
Optimal Pseudorandom Generators for Low-Degree Polynomials

Over Moderately Large Fields

Ashish Dwivedi∗ Zeyu Guo∗ Ben Lee Volk†

Abstract

We construct explicit pseudorandom generators that fool n-variate polynomials of degree at
most d over a finite field Fq. The seed length of our generators is O(d log n+ log q), over fields
of size exponential in d and characteristic at least d(d − 1) + 1. Previous constructions such
as Bogdanov’s (STOC 2005) and Derksen and Viola’s (FOCS 2022) had either suboptimal seed
length or required the field size to depend on n.

Our approach follows Bogdanov’s paradigm while incorporating techniques from Lecerf’s
factorization algorithm (J. Symb. Comput. 2007) and insights from the construction of Derksen
and Viola regarding the role of indecomposability of polynomials.

1 Introduction

The role of randomness in efficient computation is one of the central topics in complexity theory:
random bits are useful for designing algorithms, but producing random bits comes at a cost and
it is often desirable to reduce them or eliminate them altogether. One of the simplest yet most
profound insights in this area is that efficient algorithms are, by definition, computationally limited,
and cannot perform arbitrary statistical tests over their random bits. Therefore, one may hope to
construct pseudorandom distributions that use less random bits but are able to “fool” some limited
classes of tests, that cannot distinguish between them and between truly random bits.

For the pseudorandom distributions to be useful, they need to be efficiently computable them-
selves. This is usually modeled as a pseudorandom generator (PRG, for short). A PRG for a class
of C is an efficiently computable function G : S → B such that for every function f ∈ C, the
distributions f(UB) and f(G(US)) are close in statistical distance, where UA denotes the uniform
distribution over the set A. Namely, the two experiments of applying f(·) to a uniformly random
element of B, and applying f(G(·)) to a uniformly random element of S, give roughly the same
results. For this to be useful and non-trivial, obviously the set S needs to be significantly smaller
than B. The quantity log |S| is called the seed length of the generator.

There has been a significant amount of work on constructing pseudorandom generators for
various types of restricted distinguishers. In its most general form, where the distinguisher is
allowed to be an arbitrary efficient (even non-uniform) algorithm, constructing such PRGs would
imply breakthrough lower bounds in complexity theory. However, there are also unconditional
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constructions of PRGs for distinguishers coming from certain smaller complexity classes (see, for
example, the surveys [Vad12, HH23]).

In this paper, we focus on pseudorandom generators in the algebraic setting. Here, the restric-
tion on the distinguishers is of algebraic nature: we seek to fool distinguishers that are low-degree
n-variate polynomials over finite fields.

The problem of fooling low-degree polynomials is well-studied. The most basic case is poly-
nomials of degree one, i.e., fooling linear functions. Such generators are also known as ε-biased
sets, and this problem was traditionally studied over F2, although some of the constructions can
be generalized to larger fields. This concept was first defined and considered by Naor and Naor
[NN93], with various improved constructions given by [AGHP92, EGL+98, BT13], culminating in
a recent nearly-optimal construction by Ta-Shma [Ta-17]. The seed length in those constructions
is O(log n+log q+log(1/ε)), where n denotes the number of variables, ε the error of the PRG, and
q the field size.

While focusing on polynomials of degree one might seem a bit too restrictive, ε-biased sets have
found numerous applications throughout the field of pseudorandomness and derandomization, and
in the theory of computation in general.

