 Preliminaries

Notation.

• We say that a function f(n) is negligible in n if f(n) = n−ω(1), and we denote it by f(n) =
negl(n).

• We say that a function g(n) is polynomial in n if g(n) = p(n) for some fixed polynomial p,
and we denote it by g(n) = poly(n).

• For t ∈ N, we use [t] to denote the set {1, . . . , t}.

• If R is a random variable, then r ← R denotes sampling r from R. If T is a set, then i← T
denotes sampling i uniformly at random from T .

Definition 3.1 (Polynomial-Query-Bounded Oracle Turing Machine). We say that an oracle Tur-
ing machine M (·) is polynomial-query-bounded if there exists a polynomial p(·) : N → N such that
for any input x ∈ {0, 1}∗ and for any oracle O, the execution of MO(x) makes at most p(|x|) many
queries to O.

Lemma 3.2 (Chebyshev’s Inequality). Let X be a random variables with finite expected value µ
and finite non-zero variance σ2. Then, for any k > 0,

Pr [|X − µ| ≥ kσ] ≤ 1

k2

Lemma 3.3 (Chernoff Bound). Let X1, . . . , Xn be independent random variables taking values in
{0, 1}, and let X =

∑n
i=1Xi and µ = E[X]. Then a two-sided Chernoff bound for 0 ≤ δ ≤ 1 is

Pr [|X − µ| ≥ δµ] ≤ 2 · exp
(
−δ2µ

3

)
And a one sided Chernoff bound for 0 ≤ δ ≤ 1 is

Pr[X ≥ (1 + δ)µ] ≤ exp

(
−δ2µ
3

)
Definition 3.4 (Statistical Distance). Let D1 and D2 be two random variables over some probability
space with support in X. The statistical distance between D1 and D2 is

∆(D1, D2) =
1

2

∑
x∈X
|Pr[D1 = x]− Pr[D2 = x]|

Lemma 3.5. If A = (A1, . . . , An) and B = (B1, . . . , Bn) are sequences of independent random
variables such that

∀i ∈ [n], ∆(Ai, Bi) ≤ ε

then
∆((A1, . . . , An), (B1, . . . , Bn)) ≤ nϵ

The lemma above follows from [DH12]. Refer to Lemma A.1 in Appendix A.

Lemma 3.6 (First Borel-Cantelli Lemma (BC1)). Suppose that {En}n∈N is a sequence of events
in a probability space. If ∑

n∈N
Pr[En] <∞

then the probability that infinitely many of them occur is 0. In other words, with probability 1, only
a finite number of the events occur.

14

3.1 Random Oracles

A random oracle is a function O : {0, 1}∗ → {0, 1}. When using random oracles, we use PrO to
denote the probability when the random oracle O is chosen uniformly from the set of all functions
from {0, 1}∗ to {0, 1}.

Lemma 3.7. For any function m : N → N, a random oracle O : {0, 1}∗ → {0, 1} can be equiva-
lently interpreted as a family of countably-infinite independent random functions {On : {0, 1}n →
{0, 1}m(n)}n∈N.

Proof. For n ∈ N, we define
On(x) = Fn(x, 1)∥ · · · ∥Fn(x,m).

where each Fn : {0, 1}n+⌈logm(n)⌉ → {0, 1} is a function such that Fn(x, i) = O(1n∥0∥x∥i), where
|x| = n and i ∈ [m] is given by its binary representation. Note that over the probability of O, for
all k ̸= ℓ ∈ N, Ok and Oℓ are independent random functions because they always query the oracle
O at disjoint points.

3.2 Non-Interactive Zero-Knowledge Proofs

We define the standard notion of a non-interactive zero-knowledge (NIZK) proof with a computa-
tionally unbounded prover in the uniform reference string (URS) model and in the random oracle
(RO) model.

Remark 3.8. Our definitions of soundness are adaptive, meaning that a cheating prover’s choice
of x /∈ L can depend on the urs and/or the random oracle O.

Notation. If for sufficiently large n, a NIZK proof satisfies soundness with respect to some explicit
negligible function εs(n), we say that it achieves εs(n)-soundness.

Definition 3.9 ((Unbounded-Prover) NIZK Proof in the URS Model). An (unbounded-prover) non-
interactive zero-knowledge (NIZK) proof system in the uniform reference string (URS) model for a
language L is a tuple of algorithms Π = (Gen, P, V):

• Gen(1n) is a PPT algorithm that given an input length n outputs a uniformly random bit-string
urs of length purs(n), for some (fixed) polynomial purs.

• P (urs, x) is an (unbounded, randomized) honest prover algorithm that takes as input a refer-
ence string urs ∈ {0, 1}purs(|x|) and x ∈ L and outputs a proof π.

• V (urs, x, π) is a polynomial-time deterministic verifier that takes as input a reference string
urs ∈ {0, 1}purs(|x|), x, and a proof π, and outputs either 1 (accept) or 0 (reject).

We require Π to satisfy the following completeness, soundness, and zero knowledge requirements.

• Perfect Completeness: For all x ∈ L,

Pr
[
V (urs, x, π) = 1 : urs← Gen(1|x|), π ← P (urs, x)

]
= 1

where the probability is over the choice of urs and the randomness of P .

• (Adaptive) Statistical Soundness: There exists a negligible function εs(·) such that for
all n ∈ N,

Pr
urs←Gen(1n)

[∃(x, π) such that x /∈ L, |x| = n, and V (urs, x, π) = 1] ≤ εs(n)

15

• Computational Zero Knowledge: There exists a PPT simulator Sim and a negligible
function εzk(·) such that for all x ∈ L and all non-uniform polynomial-sized adversaries A,∣∣∣∣Pr [A(urs, x, π) = 1 : urs← Gen(1|x|), π ← P (urs, x)

]
− Pr [A(urs∗, x, π∗) = 1 : (urs∗, π∗)← Sim(x)]

∣∣∣∣ ≤ εzk(|x|)

where the probability is over the choice of urs and the randomness of P , Sim, and A.

When defining NIZK proofs in the random oracle (RO) model, we allow all algorithms access to
the random oracle. Additionally, the zero knowledge simulator is allowed to program the random
oracle. We will actually prove zero knowledge against all polynomial-query-bounded oracle Turing
machines (Def. 3.1), rather than against computationally bounded adversaries.

Definition 3.10 ((Unbounded-Prover) NIZK Proof in the ROModel). An (unbounded-prover) non-
interactive zero-knowledge (NIZK) proof system in the random oracle (RO) model for a language L
is a tuple of algorithms Π = (P (·), V (·)) with access to a random oracle O.

• PO(x) is an (unbounded, randomized) honest prover algorithm that is given oracle access to
a random oracle O, takes as input x ∈ L, and outputs a proof π.

• V O(x, π) is a polynomial-time deterministic verifier that is given oracle access to a random
oracle O, takes as input x and a proof π, and outputs either 1 (accept) or 0 (reject).

We require Π to satisfy the following completeness, soundness, and zero knowledge requirements.

• Perfect Completeness: For all x ∈ L,

Pr
[
V O(x, π) = 1 : π ← PO(x)

]
= 1

where the probability is over the choice of O and the randomness of P .

• (Adaptive) Statistical Soundness: There exists a negligible function εs(·) such that for
all n ∈ N,

Pr
O
[∃(x, π) such that x /∈ L, |x| = n, and V O(x, π) = 1] ≤ εs(n)

• Zero Knowledge: There exists a stateful PPT simulator Sim = (SimProof, SimRO) and a
negligible function εzk(·) such that for all x ∈ L and all polynomial-query-bounded oracle
Turing machines A(·) ,∣∣∣∣Pr [AO(x, π) = 1 : π ← PO(x)

]
− Pr

[
ASimRO(st,·)(x, π∗) = 1 : (st, π∗)← SimProof(x)

] ∣∣∣∣ ≤ εzk(|x|)

where the probability is over the choice of O and the randomness of P , Sim, and A.

16

4 Definitions

We first define a notion of Efficiently-Approximable constants.

Definition 4.1 (Efficiently-Approximable Constant). We say that a real number γ ∈ (0, 1) is
Efficiently-Approximable if there exists a polynomial-time deterministic algorithm Approxγ such that
for all n ∈ N,

• Approxγ(1
n) outputs a rational number γ̂ = a/b, where a, b are integers in binary representa-

tion.

• For all n ∈ N,
∣∣γ − Approxγ(1

n)
∣∣ ≤ 1

2n .

4.1 Z-Tamperable-Hidden-Bits (ZHB) Model

We now define NIZK proofs in the Z-Tamperable-Hidden-Bits model. This is the same as the
Hidden-Bits model of [FLS90] except that we (1) allow a dishonest prover to tamper with the
hidden bits by flipping any ‘0’s of their choice to ‘1’s, and (2) allow the hidden bits to be sampled
from a fixed biased distribution. As the one-sided nature of this tampering resembles a Z-channel
in information theory, we call it the Z-Tamperable-Hidden-Bits model.

Definition 4.2 (NIZK Proof in the Z-Tamperable-Hidden-Bits Model). An (unbounded-prover) non-
interactive zero-knowledge (NIZK) proof system in the Z-Tamperable-Hidden-Bits (ZHB) model for a
language L is a family of algorithms {Πγ = (Genγ , Pγ , Vγ)} parameterized by Efficiently-Approximable
constants γ ∈ (0, 1), where

• Genγ(1
n) is a PPT hidden bit string generator that given an input length n outputs a hidden

bit string r ∈ {0, 1}pγ,hbs(n) for some (fixed) polynomial pγ,hbs where each bit ri of r is sampled
independently from a Bernoulli distribution with Pr[ri = 1] = γ̂ where γ̂ = Approxγ(1

n).

• Pγ(r, x) is an (unbounded, randomized) honest prover algorithm that takes as input a hidden
bit string r ∈ {0, 1}pγ,hbs(|x|) and x ∈ L, and outputs a set of indices I ⊆ [pγ,hbs(|x|)] and a
proof π.

• Vγ(x, I, {ri}i∈I , π) is a polynomial-time deterministic verifier that takes as input x, an index
set I ⊆ [pγ,hbs(|x|)], the bits {ri}i∈I of the hidden bit string r corresponding to I, and a proof
π, and outputs either 1 (accept) or 0 (reject).

We require Π to satisfy the following completeness, soundness, and zero knowledge requirements.

• Perfect Completeness: For all Efficiently-Approximable constants γ ∈ (0, 1) and all x ∈ L,

Pr
[
Vγ(x, I, {ri}i∈I , π) = 1 : r ← Genγ(1

|x|), (I, π)← Pγ(r, x)
]
= 1

where the probability is over the randomness of Genγ and Pγ.

• (Adaptive) Statistical Soundness: For all Efficiently-Approximable constants γ ∈ (0, 1),
there exists a negligible function εγ,s(·) such that for all n ∈ N,

Pr
r←Genγ(1n)

[
∃(x, I, f, π) such that x /∈ L, |x| = n, f ∈ {0, 1}|r|

and Vγ(x, I, {r̃i = ZeroFlip(ri, fi)}i∈I , π) = 1
]
≤ εγ,s(n)

17

where

ZeroFlip(ri, fi) =

{
ri ⊕ fi if ri = 0

ri if ri = 1

• Statistical Zero Knowledge: For all Efficiently-Approximable constants γ ∈ (0, 1), there
exists a PPT simulator Simγ and a negligible function εγ,zk(·) such that for all x ∈ L and all
adversaries A,∣∣∣∣Pr [A(x, I, {ri}i∈I , π) = 1 : r ← Genγ(1

|x|), (I, π)← Pγ(r, x)
]

− Pr [A(x, I∗, {r∗i }i∈I∗ , π∗) = 1 : (I∗, {r∗i }i∈I∗ , π∗)← Simγ(x)]

∣∣∣∣ ≤ εγ,zk(|x|)

where the probability is over the randomness of Genγ , Pγ ,Simγ, and A.

Notation. If {Πγ = (Genγ , Pγ , Vγ)} is a NIZK proof system in the ZHB model, we may say that Πγ

for some fixed Efficiently-Approximable constant γ ∈ (0, 1) satisfies perfect completeness. By this,
we mean that the perfect completeness property holds with respect to this specific γ (as opposed
to for all Efficiently-Approximable constants γ ∈ (0, 1)). Similarly, we may say that Πγ satisfies
soundness or zero knowledge, meaning that these properties hold with respect to this specific γ.

We also define two variants of the properties above.

Definition 4.3 (Perfect Zero Knowledge). We say that a NIZK proof system {Πγ = (Genγ , Pγ , Vγ)}
in the Z-Tamperable-Hidden-Bits model has perfect zero knowledge if for all Efficiently-Approximable
constants γ ∈ (0, 1), there exists a PPT simulator Simγ such that for all x ∈ L, the following two
distribution ensembles are identically distributed:

{(x, I, {ri}i∈I , π) : r ← Genγ(1
|x|), (I, π)← Pγ(r, x)}

and

{(x, I∗, {r∗i }i∈I∗ , π∗) : (I∗, {r∗i }i∈I∗ , π∗)← Simγ(x)}

Definition 4.4 (Statistical Completeness). We say that a NIZK proof system {Πγ = (Genγ , Pγ , Vγ)}
in the Z-Tamperable-Hidden-Bits model has statistical completeness if for all Efficiently-Approximable
constants γ ∈ (0, 1), there exists a negligible function εγ,c(·) such that for all x ∈ L,

Pr
[
Vγ(x, I, {ri}i∈I , π) = 1 : r ← Genγ(1

|x|), (I, π)← Pγ(r, x)
]
≥ 1− εγ,c(n)

Remark 4.5. An unbounded-prover NIZK proof system for an NP language L in the Z-Tamperable-Hidden-Bits
model which satisfies statistical completeness and perfect zero knowledge implies a NIZK proof sys-
tem for L in the Z-Tamperable-Hidden-Bits model which satisfies perfect completeness and statistical
zero knowledge.

We modify the prover of the former so that before outputting a proof π and index set I, the
prover first checks whether the deterministic verifier would accept. If the verifier would reject, the
(unbounded) prover instead computes and outputs a witness w for its input x. We modify the
verifier so that it also accepts if it receives a witness w for x. Observe that we now get perfect
completeness as the verifier always accepts an honest prover’s proof. Soundness is unchanged since
if x /∈ L, then there is no witness w for x. For zero knowledge, observe that whenever the prover
does not output a witness w, the same zero knowledge simulator perfectly simulates the prover.
As the prover only outputs a witness w with negligible probability, the simulator now achieves
statistical zero knowledge.

18

4.2 δ-Dense-PRHFs

We define a variant of a hash function, which we call a δ-Dense-Pseudorandom-Hash-Function (δ-
Dense-PRHF). This is a hash function which has two pseudorandomness properties and whose
image is roughly δ-dense in the co-domain 10.

Definition 4.6 (δ-Dense-PRHF). Let δ ∈ (0, 1). A deterministic polynomial-time algorithm HPRHF

is a δ-Dense-PRHF with stretch function ℓ : N→ N if it satisfies the following properties:

• Pseudorandom: There exists a negligible function εPR(·) such that for all non-uniform
polynomial-sized adversaries A and all n ∈ N,∣∣∣∣ Pr

x←{0,1}n
[A(1n, HPRHF(x)) = 1]− Pr

y←{0,1}ℓ(n)
[A(1n, y) = 1]

∣∣∣∣ ≤ εPR(n)

• Pre-Image Pseudorandom: There exists a negligible function εPIPR(·) such that for all
non-uniform polynomial-sized adversaries A and all n ∈ N,∣∣∣∣ Pr

(x∗,y∗)←D0(1n)
[A(x∗, y∗) = 1]− Pr

(x∗,y∗)←D1(1n)
[A(x∗, y∗) = 1]

∣∣∣∣ ≤ εPIPR(n)

where we define

D0(1
n):

1. x∗ ← {0, 1}n

2. y∗ = HPRHF(x
∗)

3. Output (x∗, y∗)

D1(1
n):

1. y∗ ← Imagen where Imagen = {y ∈ {0, 1}ℓ(n) : ∃x ∈ {0, 1}n, y = HPRHF(x)}
2. x∗ ← Pre-Imagen(y

∗) where Pre-Imagen(y
∗) = {x ∈ {0, 1}n : y∗ = HPRHF(x)}

3. Output (x∗, y∗)

• δ-Dense: There exists a negligible function εdense(·) such that for all n ∈ N,

Pr
y←{0,1}ℓ(n)

[∃x ∈ {0, 1}n s.t. HPRHF(x) = y] ∈ [δ − εdense(n), δ + εdense(n)]

Remark 4.7. A random oracle, when interpreted as a random function from n bits to n bits,
satisfies all of the properties of a

(
1− 1

e

)
-Dense-PRHF in the random oracle model. See Appendix B

for details.

Remark 4.8 (12 -Dense-PRHF from structured assumptions). We can construct a 1
2 -Dense-PRHF

from any OWP as follows. Define HPRHF(x) = P (x)||h(x) where P is a OWP and h is a hardcore
predicate for P . It is easy to verify that this construction satisfies all the necessary properties.

10Note that our hash function does is not compressing. In fact any function mapping n to n + c bits for some
constant c ≥ 0 satisfying the properties below suffice.

19

5 NIZK Proofs for NP in the Z-Tamperable-Hidden-Bits Model

We now show how to build NIZK proofs in our new Z-Tamperable-Hidden-Bits (ZHB) model. We
prove the following:

Theorem 5.1. There exists a NIZK proof system for NP in the Z-Tamperable-Hidden-Bits model.

To prove this, we build a NIZK proof system in the Z-Tamperable-Hidden-Bits model for the
language

Graph-Hamiltonicity = {graphs G | G contains a Hamiltonian cycle}
Since Graph-Hamiltonicity is NP-complete, then this implies a NIZK proof system in the
Z-Tamperable-Hidden-Bits model for every language in NP.

Additional Definitions.

• Matrix Classifications: Throughout this section, we will use the following matrix classifi-
cations for matrices M ∈ {0, 1}n4×n4

:

Type Description

Type-H M ∈ Type-H iff M contains a submatrix S ∈ {0, 1}n×n that
(“H” for “Hamiltonian”) is the adjacency matrix of some Hamiltonian cycle H on n

nodes, and every element of M that is not in S is ‘0’.

Type-M1 M ∈ Type-M1 iff M contains ≥ n+ 1 ‘1’s
(“M1” for “many ‘1’s”)

Type-PB1 M ∈ Type-PB1 iff M contains a permutation submatrix

(“PB1” for “permutation
with bounded ‘1’s”)

S ∈ {0, 1}(n+k)×(n+k) for some 1 ≤ k ≤ n, and every element
of M that is not in S is ‘0’.

Table 1: Matrix Classifications

Note that there are some matrices M ∈ {0, 1}n4×n4
which do not fall into any of these three

categories and that Type-PB1 ⊂ Type-M1.

• MatGen: We define a PPT matrix generation algorithm MatGen:

MatGen(1n):

1. Output a matrix M ∈ {0, 1}n4×n4
where for j, k ∈ [n4], we independently sample

each element Mj,k of M by setting

Mj,k =

{
1 with probablility 1

n7

0 with probability 1− 1
n7

5.1 Construction

We build a NIZK proof system ZHB-NIZK = {(Genγ , Pγ , Vγ)} (parameterized by Efficiently-Approximable
constants γ ∈ (0, 1)) for Graph-Hamiltonicity in the Z-Tamperable-Hidden-Bits model which satisfies
statistical completeness and perfect zero knowledge. However, as shown in Remark 4.5, this implies
a scheme which satisfies perfect completeness and statistical zero knowledge. Please refer to the
technical overview (Section 2) for a high level overview of our construction.

20

Remark 5.2. This is the same construction as the one used in [FLS90] for building NIZK proofs
for NP in the Hidden-Bits model except that we

• have increased the dimensions of our matrices,

• sample the hidden bit string r according to our new parameter γ,

• adjust accordingly the method for sampling matrices from r to ensure that the expected
number of ‘1’s in a sampled matrix is still n,

• and have added a statistical check (Step 6) to the verifier’s algorithm.

Remark 5.3. For all Efficiently-Approximable constants γ ∈ (0, 1), if Pγ is additionally given a
witness for G (i.e. a Hamiltonian cycle CG of G) as input, then Pγ can be made PPT.

Genγ(1
|G|) :

1. Let n be the number of nodes in a graph of size |G|.

2. γ̂ ← Approxγ(1
n).

3. For i ∈ [n14 log1/γ̂(n
7)], sample ri ∈ {0, 1} such that Pr[ri = 1] = γ̂ and Pr[ri = 0] = 1−γ̂.

4. Output r = r1 . . . rn14 log1/γ̂(n
7)

Notation. For r such that |r| = n14 log1/γ̂(n
7), we will interpret r as n6 blocks, each containing

n8 · log1/γ̂(n7) bits. Every block can be interpreted as n4×n4 sub-blocks, each containing log1/γ̂(n
7)

bits. Let

• r[i] denote the ith block (this will represent a matrix M (i))

• and r[i][j, k] denote the (j × k)th sub-block of r[i] (this will represent an element M
(i)
j,k).

Pγ(r,G) :

1. Setup: Set I = ∅. Set CycleSet = ∅. Let n be the number of nodes in G. Let
γ̂ = Approxγ(1

n).

2. Compute Witness: Compute a Hamiltonian cycle CG of G.

3. For i ∈ [n6]:

(a) Compute matrix M (i) from r[i]: Determine a matrix M (i) ∈ {0, 1}n4×n4
where

for j, k ∈ [n4], we set

M
(i)
j,k =

{
1 if r[i][j, k] = 1log1/γ̂(n

7)

0 else

(Observe that if r is sampled from Genγ(1
|G|), then Pr[M

(i)
j,k = 1] = 1

n7 . This means

that over the probability of r, M (i) ← MatGen(1n).)

(b) Check whether M (i) ∈ Type-H: If M (i) does not contain exactly n ‘1’s or there
exists a row or column with two or more ‘1’s, then M (i) /∈ Type-H. Otherwise, M (i)

21

has a permutation submatrix S(i) ∈ {0, 1}n×n. In this case, interpret S(i) as the
adjacency matrix of some graph H(i) on n nodes. If H(i) is a Hamiltonian cycle,
then M (i) ∈ Type-H. Otherwise, M (i) /∈ Type-H.

(c) If M (i) /∈ Type-H:

i. Reveal M (i): Add the indices corresponding to r[i] to I.
(d) If M (i) ∈ Type-H:

i. Let S(i) and H(i) be the submatrix and Hamiltonian cycle respectively that are
determined from M (i) in Step 3b

ii. Add i to CycleSet.

iii. Reveal that all rows and columns not in S(i) contain only ‘0’s:
Let SRows(i) and SCols(i) be the rows and columns respectively of M (i) that
correspond to submatrix S(i). “Reveal” all values not in SRows(i) and SCols(i)

by adding the indices corresponding to {r[i][j, k] | (j, k) /∈ (SRows(i)×SCols(i))}
to I.

iv. Prove that H(i) is a subgraph of π(i)(G) for some permutation π(i) by
showing that all non-edges of π(i)(G) are not edges of H(i) (by revealing
that the elements in S(i) corresponding to non-edges of π(i)(G) are ‘0’):
Compute a permutation π(i) such that π(i)(CG) = H(i). “Reveal” all values in
the set

{S(i)
t,s | (t, s) is not an edge of π(i)(G)}

by adding the indices of r[i] corresponding to this set to I.