One example relevant to this work is that ε-biased sets are in fact a basic building block in a
construction of PRGs for higher-degree polynomials, using a paradigm initiated by Bogdanov and
Viola [BV10]. They suggested constructing a generator for degree-d polynomials by summing up
ℓ = ℓ(d) independent copies of a generator for degree-one polynomials. The paper [BV10] proved
a conditional result when the number of summands is d, assuming certain additive combinatorics
conjectures. Lovett [Lov09] showed how to prove an unconditional result at the cost of making the
number of summands 2d. Finally, Viola [Vio09] showed (unconditionally) that in fact d summands
suffice. The seed length in his construction is O(d log n + d2d log(q/ε)). Indeed, even though
the construction only sums d copies of a generator for degree-one polynomials, for the analysis
to go through, the error of this generator needs to be as small as ε2

d
(for the final error of the

generator for degree-d polynomials to be ε), which incurs a factor of 2d in the final seed length.
Improving this generator and in particular obtaining meaningful results for polynomials of degree
greater than log n is an extremely important open problem in complexity theory. One reason is
that such pseudorandom generators will yield pseudorandom generators for small constant-depth
circuits with parity gates, since Razborov [Raz87] and Smolensky [Smo93] famously proved that
functions computed by such circuits are approximated by low-degree polynomials.

All the constructions mentioned above work for any field. There are, however, better results
when the field size q is assumed to be large (typically, at least polynomially large in d and 1/ε).
This assumption is useful since it allows one to use powerful tools from algebraic geometry, such
as Weil-type estimates [Wei49] on the number of points of varieties over finite fields.

This line of work was initiated by Bogdanov [Bog05], who showed how to use different pseudo-
random objects called hitting set generators for low-degree polynomials in order to construct pseudo-
random generators. Bogdanov’s work, followed by the later improved constructions of hitting set
generators [KS01, Lu12, CT13, GX14], resulted in a PRG with seed length O(d4 log n + log q) as-
suming q ≥ Cd6/ε2 for a sufficiently large constant C.1 We expand more on Bogdanov’s technique
in Section Section 1.2, as it is very relevant to this work.

More recently, Derksen and Viola [DV22] introduced fundamentally new techniques for this

1One should note that since q is polynomially large in 1/ε, the seed length also implicitly depends on log(1/ε)
through the log q term.
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problem, with tools coming from invariant theory. One of their key ideas is to construct a low-
degree polynomial map on a few variables that preserves the indecomposability property of a
polynomial f when composed with it (we refer to Section 2 for more on that). Using this new
tool in conjunction with other techniques, they are able to construct generators with seed length
O(d log(dn) + log q), assuming q ≥ Cd4nδ/ε2 (for some large constant C and small constant δ), or
seed length O(d log n log(d log n)+log q) for q ≥ C(d log n)4/ε2. One should note, however, that the
optimal parameters in the construction of [DV22] are obtained after composing their construction
with Bogdanov’s original construction.

A related natural question is how small the seed length can potentially be. Alon, Ben-Eliezer and
Krivelevich [ABK08] considered this question and proved a lower bound of Ω(d log(n/d) + log q +
log(1/ε)) on the seed length. Thus, we see that the explicit constructions of [DV22] come very
close to the optimal bound. However, unlike the result of Bogdanov [Bog05], in the construction of
Derksen and Viola [DV22] the minimum field size depends on the number of variables n.

1.1 Our Results

In this paper, we provide an improved construction of PRGs for low-degree polynomials, with an
even shorter seed length, assuming the field size is exponentially large in d (but independent of n).

Theorem 1.1. Let Fq be a finite field of characteristic at least d(d − 1) + 1 and size q ≥
C(d2d/ε + d4/ε2) (for some sufficiently large absolute constant C). Then, there exists an ex-
plicit pseudorandom generator that fools n-variate polynomials of degree at most d over Fq with
error ε and seed length O(d log n+ log q).

For convenience, we summarize the comparison between Theorem 1.1 and the results of Bog-
danov [Bog05], Viola [Vio09] and Derksen and Viola [DV22] in the following table. All the entries in
this table are given up to some constant factors, but for ease of readability, we omit O(·) notations.