4. Output (I, π = (CycleSet, {π(i), SRows(i), SCols(i)}i∈CycleSet)).

Vγ(G, I, {r̃}i∈I , π) :

1. Parse π = (CycleSet, {π(i), SRows(i), SCols(i)}i∈CycleSet).

2. Setup: Let n be the number of nodes in G. Let γ̂ = Approxγ(1
n).

3. For i ∈ [n6]:

(a) Compute matrix M̃ (i) from r̃[i]: Determine a matrix M̃ (i) ∈ {0, 1,⊥}n4×n4
where

for j, k ∈ [n4], we set

M̃
(i)
j,k =


⊥ if any of the indices corresponding to r̃[i][j, k] are not in I
1 else if r̃[i][j, k] = 1log1/γ̂(n

7)

0 else

4. Check that for every i /∈ CycleSet, M̃ (i) is valid:

(a) For i ∈ [n6]\CycleSet,
i. Check that M̃ (i) is fully revealed: If M̃ (i) contains a ⊥, then reject.

ii. Check that M̃ (i) /∈ Type-H: If M̃ (i) contains exactly n ‘1’s and there does
not exist a row or column with two or more ‘1’s, then M̃ (i) has a permutation

22

submatrix S̃(i) ∈ {0, 1}n×n. In this case, interpret S̃(i) as the adjacency matrix
of some graph H̃(i) on n nodes. If H̃(i) is a Hamiltonian cycle, then reject.

5. Check that for every i ∈ CycleSet, M̃ (i) is valid:

(a) For i ∈ CycleSet:

i. Compute submatrix S̃(i): Reject if |SRows(i)| ̸= n or |SCols(i)| ̸= n. Other-
wise, let S̃(i) ∈ {0, 1,⊥}n×n be the submatrix of M̃ (i) corresponding to the rows
and columns specified in SRows(i) and SCols(i) respectively.

ii. Check that all rows and columns not in S̃(i) contain only ‘0’s:

If M̃
(i)
j,k ̸= 0 for any (j, k) /∈ (SRows(i) × SCols(i)), then reject.

iii. Check that each element in S̃(i) which corresponds to a non-edge of
π(i)(G) is ‘0’:

If S̃
(i)
t,s ̸= 0 for any (t, s) that is not an edge of π(i)(G), then reject.

6. Check that there are not too many matrices which contain ≥ n+ 1 ‘1’s:

(a) Compute

pn := Pr
M←MatGen(1n)

[M ∈ Type-M1]

= 1−
n∑

i=0

(
n8

i

)(
1

n7

)i(
1− 1

n7

)n8−i

(b) Compute w = |{i ∈ [n6] | M̃ (i) contains ≥ n+ 1 ‘1’s}|.
(c) Reject if w > n6 · pn + n4.

7. Accept: Output 1 (accept).

5.2 Completeness

Lemma 5.4. ZHB-NIZK satisfies statistical completeness in the Z-Tamperable-Hidden-Bits model.

Proof. Let γ ∈ (0, 1) be any Efficiently-Approximable constant. If G is Hamiltonian, then an honest
prover Pγ can always perform its part of the protocol. Additionally, in an honest execution, each
M̃ (i) agrees with M (i) on all positions where M̃ (i) ̸= ⊥. The verifier Vγ will accept if the proof
passes the following conditions:

• For every i /∈ CycleSet, M̃ (i) is valid (Step 4): This always holds for an honest prover’s
proof since an honest prover sets i /∈ CycleSet if and only if M (i) /∈ Type-H and fully reveals
all such matrices M (i) by including the indices corresponding to r[i] in I.

• For every i ∈ CycleSet, M̃ (i) is valid (Step 5): This always holds for an honest prover’s
proof. An honest prover sets i ∈ CycleSet if and only if matrix M (i) ∈ Type-H. Thus,
M (i) contains a submatrix S(i) which is the adjacency matrix of a Hamiltonian cycle H(i)

on n-nodes. Furthermore, the only ‘1’s that occur in M (i) are in S(i), so the prover can
indeed reveal that all other rows and columns contain only ‘0’s. Now observe that since G is
Hamiltonian, there always exists a permutation π(i) such that the Hamiltonian cycle H(i) is
a subgraph of π(i)(G). Therefore, for such a π(i), P can reveal that all the elements of S(i)

23

which correspond to non-edges of π(i)(G) are ‘0’ since every ‘1’ in S(i) forms an edge of H(i)

and thus must also be an edge of π(i)(G).

• There are not too many matrices which contain ≥ n + 1 ‘1’s (Step 6): Let r ←
Genγ(1

|G|), and for i ∈ [n6], let M (i) be computed from r[i] as in Step 3a of the prover’s
algorithm. Let W be a random variable representing the number of matrices M (i) which
contain ≥ n+ 1 ‘1’s. Then,

E[W] = n6 · pn

where

pn = Pr
M←MatGen(1n)

[M ∈ Type-M1]

= Pr
r←Genγ(1|G|)

[
A matrix M (i) computed from r[i] as in Step 3a
of the prover’s algorithm contains ≥ n+ 1 ‘1’s

]
Therefore, by a Chernoff bound,

Pr[W > n6 · pn + n4] ≤ e−n
6·pn/(3·p2n·n4) = e−n

2/(3·pn) = negl(n)

so the prover passes this check with overwhelming probability over the choice of r ← Genγ(1
|G|).

Thus, we have statistical completeness since a verifier accepts an honest proof with overwhelming
probability over the choice of r ← Genγ(1

|G|).

5.3 Zero Knowledge

Lemma 5.5. ZHB-NIZK satisfies perfect zero knowledge in the Z-Tamperable-Hidden-Bits model.

Proof. This proof is essentially identical to the proof in [FLS90] as the prover’s algorithm is identical
except for some minor differences in parameters.

Let γ ∈ (0, 1) be any Efficiently-Approximable constant. We define our PPT simulator:

Simγ(G) :

1. Setup: Set Î = ∅. Set ̂CycleSet = ∅. Let n be the number of nodes in G. Let
γ̂ ← Approxγ(1

n).

2. Sample r̂: Sample r̂ ← Genγ(1
|G|).

3. For i ∈ [n6]:

(a) Sample matrix M (i) from r̂[i]: Determine a matrix M (i) ∈ {0, 1}n4×n4
where for

j, k ∈ [n4], we set

M
(i)
j,k =

{
1 if r̂[i][j, k] = 1log1/γ̂(n

7)

0 else

(b) Check whether M (i) ∈ Type-H: If M (i) does not contain exactly n ‘1’s or there
exists a row or column with two or more ‘1’s, then M (i) /∈ Type-H. Otherwise, M (i)

has a permutation submatrix S(i) ∈ {0, 1}n×n. In this case, interpret S(i) as the

24

adjacency matrix of some graph H(i) on n nodes. If H(i) is a Hamiltonian cycle,
then M (i) ∈ Type-H. Otherwise, M (i) /∈ Type-H.

(c) If M (i) /∈ Type-H:

i. Reveal M (i): Add the indices corresponding to r[i] to I.
(d) If M (i) ∈ Type-H:

i. Add i to ̂CycleSet.
ii. Zero out r̂[i]: Set r̂[i] = 0n

8·log1/γ̂(n7).

iii. Pick a random submatrix Ŝ(i) and reveal all rows and columns not

in Ŝ(i): Sample ŜRows
(i)

and ŜCols
(i)

as random subsets of size n from [n4].
“Reveal” all values not in Ŝ(i) by adding the indices corresponding to

{r[i][j, k] | (j, k) /∈ (ŜRows
(i)
× ŜCols

(i)
)} to I.

iv. Pick a random permutation π̂ and reveal all elements in Ŝ(i) corre-
sponding to non-edges of π̂(i)(G): Pick a random permutation π̂(i) on n
nodes. “Reveal” all values in the set

{Ŝ(i)
t,s | (t, s) is not an edge of π̂(i)(G)}

by adding the indices of r[i] corresponding to this set to I.

4. Output (Î, {r̂i}i∈Î , π̂ = (̂CycleSet, {π̂(i), ŜRows
(i)
, ŜCols

(i)
}
i∈ ̂CycleSet)).

Let G be any Hamiltonian graph on n nodes. To prove perfect zero knowledge, we need to to show
that the following two distributions are equal:

D0 = (I, {Ri}i∈I , (CYCLESET, {Π(i), SROWS(i),SCOLS(i)}i∈CYCLESET))

D1 = (Î , {R̂i}i∈Î , (̂CYCLESET, {Π̂(i), ̂SROWS
(i)
, ŜCOLS

(i)
}
i∈ ̂CYCLESET

))

where

• R := (R1, . . . , Rn14 log1/γ̂(n
7)), I,CYCLESET,Π

(i),SROWS(i), SCOLS(i) are random variables for

r, I,CycleSet, π(i),SRows(i),SCols(i) respectively where

r ← Genγ(1
|G|) and (I, (CycleSet, {π(i), SRows(i),SCols(i)}i∈CycleSet))← Pγ(r,G)

• R̂ := (R̂1, . . . , R̂n14 log1/γ̂(n
7)), Î, ̂CYCLESET, Π̂(i), ̂SROWS

(i)
, ŜCOLS

(i)
are random variables for

r̂, Î, ̂CycleSet, π̂(i), ŜRows
(i)
, ŜCols

(i)
respectively where

(Î, {r̂i}i∈Î , (̂CycleSet, {π̂(i), ŜRows
(i)
, ŜCols

(i)
}
i∈ ̂CycleSet))← Simγ(G)

We proceed by splitting the joint distribution into a chain of conditional distributions. The equality
of D0 and D1 then follows from the fact that the individual conditional distributions are indeed
identical:

1. For any fixed values (CycleSet, {r[i]}i/∈CycleSet, {π(i), SRows(i),SCols(i)}i∈CycleSet), the condi-
tional distribution of

(I, {Ri}i∈I | CYCLESET = CycleSet, {R[i]}i/∈CYCLESET = {r[i]}i/∈CycleSet
{Π(i),SROWS(i),SCOLS(i)}i∈CYCLESET = {π(i),SRows(i),SCols(i)}i∈CycleSet)

25

is identical to the conditional distribution of

(Î , {R̂i}i∈Î | ̂CYCLESET = CycleSet, {R̂[i]}i/∈CYCLESET = {r[i]}i/∈CycleSet

{Π̂(i), ̂SROWS
(i)
, ŜCOLS

(i)
}
i∈ ̂CYCLESET

= {π(i), SRows(i),SCols(i)}i∈CycleSet)

This is because the values of (I, {Ri}i∈I) can be deterministically determined from the values
of (G,CYCLESET, {R[i]}i/∈CYCLESET, {Π(i),SROWS(i), SCOLS(i)}i∈CYCLESET) in the same way
that the values of (Î , {R̂i}i∈Î) can be deterministically determined from

(G, ̂CYCLESET, {R̂[i]}
i/∈ ̂CycleSet, {Π̂

(i), ̂SROWS
(i)
, ŜCOLS

(i)
}
i∈ ̂CYCLESET

). In both cases,

• For every i /∈ CycleSet, I (and Î) will contain the indices corresponding to {r[i]}i/∈CycleSet.
For each of these indices, the corresponding value of R (and R̂) is determined by
{r[i]}i/∈CycleSet.

• For every i ∈ CycleSet, I (and Î) will contain the indices corresponding to the rows and
columns of the ith matrix that are not part of the submatrix S(i) formed by SRows(i)

and SCols(i) along with the indices of the elements of S(i) corresponding to non-edges of
π(i)(G). For each of these indices, the corresponding value of R (and R̂) is ‘0’.

2. For any fixed CycleSet, the conditional distribution of

({Π(i), SROWS(i),SCOLS(i)}i∈CYCLESET | CYCLESET = CycleSet)

is identical to the conditional distribution of

({Π̂(i), ̂SROWS
(i)
, ŜCOLS

(i)
}i∈CYCLESET | ̂CYCLESET = CycleSet)

and both conditional distributions are independent ofG, {R[i]}i/∈CYCLESET, and {R̂[i]}
i/∈ ̂CYCLESET

.
This is because in the real world game (distribution D0), for each i, conditioned on i ∈
CycleSet, M (i) is independently and uniformly distributed over all matrices of type Type-H.
Thus the permutation submatrix S(i) of M (i) is uniformly distributed over all possible n× n
submatrices of M (i), meaning that SROWS(i) and SCOLS(i) are uniformly distributed over all
subsets of size n of [n4]. Additionally, as the Hamiltonian cycle H(i) given by S(i) is uniformly
distributed over all Hamiltonian cycles on n nodes, then for any Hamiltonian cycle CG of G,
the permutation π(i) such that π(i)(CG) = H(i) is uniformly distributed over all permuta-
tions on n nodes. Thus the real world distribution (distribution D0) matches the simulated
distribution (distribution D1).

3. The distributions (CYCLESET, {R[i]}i/∈CYCLESET) and (̂CYCLESET, {R̂[i]}
i/∈ ̂CYCLESET

) are iden-
tical as we sample these variables in the same manner.

4. Applying chain rule to the above distributions, we get the desired result.

5.4 Soundness

Lemma 5.6. ZHB-NIZK satisfies (adaptive) statistical soundness in the Z-Tamperable-Hidden-Bits
model. In particular, for sufficiently large n, ZHB-NIZK achieves 1

en -adaptive-statistical-soundness.

Notation. For n ∈ N, we will use |Gn| to denote the size of graphs with n nodes.

26

5.4.1 Proof Overview

Let γ ∈ (0, 1) be any Efficiently-Approximable constant and let n ∈ N be sufficiently large. We want
to show that with high probability over r ← Genγ(1

|Gn|), the verifier will not accept any cheating
proof for any non-Hamiltonian graph G.

To show this, we define the following variables: Let P ∗γ be any (unbounded) cheating prover.

Let r ← Genγ(1
|Gn|), and consider any non-Hamiltonian graph G on n nodes and any cheat-

ing proof (I, f, π = (CycleSet, {π(i), SRows(i), SCols(i)})i∈CycleSet)) output by P ∗γ (r). Let {r̃i}i∈I =

{ZeroFlip(ri, fi)}i∈I . Let M (i) be the matrix that an honest prover would produce from r[i], and
let M̃ (i) be the matrix that a honest verifier would produces from r̃[i].

Soundness in the Original Hidden Bits Model. In the original soundness proof of [FLS90]
in the regular Hidden-Bits model, it was shown that if any M (i) ∈ Type-H, then the verifier will
reject.

• If i ∈ CycleSet, P ∗ must prove that the ‘1’s in M (i) form a graph H(i) which is a subgraph of
π(i)(G) for some permutation π(i) and some non-Hamiltonian graph G. But, the ‘1’s of any
M (i) ∈ Type-H form a Hamiltonian cycle. Since no Hamiltonian cycle is a subgraph of any
permutation of a non-Hamiltonian graph, then P ∗ cannot include i ∈ CycleSet without the
verifier rejecting.

• If i /∈ CycleSet, then P ∗ must fully reveal M (i). However, the verifier will reject if it sees any
fully revealed matrix of type Type-H.

To finish the proof, [FLS90] show that the probability that there exists at least one M (i) ∈ Type-H
is overwhelming.

Soundness in the Z-Tamperable-Hidden-Bits Model. In contrast, in our Z-Tamperable-Hidden-Bits
model, the cheating prover has much more power. In particular, the cheating prover can change
any ‘0’s in the hidden bit string to ‘1’s. Thus, for any M (i) ∈ Type-H, the cheating prover can
invalidate this matrix by adding ‘1’s to M (i) so that the verifier’s M̃ (i) /∈ Type-H. Therefore, the
cheating prover can safely set i /∈ CycleSet and can fully reveal this matrix without the verifier
rejecting.

In order to prevent this behavior, the verifier will count the number of fully revealed matrices
which contain at least n + 1 ‘1’s (i.e. those of type Type-M1) and reject if the number is much
greater than expected. The hope is that since the cheating prover must invalidate all matrices
M (i) ∈ Type-H by adding ‘1’s to these matrices (which ensures that M̃ (i) ∈ Type-M1), then this
should push the total number of matrices in Type-M1 beyond the verifier’s bound, causing the
verifier to reject.

Unfortunately, the prover can also cheat in a second manner. The prover can choose not to
fully reveal some matrices M (i) ∈ Type-M1 by setting i ∈ CycleSet and pretending that these
were matrices of type Type-H . This will lower the apparent number of matrices of type Type-M1
that count toward the verifier’s bound. However, for every i ∈ CycleSet, the prover must show
that the ‘1’s in M (i) form a graph H(i) which is a subgraph of π(i)(G) for some permutation π(i).
Therefore, the matrices M (i) for which the prover can cheat in this second manner are limited by
this constraint.

Indeed, we will show that the expected number of matrices M (i) ∈ Type-M1 for which the
prover can cheat in this second manner is far less than the expected number of matrices M (i) ∈
Type-H. Thus, with high probability, the cheating prover must either inflate the count of matrices

27

M̃ (i) ∈ Type-M1 beyond the verifier’s bound, or put some i ∈ CycleSet for some matrix M̃ (i) which
will not pass the subgraph check. In either case, the verifier will reject. In particular, we show
the last step by proving that there is a large class of matrices Type-PB1 ⊆ Type-M1 for which the
prover cannot cheat in this second manner. Type-PB1 is the class of matrices whose ‘1’s form a
permutation submatrix on n + k nodes for 1 ≤ k ≤ 2n. The prover cannot cheat in the second
manner on matrices M (i) ∈ Type-PB1 since the prover cannot fit the ‘1’s of these matrices into an
n× n submatrix of M (i).

Thus, our proof will proceed in two parts:

1. First, we will show that if M (i) ∈ (Type-H ∪ Type-PB1), then the verifier will only accept a
proof for a non-Hamiltonian graph G if i /∈ CycleSet and M̃ (i) ∈ Type-M1.

2. We will then show that with overwhelming probability over r, there are enough matrices
M (i) ∈ (Type-H ∪Type-PB1) to cause the corresponding number of matrices M̃ (i) ∈ Type-M1
to exceed the bound that the verifier checks in Step 6. In particular, we will prove

Pr
r←Genγ(1|Gn|)

[∣∣∣{i |M (i) ∈ (Type-H ∪ Type-PB1)}
∣∣∣ > n6 · pn + n4

]
≥ 1− negl(|Gn|)

where pn = PrM←MatGen(1n)[M ∈ Type-M1].

Together, these two steps imply adaptive statistical soundness.

5.4.2 Formal Proof

Let γ ∈ (0, 1) be any Efficiently-Approximable constant and let n ∈ N. Let P ∗γ be any (unbounded)

cheating prover. Let r ← Genγ(1
|Gn|), and consider any non-Hamiltonian graph G on n nodes and

any cheating proof (I, f, π = (CycleSet, {π(i),SRows(i),SCols(i)})i∈CycleSet)) output by P ∗γ (r). Let

{r̃i}i∈I = {ZeroFlip(ri, fi)}i∈I . Let M (i) be the matrix that an honest prover would produce from
r[i], and let M̃ (i) be the matrix that a honest verifier would produces from r̃[i].

Using ZeroFlip. Observe that P ∗γ can change any ‘0’ in r to a ‘1’ in r̃ since P ∗ can specify f .
However, P ∗γ cannot change any ‘1’ in r to a ‘0’ in r̃. Now, the verifier only uses r̃ to compute

matrices M̃ (i). Since M̃
(i)
j,k = 1 if and only if r̃[i][j, k] = 1log1/γ̂(n

7), then P ∗γ can change any ‘0’ in

M (i) to a ‘1’ in M̃ (i), but cannot change any ‘1’ in M (i) to a ‘0’ in M̃ (i).

Lemma 5.7. If the verifier accepts, then for every i ∈ CycleSet, all the ‘1’s in M (i) must be
contained in some submatrix S(i) ∈ {0, 1}n×n which is the adjacency matrix of some graph H(i)

which is a subgraph of π(i)(G).

Proof. Suppose that the verifier accepts. Let i ∈ CycleSet, and let S(i) and S̃(i) be the respective
submatrices of M (i) and M̃ (i) specified by SRows(i) and SCols(i). Let H(i) be the graph whose
adjacency matrix is S(i).

In Step 5, the verifier first checks that everything in M̃ (i) which is not part of S̃(i) is ‘0’. Thus,
since P ∗γ cannot change any ‘1’s in M (i) to ‘0’s in M̃ (i), then the ‘1’s of the original M (i) must fit

within the n× n submatrix S(i).
Now, suppose that H(i) were not a subgraph of π(i)(G). Then, H(i) contains an edge that

is a non-edge of π(i)(G), which means that the corresponding position in S(i) is a ‘1’. Since P ∗γ
cannot change any ‘1’s in S(i) to ‘0’s in S̃(i), then this means that the corresponding position in

28

S̃(i) is not ‘0’. But then the verifier will reject in Step 5, since there is a non-edge of π(i)(G) whose
corresponding position in S̃(i) is not ‘0’. Therefore, H(i) must be a subgraph of π(i)(G).

Lemma 5.8. If the verifier accepts a proof for a non-Hamiltonian graph G and M (i) ∈ (Type-H ∪
Type-PB1), then i /∈ CycleSet and M̃ (i) ∈ Type-M1.

Proof. Let M (i) ∈ (Type-H ∪ Type-PB1) and suppose that the verifier accepts. We have two cases.

• If M (i) ∈ Type-H:

Then, M (i) contains a submatrix S(i) which is the adjacency matrix of some Hamiltonian
cycle H(i). Furthermore, this is the only n× n submatrix of M (i) that contains all the ‘1’s of
M (i). Since G is non-Hamiltonian, then H(i) is not a subgraph of π(i)(G) for any permutation
π(i). Thus, by Lemma 5.7, we must have that i /∈ CycleSet.

Now, since i /∈ CycleSet and because the verifier did not reject in Step 4, it must be the case
that P ∗ revealed all of M̃ (i) and that M̃ (i) /∈ Type-H. Since M (i) ∈ Type-H, this means that
P ∗ made use of its ZeroFlip string f to ensure that M̃ (i) /∈ Type-H. The only way that P ∗ can
ensure this is by changing at least one ‘0’ in M (i) to a ‘1’ in M̃ (i). But since M (i) had exactly
n ‘1’s, this means that M̃ (i) will have at least n+ 1 ‘1’s, meaning that M̃ (i) ∈ Type-M1.

• If M (i) ∈ Type-PB1:

Then, M (i) contains a permutation submatrix in {0, 1}(n+k)×(n+k) for some 1 ≤ k ≤ n. But
this means that the ‘1’s of M (i) cannot fit within an n×n submatrix of M (i), so by Lemma 5.7,
we must have that i /∈ CycleSet.