Seed Length Field Size

[Vio09] d log n+ d · 2d log(q/ε) Every q ≥ 2
[Bog05]+[GX14] d4 log n+ log q d6/ε2

[DV22] d log(dn) + log q d4n0.001/ε2

[DV22] d log n · log(d log n) + log q (d log n)4/ε2

This paper: d log n+ log q d2d/ε+ d4/ε2

We also prove that, if we only want to fool polynomials of prime degree up to d, then the required
field size in Theorem 1.1 can be improved to O(d4/ε2), avoiding an exponential dependence on d.

Theorem 1.2. Let Fq be a finite field of characteristic at least d(d− 1) + 1 and size q ≥ C(d4/ε2)
(for some sufficiently large absolute constant C). Then, there exists an explicit pseudorandom
generator that fools n-variate polynomials of prime degree up to d over Fq with error ε and seed
length O(d log n+ log q).

1.2 Proof Techniques

We start by reviewing the proof of Bogdanov’s PRG. Bogdanov’s idea is to consider restrictions of
the polynomial f we are trying to fool onto planes, and to argue that “most” planes preserve the
output distribution of the polynomial. Since a plane is a two-dimensional subspace, after having

3



selected a good plane, we only need to sample two more field elements to select a random element
from the plane.

The question now is how to find a good plane. Here, Bogdanov uses results by Kaltofen [Kal95],
who proved an effective version of Hilbert’s irreducibility theorem. Kaltofen demonstrated that,
for every degree-d irreducible polynomial f , there exists a polynomial P of degree roughly d4,
whose variables correspond to the parameters of the plane, such that every point at which P is
nonzero corresponds to a “good” plane for f—that is, a plane that preserves the irreducibility of
f . Therefore, we can use a hitting set generator for polynomials of degree d4 to find a good plane.
This results in a factor of d4 in the final seed length.

Over fields of large characteristic (or characteristic zero), Lecerf [Lec06, Lec07] obtained an
improved upper bound of O(d2) on the degree of such polynomials, based on ideas of Ruppert
[Rup86, Rup99] and Gao [Gao03]. However, Lecerf also presents an example where the degree of
such a polynomial must be at least Ω(d2), demonstrating that this approach alone may not suffice
to achieve an improvement within Bogdanov’s framework.

Derksen and Viola circumvent this problem by using a different approach based on preserving
the indecomposability of polynomials: a polynomial f(x1, . . . , xn) is indecomposable if it cannot be
written as f = g(h(x1, . . . , xn)) where g is a univariate polynomial of degree at least 2. We refer
to Section 2 for precise definitions.

To prove our result, we revisit Bogdanov’s approach, while noting that by applying Lecerf’s
results [Lec07] (rather than Kaltofen’s bounds [Kal95]) in a more careful way, and assuming the
field is sufficiently large, it is in fact enough to use hitting sets generators only for polynomials of
degree O(d), rather than O(d2). This requires following the outline above but making sure that at
each step, we only need to hit polynomials of degree O(d).

Following Lecerf’s notation and terminology, suppose F (x1, . . . , xn, y) is an irreducible poly-
nomial. A point a = (a1, . . . , an) is called a Bertinian good point if the bivariate polynomial
H(x, y) = F (a1x, . . . , anx, y) remains irreducible. Lecerf proves that there exists a polynomial
A(z1, . . . , zn) of degree O(d2) such that if A(a1, . . . , an) ̸= 0 then a is a Bertinian good point. This
is achieved by transforming the question of irreducibility into a question about the rank of a solution
space for a certain linear system that depends on a1, . . . , an (see Section 4). This transformation
naturally leads to defining A as a certain minor of the matrix representing that linear system. The
minor has dimensions O(d) × O(d), and each entry of the matrix is a polynomial of degree O(d),
which results in a total bound of O(d2) on the degree of its determinant, A.

We, however, observe that Lecerf’s results actually imply a much stronger structure of this
linear system: its solution space, over any field, is always spanned by vectors whose entries are in
{0, 1}. In fact, Lecerf directly characterizes the relationship between the irreducible factors of F
and the vectors spanning the solution space, though this detail is irrelevant for the moment.