Now, since i /∈ CycleSet and because the verifier did not reject in Step 4, it must be the case
that P ∗γ revealed all of M̃ (i). Since P ∗γ cannot change any ‘1’s in M (i) to ‘0’s in M̃ (i) and since

M (i) already contains at least n+ 1 ‘1’s, then M̃ (i) must also contain at least n+ 1 ‘1’s.

Lemma 5.9. For all Efficiently-Approximable constants γ ∈ (0, 1),

Pr
M←MatGen(1n)

[M ∈ (Type-H ∪ Type-PB1)] = pn +Ω

(
1

n1.5

)
where pn = PrM←MatGen(1n)[M ∈ Type-M1]

Proof. Since Type-H and Type-PB1 are disjoint and Type-PB1 ⊂ Type-M1, we get that

Pr[M ∈ (Type-H ∪ Type-PB1)]

= Pr[M ∈ Type-H] + Pr[M ∈ Type-PB1 |M ∈ Type-M1] · Pr[M ∈ Type-M1]

To continue the proof, we will bound each of these probabilities using the following two lemmas.

Lemma 5.10. For all Efficiently-Approximable constants γ ∈ (0, 1) and for sufficiently large n,

Pr
M←MatGen(1n)

[M ∈ Type-PB1 |M ∈ Type-M1]· Pr
M←MatGen(1n)

[M ∈ Type-M1] ≥ pn

(
1−O

(
1

n2

))
−negl(n)

where pn = PrM←MatGen(1n)[M ∈ Type-M1].

29

Proof. Recall that M ∈ Type-PB1 if M contains a permutation submatrix S ∈ {0, 1}(n+k)×(n+k)

for some 1 ≤ k ≤ n, and every element of M that is not in S is ‘0’. Equivalently, M ∈ Type-PB1 if
M contains exactly n+ k ‘1’s for some 1 ≤ k ≤ n and no row or column of M has 2 or more ‘1’s.
Thus,

Pr
M←MatGen(1n)

[M ∈ Type-PB1 |M ∈ Type-M1]

=

n∑
k=1

(
Pr [M has no row or column with 2 or more ‘1’s |M has exactly n+ k ‘1’s]

· Pr [M has exactly n+ k ‘1’s |M has > n ‘1’s]
)

≥ Pr [M has no row or column with 2 or more ‘1’s |M has exactly 2n ‘1’s]

·
n∑

k=1

(
Pr [M has exactly n+ k ‘1’s |M has > n ‘1’s]

)
= Pr [M has no row or column with 2 or more ‘1’s |M has exactly 2n ‘1’s]

· Pr [M has ≤ 2n ‘1’s |M has > n ‘1’s]

where the first inequality follows from the fact that the probability of getting a collision decreases
with fewer ‘1’s. Now, since the expected number of ‘1’s in M is n, by a Chernoff bound, we get

Pr [M has ≤ 2n ‘1’s |M has > n ‘1’s]

= 1− Pr [M has > 2n ‘1’s |M has > n ‘1’s]

= 1− Pr [M has > 2n ‘1’s] /Pr[M has > n ‘1’s]

≥ 1− e−n/3/pn

Then, by a union bound,

Pr [M has no row or column with 2 or more ‘1’s |M has exactly 2n ‘1’s]

= 1− Pr [M has at least one row or column with 2 or more ‘1’s |M has exactly 2n ‘1’s]

≥ 1− (Pr [M has at least one row with 2 or more ‘1’s |M has exactly 2n ‘1’s]

+ Pr [M has at least one column with 2 or more ‘1’s |M has exactly 2n ‘1’s])

= 1− 2 · Pr [M has at least one row with 2 or more ‘1’s |M has exactly 2n ‘1’s]

≥ 1− 2
∑

i,j∈[n],i<j

Pr
[
the ith and jth ‘1’ in M occur in the same row

]
≥ 1− 2

(
2n

2

)
n4

(n8 − 2n)

= 1−O

(
1

n2

)
where the last inequality follows since conditioned on M having exactly 2n ‘1’s, the set of ‘1’s in
M are uniformly distributed over all sets of size 2n of the n8 possible positions in M . Thus, there
are at most n4 positions for the jth ‘1’ that are in the same row as the ith ‘1’, and there are at least

30

n8 − 2n positions remaining in the matrix. Thus,

Pr[M ∈ Type-PB1 |M ∈ Type-M1] · Pr[M ∈ Type-M1]

≥
(
1−O

(
1

n2

))
· (1− e−n/3/pn) · pn

= pn

(
1−O

(
1

n2

))
− negl(n)

Lemma 5.11. For all Efficiently-Approximable constants γ ∈ (0, 1),

Pr
M←MatGen(1n)

[M ∈ Type-H] = Ω

(
1

n1.5

)
Proof. M ∈ Type-H if M contains a submatrix S ∈ {0, 1}n×n which is the adjacency matrix of a
Hamiltonian cycle on n nodes, and and every element of M that is not in S is ‘0’. Equivalently,
M ∈ Type-H if M contains exactly n ‘1’s which form a permutation matrix S ∈ {0, 1}n×n which is
an n-cycle. Thus,

Pr
M←MatGen(1n)

[M ∈ Type-H]

= Pr
[
S is an n-cycle |M has exactly n ‘1’s which form a permutation submatrix S ∈ {0, 1}n×n

]
· Pr [M has no row or column with 2 or more ‘1’s |M has exactly n ‘1’s]

· Pr [M has exactly n ‘1’s]

Now,

Pr
[
S is an n-cycle |M has exactly n ‘1’s which form a permutation submatrix S ∈ {0, 1}n×n

]
=

(n− 1)!

n!
=

1

n

Furthermore, using essentially the same calculation as in Lemma 5.10, we get

Pr [M has no row or column with 2 or more ‘1’s |M has exactly n ‘1’s] = 1−O

(
1

n2

)
By Chebyshev’s inequality,

Pr
[
|(number of ‘1’s in M)− n| >

√
2n
]
≤ Var(number of ‘1’s in M)

n2

=
n8 ·

(
1
n7

) (
1− 1

n7

)
2n

=
1

2
− 1

2n7

≤ 1

2

31

Thus, since the expected number of ‘1’s in M is n, then

Pr [M has exactly n ‘1’s] ≥ 1

2
√
2n

n+
√
2n∑

i=n−
√
2n

Pr [M has exactly i ‘1’s]

=
1

2
√
2n

(
1− Pr

[
|(number of ‘1’s in M)− n| >

√
2n
])

≥ 1

4
√
2n

Therefore,

Pr
M←MatGen(1n)

[M ∈ Type-H] ≥ 1

n
·
(
1−O

(
1

n2

))
· 1

4
√
2n

= Ω

(
1

n1.5

)

Thus, by Lemma 5.10 and Lemma 5.11,

Pr
M←MatGen(1n)

[M ∈ (Type-H ∪ Type-PB1)]

= Pr[M ∈ Type-H] + Pr[M ∈ Type-PB1 |M ∈ Type-M1] · Pr[M ∈ Type-M1]

= Ω

(
1

n1.5

)
+

(
1−O

(
1

n2

))
· pn − negl(n)

= pn +Ω

(
1

n1.5

)
which completes the proof.

Corollary 5.12. For all Efficiently-Approximable constants γ ∈ (0, 1) and for all sufficiently large
n ∈ N,

Pr
r←Genγ(1|Gn|)

[∣∣∣{i |M (i) ∈ (Type-H ∪ Type-PB1)}
∣∣∣ > n6 · pn + n4

]
≥ 1− 1

en

where pn = PrM←MatGen(1n)[M ∈ Type-M1].

Proof. Since by taking the probability over r, each M [i] is sampled independently according to
MatGen(1n), then by Lemma 5.9,

µ : = E
r←Genγ(1|G|)

[∣∣∣{i |M (i) ∈ (Type-H ∪ Type-PB1)}
∣∣∣]

= n6 · Pr
M←MatGen(1n)

[M ∈ (Type-H ∪ Type-PB1)]

= n6 · pn + n6 · Ω
(

1

n1.5

)
= n6 · pn +Ω(n4.5)

32

Thus, by a Chernoff bound, for sufficiently large n ∈ N,

Pr
r←Genγ(1|G|)

[∣∣∣{i |M (i) ∈ (Type-H ∪ Type-PB1)}
∣∣∣ > n6 · pn + n4

]
= 1− Pr

r←Genγ(1|G|)

[∣∣∣{i |M (i) ∈ (Type-H ∪ Type-PB1)}
∣∣∣ ≤ n6 · pn + n4

]
≥ 1− Pr

r←Genγ(1|G|)

[∣∣∣{i |M (i) ∈ (Type-H ∪ Type-PB1)}
∣∣∣ < (1− 1

n2

)
µ
]

≥ 1− e−
µ

3n4 = 1− e−Ω(n2)

≥ 1− e−n

Finally, we can prove soundness.

Lemma 5.13. For all Efficiently-Approximable constants γ ∈ (0, 1) and for all sufficiently large
n ∈ N,

Pr
r←Genγ(1|Gn|)

[
∃(G, I, f, π) such that G is a non-Hamiltonian graph on n nodes,

and Vγ(G, I, {r̃i = ZeroFlip(ri, fi)}i∈I , π) = 1
]
≤ 1

en
.

where we define

ZeroFlip(ri, fi) =

{
ri ⊕ fi if ri = 0

ri if ri = 1

Proof. Let γ ∈ (0, 1) be any Efficiently-Approximable constant. By Corollary 5.12, for sufficiently
large n ∈ N, except with probability at most e−n over the choice of r ← Genγ(1

|Gn|), we have∣∣∣{i |M (i) ∈ (Type-H ∪ Type-PB1)}
∣∣∣ > n6 · pn + n4

By Lemma 5.8, if the verifier accepts a proof for a non-Hamiltonian graph G, then for each i such
that M (i) ∈ (Type-H∪Type-PB1), it must be the case that i /∈ CycleSet and M̃ (i) ∈ Type-M1. Thus,
for sufficiently large n ∈ N, except with probability at most e−n over the choice of r ← Genγ(1

|Gn|),
any accepting proof for a non-Hamiltonian graph G must have∣∣∣{i | M̃ (i) ∈ Type-M1}

∣∣∣ > n6 · pn + n4

However, this means that the verifier will reject in Step 6.

6 NIZK Proofs for NP in the Random Oracle Model

In this section, we show how to construct NIZK proofs in the Random Oracle (RO) model. We prove
the following:

Theorem 6.1. There exists an (unbounded-prover) NIZK proof system for NP in the Random Oracle
(RO) model.

33

Proof. We first define some additional notation.

Notation.

• We use padn(i) to denote the binary representation of i padded to n bits.

• We use ROSn to denote the set of all functions from n bits to n bits.

• Extending Lemma 3.7 slightly, we will interpret our random oracle O as two families of
functions:

– {Ours
n : {0, 1}n → {0, 1}n}n∈N whereOurs

n (x) = O(0∥1n∥0∥x∥padn(1)) . . .O(0∥1n∥0∥x∥padn(n))
and

– {Op
n : {0, 1}n → {0, 1}n}n∈N whereOp

n(x) = O(1∥1n∥0∥x∥padn(1)) . . .O(1∥1n∥0∥x∥padn(n)).

Note that if we are given a query to O, we can determine whether or not the query belongs
to Ours

n or Op
n by checking the format of the query.

Proof Overview. In the previous section, we showed how to build a NIZK proof in the
Z-Tamperable-Hidden-Bits model. To build a NIZK proof in the RO model, we will instantiate the
hidden bit string functionality of the Z-Tamperable-Hidden-Bits model by determining a hidden bit
string r from the random oracle O in the following way: We first create a urs = y1 . . . yphbs(n)

using
multiple invocations of Ours

n on fixed inputs, and then set each bit ri of the hidden bit string equal
to 1 if and only if yi does not contain a pre-image under Op

n. Since Op
n is (1 − e−1)-Dense with

overwhelming probability, then ri will be sampled similarly to our ZHB hidden bit string generator
ZHB.Gene−1(1n) with overwhelming probability. Observe that the prover can reveal that ri = 0
by sending over a pre-image vi for yi (which the verifier can check), and can claim that ri = 1 by
simply stating that “there is no pre-image”.

For soundness, observe that just like in the Z-Tamperable-Hidden-Bits model, the prover can lie
about ri whenever ri = 0, but cannot lie about ri whenever ri = 1 because the prover cannot send
over a pre-image when no such pre-image exists. Thus, the soundness reduces to the soundness of
the Z-Tamperable-Hidden-Bits model construction.

For zero knowledge, the simulator will first run the ZHB simulator on x to get a simulated ZHB
proof and simulated hidden bits. The simulator will then simulate the urs and random oracle values
using a lazy sampling method that is consistent with these simulated hidden bits. We then use
properties of the random oracle and the security of the ZHB simulator to show that sampling our
values in this manner results in a similar distribution as in the real world experiment.

6.1 Construction

Let L be an NP language. By Theorem 5.1, there exists a NIZK proof system {ZHB-NIZKγ =
(ZHB.Genγ ,ZHB.Pγ ,ZHB.Vγ)} for L in the Z-Tamperable-Hidden-Bits model. Let pγ,hbs(n) be the
length of the hidden bit string of ZHB-NIZKγ on inputs of length n.

For the remainder of this proof, we will set γ = 1
e , which is an Efficiently-Approximable constant.

This will give us ZHB-NIZKe−1 = (ZHB.Gene−1 ,ZHB.Pe−1 ,ZHB.Ve−1). For notational convenience,
we will refer to pe−1,hbs(n) simply by phbs(n).

We build a NIZK proof system RO-NIZK = (P (·), V (·)) for L in the RO model which satisfies
statistical completeness. However, as shown in Remark 6.3, we can easily use this to build a NIZK
proof system with perfect completeness.

34

PO(x) :

1. Let n = |x|.

2. For i ∈ [phbs(n)], set yi = Ours
n (padn(i))

3. For i ∈ [phbs(n)],

(a) If ∃z ∈ {0, 1}n such that Op
n(z) = yi,

sample vi ← {z ∈ {0, 1}n : Op
n(z) = yi}, and set ri = 0.

(b) If ∄z ∈ {0, 1}n such that Op
n(z) = yi, set vi = ⊥ and ri = 1.

4. (ZHB.I,ZHB.π)← ZHB.Pe−1(r, x) where r = r1 . . . rphbs(n).

5. Return π := (ZHB.I, {vi}i∈ZHB.I ,ZHB.π).

V O(x, π) :

1. Let n = |x|, and parse π = (ZHB.I, {vi}i∈ZHB.I ,ZHB.π).

2. For i ∈ [phbs(n)], set yi = Ours
n (padn(i)).

3. For i ∈ ZHB.I,

(a) If vi = ⊥, set r̃i = 1.

(b) If vi ̸= ⊥, and Op
n(vi) = yi, set r̃i = 0.

(c) If vi ̸= ⊥, and Op
n(vi) ̸= yi, reject.

4. Return ZHB.Ve−1(x,ZHB.I, {r̃i}i∈ZHB.I ,ZHB.π)

6.2 Completeness

Lemma 6.2. If ZHB-NIZKe−1 satisfies perfect completeness in the Z-Tamperable-Hidden-Bits model,
then RO-NIZK satisfies statistical completeness in the RO model. In particular, the verifier will only
reject an honest prover’s proof on at most a constant number of inputs.

Proof. For sufficiently large11 n, every possible string r ∈ {0, 1}phbs(n) can be output by ZHB.Gene−1(1n).
Thus, the perfect completeness of ZHB-NIZKe−1 implies that for all sufficiently large n, all x ∈ L
such that |x| = n, and all r ∈ {0, 1}phbs(n),

Pr [ZHB.Ve−1(x,ZHB.I, {ri}i∈I ,ZHB.π) = 1 : (ZHB.I,ZHB.π)← ZHB.Pe−1(r, x)] = 1

Therefore, since for any random oracle O, an honest verifier V O always generates bits {r̃i}i∈ZHB.I
that correctly correspond to the string r ∈ {0, 1}phbs(n) produced by an honest PO, then for suf-
ficiently large n, V O will always accept when the prover is honest. Thus, V O will only reject an
honest prover’s proof on at most a constant number of inputs (those corresponding to small n).

11That is, n such that Approxe−1(1n) ∈ (0, 1)

35

Remark 6.3. Our NIZK proof system RO-NIZK = (P (·), V (·)) only satisfies statistical completeness.
However, as shown in the above proof, the verifier will only fail to accept an honest prover’s proof
on at most a constant number of inputs. Thus, we can easily construct a new NIZK proof system
with perfect completeness without incurring any loss in soundness or zero knowledge by simply
hardcoding into the verifier whether each of these constantly many values are in the language or
not, and having the verifier accept or reject accordingly.

6.3 Soundness

Lemma 6.4. If ZHB-NIZKe−1 satisfies adaptive statistical soundness in the Z-Tamperable-Hidden-Bits
model then RO-NIZK satisfies adaptive statistical soundness in the RO model.

Proof. Let X = (X1, . . . , Xphbs(n)) where each Xi is an independent Bernoulli random variable with
Pr[Xi = 1] = Approxe−1(1n). Then X is a random variable whose distribution is identical to the
distribution of hidden bit strings output by ZHB.Gene−1(1n).

Similarly, let Y = (Y1, . . . , Yphbs(n)) where each Yi is an independent Bernoulli random variable
with Pr[Yi = 1] = 1− δO where δO = Pry←{0,1}n [∃x ∈ {0, 1}n s.t. Op

n(x) = y] and O is a uniformly
sampled random oracle. Then, Y is a random variable whose distribution is identical to the distri-
bution of the strings r = r1 . . . rphbs(n) generated by the honest prover P (·) when given oracle access
to a uniformly sampled random oracle.

Let D0,n and D1,n denote the distributions followed by X and Y respectively. We will show
that the statistical distance between D0,n and D1,n is negligible. Observe that

1. With overwhelming probability over the choice of the random oracle, (1 − δO) is negligibly
close to e−1 by the (1− e−1)-Dense property of Op

n.

2. |Approxe−1(1n)− e−1| ≤ 1
2n .

This implies that with overwhelming probability over the choice of the random oracle, (1−δO) is
negligibly close to Approxe−1(1n). Thus, the statistical distance between eachXi and Yi is negligible.
Since all the Xi’s and Yi’s are mutually independent, it must be that X and Y are independent.
Now, applying Lemma 3.5 yields ∆(D0,n, D1,n) ≤ phbs(n) · negl(n) = negl(n).

Now, observe that the verifier V O(x, π) either

• outputs ZHB.Ve−1(x,ZHB.I, {r̃i = ZeroFlip(ri, fi)}i∈ZHB.I ,ZHB.π) for some string f and where
r is the string that would be generated by an honest prover given oracle O,

• or rejects if vi ̸= ⊥ and Op
n(vi) ̸= yi.

Assume that V O accepts a proof π = (ZHB.I, {vi}i∈ZHB.I ,ZHB.π). Hence, for each i ∈ [phbs(n)],
the cheating prover can set vi = ⊥ even if ∃z ∈ {0, 1}n such that Op

n(z) = yi. In this way, the
prover can forcefully change a ‘0’ in ri to a ‘1’ in r̃i. However, the prover cannot change any ‘1’ in
ri to a ‘0’ in r̃i since the prover cannot convince the verifier that there actually is a pre-image for
yi if there is no such pre-image. Note that this scenario is identical to the ZeroFlip function used
by the cheating Z-Tamperable-Hidden-Bits prover. Thus, it suffices to show that

Pr
r←D1,n

[
∃(x,ZHB.I, f,ZHB.π) such that x /∈ L, |x| = n, f ∈ {0, 1}|r|

and ZHB.Ve−1(x,ZHB.I, {r̃i = ZeroFlip(ri, fi)}i∈ZHB.I ,ZHB.π) = 1
]
≤ negl(n).

36

Now, by the adaptive statistical soundness of ZHB-NIZKe−1 , there exists a negligible function
negl(·) such that for all n ∈ N,

Pr
r←D0,n

[
∃(x,ZHB.I, f,ZHB.π) such that x /∈ L, |x| = n, f ∈ {0, 1}|r|,

and ZHB.Ve−1(x,ZHB.I, {r̃i = ZeroFlip(ri, fi)}i∈ZHB.I ,ZHB.π) = 1
]
≤ negl(n).

Since D0,n and D1,n are statistically close, then for all n ∈ N, we also have

Pr
r←D1,n

[
∃(x,ZHB.I, f,ZHB.π) such that x /∈ L, |x| = n, f ∈ {0, 1}|r|

and ZHB.Ve−1(x,ZHB.I, {r̃i = ZeroFlip(ri, fi)}i∈ZHB.I ,ZHB.π) = 1
]
≤ negl(n)

This concludes the proof.

6.4 Zero Knowledge

Lemma 6.5. If ZHB-NIZKe−1 satisfies statistical zero knowledge in the Z-Tamperable-Hidden-Bits
model, then RO-NIZK satisfies zero knowledge against polynomial-query-bounded oracle Turing ma-
chines.

Proof. Let ZHB.Sime−1 be the PPT zero knowledge simulator for ZHB-NIZKe−1 . We construct a
PPT zero knowledge simulator Sim = (SimProof, SimRO) for RO-NIZK:

• SimProof(x):

1. Let n = |x|.
2. Create Registers: Set RegL = {}, RegR = {}, and RegO = {}.
3. Simulate the Prover:

(a) For i ∈ [phbs(n)], sample yi ← {0, 1}n, and add (padn(i), yi) to RegL.

(b) Abort if output value repeated: If ∃j ̸= k, such that yi = yj , abort.

(c) (ZHB.I, {ri}i∈ZHB.I ,ZHB.π)← ZHB.Sime−1(x)

(d) For i ∈ [ZHB.I],
i. If ri = 0, sample vi ← {0, 1}n\{vk}k<i, and add (vi, yi) to RegR.

ii. If ri = 1, set vi = ⊥, and add (⊥, yi) to RegR
(e) Set st = (RegL,RegR,RegO) and π = (ZHB.I, {vi}i∈ZHB.I ,ZHB.π)
(f) Output (st, π)

• SimRO(st, w):

1. If w encodes an input z to oracle Ours
n and an index i (i.e. w = (0||1n||0||z||padn(i))),

sample u← SimROL(st, z), and output ui.

2. If w encodes an input z to oracle Op
n and an index i (i.e. w = (1||1n||0||z||padn(i))),

sample u← SimROR(st, z), and output ui.

3. For all other oracle queries, output SimO(st, w).

• SimROL(st, z)

37

1. Parse st = (RegL,RegR,RegO)

2. Respond Consistently: If (z, u′) ∈ RegL for some u′, return u′.

3. Lazy Sample: Sample u← {0, 1}n, add (z, u) to RegL, and return u.

• SimROR(st, z)

1. Parse st = (RegL,RegR,RegO)

2. Respond Consistently: If (z, u′) ∈ RegR for some u′, return u′.

3. Lazy Sample: Sample u← {0, 1}n.
(a) Abort if output value repeated: If (z′, u) ∈ RegR for some z′, abort.

(b) Add (z, u) to RegR, and return u.