Thus, in Lecerf’s argument, a1, . . . , an are chosen such that a particular minor is nonzero,
namely, a certain linear system has no non-trivial solutions. But it is enough to select a1, . . . , an
in a way that only guarantees that this linear system has no non-trivial 0/1 solutions!

Fixing any vector u ∈ {0, 1}d, the requirement that u is not a solution to the linear system
turns out to be a condition expressible as u being a nonzero of a polynomial of degree O(d), rather
than O(d2). If we pick a1, . . . , an from a hitting set generator with error δ smaller than 2−d, we can
afford to take a union bound over all vectors in {0, 1}d and ensure that none of them is a solution
to the linear system while keeping the total error small. This is not a big price to pay in terms
of the seed length of the HSG, which is O(d log n + log(1/δ)), so requiring δ to be exponentially
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small in d adds an insignificant additive O(d) term. Where we do pay the price for the small error
is in the field size, since the explicit construction of the HSG we use requires the field size to be
at least roughly d/δ. Fortunately, however, the dependence of the seed length of our generator on
the field size q is also by an additive O(log q) term, which means that once more requiring q to be
exponentially large in d has no adverse effects even on the total seed length of the PRG.

We briefly remark that, for technical reasons, Lecerf’s result also requires the characteristic of
the underlying field to be zero or at least d(d− 1)+ 1. We further elaborate on Lecerf’s techniques
in Section 4.

We finally mention another technical point. Lecerf’s irreducibility characterization [Lec07]
assumes a technical condition on the polynomial, which he called Hypothesis (H) (see Section 3).
Such a “preprocessing” step, which makes the polynomial monic in a certain distinguished variable,
is common to many factorization algorithms, and can usually be easily guaranteed by applying a
random linear transformation to the variables. However, doing this in the näıve way would require
the use of too many random bits. To solve this problem, in Section 3 we show that this part can
also be derandomized by using a hitting set generator for polynomials of degree O(d).

2 Preliminaries

We now define the basic objects studied in this paper and introduce the fundamental mathematical
concepts used.

Notations. All logarithms are base 2. Denote by N the set of natural numbers {0, 1, 2, . . . }. For
n ∈ N, define [n] = {1, 2, . . . , n}. For a finite set A, denote by UA the uniform distribution over A.

We often use symbols in bold, e.g., a or x, as the shorthand for a vector (a1, . . . , an) or a
sequence of variables x1, . . . , xn.

Denote by Fq the finite field of size q. The algebraic closure of a field F is denoted by F. For
a commutative ring A and variables x1, . . . , xn, we denote by A[[x1, . . . , xn]] or A[[x]] the ring of
formal power series over A in x1, . . . , xn, i.e.,

A[[x]] =

 ∑
e=(e1,...,en)∈Nn

aex
e1
1 · · ·xenn : ae ∈ A

 .

Pseudorandom Generators and Hitting Set Generators.

Definition 2.1 (Pseudorandom generator, PRG). Let Fq be a finite field. A pseudorandom gen-
erator (PRG) for n-variate polynomials of degree at most d over Fq with error ε is an efficiently
computable map G : S → Fn

q from a finite set S ̸= ∅ such that for every such polynomial f of
degree at most d, the two distributions f(G(US)) and f(UFn

q
) are ε-close in statistical distance.

That is,
1

2

∑
a∈Fq

∣∣∣∣ Prx∈Fn
q

[f(x) = a]− Pr
y∈S

[f(G(y)) = a]

∣∣∣∣ ≤ ε.

The quantity log |S| is called the seed length of G.

A weaker object than a PRG is a hitting set generator. Here, we only require that a nonzero
polynomial is nonzero (with high probability) on the output of the generator.
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Definition 2.2 (Hitting set generator, HSG). Let F be a field. A hitting set generator (HSG) with
density 1− δ for n-variate polynomials of degree at most d over F is an efficiently computable map
H : S → Fn from a finite set S ̸= ∅ such that for every such nonzero polynomial f of degree at
most d,

Pr
y∈S

[f(H(y)) = 0] ≤ δ.