• SimO(st, w):

1. Parse st = (RegL,RegR,RegO)

2. Respond Consistently: If (w, u′) ∈ RegO for some u, return u′.

3. Lazy Sample: Sample u← {0, 1}, add (w, u) to RegO, and return u.

Interpreting Oracle Queries. Observe that PO on inputs of length n only queries the random
oracle at points corresponding to Ours

n and Op
n. Thus, since O is a random oracle, then oracle

queries for inputs not to Ours
n or Op

n are independent of both the honest prover’s proof and the
oracle’s behavior with respect to Ours

n and Op
n. Hence, Ours

n and Op
n can be assumed to be indepen-

dently and uniformly distributed over all functions from n bits to n bits. For this reason, in the
following hybrids, for notational simplicity, we will ignore oracle queries that are not to Ours

n or Op
n.

Equivalently, we can view the adversary as having oracle access to both a left oracle and a right
oracle, which are each functions from n bits to n bits. In the real world, the left oracle is Ours

n and
the right oracle is Op

n. In the simulated world, the left oracle is SimROL(st, ·) and the right oracle
is SimROR(st, ·).

We show that Sim is a zero knowledge simulator using a hybrid argument. Observe that our
first hybrid represents the real world game.

HybridA0 (x): Real world game

1. Let n = |x|.

2. Sample Ours
n : Sample random oracle Ours

n ← ROSn.

3. Sample Op
n: Sample random oracle Op

n ← ROSn.

4. Simulate the Prover:

(a) For i ∈ [phbs(n)], set yi = Ours
n (padn(i))

(b) For i ∈ [phbs(n)],

i. If ∃z ∈ {0, 1}n such that Op
n(z) = yi,

sample vi ← {z ∈ {0, 1}n : Op
n(z) = yi}, and set ri = 0.

ii. If ∄z ∈ {0, 1}n such that Op
n(z) = yi, set vi = ⊥ and ri = 1.

38

(c) (ZHB.I,ZHB.π)← ZHB.Pe−1(r, x) where r = r1 . . . rphbs(n).

(d) Send π := (ZHB.I, {vi}i∈ZHB.I ,ZHB.π) to A(·).

5. Answer A(·)’s oracle queries as described below, and output whatever A(·) outputs.

• Left Oracle: When A(·) makes a query z to the left oracle,

1. Return Ours
n (z)

• Right Oracle: When A(·) makes a query z to the right oracle,

1. Return Op
n(z).

Next, we make some notational changes which do not affect the output of the hybrid. In
particular, we keep track of certain oracle queries and responses in registers. If the oracle is queried
at a point already in a register, we simply respond accordingly. We also explicitly define the image
set of Op

n. Observe that this hybrid is identical to the previous hybrid.

HybridA1 (x):

1. Let n = |x|.

2. Change: Create Oracle Registers: Set RegL = {} and RegR = {}.

3. Sample Ours
n : Sample random oracle Ours

n ← ROSn.

4. Sample Op
n: Sample random oracle Op

n ← ROSn.

5. Change: Compute Image: Let Imagen = {u ∈ {0, 1}n | ∃z ∈ {0, 1}n s.t. Op
n(z) = u}.

6. Simulate the Prover:

(a) Change: For i ∈ [phbs(n)], set yi = Ours
n (padn(i)), and add (padn(i), yi) to RegL.

(b) For i ∈ [phbs(n)],

i. Change: If yi ∈ Imagen, sample vi ← {z ∈ {0, 1}n : Op
n(z) = yi},

set ri = 0, and add (vi, yi) to RegR.

ii. Change: If yi /∈ Imagen, set vi = ⊥, set ri = 1, and add (⊥, yi) to RegR.

(c) (ZHB.I,ZHB.π)← ZHB.Pe−1(r, x) where r = r1 . . . rphbs(n).

(d) Send π := (ZHB.I, {vi}i∈ZHB.I ,ZHB.π) to A(·).

7. Answer A(·)’s oracle queries as described below, and output whatever A(·) outputs.

• Left Oracle: When A(·) makes a query z to the left oracle,

1. Change: Respond Consistently: If (z, u′) ∈ RegL for some u′, return u′.

2. Change: Set u = Ours
n (z), add (z, u) to RegL, and return u.

• Right Oracle: When A(·) makes a query z to the right oracle,

39

1. Change: Respond Consistently: If (z, u′) ∈ RegR for some u′, return u′.

2. Change: Set u = Op
n(z), add (z, u) to RegR, and return u.

In this hybrid, rather than sampling Ours
n all at once, we sample it using lazy sampling.

HybridA2 (x):

1. Let n = |x|.

2. Create Oracle Registers: Set RegL = {} and RegR = {}.

3. Sample Ours
n : Sample random oracle Ours

n ← ROSn.

4. Sample Op
n: Sample random oracle Op

n ← ROSn.

5. Compute Image: Let Imagen = {u ∈ {0, 1}n | ∃z ∈ {0, 1}n s.t. Op
n(z) = u}.

6. Simulate the Prover:

(a) Change: For i ∈ [phbs(n)], sample yi ← {0, 1}n, and add (padn(i), yi) to RegL.

(b) For i ∈ [phbs(n)],

i. If yi ∈ Imagen, sample vi ← {z ∈ {0, 1}n : Op
n(z) = yi},

set ri = 0, and add (vi, yi) to RegR.

ii. If yi /∈ Imagen, set vi = ⊥, set ri = 1, and add (⊥, yi) to RegR.

(c) (ZHB.I,ZHB.π)← ZHB.Pe−1(r, x) where r = r1 . . . rphbs(n).

(d) Send π := (ZHB.I, {vi}i∈ZHB.I ,ZHB.π) to A(·).

7. Answer A(·)’s oracle queries as described below, and output whatever A(·) outputs.

• Left Oracle: When A(·) makes a query z to the left oracle,

1. Respond Consistently: If (z, u′) ∈ RegL for some u′, return u′.

2. Change: Lazy Sample: Sample u← {0, 1}n, add (z, u) to RegL, and return u.

• Right Oracle: When A(·) makes a query z to the right oracle,

1. Respond Consistently: If (z, u′) ∈ RegR for some u′, return u′.

2. Set u = Op
n(z), add (z, u) to RegR, and return u.

Lemma 6.6. For all adversaries A(·) and all x ∈ L,∣∣Pr [HybridA1 (x) = 1
]
− Pr

[
HybridA2 (x) = 1

]∣∣ = 0

Proof. The hybrids are identically distributed. The only difference betweenHybridA1 andHybridA2
is the way in which we compute responses for queries to the left oracle (which include the strings
y1, . . . , yphbs(n)). However, note that the distributions of these query responses are identical in both
hybrids. In both cases, each distinct query z to the left oracle is mapped to an independent random
output value. The register RegL is used to ensure that the queries are answered consistently.

40

We add a simple abort condition if any of the yi’s are repeated or if there is a collision in the
output values of the right oracle.

HybridA3 (x):

1. Let n = |x|.

2. Create Oracle Registers: Set RegL = {} and RegR = {}.

3. Sample Op
n: Sample random oracle Op

n ← ROSn.

4. Compute Image: Let Imagen = {u ∈ {0, 1}n | ∃z ∈ {0, 1}n s.t. Op
n(z) = u}.

5. Simulate the Prover:

(a) For i ∈ [phbs(n)], sample yi ← {0, 1}n, and add (padn(i), yi) to RegL.

(b) Change: Abort if output value repeated: If ∃j ̸= k, such that yi = yj , abort.

(c) For i ∈ [phbs(n)],

i. If yi ∈ Imagen, sample vi ← {z ∈ {0, 1}n : Op
n(z) = yi},

set ri = 0, and add (vi, yi) to RegR.

ii. If yi /∈ Imagen, set vi = ⊥, set ri = 1, and add (⊥, yi) to RegR.

(d) (ZHB.I,ZHB.π)← ZHB.Pe−1(r, x) where r = r1 . . . rphbs(n).

(e) Send π := (ZHB.I, {vi}i∈ZHB.I ,ZHB.π) to A(·).

6. Answer A(·)’s oracle queries as described below, and output whatever A(·) outputs.

• Left Oracle: When A(·) makes a query z to the left oracle,

1. Respond Consistently: If (z, u′) ∈ RegL for some u′, return u′.

2. Lazy Sample: Sample u← {0, 1}n, add (z, u) to RegL, and return u.

• Right Oracle: When A(·) makes a query z to the right oracle,

1. Respond Consistently: If (z, u′) ∈ RegR for some u, return u′.

2. Change: Set u = Op
n(z).

(a) Change: Abort if output value repeated: If (z′, u) ∈ RegR for some z′,
abort.

(b) Change: Add (z, u) to RegR, and return u.

Lemma 6.7. For all polynomial-query-bounded oracle Turing machines adversaries A(·) and all
x ∈ L, ∣∣Pr [HybridA2 (x) = 1

]
− Pr

[
HybridA3 (x) = 1

]∣∣ ≤ negl(|x|)

Proof. HybridA2 is identical to HybridA3 given the latter does not abort.
Note that if an adversary makes at most q(n) queries to the right oracle, then at any instance,

RegR can have at-most (q(n) + phbs(n)) entries. Thus, by union bound, the probability of abort

in step 2a is upper bounded by q(n)·(q(n)+phbs(n))
2n . After including the probability of aborting if any

41

yi = yj for i ̸= j, then we get that the probability of abort is at most

1− (2n − phbs(n))
(phbs(n))

(2n)(phbs(n))
+

q(n) · (q(n) + phbs(n))

2n

= 1−
(
1− phbs(n)

2n

)(phbs(n))

+
q(n) · (q(n) + phbs(n))

2n
≤ ε(n),

for some negligible function ε(n). Hence, the lemma follows.

Rather than computing Imagen fromOp
n, we now compute the density of the image of a randomly

sampled function from ROSn and sample an independent random Imagen with the same density.
We then lazy sample our right oracle in a manner consistent with our new Imagen.

HybridA4 (x):

1. Let n = |x|.

2. Create Oracle Registers: Set RegL = {} and RegR = {}.

3. Sample Op
n: Sample random oracle Op

n ← ROSn.

4. Change: Compute Density: Sample random oracle O′n ← ROSn.
Let δ′ = 2−n · |{u ∈ {0, 1}n | ∃z ∈ {0, 1}n s.t. O′n(z) = u}|.

5. Change: Sample Image: Sample Imagen as a random set of size 2n · δ′ from {0, 1}n.

6. Simulate the Prover:

(a) For i ∈ [phbs(n)], sample yi ← {0, 1}n, and add (padn(i), yi) to RegL.

(b) Abort if output value repeated: If ∃j ̸= k, such that yi = yj , abort.

(c) For i ∈ [phbs(n)],

i. Change: If yi ∈ Imagen, sample vi ← {0, 1}n\{vk}k<i,
set ri = 0, and add (vi, yi) to RegR.

ii. If yi /∈ Imagen, set vi = ⊥, set ri = 1, and add (⊥, yi) to RegR.

(d) (ZHB.I,ZHB.π)← ZHB.Pe−1(r, x) where r = r1 . . . rphbs(n).

(e) Send π := (ZHB.I, {vi}i∈ZHB.I ,ZHB.π) to A(·).

7. Answer A(·)’s oracle queries as described below, and output whatever A(·) outputs.

• Left Oracle: When A(·) makes a query z to the left oracle,

1. Respond Consistently: If (z, u′) ∈ RegL for some u, return u′.

2. Lazy Sample: Sample u← {0, 1}n, add (z, u) to RegL, and return u.

• Right Oracle: When A(·) makes a query z to the right oracle,

1. Respond Consistently: If (z, u′) ∈ RegR for some u′, return u′.

42

2. Change: Sample u← Imagen.

(a) Abort if output value repeated: If (z′, u) ∈ RegR for some z′, abort.

(b) Add (z, u) to RegR, and return u.

Lemma 6.8. For all polynomial-query-bounded oracle Turing machines A(·) and all x ∈ L,∣∣Pr [HybridA3 (x) = 1
]
− Pr

[
HybridA4 (x) = 1

]∣∣ = 0

Proof. Conditioned on neither hybrid aborting in step 2a, then the output distribution of HybridA4
is identical to that of HybridA3 . Observe that

• The generated string r = r1 . . . rphbs(n) is identically distributed in both the hybrids because
δ′ is the exact probability that a randomly chosen yi has a pre-image under some function
from n bits to n bits. As a consequence, since (ZHB.I,ZHB.π) depend only on (r, x) then
these values are also identically distributed in both hybrids.

• In both hybrids, whether or not each yi has a pre-image or not is consistent with r. This is
the only correlation between y1 . . . yphbs(n) and r.

• Conditioned on yi having a pre-image under a random function Op
n, then over the choice of

the random function, any value vi is equally likely to be in the pre-image of yi as long as vi
is not already known to be in the pre-image of some other output value and as long as no
other pre-image of yi is already known. Thus, the distributions of the vi’s in both hybrids
are identical.

• If HybridA3 does not abort, then responses to distinct queries to the right oracle Op
n are

distinct elements from the image. Over the choice of the random function Op
n of HybridA3 ,

every element is equally likely to be in the image of any particular input. Thus, it is equivalent
to sample the image first as in Hybrid4 and respond to distinct queries with uniformly
sampled distinct elements from the image.

Finally, we observe that the probability of either hybrid aborting are identical, hence we get
that the output distributions of HybridA3 and HybridA4 are identical.

Rather than first sampling Imagen and urs = y1 . . . yn, and then setting r accordingly, we sample
r and urs first and then set Imagen to be a random set which is consistent with r and urs.

HybridA5 (x):

1. Let n = |x|.

2. Create Oracle Registers: Set RegL = {} and RegR = {}.

3. Compute Density: Sample random oracle O′n ← ROSn.
Let δ′ = 2−n · |{u ∈ {0, 1}n | ∃z ∈ {0, 1}n s.t. O′n(z) = u}|.

4. Sample Image: Sample Imagen as a random set of size 2n · δ′ from {0, 1}n.

5. Change: Create Image Set: Set Imagen = {}.

6. Simulate the Prover:

43

(a) For i ∈ [phbs(n)], sample yi ← {0, 1}n, and add (padn(i), yi) to RegL.

(b) Abort if output value repeated: If ∃j ̸= k, such that yi = yj , abort.

(c) For i ∈ [phbs(n)],

i. Change: Sample ri ∈ {0, 1} such that Pr[ri = 1] = (1− δ′).

ii. Change: If ri = 0, sample vi ← {0, 1}n\{vk}k<i,
add (vi, yi) to RegR, and add yi to Imagen.

iii. Change: If ri = 1, set vi = ⊥, and add (⊥, yi) to RegR.

iv. Change: Extend Image Set: Sample a random set of size
(2−n · δ′ − |Imagen|) from {0, 1}n\{yi}i∈[phbs(n)] and add it to Imagen.

(d) (ZHB.I,ZHB.π)← ZHB.Pe−1(r, x) where r = r1 . . . rphbs(n).

(e) Send π := (ZHB.I, {vi}i∈ZHB.I ,ZHB.π) to A(·).

7. Answer A(·)’s oracle queries as described below, and output whatever A(·) outputs.

• Left Oracle: When A(·) makes a query z to the left oracle,

1. Respond Consistently: If (z, u′) ∈ RegL for some u′, return u′.

2. Lazy Sample: Sample u← {0, 1}n, add (z, u) to RegL, and return u.

• Right Oracle: When A(·) makes a query z to the right oracle,

1. Respond Consistently: If (z, u′) ∈ RegR for some u′, return u′.

2. Sample u← Imagen.

(a) Abort if output value repeated: If (z′, u) ∈ RegR for some z′, abort.

(b) Add (z, u) to RegR, and return u.

Lemma 6.9. For all adversaries A(·) and all x ∈ L,∣∣Pr [HybridA4 (x) = 1
]
− Pr

[
HybridA5 (x) = 1

]∣∣ = 0

Proof. The output distribution of HybridA5 is identical to that of HybridA4 . Here we just exchange
the order in which we sample r, urs = y1 . . . yphbs(n), and Imagen. Observe that

• The distributions of the ri’s remain unchanged since δ′ is the exact probability that a randomly
chosen yi is in Imagen.

• Conditioned on any fixed r, the image set Imagen of HybridA4 is distributed uniformly over
all image sets which are consistent with r. Thus, it is equivalent to sample r first and then
sample Imagen as in HybridA5 .

• In both hybrids, whether or not each yi has a pre-image or not is consistent with r and
Imagen.

Thus, since all other output values are generated from r, y1 . . . yphbs(n), and Imagen in the same way
in both hybrids, then the hybrids have identical output distributions.

We observe that we no longer need to keep track of Imagen since it is equivalent to simply lazy
sample in a manner consistent with our yi’s and the previous queries.

44

HybridA6 (x):

1. Let n = |x|.

2. Create Oracle Registers: Set RegL = {} and RegR = {}.

3. Compute Density: Sample random oracle O′n ← ROSn.
Let δ′ = 2−n · |{u ∈ {0, 1}n | ∃z ∈ {0, 1}n s.t. O′n(z) = u}|.

4. Create Image Set: Set Imagen = {}.

5. Simulate the Prover:

(a) For i ∈ [phbs(n)], sample yi ← {0, 1}n, and add (padn(i), yi) to RegL.

(b) Abort if output value repeated: If ∃j ̸= k, such that yi = yj , abort.

(c) For i ∈ [phbs(n)],

i. Sample ri ∈ {0, 1} such that Pr[ri = 1] = δ′.

ii. If ri = 0, sample vi ← {0, 1}n\{vk}k<i,
add (vi, yi) to RegR, and add yi to Imagen.

iii. If ri = 1, set vi = ⊥, and add (⊥, yi) to RegR
iv. Extend Image Set: Sample a random set of size

(2−n · δ′ − |Imagen|) from {0, 1}n\{yi}i∈[phbs(n)] and add it to Imagen.

(d) (ZHB.I,ZHB.π)← ZHB.Pe−1(r, x) where r = r1 . . . rphbs(n).

(e) Send π := (ZHB.I, {vi}i∈ZHB.I ,ZHB.π) to A(·).

6. Answer A(·)’s oracle queries as described below, and output whatever A(·) outputs.

• Left Oracle: When A(·) makes a query z to the left oracle,

1. Respond Consistently: If (z, u′) ∈ RegL for some u, return u′.

2. Lazy Sample: Sample u← {0, 1}n, add (z, u) to RegL, and return u.

• Right Oracle: When A(·) makes a query z to the right oracle,

1. Respond Consistently: If (z, u′) ∈ RegR for some u′, return u′.

2. Change: Lazy Sample: Sample u← {0, 1}n.
(a) Abort if output value repeated: If (z′, u) ∈ RegR for some z′, abort.

(b) Add (z, u) to RegR, and return u.

Lemma 6.10. For all adversaries A(·) and all x ∈ L,∣∣Pr [HybridA5 (x) = 1
]
− Pr

[
HybridA6 (x) = 1

]∣∣ = 0

Proof. The output distribution of HybridA6 is identical to that of HybridA5 . The only difference
between the two hybrids is that in HybridA6 we no longer extend and completely define the image
set Imagen as in Step 6(c)iv in HybridA5 . This impacts the simulation in only one way: upon oracle
queries to the right oracle, u is now sampled randomly from {0, 1}n rather than Imagen.

Observe that the joint distribution of (yi}i∈[phbs(n)]) and the oracle responses have identical
distribution in both hybrids. This gives us the desired result.

45

We now use the (1− e−1)-Dense property of the random oracle to exchange the density (1− δ′)
with (1− Approxe−1(1n)).

HybridA7 (x):

1. Let n = |x|.

2. Create Oracle Registers: Set RegL = {} and RegR = {}.

3. Compute Density: Sample random oracle O′n ← ROSn.
Let δ′ = 2−n · |{u ∈ {0, 1}n | ∃z ∈ {0, 1}n s.t. O′n(z) = u}|.

4. Simulate the Prover:

(a) For i ∈ [phbs(n)], sample yi ← {0, 1}n, and add (padn(i), yi) to RegL.

(b) Abort if output value repeated: If ∃j ̸= k, such that yi = yj , abort.

(c) For i ∈ [phbs(n)],

i. Change: Sample ri ∈ {0, 1} such that Pr[ri = 1] = (1− Approxe−1(1n)).

ii. If ri = 0, sample vi ← {0, 1}n\{vk}k<i, and add (vi, yi) to RegR.

iii. If ri = 1, set vi = ⊥, and add (⊥, yi) to RegR.

(d) (ZHB.I,ZHB.π)← ZHB.Pe−1(r, x) where r = r1 . . . rphbs(n).

(e) Send π := (ZHB.I, {vi}i∈ZHB.I ,ZHB.π) to A(·).

5. Answer A(·)’s oracle queries as described below, and output whatever A(·) outputs.

• Left Oracle: When A(·) makes a query z to the left oracle,

1. Respond Consistently: If (z, u′) ∈ RegL for some u, return u′.

2. Lazy Sample: Sample u← {0, 1}n, add (z, u) to RegL, and return u.

• Right Oracle: When A(·) makes a query z to the right oracle,

1. Respond Consistently: If (z, u′) ∈ RegR for some u′, return u′.

2. Lazy Sample: Sample u← {0, 1}n.
(a) Abort if output value repeated: If (z′, u) ∈ RegR for some z′, abort.

(b) Add (z, u) to RegR, and return u.

Lemma 6.11. For all adversaries A(·) and all x ∈ L,∣∣Pr [HybridA6 (x) = 1
]
− Pr

[
HybridA7 (x) = 1

]∣∣ ≤ negl(|x|)

Proof. The only difference between the two hybrids is the way in which r is sampled. By Lemma B.3,
a random function from n bits to n bits is (1 − e−1)-Dense with overwhelming probability. Thus,
with overwhelming probability, the computed density δ′ is negligibly close to (1− e−1) which is in
turn negligibly close to (1 − Approxe−1(1n)). Therefore, the distribution of each ri in HybridA6 is
negligibly close to the distribution of each ri in HybridA7 . Thus, by Lemma A.1, the statistical

46

distance between the two distributions of r in the two hybrids is at most phbs(n) · negl(n) which is
negligible. Therefore, the output distributions of the two hybrids are statistically close.

Finally, we replace the generation of r and (ZHB.I,ZHB.π) with the ZHB simulator.

HybridA8 (x):

1. Let n = |x|.

2. Create Oracle Registers: Set RegL = {} and RegR = {}.

3. Simulate the Prover:

(a) For i ∈ [phbs(n)], sample yi ← {0, 1}n, and add (padn(i), yi) to RegL.

(b) Abort if output value repeated: If ∃j ̸= k, such that yi = yj , abort.

(c) Change: (ZHB.I, {ri}i∈ZHB.I ,ZHB.π)← ZHB.Sime−1(x)

(d) Change: For i ∈ [ZHB.I],
i. Sample ri ∈ {0, 1} such that Pr[ri = 1] = e−1.

ii. If ri = 0, sample vi ← {0, 1}n\{vk}k<i, and add (vi, yi) to RegR.

iii. If ri = 1, set vi = ⊥, and add (⊥, yi) to RegR

(e) (ZHB.I,ZHB.π)← ZHB.Pe−1(r, x) where r = r1 . . . rphbs(n).

(f) Send π := (ZHB.I, {vi}i∈ZHB.I ,ZHB.π) to A(·).

4. Answer A(·)’s oracle queries as described below, and output whatever A(·) outputs.

• Left Oracle: When A(·) makes a query z to the left oracle,

1. Respond Consistently: If (z, u′) ∈ RegL for some u, return u′.

2. Lazy Sample: Sample u← {0, 1}n, add (z, u) to RegL, and return u.

• Right Oracle: When A(·) makes a query z to the right oracle,

1. Respond Consistently: If (z, u′) ∈ RegR for some u′, return u′.

2. Lazy Sample: Sample u← {0, 1}n.
(a) Abort if output value repeated: If (z′, u) ∈ RegR for some z′, abort.

(b) Add (z, u) to RegR, and return u.

Lemma 6.12. If ZHB-NIZKe−1 satisfies statistical zero knowledge in the Z-Tamperable-Hidden-Bits
model, then for all polynomial-query-bounded oracle Turing machines A(·) and all x ∈ L,∣∣Pr [HybridA7 (x) = 1

]
− Pr

[
HybridA8 (x) = 1

]∣∣ ≤ negl(|x|)

Proof. This follows by a straightforward reduction to the statistical zero knowledge of ZHB-NIZKe−1 .
Suppose there exists a polynomial-query-bounded oracle Turing machines A that could distinguish
between the two hybrids with non-negligible advantage on some input x ∈ L. We build an adversary
B that breaks the statistical zero knowledge of ZHB-NIZKe−1 . B is given (ZHB.I, {ri}i∈ZHB.I ,ZHB.π)
which are either generated by the honest prover and hidden bit string generator or generated by the

47

ZHB simulator. B sets n = |x|, creates oracle registers RegL and RegR, samples urs = y1 . . . yhbs(n)
as in both hybrids, and aborts if any yj = yk for any j ̸= k. B then samples {vi}i∈ZHB.I as in
both hybrids and adds values (vi, yi) for i ∈ ZHB.I to RegR (as in step 3(d)ii and step 3(d)iii of
Hybrid8). B then sends π = (ZHB.I, {vi}i∈ZHB.I ,ZHB.π) to A. B responds to A’s queries to the
left and right oracles as in both hybrids. Finally, B outputs whatever A outputs. Observe that if
B received an input generated by ZHB.Sime−1(x), then B exactly emulates Hybrid8. If B received
an input generated by ZHB.Gene−1(1|x|) and ZHB.Pe−1(x), then B emulates a hybrid which we call
HybridA7,2.

Observe that HybridA7,2 is identical to HybridA7 except that HybridA7 may add up to phbs(n)
additional values of the form (vi, yi) for either randomly picked vi or vi = ⊥ to RegR. However,
as long as the following conditions hold, then the output distributions of HybridA7 and HybridA72
are identical:

• The adversary in HybridA7,2 does not query its right oracle at the additional values vi that

would have been sampled in HybridA7 . Observe that as these additional vi values are inde-
pendent, random distinct elements, then the probability that A queries one of these additional
vi’s after making q(n) queries is bounded by q(n)phbs(n)

2n−phbs(n) which is negligible.

• The challenger in HybridA7,2 never samples a response u that corresponds to some yi when
responding to queries to the right oracle. Observe that if the adversary makes at most q(n)

queries, then the probability that this event occurs is bounded by q(n)phbs(n)
2n which is negligible.

Thus, the distingiushing advantage is negligible.

We observe that our final hybrid matches the simulator exactly where the left oracle is SimROL

and the right oracle is SimROR. Since all the intermediate hybrids are indistinguishable to polynomial-
query-bounded oracle Turing machines, we get our desired result.

7 NIZK Proofs for NP in the URS Model from δ-Dense-PRHFs

We now build NIZK proofs in the uniform reference string (URS) model using a δ-Dense-PRHF. We
prove the following:

Theorem 7.1. If there exists a δ-Dense-PRHF for some Efficiently-Approximable constant δ ∈ (0, 1),
then there exists an (unbounded-prover) NIZK proof system for NP in the URS model.

Remark 7.2. Recall that a random oracle, when interpreted as a function from n bits to n bits,
satisfies all of the properties of a

(
1− 1

e

)
-Dense-PRHF in the random oracle model (see Remark 4.7

and Appendix B). Indeed, our construction of NIZK proofs in the RO model is the same as in this
construction except that we instantiate the δ-Dense-PRHF HPRHF for δ =

(
1− 1

e

)
with a random

oracle and generate the urs using the random oracle. However, for technical reasons, which we
explain in Remark 7.6, the proof of zero knowledge in this construction does not necessarily imply
zero knowledge in the RO model. For this reason, in the previous section, we separately proved
how to construct NIZK proofs in the RO model. The zero knowledge proof in that construction
bypasses the issue by allowing the simulator to program the random oracle.

Proof of Theorem 7.1. We first provide a brief proof overview.

48

Proof Overview. In a previous section, we showed how to build NIZK proofs in the
Z-Tamperable-Hidden-Bits model. To build a NIZK proof in the URS model, we will instantiate
the hidden bit string functionality of the Z-Tamperable-Hidden-Bits model by determining a hidden
bit string r from the urs = y1 . . . yphbs(n) and the δ-Dense-PRHF HPRHF in the following way: We
set each bit ri of the hidden bit string equal to 1 if and only if yi does not contain a pre-image
under HPRHF. Since HPRHF is δ-Dense, then ri will be sampled similarly to our ZHB hidden bit
string generator ZHB.Genδ(1

n). Observe that the prover can reveal that ri = 0 by sending over a
pre-image vi for yi (which the verifier can check), and can claim that ri = 1 by simply stating that
“there is no pre-image”.

For soundness, observe that just like in the Z-Tamperable-Hidden-Bits model, the prover can lie
about ri whenever ri = 0, but cannot lie about ri whenever ri = 1 because the prover cannot send
over a pre-image when no such pre-image exists. Thus, the soundness reduces to the soundness of
the Z-Tamperable-Hidden-Bits model construction.

For zero knowledge, the simulator will first generate a urs = y1 . . . yphbs(n) in such a way that
the simulator knows a pre-image vi under HPRHF for every yi. We use the pseudorandomness and
pre-image pseudorandomness properties of HPRHF to argue that the urs sampled by the simulator
is indistinguishable from a random urs. Then, the simulator will run the ZHB simulator on x to
get a simulated ZHB proof and simulated hidden bits. The simulator can open the corresponding
bits of r to the correct values since the simulator knows a pre-image for every yi in the urs. Zero
knowledge then reduces to the security of the ZHB simulator.

7.1 Construction

Let L be an NP language and let HPRHF be a δ-Dense-PRHF for some Efficiently-Approximable
constant δ ∈ (0, 1) with stretch function ℓ : N → N. By Theorem 5.1, there exists a NIZK proof
system {ZHB-NIZKγ = (ZHB.Genγ ,ZHB.Pγ ,ZHB.Vγ)} for L in the Z-Tamperable-Hidden-Bits. Let
pγ,hbs(n) be the length of the hidden bit string of ZHB-NIZKγ on inputs of length n.

For the remainder of this proof, we will set γ = 1 − δ, which is an Efficiently-Approximable
constant. For notational convenience, we will refer to pγ,hbs(n) simply by phbs(n).

We build a NIZK proof system URS-NIZK = (URS.Gen,URS.P,URS.V) for L in the URS model
which satisfies statistical completeness. However, similarly to Remark 6.3, we can easily use this
to build a NIZK proof system with perfect completeness without incurring any loss in soundness or
zero knowledge.

URS.Gen(1n) :

1. For i ∈ [phbs(n)], sample a uniformly random yi ∈ {0, 1}ℓ(n).

2. Output urs = y1 . . . yphbs(n).

URS.P (urs, x) :

1. Parse urs as y1, . . . , yphbs(n) where n = |x|.

2. For i ∈ [phbs(n)],

(a) If ∃z ∈ {0, 1}n such that HPRHF(z) = yi,
sample vi ← {z ∈ {0, 1}n : HPRHF(z) = yi}, and set ri = 0.

49

(b) If ∄z ∈ {0, 1}n such that HPRHF(z) = yi, set vi = ⊥ and ri = 1.

3. (ZHB.I,ZHB.π)← ZHB.Pγ(r, x) where r = r1 . . . rphbs(n).

4. Return π := (ZHB.I, {vi}i∈ZHB.I ,ZHB.π).

URS.V (urs, x, π) :

1. Parse urs as y1, . . . , yphbs(n) where n = |x|.

2. Parse π as (ZHB.I, {vi}i∈ZHB.I ,ZHB.π).

3. For i ∈ ZHB.I,

• If vi = ⊥, set r̃i = 0.

• If vi ̸= ⊥, and HPRHF(vi) = yi, set r̃i = 1.

• If vi ̸= ⊥, and HPRHF(vi) ̸= yi, reject.

4. Return ZHB.Vγ(x,ZHB.I, {r̃i}i∈ZHB.I ,ZHB.π)

7.2 Completeness

Lemma 7.3. If HPRHF is a δ-Dense-PRHF for some Efficiently-Approximable constant δ ∈ (0, 1) and
ZHB-NIZKγ with γ = 1 − δ satisfies perfect completeness in the Z-Tamperable-Hidden-Bits model,
then URS-NIZK satisfies statistical completeness in the URS model. In particular, the verifier will
only reject an honest prover’s proof on at most a constant number of inputs.

Proof. This proof is nearly identical to the proof of completeness in the RO model (Lemma 6.2).
Thus, we defer the proof to Appendix C.2

7.3 Soundness

Lemma 7.4. If HPRHF is a δ-Dense-PRHF for some Efficiently-Approximable constant δ ∈ (0, 1) and
ZHB-NIZKγ with γ = 1− δ satisfies adaptive statistical soundness in the Z-Tamperable-Hidden-Bits
model, then URS-NIZK satisfies adaptive statistical soundness in the URS model.

Proof. This proof is nearly identical to the proof of soundness in the RO model (Lemma 6.4) .
Thus, we defer the proof to Appendix C.2

7.4 Zero Knowledge

Lemma 7.5. If HPRHF is a δ-Dense-PRHF for some Efficiently-Approximable constant δ ∈ (0, 1)
and ZHB-NIZKγ with γ = 1− δ satisfies statistical zero knowledge in the Z-Tamperable-Hidden-Bits
model, then URS-NIZK satisfies computational zero knowledge in the URS model.

Remark 7.6. For technical reasons, the proof of zero knowledge in this construction does not
necessarily imply zero knowledge in the RO model if we simply instantiate the δ-Dense-PRHF
HPRHF with a random oracle and generate the urs using the random oracle. This is because
the proof of zero knowledge here uses non-uniform reductions which contain advice dependent

50

on HPRHF. Thus, if we try to proceed with the proof using a random oracle instead of HPRHF, then
we require our random oracle to satisfy both pseudorandomness and pre-image pseudorandomness
(as per Def 4.6) against oracle-dependent adversaries. While a random oracle is

(
1− 1

e

)
-Dense

(see Remark 4.7 and Appendix B) and also satisfies standard pseudorandomness against oracle-
dependent adversaries [DGK17, GGKT05], it is unclear how to prove pre-image pseudorandomness
against such adversaries (though we conjecture it to be true and leave the proof for future work).

Proof of Lemma 7.5. Let ZHB.Simγ be the PPT zero knowledge simulator for ZHB-NIZKγ . We
construct a PPT zero knowledge simulator URS.Sim for URS-NIZK:

URS.Sim(x) :

1. Let n = |x|.

2. (ZHB.I, {ri}i∈ZHB.I ,ZHB.π)← ZHB.Simγ(x).

3. For i ∈ [phbs(n)], sample vi ← {0, 1}n, and set yi = HPRHF(vi).

4. For i ∈ ZHB.I,

(a) If ri = 1, set v′i = ⊥
(b) If ri = 0, set v′i = vi.

5. Output (urs = (y1 . . . yphbs(n)), π = (ZHB.I, {v′i}i∈ZHB.I ,ZHB.π)).

We will now prove that the output of Sim is computationally indistinguishable from the joint
distribution of the real urs and an honest prover’s proof. We show this via a hybrid argument.
Observe that Hybrid0 represents the real world experiment.

Hybrid0(x):

1. Let n = |x| .

2. For i ∈ [phbs(n)],

(a) Sample yi ← {0, 1}ℓ(n).
(b) If ∃z ∈ {0, 1}n such that HPRHF(z) = yi,

and sample vi ← {z ∈ {0, 1}n : HPRHF(z) = yi}, and set ri = 0.

(c) If ∄z ∈ {0, 1}n such that HPRHF(z) = yi, set vi = ⊥ and ri = 1.

3. (ZHB.I,ZHB.π)← ZHB.Pγ(r, x) where r = r1 . . . rphbs(n).

4. Output (urs = (y1 . . . yphbs(n)), π = (ZHB.I, {vi}i∈ZHB.I ,ZHB.π)).

For our next hybrid, we sample ri first and use it to determine vi and yi.

Hybrid1(x):

1. Let n = |x|.

2. For i ∈ [phbs(n)],

(a) Change: Sample ri ∈ {0, 1} such that Pr[ri = 1] = γ′

51

where γ′ = 1− Pry←{0,1}ℓ(n) [∃z s.t. HPRHF(z) = y]

3. (ZHB.I,ZHB.π)← ZHB.Pγ(r, x) where r = r1 . . . rphbs(n).

4. Change: Define Imagen = {y ∈ {0, 1}ℓ(n) : ∃z ∈ {0, 1}n, y = HPRHF(z)}
and Pre-Imagen(y) = {z ∈ {0, 1}n : HPRHF(z) = y}

5. Change: For i ∈ [phbs(n)],

(a) Change: If ri = 0, sample yi ← Imagen and vi ← Pre-Imagen(yi), and set v′i = vi.

(b) Change: If ri = 1, sample yi ← {0, 1}ℓ(n)\Imagen, and set v′i = ⊥.

6. Change: Output (urs = (y1 . . . yphbs(n)), π = (ZHB.I, {v′i}i∈ZHB.I ,ZHB.π)).

Lemma 7.7. For all adversaries A and all x ∈ L,

|Pr [A(Hybrid0(x)) = 1]− Pr [A(Hybrid1(x)) = 1]| = 0

Proof. The hybrids are identically distributed. Observe that in Hybrid0, the following properties
hold:

• The distribution of (ZHB.I,ZHB.π) only depends on r and x.

• For any i ̸= j, the distribution of (ri, vi, yi) is independently and identically distributed to
the distribution of (rj , vj , yj).

• For any i, Pr[ri = 1] = Pry←{0,1}ℓ(n) [∄z s.t. HPRHF(z) = y]

• For any i, conditioned on ri = 0, yi is uniformly distributed over all elements in the image of
HPRHF, and vi is uniformly distributed over all pre-images of yi.

• For any i, conditioned on ri = 1, yi is uniformly distributed over all elements that are not in
the image of HPRHF, and vi = ⊥.

Thus, it is equivalent to first sample each ri from the correct distribution and then sample (yi, vi)
according to the induced conditional probabilities. As (ZHB.I,ZHB.π) only depends on r, as long
as r has the correct distribution, then the final output distribution (urs = (y1 . . . yphbs(n)), π =
(ZHB.I, {v′i}i∈ZHB.I ,ZHB.π)) will be distributed the same as before.

We now use the pre-image pseudorandomness of HPRHF to change our method of sampling when
ri = 0.

Hybrid2(x):

1. Let n = |x|.

2. For i ∈ [phbs(n)],

(a) Sample ri ∈ {0, 1} such that Pr[ri = 1] = γ′

where γ′ = 1− Pry←{0,1}ℓ(n) [∃z s.t. HPRHF(z) = y]

3. (ZHB.I,ZHB.π)← ZHB.Pγ(r, x) where r = r1 . . . rphbs(n).

4. Define Imagen = {y ∈ {0, 1}ℓ(n) : ∃z ∈ {0, 1}n, y = HPRHF(z)}
and Pre-Imagen(y) = {z ∈ {0, 1}n : HPRHF(z) = y}

52

5. For i ∈ [phbs(n)]

(a) Change: If ri = 0, sample vi ← {0, 1}n, set yi = HPRHF(vi), and set v′i = vi

(b) If ri = 1, sample yi ← {0, 1}ℓ(n)\Imagen, and set v′i = ⊥.

6. Output (urs = (y1 . . . yphbs(n)), π = (ZHB.I, {v′i}i∈ZHB.I ,ZHB.π)).

Lemma 7.8. If HPRHF is a δ-Dense-PRHF for some Efficiently-Approximable constant δ ∈ (0, 1),
then for all non-uniform polynomial-sized adversaries A and all x ∈ L,

|Pr [A(Hybrid1(x)) = 1]− Pr [A(Hybrid2(x)) = 1]| ≤ negl(|x|)

Proof. We define a series of intermediate hybrids. Let Hybrid1,j be the same as Hybrid1 except
that in step 5a, for i ≤ j, if ri = 0. we sample (yi, vi, v

′
i) according to Hybrid2 by sampling

vi ← {0, 1}n, setting yi = HPRHF(vi), and setting v′i = vi. Observe that Hybrid1,0 = Hybrid1 and
that Hybrid1,phbs(n)

= Hybrid2.
Now, suppose for sake of contradiction that there exists an x ∈ L and a non-uniform polynomial-

sized adversary that can distinguish between the output of Hybrid1(x) and Hybrid2(x) with
greater than negl(|x|) probability. Then, there exist an x ∈ L, j ∈ [phbs(|x|)], a non-negligible
function µ(·), and a non-uniform polynomial-sized adversary A such that

∣∣Pr [A(Hybrid1,j−1(x)) = 1
]
− Pr

[
A(Hybrid1,j(x)) = 1

]∣∣ > µ(|x|)
phbs(|x|)

We build a non-uniform polynomial-sized adversary B that breaks the pre-image pseudoran-
domness of HPRHF. B non-uniformly fixes the values of (r,ZHB.I,ZHB.π) computed as in steps
1-3 of Hybrid1,j−1 and Hybrid1,j and the values of {(yi, vi, v′i)}i ̸=j computed as in step 5 of
Hybrid1,j−1 and Hybrid1,j which maximize the distinguishing advantage of A. We assume
that the non-uniformly fixed rj = 0, as otherwise the hybrids are identical and A’s distinguish-
ing advantage is 0. Then, B receives (v∗, y∗), where (v∗, y∗) is sampled from either D0(1

|x|)
or D1(1

|x|) as defined according to Definition 4.6. B sets v′j = v∗ and yj = y∗, and sends
(urs = (y1 . . . yphbs(|x|)), π = (ZHB.I, {v′i}i∈ZHB.I ,ZHB.π)) to A. B then outputs whatever A outputs.

Observe that if (v∗, y∗) is sampled from D0(1
|x|), then B exactly emulates Hybrid1,j , and if (v∗, y∗)

is sampled from D1(1
|x|), then B exactly emulates Hybrid1,j−1. Thus, since B non-uniformly fixed

values that maximized A’s distinguishing probability, then B distinguishes between D0(1
|x|) and

D1(1
|x|) with at least µ(|x|)

phbs(|x|) probability. Thus, B breaks the pre-image pseudorandomness of
HPRHF.

We will now change our method of sampling when ri = 1. First, we prove that δ-Dense-PRHFs
are psuedorandom with respect to the flat distribution of all elements that are in the co-domain,
but not in the image.

Lemma 7.9. If HPRHF is a δ-Dense-PRHF for some Efficiently-Approximable constant δ ∈ (0, 1),
then there exists a negligible function εNPIPR such that for all non-uniform polynomial-sized adver-
saries A and all n ∈ N,∣∣∣∣ Pr

x←{0,1}n
[A(1n, HPRHF(x)) = 1]− Pr

y←{0,1}ℓ(n)\Imagen

[A(1n, y) = 1]

∣∣∣∣ ≤ εNPIPR(n)

where we define Imagen = {y ∈ {0, 1}ℓ(n) : ∃x ∈ {0, 1}n, y = HPRHF(x)}

53

Proof. Let n ∈ N, and let A be any non-uniform polynomial-sized adversary. Let Imagen = {y ∈
{0, 1}ℓ(n) : ∃x ∈ {0, 1}n, y = HPRHF(x)}. Now,

Pr
y←{0,1}ℓ(n)

[A(1n, y) = 1] = Pr
y←{0,1}ℓ(n)

[A(1n, y) = 1 | y ∈ Imagen] Pr
y←{0,1}ℓ(n)

[y ∈ Imagen]

+ Pr
y←{0,1}ℓ(n)

[A(1n, y) = 1 | y /∈ Imagen] Pr
y←{0,1}ℓ(n)

[y /∈ Imagen]

Now,

• By the δ-Dense property of HPRHF,

Pr
y←{0,1}ℓ(n)

[y ∈ Imagen] = δ ± negl(n)

• By the pseudorandom property of HPRHF,

Pr
y←{0,1}ℓ(n)

[A(1n, y) = 1] = Pr
x←{0,1}n

[A(1n, HPRHF(x)) = 1]± negl(n)

• By the pre-image psuedorandom property of HPRHF,

Pr
y←{0,1}ℓ(n)

[A(1n, y) = 1 | y ∈ Imagen] = Pr
x←{0,1}n

[A(1n, HPRHF(x)) = 1]± negl(n)

Plugging these into our first equation, we get that

Pr
x←{0,1}n

[A(1n, HPRHF(x)) = 1] = δ · Pr
x←{0,1}n

[A(1n, HPRHF(x)) = 1]

+ (1− δ) · Pr
y←{0,1}ℓ(n)

[A(1n, y) = 1 | y /∈ Imagen]

± negl(n)

Therefore,

(1− δ) · Pr
x←{0,1}n

[A(1n, HPRHF(x)) = 1] = (1− δ) · Pr
y←{0,1}ℓ(n)

[A(1n, y) = 1 | y /∈ Imagen]± negl(n)

which implies that

Pr
x←{0,1}n

[A(1n, HPRHF(x)) = 1] = Pr
y←{0,1}ℓ(n)\Imagen

[A(1n, y) = 1]± negl(n).

Hybrid3(x):

1. Let n = |x|.

2. For i ∈ [phbs(n)],

(a) Sample ri ∈ {0, 1} such that Pr[ri = 1] = γ′

where γ′ = 1− Pry←{0,1}ℓ(n) [∃z s.t. HPRHF(z) = y]

3. (ZHB.I,ZHB.π)← ZHB.Pγ(r, x) where r = r1 . . . rphbs(n).