The quantity log |S| is called the seed length of G.

Building on the earlier work [KS01, Lu12] and algebraic-geometric codes, Guruswami and Xing
[GX14] constructed explicit HSGs for low-degree polynomials with asymptotically optimal seed
length and density.

Theorem 2.3 ([GX14]). There exists an absolute constant C such that for any n, d, q, δ, such that
q ≥ Cd/δ, there exists an explicit HSG for n-variate polynomials of degree at most d over Fq with
density 1− δ and seed length O(d log n+ log(1/δ)).

It should also be noted that for hitting set generators, the field F does not have to be finite.
This generality is used in the statement of the following fact, that an HSG for a field F is also a
HSG for any extension field K of F.

Fact 2.4 ([Bog05, DV22]). Let H : S → F be an HSG with density 1− δ for polynomials of degree
at most d over a field F, and let K be an extension of F. Then H is also an HSG with density 1− δ
for polynomials of degree at most d over K.

Proof. Let B be a basis of K over F, and let f be a nonzero polynomial in K[x1, . . . , xn] of degree
at most d. By expressing every coefficient c ∈ K of a monomial in f as a linear combination
c =

∑
b∈B ab ·b with ab ∈ F for every b ∈ B, we may write f =

∑
b∈B fb ·b such that fb ∈ F[x1, . . . , xn]

is a polynomial of degree at most d for every b ∈ B, and at least one fb is nonzero. Thus, for any
u ∈ S, f(H(u)) =

∑
b∈B fb(u) · b is nonzero unless fb(H(u)) = 0 for every b, which happens with

probability at most δ over the choice of u ∈ S.

Indecomposable Polynomials. The indecomposability of a polynomial is crucially used in the
analysis of the PRG construction in [DV22] as well as in our analysis. We first define this property.

Definition 2.5 (Indecomposability). Let f ∈ F[x] be a non-constant polynomial over a field F. It
is said to be decomposable over F if there exist h ∈ F[x] and a univariate polynomial g ∈ F[y] such
that deg(g) ≥ 2 and f = g(h). Otherwise, f is said to be indecomposable over F.

Obviously, if a polynomial f ∈ Fq[x] over a finite field Fq is indecomposable over Fq, then it is
also indecomposable over Fq. The following lemma, which is a special case of [BDN09, Theorem 4.2],
states that the converse is also true.

Lemma 2.6 ([BDN09, Theorem 4.2]). A polynomial f ∈ Fq[x] that is indecomposable over Fq is
also indecomposable over Fq.

In [DV22], Derksen and Viola proved the following result, which states that if a polynomial is
indecomposable, then its outputs are equidistributed.

Lemma 2.7 ([DV22, Lemma 12]). There exists an absolute constant C > 0 such that the following
holds: Suppose f ∈ Fq[x] = Fq[x1, . . . , xn] is indecomposable over Fq. Then f(UFn

q
) is ε-close to

UFq , where ε = Cd2/
√
q.
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The proof of Lemma 2.7 is based on the observation that the indecomposability of f precisely
captures the property that for most b ∈ Fq, the variety f−1(b), defined by the constraint f(x) = b,
is absolutely irreducible. This condition of absolute irreducibility is required by the Weil bound
[Wei49]. Consequently, one can apply the Weil bound to show that for most b, the number of
points in f−1(b) ∩ Fn

q is close to qn−1, thereby proving the equidistribution of the output of f . For
details, we refer the reader to [DV22].

Finally, the following lemma connects indecomposability with irreducibility over algebraically
closed fields. It is explicitly stated in, e.g., [CN10].

Lemma 2.8 ([CN10, Lemma 7]). Let f ∈ F[x] be a non-constant polynomial over a field F. Then
f is indecomposable over F iff f − t is irreducible over F(t), where t is a new variable.