54

4. Define Imagen = {y ∈ {0, 1}ℓ(n) : ∃z ∈ {0, 1}n, y = HPRHF(z)}
and Pre-Imagen(y) = {z ∈ {0, 1}n : HPRHF(z) = y}

5. For i ∈ [phbs(n)]

(a) If ri = 0, sample vi ← {0, 1}n, set yi = HPRHF(vi), and set v′i = vi.

(b) Change: If ri = 1, sample vi ← {0, 1}n, set yi = HPRHF(vi), and set v′i = ⊥.

6. Output (urs = (y1 . . . yphbs(n)), π = (ZHB.I, {v′i}i∈ZHB.I ,ZHB.π)).

Lemma 7.10. If HPRHF is a δ-Dense-PRHF for some Efficiently-Approximable constant δ ∈ (0, 1),
then for all non-uniform polynomial-sized adversaries A and all x ∈ L,

|Pr [A(Hybrid2(x)) = 1]− Pr [A(Hybrid3(x)) = 1]| ≤ negl(|x|)

Proof. We define a series of intermediate hybrids. Let Hybrid2,j be the same as Hybrid2 except
that in step 5b, for i ≤ j, if ri = 1, we sample (yi, v

′
i) according to Hybrid3 by sampling vi ←

{0, 1}n, setting yi = HPRHF(vi), and setting v′i = ⊥. Observe that Hybrid2,0 = Hybrid2 and that
Hybrid2,phbs(n)

= Hybrid3.
Now, suppose for sake of contradiction that there exists an x ∈ L and a non-uniform polynomial-

sized adversary and that can distinguish between the output of Hybrid2(x) and Hybrid3(x) with
greater than negl(|x|) probability. Then, there exist an x ∈ L, j ∈ [phbs(|x|)], a non-negligible
function µ(·), and a non-uniform polynomial-sized adversary A such that∣∣Pr [A(Hybrid2,j−1(x)) = 1

]
− Pr

[
A(Hybrid2,j(x)) = 1

]∣∣ > µ(|x|)
phbs(|x|)

We build a non-uniform polynomial-sized adversary B that breaks the property ofHPRHF defined
in Lemma 7.9. B non-uniformly fixes the values of (r,ZHB.I,ZHB.π) computed as in steps 1-3 of
Hybrid2,j−1 and Hybrid2,j and the values of {(yi, vi, v′i)}i ̸=j computed as in step 5 of Hybrid2,j−1
and Hybrid2,j which maximize the distinguishing advantage of A. We assume that the non-
uniformly fixed rj = 1, as otherwise the hybrids are identical and A’s distinguishing advantage is
0. Then, B receives y∗, where y∗ is either sampled as HPRHF(x

∗) for a uniform x∗ ∈ {0, 1}n, or y∗ is
sampled from {0, 1}ℓ(n)\Imagen. B sets v′j = ⊥ and yj = y∗, and sends (urs = (y1 . . . yphbs(|x|)), π =
(ZHB.I, {v′i}i∈ZHB.I ,ZHB.π)) to A. B then outputs whatever A outputs. Observe that if y∗ is
sampled as HPRHF(x

∗) for a uniform x∗ ∈ {0, 1}n, then B exactly emulates Hybrid2,j , and if

y∗ is sampled from {0, 1}ℓ(n)\Imagen, then B exactly emulates Hybrid2,j−1. Thus, since B non-
uniformly fixed values that maximized A’s distinguishing probability, then B distinguishes between
these two distributions of y∗ with at least µ(|x|)

phbs(|x|) probability. Thus, B contradicts Lemma 7.9.

As we only need the values of vi, when i ∈ [ZHB.I], we rearrange our hybrid:

Hybrid4(x):

1. Let n = |x|.

2. For i ∈ [phbs(n)],

(a) Sample ri ∈ {0, 1} such that Pr[ri = 1] = γ′

where γ′ = 1− Pry←{0,1}ℓ(n) [∃z s.t. HPRHF(z) = y]

3. (ZHB.I,ZHB.π)← ZHB.Pγ(r, x) where r = r1 . . . rphbs(n).

55

4. Change: For i ∈ [phbs(n)], sample vi ← {0, 1}n and set yi = HPRHF(vi).

5. Change: For i ∈ ZHB.I,

(a) Change: If ri = 0, set v′i = vi.

(b) Change: If ri = 1, set v′i = ⊥.

6. Output (urs = (y1 . . . yphbs(n)), π = (ZHB.I, {v′i}i∈ZHB.I ,ZHB.π)).

Lemma 7.11. For all adversaries A and all x ∈ L,

|Pr [A(Hybrid3(x)) = 1]− Pr [A(Hybrid4(x)) = 1]| = 0

Proof. The hybrids are identically distributed.

We now exchange the exact density of HPRHF with its approximated density.

Hybrid5(x):

1. Let n = |x|.

2. For i ∈ [phbs(n)],

(a) Change: Sample ri ∈ {0, 1} such that Pr[ri = 1] = 1− Approxδ(1
n)

3. (ZHB.I,ZHB.π)← ZHB.Pγ(r, x) where r = r1 . . . rphbs(n).

4. For i ∈ [phbs(n)], sample vi ← {0, 1}n, and set yi = HPRHF(vi).

5. For i ∈ ZHB.I,

(a) If ri = 1, set v′i = ⊥
(b) If ri = 0, set v′i = vi.

6. Output (urs = (y1 . . . yphbs(n)), π = (ZHB.I, {v′i}i∈ZHB.I ,ZHB.π)).

Lemma 7.12. If HPRHF is a δ-Dense-PRHF for some Efficiently-Approximable constant δ ∈ (0, 1),
then for all adversaries A and all x ∈ L,

|Pr [A(Hybrid4(x)) = 1]− Pr [A(Hybrid5(x)) = 1]| ≤ negl(|x|)

Proof. Let D0,x be the distribution of r when r is sampled according to Hybrid4(x), and let D1,x

be the distribution of r when r is sampled according to Hybrid5(x). Since HPRHF is δ-Dense and
δ is Efficiently-Approximable, then for all n ∈ N

γ′ = 1− Pr
y←{0,1}ℓ(n)

[∃z s.t. HPRHF(z) = y] = (1− δ)± negl(n) = (1− Approxδ(1
n))± negl(n)

Thus, for each i, Pr[ri = 1] when sampled according to Hybrid4 is negligibly close to Pr[ri = 1]
when sampled according to Hybrid5. Therefore, since the ri’s are sampled independently, by
Lemma 3.5,

∆(D0,x, D1,x) ≤ phbs(n) · negl(|x|)

56

As the only difference between these two hybrids is that r is sampled either according to D0,x or
D1,x, then for all x ∈ L,

∆(Hybrid4(x),Hybrid5(x)) ≤ phbs(n) · negl(|x|)

Finally, we simulate the values of (ZHB.I, {ri}i∈I ,ZHB.π) using Simγ(x).

Hybrid6(x):

1. Let n = |x|.

2. Change: (ZHB.I, {ri}i∈ZHB.I ,ZHB.π)← ZHB.Simγ(x).

3. For i ∈ [phbs(n)], sample vi ← {0, 1}n, and set yi = HPRHF(vi).

4. For i ∈ ZHB.I,

(a) If ri = 1, set v′i = ⊥
(b) If ri = 0, set v′i = vi.

5. Output (urs = (y1 . . . yphbs(n)), π = (ZHB.I, {v′i}i∈ZHB.I ,ZHB.π)).

Lemma 7.13. If ZHB.Πγ satisfies statistical zero knowledge, then for all adversaries A and all
x ∈ L,

|Pr [A(Hybrid5(x)) = 1]− Pr [A(Hybrid6(x)) = 1]| ≤ negl(|x|)

Proof. Suppose for sake of contradiction that there exists an adversary A and an x ∈ L such that

|Pr [A(Hybrid5(x)) = 1]− Pr [A(Hybrid6(x)) = 1]| > negl(|x|)

We build an adversary B that breaks the statistical zero knowledge of ZHB.Πγ . B first receives
(ZHB.I, {ri}i∈ZHB.I ,ZHB.π) from its zero knowledge challenger. B samples ({yi}i∈[phbs(n)], {v

′
i}i∈ZHB.I)

as in Hybrid5 and Hybrid6, sends (urs = (y1 . . . yphbs(n)), π = (ZHB.I, {v′i}i∈ZHB.I ,ZHB.π)) to A,
and outputs whateverA outputs. Observe that if (ZHB.I, {ri}i∈ZHB.I ,ZHB.π)← Sim(x), then B ex-
actly emulates Hybrid6(x), and if (ZHB.I, {ri}i∈ZHB.I ,ZHB.π) is sampled such that r ← Genγ(1

n)
(with Approxγ(1

n) = 1−Approxδ(1n)) and (ZHB.I,ZHB.π)← ZHB.Pγ(r, x), then B exactly emulates
Hybrid5(x). Thus, B’s distinguishing advanatage is non-negligible, which breaks the statistical
zero knowledge of ZHB.Πγ .

We observe that our final hybrid is identical to our simulator. Thus, by combining our hybrid
indistinguishability lemmas, we get computational zero knowledge.

8 Separating P from NP ∩ coNP

As an application of our NIZK proof in the random oracle model, we show a separation of NP∩coNP
and P relative to a random oracle, assuming that UP ̸⊆ RP. Starting with a language L0 ∈
UP \ RP, we will construct a language L that relies on a NIZK proof with desired properties given
in Lemma 8.5. Such a language L has an efficient NP verifier and an efficient coNP verifier which
crucially use the NIZK verifier. However, L remains hard to solve in our modified construction due
to the non-adaptive zero-knowledge property of the NIZK proof.

57

Definition 8.1 (The class UP). A language L ⊆ {0, 1}∗ is in the complexity class UP if there is a
polynomial-time decidable relation RL ⊆ {0, 1}∗×{0, 1}∗ and a polynomial p(·), such that for every
x ∈ {0, 1}∗:

1. If x ∈ L, then there is a unique w ∈ {0, 1}∗ such that |w| ≤ p(|x|) and (x,w) ∈ RL.

2. If x /∈ L, then there is no w ∈ {0, 1}∗ such that |w| ≤ p(|x|) and (x,w) ∈ RL.

Lemma 8.2. If there exists an injective one-way function f : {0, 1}∗ → {0, 1}∗, then UP ̸⊆ RP.

Proof. Let L := {(y, i) : ∃x, f(x) = y ∧ xi = 1}. Then observe that L ∈ UP where the relation
verification is done by a polynomial time Turing machine that takes as input (y, i) and w and
outputs 1 if f(w) = y and wi = 1 and otherwise outputs 0. For every (y, i) ∈ L, injectivity
guarantees a unique x such that f(x) = y and xi = 1 and for every (y, i) /∈ L, there is no string x
satisfying the two conditions. Since f is one-way, there is no RP-decider for L or else this RP-decider
can be used to recover a preimage bit-by-bit.

Theorem 8.3. If UP ̸⊆ RP, then with probability 1 over the choice of a random oracle O, PO ̸=
NPO ∩ coNPO.

Proof of Theorem 8.3. The proof will follow directly from Lemma 8.4 and Lemma 8.6 which are
stated below.

To prove this theorem, we start with a language L0 ∈ UP\RP. Let R′L0 be a UP-relation for L0,
and p(·) be a corresponding polynomial bound on the witness length, as required by Definition 8.1.
Let RL0 ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial-time decidable relation such that (x,w) ∈ RL0 if and
only if (x,w) ∈ R′L0 and |w| ≤ p(|x|).

To obtain a language that has an NP and a coNP-verifier, we will construct a new language whose
statements also include a NIZK proof for membership in the language L0. Let Π′NIZK = (P ′(·),V ′(·))
be a NIZK proof system for membership in the language L0 in the random oracle model, according
to Lemma 8.5. Crucially, V ′(·) is deterministic (by Definition 3.10). We now construct our primary
language of interest that depends on the random oracle O:

LO :=

{
(x, i, π) : (∃w, (x,w) ∈ RL0 and wi = 1) ∧ (Π′NIZK.V ′O(x, π) = 1)

}
where i ∈ N is given by its standard binary representation.

Let RLO be a NP relation defined by the language LO. We first give a polynomial-time oracle

aided Turing machine V(·)NP that, when given access to a random oracle O, recognizes RLO with
probability 1 over the choice of O. We then give a polynomial-time oracle-aided Turing machine

V(·)coNP such that, when given access to a random oracle O, recognizes the complement language

LO :=

{
(x, i, π) : (∄w, (x,w) ∈ RL0 and wi = 1) ∨ (Π′NIZK.V ′O(x, π) = 0)

}
Lemma 8.4. PrO

[
LO ∈ NPO ∩ coNPO

]
= 1.

We will use the following intermediate lemma to prove this result.

Lemma 8.5 (Soundness Amplification of NIZK proofs in the Random Oracle Model). If for any
language L ∈ NP there exists a NIZK proof system ΠNIZK = (P(·),V(·)) in the random oracle model
with perfect completeness, statistical soundness, and computational zero-knowledge, then for any

58

language L ∈ NP, there exists a NIZK proof system Π′NIZK = (P ′(·),V ′(·)) with perfect completeness,
computational zero-knowledge, and the following soundness condition :

Pr
O

[
∀x /∈ L,∀π{0, 1}∗,V ′O(x, π) = 0

]
= 1.

We call such a property as almost-sure soundness.

Proof. For i ∈ N, let Xi(O) be an indicator random variable over a choice of random oracle O =
(O1,O2, . . .) such that Xi = 1 if there exists a string x /∈ L of length i and a proof π ∈ {0, 1}∗ such
that VO(x, π) = 1, and Xi = 0 otherwise. Let us refer to this as a bad proof. By the

(
1
ei
+ 2phbs(i)

2i/4

)
-

statistical soundness of ΠNIZK from Lemma 6.4 we know that PrO [Xi = 1] ≤ 1
ei

+ 2phbs(i)

2i/4
. As a

result, the following series converges∑
n∈N

Pr[Xn = 1] =
∑
i∈N

(
1

ei
+

2phbs(i)

2i/4

)
≤
∑
i∈N

1

i2
<∞.

Now, by applying BC1 (Lemma 3.6), we know that the number of input lengths for which bad
proofs exists are only finitely many. In other words. there exists some constant n0 ∈ N such that
for all i > n0, Xi = 0.

For Π′NIZK, the prover algorithm P ′(·) remains identical as P(·). Thus, the completeness and
zero knowledge remains unaffected. We give the following modified polynomial-time verification
algorithm as follows:

V ′(x, π) :

1. If |x| ≤ n0, brute force check if x ∈ L. If yes, then accept, otherwise reject.

2. Else return V(x, π).

Note that V ′ is an efficient algorithm because n0 is a fixed constant. Thus, V ′ never accepts a
wrong proof when the length of the statement is at-most n0. When |x| > n0, the analysis above
shows that PrO[Xi = 1] = 0, hence we get the desired result.

Proof of Lemma 8.4. Let RLO be a NP relation defined by the language LO. In other words, if
(x, i, π) ∈ LO, then there exists a witness w ∈ {0, 1}∗ such that ((x, i, π), w) ∈ RLO . From here on
wards, for any string w ∈ {0, 1}∗, let wi denote the ith bit of w and if i > |w|, we use the convention
that wi = 0. We now give a polynomial-time oracle aided Turing machine V(·)NP that, when given
access to a random oracle O, recognizes RLO with probability 1 over the choice of O.

VONP((x, i, π), w):

1. If (x,w) ∈ RL0 and wi = 1 and Π′NIZK.V ′O(x, π) = 1, then output 1.

2. Else, output 0.

Observe that for any random oracle O, Π′NIZK.VO has polynomial runtime in the input length, so
VONP has polynomial runtime as well. There are two cases to consider:

1. For any random oracle O, for any (x, i, π) ∈ LO, by definition of LO, there exists a witness w∗

such that (x,w∗) ∈ RL0 and w∗i = 1, and ΠNIZK′ .V ′O(x, π) = 1. Therefore, this witness w∗ for

59

x is also a witness for the statement (x, i, π). Given this witness w∗, VONP((x, i, π), w∗) = 1.
Since this holds for any random oracle O, we have, for the same polynomial p(·) defined
above, the following probability statement:

Pr
O

[
∀(x, i, π) ∈ LO,∃w ∈ {0, 1}∗,VONP((x, i, π), w) = 1

]
= 1

2. For any random oracle O, for (x, i, π) /∈ LO, we have (x, i, π) ∈ LO.

• If x ̸∈ L0, then (x,w) /∈ RL0 for all w ∈ {0, 1}∗, so VONP((x, i, π), w∗) = 0 for all
w ∈ {0, 1}∗.

• If x ∈ L0, then there exists a unique witness w∗ for x. This w∗ acts as the witness for
the statement (x, i, π)

– If w∗i = 0, then VONP((x, i, π), w∗) = 0.

– Otherwise, if w∗i = 1, the definition of the complement language LO implies that
ΠNIZK′ .V ′O(x, π) = 0, so VONP((x, i, π), w∗) = 0.

Since the above analysis holds for any random oracle O, we have, for the same polynomial
p(·) defined above, the following probability statement:

Pr
O

[
∀(x, i, π) /∈ LO,∀w ∈ {0, 1}∗,VONP((x, i, π), w) = 0

]
= 1

VOcoNP((x, i, π), w):

1. If either Π′NIZK.V ′O(x, π) = 0 or (Π′NIZK.V ′O(x, π) = 1 ∧ (x,w) ∈ RL0 ∧ wi = 0), then
output 1.

2. Else, output 0.

We now show the correctness of the coNP verifier. First, we recall the almost-sure soundness
property of our NIZK protocol Π′NIZK for the language L0 from Lemma 8.5:

Pr
O

[
∀x /∈ L0, ∀π ∈ {0, 1}∗,Π′NIZK.V ′O(x, π) = 0

]
= 1.

1. For any random oracle O, consider any (x, i, π) ∈ LO.

(a) If x /∈ L0, then for all strings w ∈ {0, 1}∗, (x,w) /∈ RL0 .

Combining this observation with the almost-sure property of Π′NIZK for language L0 gives
the following probability statement:

Pr
O

[
∀x /∈ L0,∀i ∈ {0, 1}∗, ∀π ∈ {0, 1}∗,VOcoNP((x, i, π), w) = 1

]
= 1.

(b) Now consider any x ∈ L0. Then there exists a unique witness w∗ such that (x,w∗) ∈ RL0
which is also the witness for the statement (x, i, π).

i. If Π′NIZK.V ′O(x, π) = 0, then VOcoNP((x, i, π), w∗) = 1.

60

ii. If Π′NIZK.V ′O(x, π) = 1, then it must be that w∗i = 0 by the definition of LO. Then
w∗ serves as witness for (x, i, π) since

Π′NIZK.V ′O(x, π) = 1 ∧ (x,w∗) ∈ RL0 ∧ w∗i = 0,

so VOcoNP((x, i, π), w∗) = 1.

Therefore, we have the following probability statement:

Pr
O

[
∀(x, i, π) ∈ LO,∃w ∈ {0, 1}∗,VOcoNP((x, i, π), w) = 1

]
= 1.

2. For any random oracle O, consider any (x, i, π) /∈ LO which is a condition equivalent to
(x, i, π) ∈ LO. Then there exists a unique witness w∗ such that (x,w∗) ∈ RL0 and w∗i = 1
and ΠNIZK′ .V ′O(x, π) = 1 by definition of LO. Since there is no other witness w for x, by

the construction of V(·)coNP, we have VOcoNP((x, i, π), w∗) = 0. Since this analysis holds for any
random oracle O, we have the following probability statement:

Pr
O

[
∀(x, i, π) /∈ LO,∀w ∈ {0, 1}∗,VOcoNP((x, i, π), w) = 0

]
= 1.

Lemma 8.6. Assuming UP ̸⊆ RP, PrO
[
LO /∈ PO

]
= 1.

To show the desired statement, we will use the following Lemma from [BG81].

Lemma 8.7 (Lemma 1 in [BG81]). Let L(·) be an oracle-dependent language such that any bit of
the oracle (an infinite binary sequence) only affects the membership of finitely many statements

in LO. Let D(·) = {D(·)
1 , D

(·)
2 , . . .} be the set of all possible polynomial-time oracle aided Turing

Machines. If there does not exist any k ∈ N such that

Pr
O

[(
∀(x, i, π) ∈ LO, DOk (x, i, π) = 1

)
∧
(
∀(x, i, π) /∈ LO, DOk (x, i, π) = 0

)]
= 1

then

Pr
O

[
∃k ∈ N such that

(
∀(x, i, π) ∈ LO, DOk (x, i, π) = 1

)
∧
(
∀(x, i, π) /∈ LO, DOk (x, i, π) = 0

)]
= 0.

We now provide an overview on how we will use Lemma 8.7 to prove Lemma 8.6. Recall our
primary language of interest:

LO :=

{
(x, i, π) : (∃w, (x,w) ∈ RL0 and wi = 1) ∧ (Π′NIZK.VO(x, π) = 1)

}
.

Note that the only way LO is dependent on the random oracle is via the NIZK verifier Π′NIZK.VO(x, π).
This means that there always exists an ∃n ∈ N, such that changing a bit of O influences the mem-
bership of at-most 2n instance of LO which satisfies the condition required to use Lemma 8.7.

Let D(·) = {D(·)
1 , D

(·)
2 , . . .} be the set of all possible polynomial-time oracle aided Turing Ma-

chines. Now observe the following definitional equivalence: For any oracle O, the definition of PO

gives that an oracle-dependent language LO ∈ PO if and only if there exists k ∈ N such that two

61

conditions hold: (1) for all statements z ∈ LO, DOk (z) = 1 and (2) for all statements z ̸∈ LO,
DOk (z) = 0. This definitional equivalence implies that, for any constant ε > 0:

Pr
O

[
LO ∈ PO

]
> ε

if and only if

Pr
O

[
∃k ∈ N s.t. (∀z ∈ LO, DOk (z) = 1) ∧ (∀z /∈ LO, DOk (z) = 0)

]
> ε.

Using the contrapositive of Lemma 8.7, the latter probability statement above implies that there
exists a k ∈ N such that

Pr
O

[(
∀(x, i, π) ∈ LO, DOk (x, i, π) = 1

)
∧
(
∀(x, i, π) /∈ LO, DOk (x, i, π) = 0

)]
= 1.

In other words, if we assume that PrO
[
LO ∈ PO

]
> ε, then in fact we have a particular polynomial-

time oracle-aided Turing machine D
(·)
k which is a decider for L(·) with probability 1 over the choice

of a random oracle O.
For statements x ∈ L0, we observe that the oracle-aided TM D

(·)
k , when given access to a

random oracle O, is also able to decide, using its input (x, i, π), whether the ith bit of the unique

witness w to x is 1 or 0. Therefore, polynomially many invocations of the oracle-aided TM D
(·)
k

will allow us to recover the entire witness w. Using this oracle-aided TM D
(·)
k , we will construct a

RP decider for L0 to contradict the assumption that L0 ∈ UP \ RP.
We will now build an RP decider that, instead of being given access to a random oracle and

a proof string, simulates both the proof string and the answers to random oracle queries and
recovers the ith bit of the unique witness for any statement x ∈ L0. This ability to correctly (with
overwhelming probability) simulate the proof string and the random oracle answers follows from
the zero-knowledge property of the NIZK in the random oracle model for the language L0. We now
recall this property in verbatim: There exists a stateful PPT simulator Sim = (SimProof,SimRO)
and a negligible function εzk(·) such that for all x ∈ L and all polynomial-query-bounded oracle-aided
Turing machines A(·) (cf. Def. 3.1),∣∣∣∣Pr [AO(·)(x, π) = 1 : O ← RO, π ← PO(·)(x)

]
− Pr

[
ASimRO(st,·)(x, π∗) = 1 : (st, π∗)← SimProof(x)

] ∣∣∣∣ ≤ εzk(|x|)

where the probability is over the choice of O and the randomness of P , Sim, and A.
We can therefore build another RP machine that, given an input x, first attempts to recover a

witness w for x, and then checks if (x,w) ∈ RL0 which is an efficiently verifiable relation. For all
x ∈ L0, the machine’s correctness will hold by the zero-knowledge property and for all x /∈ L0, the
machine’s correctness will be perfectly guaranteed by the fact that no witness exists.

We now proceed with the formal proof of Lemma 8.6.

Proof of Lemma 8.6. Assume for sake of contradiction that there exists some constant ε > 0 such
that PrO

[
LO ∈ PO

]
> ε. Then by Lemma 8.7, there exists a polynomial-time oracle-aided Turing

machine D(·) such that

Pr
O

[(
∀(x, i, π) ∈ LO, DO(x, i, π) = 1

)
∧
(
∀(x, i, π) /∈ LO, DO(x, i, π) = 0

)]
= 1.

For all i ∈ N, we define the polynomial-time oracle-aided Turing machine D
(·)
(i) as follows:

62

DO(i)(x, π):

1. Output DO(x, i, π).

The above machine is defined for syntactical purposes in the proof. Now we define the probabilistic
machine D̃ as follows:

D̃(x, i):

1. (st, π)←− SimProof(x).

2. Output DSimRO(st,·)(x, i, π).

Note that in the above definition, we do not run DO(i) (we cannot hardcode infinitely many TM

descriptions, over all i ∈ N, into D̃).
Finally, we define another probabilistic Turing machine D∗ as follows. Let p be a polynomial

that bounds the length of witnesses given by the definition UP and the fact that L0 ∈ UP.

D∗(x):

1. For i ∈ [p(|x|)].

(a) If D̃(x, i) = 1, set wi ←− 1.

(b) Else, set wi ←− 0.

2. If w (or any prefix of w) satisfies (x,w) ∈ RL0 , then output 1. Else, output 0.

We claim that D∗ is an RP decider for L0.

1. Observe that if x /∈ L0, then there does not exist a witness w for x so D∗(x) will always
output 0 (by Step 2 of D∗).

2. Now consider any x ∈ L0. As a high-level overview, we will argue that for any fixed value
of i ∈ [p(|x|)], Step 1 of D∗ will recover wi with all but negligible probability in the length
of x. Then we will apply a union bound to show that the probability that wi for all indices
i ∈ [p(|x|)] are all correctly recovered happens with all but negligible probability.

Formally, for any fixed x ∈ L0 and for any fixed index i ∈ [p(|x|)], let w denote the unique
witness for x such that (x,w) ∈ RL0 . Then over the coins of the Sim = (SimProof, SimRO)
and the coins of the machine, we have

Pr
[
D̃(x, i) = 1 : (x ∈ L0 ∧ wi = 1)

]
= Pr

[
DSimRO(st,·)(x, i, π) = 1 : (x ∈ L0 ∧ wi = 1), (st, π)←− SimProof(x)

]
= Pr

[
D

SimRO(st,·)
(i) (x, π) = 1 : (x ∈ L0 ∧ wi = 1), (st, π)←− SimProof(x)

]
(1)

where all three equivalences are by construction of the machines present in the probability
statements.

63

Then, by the zero-knowledge property of the NIZK in the random oracle model for the
language L0, we have the existence of a negligible function ε such that∣∣∣∣∣ Pr

coins of Sim

[
D

SimRO(st,·)
(i) (x, π) = 1 : (x ∈ L0 ∧ wi = 1), (st, π)←− SimProof(x)

]
− Pr
O

[
DO(i)(x, π) = 1 : (x ∈ L0 ∧ wi = 1), π ←− PO(x)

] ∣∣∣∣∣ ≤ ε(|x|). (2)

Then observe that the probability statement

Pr
O

[
∀(x, i, π) ∈ LO, DO(x, i, π) = 1

]
= 1

along with the perfect completeness of the NIZK protocol implies:

Pr
O

[
DO(x, i, π) = 1 : (x ∈ L0 ∧ wi = 1), π ←− PO(x)

]
= 1.

Now, by the definition of the polynomial-time oracle-aided machine D
(·)
(i), we have,

Pr
O

[
DO(i)(x, π) = 1 : (x ∈ L0 ∧ wi = 1), π ←− PO(x)

]
= 1. (3)

Together, Equation 2 and Equation 3 imply

Pr
coins of Sim

[
D

SimRO(st,·)
(i) (x, π) = 1 : (x ∈ L0 ∧ wi = 1), (st, π)←− SimProof(x)

]
≥ 1− ε(|x|).

(4)

By symmetry, we also have

Pr
coins of Sim

[
D

SimRO(st,·)
(i) (x, π) = 0 : (x ∈ L0 ∧ wi = 0), (st, π)←− SimProof(x)

]
≥ 1− ε(|x|).

(5)

Therefore, by combining Equation 1, Equation 4, and Equation 5, we have that for any
x ∈ L0, for any fixed i ∈ [p(|x|)], for any bit b ∈ {0, 1}:

Pr
coins of Sim

[
D̃(x, i) = b : (x ∈ L0 ∧ wi = 1− b),

]
≤ ε(|x|). (6)

Then, by a union bound over all values of i ∈ [p(|x|)],

Pr
coins of Sim

[
∃i ∈ [p(|x|)] , D̃(x, i) = b : (x ∈ L0 ∧ wi = 1− b)

]
≤ p(|x|) · ε(|x|) (7)

Note that p(|x|) · ε(|x|) is negligible in |x|. Therefore, we conclude that for all x ∈ L0, the
first step of D∗ correctly recovers the witness w with probability at least 1 − p(|x|)ε(|x|)
probability.

The two cases imply that D∗ is an RP decider for the language L0, contradicting the assumption
that L0 ∈ UP \ RP. Therefore, it must be that

Pr
O

[
LO ∈ PO

]
= 0.

This gives us the desired result.

64

8.1 Explicit “Unstructured” Candidates for Hard Languages in NP ∩ coNP

While the conclusion of Theorem 8.3 is existential, the proof is actually constructive in the sense
that the code of the NP-verifier and the coNP-verifier in the conclusion can be efficiently constructed
from the code of the UP-verifier or injective one-way function in the assumption.

This yields an efficient compiler that constructs candidate hard languages in NP ∩ coNP from
cryptographic hash functions. The compiler uses the random oracle heuristic [BR93], where a
construction is designed and analyzed by assuming the availability of a random function, and the
latter is heuristically instantiated by using a concrete cryptographic hash function. While not sound
in general [CGH04], the counterexamples are typically contrived.

More concretely, the proof of Theorem 8.3 implies the following explicit construction of an
“unstructured” language L which is heuristically conjectured to be in NP ∩ coNP \ P. Start by
taking any language L0 in UP \ RP. Such a language is implied by the existence of an injective
one-way function, which in turn can be heuristically constructed by instantiating a length-tripling
random oracle O0 : {0, 1}n → {0, 1}3n. (Note that such a random O0 will be both one-way and
injective with overwhelming probability.) We now apply the construction of Theorem 8.3 to obtain
the separating language LO, with efficient NPO and coNPO verifiers, which we make explicit by
instantiating the random oracle O with a cryptographic hash function.

Unlike most applications of random oracles in cryptography and complexity theory, including
the recent construction of a search problem in BQP\BPP [YZ22], here we make a non-black-box use
of the oracle implementation. This is also the case for some previous cryptographic applications of
the random oracle methodology, e.g., in the context of incrementally verifiable computation [Val08,
CCS22].

9 Acknowledgements

We thank the anonymous STOC reviewers, Nir Bitansky, Ran Canetti, Itai Dinur, Russell Im-
pagliazzo, Xiao Liang, Alex Lombardi, Raghu Meka, Moni Naor, Ron Rothblum, Avishay Tal,
and Vinod Vaikuntanathan for helpful comments, pointers, and suggestions. This research was
supported in part from a Simons Investigator Award, DARPA SIEVE award, NTT Research, NSF
Frontier Award 1413955, BSF grant 2018393, a Xerox Faculty Research Award, a Google Faculty
Research Award, and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through Award HR00112020024.
Y. Ishai was additionally supported by ERC Project NTSC (742754), and ISF grant 2774/20. E.
Kushilevitz was additionally supported by ISF grant 2774/20.

65

10 References

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian Rech-
berger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel structures for
MPC, and more. In ESORICS 2019, Part II, pages 151–171, 2019.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. MiMC: Efficient encryption and cryptographic hashing with minimal mul-
tiplicative complexity. In ASIACRYPT 2016, Part I, pages 191–219, 2016.

[Bar] Boaz Barak. Why do we care about random oracles? https://www.boazbarak.org/

Courses/avg_case_depth.pdf. Accessed: 2023-12-27.

[BDK20] Marshall Ball, Dana Dachman-Soled, and Mukul Kulkarni. New techniques for zero-
knowledge: Leveraging inefficient provers to reduce assumptions, interaction, and
trust. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptol-
ogy - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume
12172 of Lecture Notes in Computer Science, pages 674–703. Springer, 2020.

[BDV21] Nir Bitansky, Akshay Degwekar, and Vinod Vaikuntanathan. Structure versus hardness
through the obfuscation lens. SIAM J. Comput., 50(1):98–144, 2021.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In 20th Annual ACM Symposium on Theory of
Computing, pages 103–112, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[BG81] Charles H Bennett and John Gill. Relative to a random oracle A, PA ̸= NPA ̸= co-NPA

with probability 1. SIAM Journal on Computing, 10(1):96–113, 1981.

[BI87] Manuel Blum and Russell Impagliazzo. Generic oracles and oracle classes (extended
abstract). In FOCS 1987, pages 118–126, 1987.

[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguishability
from indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, volume 9015 of Lecture
Notes in Computer Science, pages 401–427. Springer, 2015.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos
- trapdoor permutations from indistinguishability obfuscation. In Eyal Kushilevitz and
Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptography Conference, Part I,
volume 9562 of Lecture Notes in Computer Science, pages 474–502, Tel Aviv, Israel,
January 10–13, 2016. Springer, Heidelberg, Germany.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,
Ravi S. Sandhu, and Victoria Ashby, editors, CCS 1993, pages 62–73, 1993.

[Bra79] Gilles Brassard. Relativized cryptography. In FOCS 1979, pages 383–391, 1979.

[BY96] Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive zero-knowledge
based on any trapdoor permutation. J. Cryptol., 9(3):149–166, 1996.

66

https://www.boazbarak.org/Courses/avg_case_depth.pdf
https://www.boazbarak.org/Courses/avg_case_depth.pdf

[CCG+94] Richard Chang, Benny Chor, Oded Goldreich, Juris Hartmanis, Johan H̊astad, Desh
Ranjan, and Pankaj Rohatgi. The random oracle hypothesis is false. J. Comput. Syst.
Sci., 49(1):24–39, 1994.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
1082–1090. ACM, 2019.

[CCS22] Megan Chen, Alessandro Chiesa, and Nicholas Spooner. On succinct non-interactive
arguments in relativized worlds. In EUROCRYPT 2022, Part II, pages 336–366, 2022.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, re-
visited. J. ACM, 51(4):557–594, 2004.

[CL18] Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, revisited. In
Amos Beimel and Stefan Dziembowski, editors, Theory of Cryptography - 16th Interna-
tional Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceedings, Part
I, volume 11239 of Lecture Notes in Computer Science, pages 476–506. Springer, 2018.

[Con92] Anne Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.

[DGK17] Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Ran-
dom oracles with auxiliary input, revisited. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part II, volume 10211
of Lecture Notes in Computer Science, pages 473–495, Paris, France, April 30 – May 4,
2017. Springer, Heidelberg, Germany.

[DH12] Frank Den Hollander. Probability theory: the coupling method. https://

mathematicaster.org/teaching/lcs22/hollander_coupling.pdf, 2012.

[DK18] Apoorvaa Deshpande and Yael Kalai. Proofs of ignorance and applications to 2-message
witness hiding. Cryptology ePrint Archive, Paper 2018/896, 2018. https://eprint.

iacr.org/2018/896.

[DN07] Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J. Comput.,
36(6):1513–1543, 2007.

[ESY84] Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise problems
with applications to public-key cryptography. Inf. Control., 61(2):159–173, 1984.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st Annual Symposium
on Foundations of Computer Science, pages 308–317, St. Louis, MO, USA, October 22–
24, 1990. IEEE Computer Society Press.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology
- CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

67

https://mathematicaster.org/teaching/lcs22/hollander_coupling.pdf
https://mathematicaster.org/teaching/lcs22/hollander_coupling.pdf
https://eprint.iacr.org/2018/896
https://eprint.iacr.org/2018/896

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology –
CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa
Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In 22nd Annual ACM Symposium on Theory of Computing, pages 416–426, Baltimore,
MD, USA, May 14–16, 1990. ACM Press.

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the effi-
ciency of generic cryptographic constructions. SIAM journal on Computing, 35(1):217–
246, 2005.

[GIK+23] Riddhi Ghosal, Yuval Ishai, Alexis Korb, Eyal Kushilevitz, Paul Lou, and Amit Sahai.
Hard languages in NP ∩ conp and NIZK proofs from unstructured hardness. In Barna
Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages
1243–1256. ACM, 2023.

[GLN11] Oded Goldreich, Leonid A. Levin, and Noam Nisan. On constructing 1-1 one-way
functions. In Oded Goldreich, editor, Studies in Complexity and Cryptography., volume
6650 of Lecture Notes in Computer Science, pages 13–25. Springer, 2011.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques
for NIZK. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume
4117 of Lecture Notes in Computer Science, pages 97–111, Santa Barbara, CA, USA,
August 20–24, 2006. Springer, Heidelberg, Germany.

[HI85] Juris Hartmanis and Neil Immerman. On complete problems for np\capconp. In Wil-
fried Brauer, editor, Automata, Languages and Programming, 12th Colloquium, Naf-
plion, Greece, July 15-19, 1985, Proceedings, volume 194 of Lecture Notes in Computer
Science, pages 250–259. Springer, 1985.

[HLR07] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational en-
tropy, or toward separating pseudoentropy from compressibility. In Moni Naor, editor,
Advances in Cryptology – EUROCRYPT 2007, volume 4515 of Lecture Notes in Com-
puter Science, pages 169–186, Barcelona, Spain, May 20–24, 2007. Springer, Heidelberg,
Germany.

[HNY17] Pavel Hubácek, Moni Naor, and Eylon Yogev. The journey from NP to TFNP hard-
ness. In Christos H. Papadimitriou, editor, ITCS 2017: 8th Innovations in Theoretical
Computer Science Conference, volume 4266, pages 60:1–60:21, Berkeley, CA, USA,
January 9–11, 2017. LIPIcs.

[IKOS10] Yuval Ishai, Abishek Kumarasubramanian, Claudio Orlandi, and Amit Sahai. On in-
vertible sampling and adaptive security. In Masayuki Abe, editor, Advances in Cryp-
tology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages
466–482, Singapore, December 5–9, 2010. Springer, Heidelberg, Germany.

[IN88] Russell Impagliazzo and Moni Naor. Decision trees and downward closures. In Pro-
ceedings: Third Annual Structure in Complexity Theory Conference, Georgetown Uni-

68

versity, Washington, D. C., USA, June 14-17, 1988, pages 29–38. IEEE Computer
Society, 1988.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In David S. Johnson, editor, Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washington, USA,
pages 44–61. ACM, 1989.

[IV19] Vincenzo Iovino and Ivan Visconti. Non-interactive zero knowledge proofs in the random
oracle model. In Claude Carlet, Sylvain Guilley, Abderrahmane Nitaj, and El Mamoun
Souidi, editors, Codes, Cryptology and Information Security - Third International Con-
ference, C2SI 2019, Rabat, Morocco, April 22-24, 2019, Proceedings - In Honor of Said
El Hajji, volume 11445 of Lecture Notes in Computer Science, pages 118–141. Springer,
2019.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Frank Thomson Leighton and Peter W. Shor,
editors, Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of
Computing, El Paso, Texas, USA, May 4-6, 1997, pages 220–229. ACM, 1997.

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-
exponential DDH. In Anne Canteaut and François-Xavier Standaert, editors, Advances
in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part I, volume 12696 of Lecture Notes in Computer Science, pages
3–32. Springer, 2021.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum.
Distinguisher-dependent simulation in two rounds and its applications. In Jonathan
Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part II,
volume 10402 of Lecture Notes in Computer Science, pages 158–189, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[KZ20] Benjamin Kuykendall and Mark Zhandry. Towards non-interactive witness hiding. In
Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptography
Conference, Part I, volume 12550 of Lecture Notes in Computer Science, pages 627–656,
Durham, NC, USA, November 16–19, 2020. Springer, Heidelberg, Germany.

[Lud95] Walter Ludwig. A subexponential randomized algorithm for the simple stochastic game
problem. Inf. Comput., 117(1):151–155, 1995.

[MV15] Eric Miles and Emanuele Viola. Substitution-permutation networks, pseudorandom
functions, and natural proofs. J. ACM, 62(6):46:1–46:29, 2015.

[Nao96] Moni Naor. Evaluation may be easier than generation (extended abstract). In Gary L.
Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the The-
ory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 74–83.
ACM, 1996.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

69

[Ps05] Rafael Pass and Abhi shelat. Unconditional characterizations of non-interactive zero-
knowledge. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science, pages 118–134, Santa Barbara, CA, USA,
August 14–18, 2005. Springer, Heidelberg, Germany.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology – CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer
Science, pages 89–114, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Hei-
delberg, Germany.

[RSS21] Alon Rosen, Gil Segev, and Ido Shahaf. Can PPAD hardness be based on standard
cryptographic assumptions? J. Cryptol., 34(1):8, 2021.

[RST15] Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth hi-
erarchy theorem for boolean circuits. In Venkatesan Guruswami, editor, IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, pages 1030–1048. IEEE Computer Society, 2015.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Moni Naor, editor, Theory of Cryptography, First Theory
of Cryptography Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004,
Proceedings, volume 2951 of Lecture Notes in Computer Science, pages 1–20. Springer,
2004.

[Rud88] Steven Rudich. Limits on the provable consequences of one-way functions. PhD thesis,
UC Berkeley, 1988.

[Sip82] Michael Sipser. On relativization and the existence of complete sets. In Mogens Nielsen
and Erik Meineche Schmidt, editors, Automata, Languages and Programming, 9th Col-
loquium, Aarhus, Denmark, July 12-16, 1982, Proceedings, volume 140 of Lecture Notes
in Computer Science, pages 523–531. Springer, 1982.

[Sta] Reasons to believe P ̸= NP ∩ coNP (or not). https://cstheory.stackexchange.

com/questions/20021/reasons-to-believe-p-ne-np-cap-conp-or-not. Accessed:
2023-03-19.

[Tao] Terry Tao. The dichotomy between structure and randomness. https://www.math.

ucla.edu/~tao/preprints/Slides/icmslides2.pdf. Accessed: 2023-12-27.

[Tar89] Gábor Tardos. Query complexity, or why is it difficult to seperate NPA ∩ coNPA from
PA by random oracles A? Comb., 9(4):385–392, 1989.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, Theory of Cryptography, Fifth Theory
of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008, volume
4948 of Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

[YZ22] Takashi Yamakawa and Mark Zhandry. Verifiable quantum advantage without struc-
ture. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2022, Denver, CO, USA, October 31 - November 3, 2022, pages 69–74. IEEE, 2022.

70

https://cstheory.stackexchange.com/questions/20021/reasons-to-believe-p-ne-np-cap-conp-or-not
https://cstheory.stackexchange.com/questions/20021/reasons-to-believe-p-ne-np-cap-conp-or-not
https://www.math.ucla.edu/~tao/preprints/Slides/icmslides2.pdf
https://www.math.ucla.edu/~tao/preprints/Slides/icmslides2.pdf

A Preliminaries Continued

Lemma A.1 (Maximal Coupling [DH12]). Let A1, . . . , An and B1, . . . , Bn be two sequence of in-
dependent random variables on probability spaces Ω1, . . . ,Ωn respectively. The maximal coupling
theorem states that there exists random variables A′ = (A′1, . . . , A

′
n) and B′ = (B′1, . . . , B

′
n) on the

product probability space Ω1 × . . .× Ωn such that,

• A′1, . . . , A
′
n are independent random variables on the probability space Ω1, . . .Ωn respectively.

The same holds for B′1, . . . , B
′
n.

• A = (A1, . . . , An) and A′ (similarly B = (B1, . . . , Bn) and B′) are identically distributed.

• ∀i ∈ [n], ∆(Ai, Bi) = Pr[A′i ̸= B′i] and ∆(A,B) = Pr[A′ ̸= B′].

Lemma A.2. If A = (A1, . . . , An) and B = (B1, . . . , Bn) are sequences of independent random
variables such that

∀i ∈ [n], ∆(Ai, Bi) ≤ ε

then
∆((A1, . . . , An), (B1, . . . , Bn)) ≤ nϵ

Proof. Using Lemma A.1, we have,

∆(A,B) = Pr[A′ ̸= B′]

= Pr[A′1 ̸= B′1 or . . . or A′n ̸= B′n] Follows from the first point of Lemma A.1

≤
∑
i

Pr[A′i ̸= B′i] Union Bound

=
∑
i

∆(Ai, Bi) Follows from third point of Lemma A.1

B A Random Oracle is a
(
1− 1

e

)
-Dense-PRHF

In this section, we show that a length-preserving random oracle satisfies all of the properties of a(
1− 1

e

)
-Dense-PRHF with probability 1.

First, a random oracle satisfies the pseudorandomness requirement of PRHF.

Lemma B.1 (Theorem 6 of [DGK17, GGKT05]). For all polynomial-query-bounded oracle Turing
machines A, and all n ∈ N∣∣∣∣ Pr

On,x←{0,1}n

[
AOn (O(x))

]
− Pr
On,y←{0,1}n

[
AOn (y)

]∣∣∣∣ ≤ negl(n)

where On is a random length-preserving oracle.

Secondly, a random oracle satisfies the pre-image pseudorandomness property.