Resultants. Let f(x) =
∑d1

i=0 aiy
i and g(x) =

∑d2
i=0 biy

i be two univariate polynomials in y over
a field F and suppose that d1+ d2 > 0. The Sylvester Matrix of f and g is the (d1+ d2)× (d1+ d2)
matrix 

a0 b0
a1 a0 b1 b0

a2 a1
. . . b2 b1

. . .
...

. . . a0
...

. . . b0
... a1 bd2

... b1
ad1 bd2

ad1
...

...
. . .

. . .

ad1 bd2


.

The determinant of this matrix is called the resultant of f and g, and is denoted Res (f, g). It
holds that f and g have a common factor if and only if Res (f, g) = 0 ([CLO07, Proposition 3 in
Chapter 3, Section 6]).

Thus, in the case where g = ∂f
∂y , it holds that Res (f, g) ̸= 0 if and only if f does not have a

root of multiplicity greater than one.

Hensel Lifting. Hensel lifting is a general technique for “lifting” roots or factorizations of a poly-
nomial modulo an ideal I of a ring R to those modulo powers of I, under some mild conditions. The
use of Hensel’s lifting lemma is standard in multivariate factorization algorithms, and it is available
in various forms. We state one standard form, which can be derived from [Eis95, Theorem 7.3] as a
special case. This form is particularly relevant to our discussion of Lecerf’s techniques in Section 4.

Lemma 2.9 (Hensel’s lifting lemma). Let f ∈ F[x1, . . . , xn, y] = F[x, y] be a nonzero polynomial
over a field F. Suppose λ̄ ∈ F is a simple root of f(0, y) ∈ F[y]. Then there exists unique λ ∈ F[[x]]
such that

1. f(x, λ) = 0, i.e., λ is a root of f as a univariate polynomial in y over F[x], and

2. λ(0) = λ̄.
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3 Hypothesis (H)

Lecerf’s papers [Lec06, Lec07] on multivariate polynomial factoring assume a hypothesis about
the polynomial f , which he calls Hypothesis (H). Such a hypothesis can be satisfied with high
probability by applying a random linear transformation on the variables.

In this section, we discuss Lecerf’s Hypothesis (H) and show that, for our purpose, the random
linear transformation can be derandomized by using a HSG for polynomials of degree O(d). The
fact that we are interested in the irreducibility of f − t for an indeterminate t, rather than that of
f , is crucial in keeping the degree linear in d.

Let F be a field. First, we define Hypothesis (H).

Definition 3.1 (Hypothesis (H) [Lec06, Lec07]). Let f ∈ F[x1, . . . , xn, y] = F[x, y] be a non-
constant polynomial. We say f satisfies Hypothesis (H) if

1. f is monic in y and degy(f) = deg(f),

2. Res
(
f(0, y), ∂f∂y (0, y)

)
̸= 0.

We also need a family of invertible linear transformations defined as follows.

Definition 3.2. For a = (a1, . . . , an) ∈ Fn, let sa be the F-linear automorphism of F[x, y] that
fixes y and sends xi to xi + aiy.

Lemma 3.3. Let f ∈ F[x, y] be a nonzero polynomial of degree at most d. Then there exists a
nonzero polynomial B ∈ F[x] of degree at most d such that for every a ∈ Fn satisfying B(a) ̸= 0,
it holds that degy(sa(f)) = d and the coefficient of yd in sa(f) is in F×.

Proof. Let fd be the degree-d homogeneous part of f , so that we can write f = fd + g where
g = f − fd has degree less than d. Write fd =

∑d
i=0 ci(x)y

i, where each ci ∈ F[x] is either zero or
a homogeneous polynomial of degree d− i.

Consider a ∈ Fn. Note that

sa(f) = sa(fd) + sa(g) =
d∑

i=0

sa(ci(x))y
i + sa(g) =

d∑
i=0

ci(x+ y · a)yi + g(x+ y · a, y).