Lemma B.2. For any polynomially-query-bounded adversary A making at-most q = poly(n) oracle
queries. ∣∣∣∣ Pr

(x,y)←D0(1n),On

[AOn(x, y) = 1]− Pr
(x,y)←D1(1n),On

[AOn(x, y) = 1]

∣∣∣∣ ≤ negl(n),

where On : {0, 1}n → {0, 1}n, is chosen uniformly at random and

71

D0(1
n):

1. x← {0, 1}n

2. y = On(x)

3. Output (x, y)

D1(1
n):

1. y ← Imagen where Imagen = {y ∈ {0, 1}n : ∃x ∈ {0, 1}n, y = On(x)}

2. x← PreImagen(y
∗) where PreImagen(y) = {x ∈ {0, 1}n : On(x) = y}

3. Output (x, y)

Proof. Our proof uses a sequence of hybrids. Intuitively, we would like to exploit the fact that an
adversary only gets polynomially many oracle queries.

Assume wlog that A makes oracle queries only after it receives (x, y). This works because one
can design the experiment to out the pair (x, y) as soon as A makes the first oracle query.

Hybrid H0: This is the case when A interacts with D0.

1. x← {0, 1}n

2. y = On(x)

3. Send (x, y) to A

Upon Oracle query a to On:

• Return On(a)

Hybrid H1: Remains same as Hybrid H0 for sampling (x, y) except we sample y at random
from the co-domain.

1. x← {0, 1}n

2. y ← {0, 1}n

3. Send (x, y) to A

Upon Oracle query a to On:

1. If a == x then return y

2. Else return On(a).

Note that hybrids H0 and H1 are identically distributed over the choice of the random oracle.
Hence, ∣∣∣∣ Pr

(x,y)←D0(1n),On

[AOn
H0

(x, y) = 1]− Pr
(x,y)←D0(1n),On

[AOn
H1

(x, y) = 1]

∣∣∣∣ = 0.

Hybrid H2: Here we sample y from the image set of On instead of the entire codomain.

72

1. y ← Imagen

2. x← {0, 1}n

3. Send (x, y) to A

Upon Oracle query a to On:

1. If a == x then return y

2. Else return On(a).

Let Y be a random variable corresponding to the sampling from the image set. Then the
probability that a fixed y is chosen over the randomness of the oracle is,

Pr
Y,On

[Y = y] = Pr
Y
[Y = y|y ∈ Imagen] PrOn

[y ∈ Imagen].

Now, PrOn [y ∈ Imagen]=PrOn [∃xs.t.On(x) = y] = 1− 1
e . Thus

Thus,

Pr
Y,On

[Y = y] =
1

Imagen

(
1− 1

e

)
.

Using Lemma B.3 we have that for all but a negligible fraction of the random oracle, |Imagen| ∈(
(1− e−1)2n − negl(n), (1− e−1)2n + negl(n)

)
. Therefore,

| Pr
Y,On

[Y = y]− 1

2n
| ≤ negl(n).

Since the sampling of x and the other oracle query responses given a fixed sampled y is identical
in both the hybrids, and that the probability of sampling a y in Hybrid H1 was 2−n, we have that∣∣∣∣ Pr

(x,y)←D0(1n),On

[AOn
H1

(x, y) = 1]− Pr
(x,y)←D0(1n),On

[AOn
H2

(x, y) = 1]

∣∣∣∣ ≤ negl(n).

Hybrid H3: Here we we sample x as a random preimage of y and do not program the random
oracle.

1. y ← Imagen

2. x← Preimagen(y)

3. Send (x, y) to A

Upon Oracle query a to On:

1. return On(a).

The view of the adversary in H2 and H3 is identical. Thus,∣∣∣∣ Pr
(x,y)←D0(1n),On

[AOn
H2

(x, y) = 1]− Pr
(x,y)←D1(1n),On

[AOn
H3

(x, y) = 1]

∣∣∣∣ = 0.

Combining the above sequence of equations gives us the desired result:∣∣∣∣ Pr
(x,y)←D0(1n),On

[AOn(x, y) = 1]− Pr
(x,y)←D1(1n),On

[AOn(x, y) = 1]

∣∣∣∣ ≤ negl(n).

73

Finally, a random oracle, when interpreted as a random function from n bits to n bits, is
(
1− 1

e

)
dense.

Lemma B.3. There exist negligible functions εR, εdense such that for all n ∈ N,

Pr
On

[
pOn ∈ [(1− e−1)− εdense(n), (1− e−1) + εdense(n)]

]
≥ 1− εR(n)

where pOn = Pry←{0,1}n [∃x ∈ {0, 1}n s.t. On(x) = y], and On : {0, 1}n → {0, 1}n.

Proof. Let n ∈ N, and let yi be the ith value in {0, 1}n. For i ∈ [2n], we define random variable Yi
over the choice of O ← ROSn by

Yi =

{
1 if ∄xi ∈ {0, 1}n such that O(xi) = yi

0 else

Let Y =
∑2n

i=1 Yi. Now, by linearity of expectation,

E[Y] =
2n∑
i=1

E[Yi] =
2n∑
i=1

(
1− 1

2n

)2n

= 2n ·
(
1− 1

2n

)2n

Furthermore,

E[Y 2] =
∑

i,j∈[2n]

E[YiYj]

=
∑

i,j∈[2n],i ̸=j

E[YiYj] +
∑
i∈[2n]

E[Y 2
i]

=
∑

i,j∈[2n],i ̸=j

(
1− 2

2n

)2n

+
∑
i∈[2n]

E[Yi]

= 2 ·
(
2n

2

)(
1− 2

2n

)2n

+ 2n
(
1− 1

2n

)2n

= 2n(2n − 1)

(
1− 2

2n

)2n

+ 2n
(
1− 1

2n

)2n

Therefore, since
(
1− 1

n

)n ≤ 1
e + negl(n) for large enough n,

Var[Y] = E[Y 2]− E[Y]2

= 2n(2n − 1)

(
1− 2

2n

)2n

+ 2n
(
1− 1

2n

)2n

−

(
2n ·

(
1− 1

2n

)2n
)2

≤ 2n(2n − 1)e−2 + 2ne−1 − 22ne−2 + negl(n)

= 2n(e−1 − e−2) + negl(n)

By Chebyshev’s inequality,

Pr
[∣∣Y − 2ne−1

∣∣ > 23n/4
]
≤ 2n(e−1 − e−2) + negl(n)

26n/4
= negl(n)

74

Thus,

Pr
[
Y · 2−n ∈ [e−1 − 2−n/4, e−1 + 2−n/4]

]
≥ 1− negl(n).

This immediately implies

Pr
[
1− Y · 2−n ∈ [(1− e−1)− 2−n/4, (1− e−1) + 2−n/4]

]
≥ 1− negl(n)

which completes the proof.

Note: The lemmas above have been written in a way which only allows A to make oracle queries
to an n-bit length preserving oracle (On). However, in the random oracle model, the adversary can
indeed make queries to O with arbitrary length inputs. The same proofs do work in this setting
as well since oracle responses to query length other than n are completely independent from the
input length of interest (i.e., n).

Corollary B.4. A length-preserving random function O satisfies the properties of a
(
1− 1

e

)
-Dense

PRHF with probability 1 relative to O.
We call a random oracle O “bad” if there exists an (oracle dependent) uniform adversary A

that breaks any of the properties in the above three lemmata. This corollary claims that the set of
such “bad” oracles has a measure 0. This proof follows from the application of the Borel Cantelli
Lemma (cf Lemma 3.6) in the following way: Let us fix a uniform adversary A. For this particular
A, the set of corresponding “bad” random oracles has a measure 0. This is obtained by applying
the Borel Cantelli Lemma independently on Lemmata B.1, B.2, and B.3 (as used in the proof of
Lemma 8.5). Finally, note that there are only countably many uniform adversaries and that a
countable union of measure 0 sets also has a measure 0. Hence, by taking a union bound over all
uniform adversaries, we conclude the probability that there exists an adversary which breaks any
of the PRHF properties over a random choice of O is 0.

C Completeness and Soundness for NIZK Proofs in the URS model.

In this section, we formally prove completeness (Lemma 7.3) and soundness (Lemma 7.4) for our
construction of NIZK proofs in the URS model.

C.1 Completeness

Lemma C.1. If HPRHF is a δ-Dense-PRHF for some Efficiently-Approximable constant δ ∈ (0, 1) and
ZHB-NIZKγ with γ = 1 − δ satisfies perfect completeness in the Z-Tamperable-Hidden-Bits model,
then URS-NIZK satisfies statistical completeness in the URS model.

Proof. For all Efficiently-Approximable constants γ ∈ (0, 1) and for large enough12 n, every possible
string r ∈ {0, 1}phbs(n) can be output by Genγ(1

n). Thus, for γ = 1 − δ, the perfect completeness
of ZHB-NIZKγ implies that for all sufficiently large n, all x ∈ L such that |x| = n, and all r ∈
{0, 1}phbs(n),

Pr [ZHB.Vγ(x,ZHB.I, {ri}i∈I ,ZHB.π) = 1 : (ZHB.I,ZHB.π)← ZHB.Pγ(r, x)] = 1

Since an honest URS.V always generates bits {r̃i}i∈ZHB.I that correctly correspond to the string
r ∈ {0, 1}phbs(n) produced by an honest URS.P , then for sufficiently large n, URS.V will always
accept when the prover is honest. Thus, URS.V will only reject an honest prover’s proof on at most
some constant number of inputs.

12For n large enough such that Approxγ(1
n) ∈ (0, 1).

75

C.2 Soundness

Lemma C.2. If HPRHF is a δ-Dense-PRHF for some Efficiently-Approximable constant δ ∈ (0, 1) and
ZHB-NIZKγ with γ = 1− δ satisfies adaptive statistical soundness in the Z-Tamperable-Hidden-Bits
model, then URS-NIZK satisfies adaptive statistical soundness in the URS model.

Proof. Let X = (X1, . . . , Xphbs(n)) where each Xi is an independent Bernoulli random variable with
Pr[Xi = 1] = γ̂ where γ̂ = 1 − Approxδ(1

n). Then X is a random variable whose distribution is
identical to the distribution of hidden bit strings output by ZHB.Genγ(1

n).
Similarly, let Y = (Y1, . . . , Yphbs(n)) where each Yi is an independent Bernoulli random variable

with Pr[Yi = 1] = γ′ = 1−δ′ where δ′ = Pry←{0,1}ℓ(n) [∃x ∈ {0, 1}n s.t. HPRHF(x) = y]]. Then, Y is a
random variable whose distribution is identical to the distribution of the strings r = r1 . . . rphbs(n) ∈
{0, 1}phbs(n) generated by the honest URS.P given a uniform reference string urs← {0, 1}purs(n).

Let D0,n and D1,n denote the distributions followed by X and Y respectively. We will show
that the statistical distance between D0,n and D1,n is negligible. Observe that

1. δ′ is negligibly close to δ by the δ-Dense property of HPRHF

2. |Approxδ(1n)− δ| ≤ 2−n.

This implies that γ′ is negligibly close to γ̂. Since all the Xi’s and Yi’s are mutually independent,
it must be that X and Y are independent. Now, applying Lemma 3.5 yields ∆(D0,n, D1,n) ≤
phbs(n) · negl(n) which is negligible.

Now, observe that the verifier URS.V (urs, x, π) either

• outputs ZHB.Vγ(x,ZHB.I, {r̃i = ZeroFlip(ri, fi)}i∈ZHB.I ,ZHB.π) for some string f where r is
the string that would be generated by an honest prover given urs,

• or rejects if vi ̸= ⊥ and HPRHF(vi) ̸= yi.

Assume that URS.V accepts a proof π = (ZHB.I, {vi}i∈ZHB.I ,ZHB.π). Hence, for each i ∈ [phbs(n)],
the cheating prover can set vi = ⊥ even if ∃z ∈ {0, 1}n such that HPRHF(z) = yi. In this way, the
prover can forcefully change a ‘0’ in ri to a ‘1’ in r̃i. However, the prover cannot change any ‘1’ in
ri to a ‘0’ in r̃i since the prover cannot convince the verifier that there actually is a pre-image for
yi if there is no such pre-image. Note that this scenario is identical to the ZeroFlip function used
by the cheating Z-Tamperable-Hidden-Bits prover. Thus, it suffices to show that

Pr
r←D1,n

[
∃(x,ZHB.I, f,ZHB.π) such that x /∈ L, |x| = n, f ∈ {0, 1}|r|,

and ZHB.Vγ(x,ZHB.I, {r̃i = ZeroFlip(ri, fi)}i∈ZHB.I ,ZHB.π) = 1
]
≤ negl(n).

Now, by the statistical soundness of ZHB-NIZKγ , there exists a negligible function negl(·) such
that for all n ∈ N,

Pr
r←D0,n

[
∃(x,ZHB.I, f,ZHB.π) such that x /∈ L, |x| = n, f ∈ {0, 1}|r|,

and ZHB.Vγ(x,ZHB.I, {r̃i = ZeroFlip(ri, fi)}i∈ZHB.I ,ZHB.π) = 1
]
≤ negl(n).

76

Since D0,n and D1,n are statistically close, then for all constants γ ∈ (0, 1) and all n ∈ N it must
be that,

Pr
r←D1,n

[
∃(x,ZHB.I, f,ZHB.π) such that x /∈ L, |x| = n, f ∈ {0, 1}|r|,

and ZHB.Vγ(x,ZHB.I, {r̃i = ZeroFlip(ri, fi)}i∈ZHB.I ,ZHB.π) = 1
]
≤ negl(n).

This concludes the proof.

D Non-interactive Witness Hiding

For any NP language L, we will consider a statement-witness relation denoted RL for L, and we

define for any x ∈ L the set RL(x) = {w : (x,w) ∈ RL}. We use the notation L(x) =

{
1 if x ∈ L
0 if x /∈ L

.

Definition D.1 (Non-interactive Witness Hiding Proofs w.r.t. a Distribution). Let P be a random-
ized computationally unbounded algorithm and let V be a PPT algorithm. For a language L0 ∈ NP,
let D be a probability ensemble where distribution D(λ) has support over L0. We say that a protocol
Π = (P,V) is non-interactive witness hiding (NIWH) proof system with respect to a probability
ensemble D if the following three properties hold:

1. (Perfect) Completeness: For all x ∈ L0, for all λ ∈ N

Pr

[
P(1λ, x)→ π,
V(1λ, x, π)→ 1

]
= 1

where the probability is over the coins of P and V.

2. (Perfect) Soundness: For all x /∈ L0, and for all λ ∈ N, there does not exist π ∈ {0, 1}∗
such that V(1λ, x, π) = 1.

3. (Computational) Witness Hiding: If for all polynomial-sized A there exists a negligible
function µ : N→ [0, 1] such that for all λ ∈ N,

Pr
x∼D(λ)

[
A(1λ, x) ∈ RL(x)

]
≤ µ(λ),

then for all polynomial-sized A′ there exists a negligible function µ′ : N→ [0, 1] such that for
all λ ∈ N

Pr
x∼D(λ)

[
A′(1λ, x,P(x)) ∈ RL(x)

]
≤ µ′(λ).

Remark D.2. For similar definitions of witness hiding, see [DK18, JKKR17, KZ20]. As remarked
by [KZ20], these definitions are all weaker than the original definition of witness hiding given
by [FS90].

Theorem D.3. If there exists an injective one-way function f : {0, 1}∗ → {0, 1}∗ and a NIWH
proof system (P,V) for all of NP, then P ̸= NP ∩ coNP.

77

Proof. Consider the NP language L0 := {y : ∃x, f(x) = y} and we consider a NIWH proof system
(P,V) for L0. We now construct a language L as

L :=
{
(y, π, i) : V(y, π) = 1 ∧ (∃x, f(x) = y ∧ xi = 1)

}
.

The proof follows directly from Lemma D.4 and Lemma D.5 which are stated and proven as follows.

Lemma D.4. L ∈ NP ∩ coNP.

Proof. For convenience, observe that L := {0, 1}∗ \ L can be expressed as

L :=
{
(y, π, i) : V(y, π) = 0 ∨ (∄x, f(x) = y ∧ xi = 1)

}
.

Observe L ∈ NP by constructing the following NP-verifier:

VNP((y, π, i), w):

1. If V(y, π) = 1 ∧ f(w) = y ∧ wi = 1, then output 1. Else, output 0.

If (y, π, i) ∈ L, then the unique preimage x such that f(x) = y is the witness, on which VNP

correctly outputs 1. Otherwise, (y, π, i) /∈ L and one of three conditions fails by definition of the
language, so VNP correctly outputs 0.

Observe L ∈ coNP by constructing the following coNP-verifier:

VcoNP((y, π, i), w):

1. If V(y, π) = 0 ∨ (f(w) = y ∧ wi = 0), then output 1. Else, output 0.

For correctness of this coNP verifier, if (y, π, i) ∈ L, then we consider the two subcases where either
V(y, π) = 0 or V(y, π) = 1. In the first subcase where V(y, π) = 0, by construction VcoNP correctly
outputs 1. In the remaining subcase where V(y, π) = 1, by the perfect soundness of (P,V), y ∈ L0
so there must exist a preimage x such that f(x) = y. Moreover, xi = 0 since (y, π, i) ∈ L0.
Therefore the preimage x serves as the witness and VcoNP correctly outputs 1 given this witness.

If (y, π, i) /∈ L then by construction VcoNP correctly outputs 0.

Lemma D.5. L /∈ P.

Proof. Consider the probability ensemble D over L0 where D(λ) is defined by the following sampling
procedure: Sample a uniform random x ← {0, 1}λ and output y ← f(x). The one-wayness of f
guarantees that for all polynomial-sized A there exists a negligible function µ : N→ [0, 1] such that

Pr
y∼D(λ)

[A(y) ∈ RL0(y)] ≤ µ(λ).

Then, the witness hiding property of (P,V) implies that for all polynomial-sized A′ there exists a
negligible function µ′ : N→ [0, 1] such that

Pr
y∼D(λ)

[
A′(y,P(y)) ∈ RL0(y)

]
≤ µ′(λ).

Suppose for sake of contradiction that there exists a polynomial-time decider M : {0, 1}∗ →
{0, 1} for L. That is, for all (y, π, i),M(y, π, i) = L((y, π, i)). Then we can build a polynomial-sized
B that inverts f when given both y and P(y) that succeeds with probability 1. For any value λ ∈ N,
B is given an input sample y sampled according to D(λ) and π ← P(y). B is defined as follows:

78

B(1λ, y, π)

1. For i ∈ [λ]:

(a) Set zi ←M(y, π, i).

2. Output z = (z1, . . . zλ).

SinceM is a decider for L, y ∈ L0, and π ← P(y), it follows thatM(y, π, i) = xi where f(x) = y.
Then z = x and B recovers x with probability 1 contradicting the witness hiding property of (P,V).
Therefore, no such polynomial-time deciderM can exist and L /∈ P.

E Average-case Hardness

In Section 8, we considered a language LO with worst-case hardness in NPO ∩ coNPO. We now
construct a language LOavg such that with probability 1 over the choice of random oracle O, LOavg ∈
NPO∩coNPO and LOavg satisfies average-case hardness with respect to some distribution over inputs.

Let f ′ : {0, 1}∗ → {0, 1}∗ be any injective one-way function. Define the injective one-way
function f : {0, 1}∗ → {0, 1}∗ such that f(x, r) = (f ′(x), r) so that ⟨x, r⟩ is a hardcore predicate
for f . Let ΠNIZK be a NIZK protocol in the RO model with perfect completeness, almost-sure
soundness, and zero-knowledge (see Def. 3.10) for the language {y : ∃x, f ′(x) = y} and let q(·) be
a polynomial bound on all valid proof lengths. Then define the following language:

LOavg :=

{
(y, π, r) : (∃x, f ′(x) = y and ⟨x, r⟩ = 1) ∧ (ΠNIZK.VO(x, π) = 1)

}
where we consider for any fixed oracle O the following distribution with the following (inefficient)
sampling procedure:

SampO(1λ):

1. Sample uniform random x ∈ {0, 1}λ, r ∈ {0, 1}λ.

2. Set (y, r) = f(x, r).

3. Set π ← ΠNIZK.PO(1λ, y).

4. Output (y, π, r).

The fact that PrO
[
LOavg ∈ NPO ∩ coNPO

]
= 1 follows identically as before. It remains to show

that this language satisfies average-case hardness with respect to SampO(1λ).

Theorem E.1. Suppose f ′ is an injective one-way function and let LOavg be as defined above.

Then, for all polynomial query bounded oracle-aided PPT A(·), there exists a negligible function
µ : N→ [0, 1] such that for all λ ∈ N

Pr
O,Samp

[
A(y, π, r) = LOavg(y, π, r) : (y, π, r)← SampO(1λ)

]
≤ 1

2
+ µ(λ)

where LOavg(y, π, r) = 1 if (y, π, r) ∈ LOavg and LOavg(y, π, r) = 0 otherwise.

79

Proof. Suppose for sake of contradiction that there exists a polynomial query bounded oracle-aided
PPT A(·) such that

Pr
O,Samp

[
AO(y, π, r) = LOavg(y, π, r) : (y, π, r)← SampO(1λ)

]
≥ 1

2
+

1

nc

for some constant c > 0. Then we will construct a PPTmachine B that on input (1λ, (y, r) = f(x, r))
for a randomly chosen x ∈ {0, 1}λ and r ∈ {0, 1}λ , recovers ⟨x, r⟩2, contradicting the hardcore
property of the predicate defined by r ∈ {0, 1}λ.

B(1λ, (y, r)):

1. Obtain π ← SimProof(1λ, (y, r)).

2. Output b← ASimO(1λ, y, r, π).

To analyze the probability of this reduction outputting ⟨x, r⟩2, where x is the unique preimage
of y under f ′, we consider the following polynomial query bounded oracle-aided (computationally
unbounded) machine B̃(·):

B̃O(1λ, (y, r)):

1. Obtain π ← ΠNIZK.PO(1λ, (y, r)).

2. Output b← AO(1λ, y, r, π).

Then immediately by the zero-knowledge property of ΠNIZK (for language Lf = {(y, r) : ∃x, f(x, r) =
(y, r)}), we have that for all b′ ∈ {0, 1}, for all (y, r) ∈ Lf for all sufficiently large λ ∈ N:∣∣∣∣ Pr

coins of B
[B(y, r) = ⟨x, r⟩2 : (y, r) = f(x, r)]

− Pr
O, coins of B̃(·)

[
B̃O(y, r) = ⟨x, r⟩2 : (y, r) = f(x, r)

] ∣∣∣∣ ≤ negl(λ).

However, observe that

Pr
O, coins of B̃(·),x,r

[
B̃O(y, r) = ⟨x, r⟩2 : (y, r) = f(x)

]
= Pr
O,Samp

[
AO(y, π, r) = LOavg(y, π, r) : (y, π, r)← SampO(1λ)

]
≥ 1

2
+

1

nc
.

Therefore, Prcoins of B,x,r [B(y, r) = ⟨x, r⟩2 : (y, r) = f(x)] is non-negligibly larger than 1/2, contra-
dicting the hardcore bit property of f . Therefore, no polynomial query bounded oracle-aided PPT
A(·) with such guessing advantage can exist.

80
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