As deg(g) ≤ d and each ci is either zero or homogeneous of degree d−i, we have that degy sa(f) ≤ d,

and that the coefficient of yd in sa(f) is
∑d

i=0 ci(a) ∈ F. So we may choose B =
∑d

i=0 ci, which is
a nonzero polynomial of degree at most d.

Lemma 3.4. Assume f ∈ F[x, y] is a polynomial of degree d ≥ 1 that satisfies Item 1 of Hypothe-
sis (H). Further assume that char(F) is either zero or greater than d. Let c ∈ F×. Then f + ct is a
degree-d polynomial satisfying Hypothesis (H) as a polynomial over F(t).

Proof. As f satisfies Item 1 of Hypothesis (H) and has degree d ≥ 1, so does f + ct. So it suffices

to verify Item 2. Write f =
∑d

i=0 ciy
i, where ci ∈ F[x] and cd = 1. Then ∂(f+ct)

∂y =
∑d

i=1(i · ci)yi−1,
which has degree d− 1 in y since d · cd = d ̸= 0 by the assumption about char(F).
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Let c̄i = ci(0) for i = 0, 1, . . . , d. Let h = Res
(
(f + ct)(0, y), ∂f+ct

∂y (0, y)
)
. Then h is the

determinant of the following (2d− 1)× (2d− 1) matrix:

c̄0 + ct 0 · · · 0 c̄1 0 · · · 0
c̄1 c̄0 + ct · · · 0 2c̄2 c̄1 · · · 0

c̄2 c̄1
. . . 0 3c̄3 2c̄2

. . . 0
...

...
. . . c̄0 + ct

...
...

. . . c̄1

c̄d c̄d−1 · · ·
... dc̄d (d− 1)c̄d−1 · · ·

...

0 c̄d
. . .

... 0 dc̄d
. . .

...
...

...
. . . c̄d−1

...
...

. . . (d− 1)c̄d−1

0 0 · · · c̄d 0 0 · · · dc̄d


.

Observe that degt h ≤ d − 1, and that the coefficient of td−1 in h is cd−1(dc̄d)
d = cd−1dd ̸= 0

since only those entries on the diagonal contribute to this coefficient. This implies that h ̸= 0, i.e.,
f + ct satisfies Item 2 of Hypothesis (H).

Corollary 3.5. Assume that f ∈ F[x, y] is a polynomial of degree d ≥ 1 and that char(F) is either
zero or greater than d. Then there exists a nonzero polynomial B ∈ F[x] of degree at most d such
that for every a ∈ Fn satisfying B(a) ̸= 0, sa(f) − t equals a product c · g where c ∈ F× and
g ∈ F(t)[x, y] is a degree-d polynomial satisfying Hypothesis (H).

Proof. Let B be as in Lemma 3.3. Consider a ∈ Fn satisfying B(a) ̸= 0. By Lemma 3.3, we may
write sa(f) = c·g̃ where c ∈ F× and g̃ satisfies Item 1 of Hypothesis (H). Then sa(f)−t = c·g̃−t = c·g
where g = g̃ − c−1t. By Lemma 3.4, g is a degree-d polynomial satisfying Hypothesis (H).

Thus, by choosing good a ∈ F via an explicit HSG for polynomials of degree at most d and
performing the transformation f 7→ sa(f), we may assume f − t satisfies Hypothesis (H).

Satisfying Hypothesis (H) in Small Characteristics. While our final result needs char(F) >
d(d−1), the assumption that char(F) is zero or large enough is not crucial for the sake of satisfying
Hypothesis (H). We now sketch how to modify the proof of Lemma 3.4 when 0 < char(F) ≤ d.

Let p = char(F) > 0. For our purpose, we may assume F is a perfect field and f is indecom-
posable over F. This implies that f ̸∈ F[xp1, . . . , x

p
n, yp]. Then it is not hard to show that there

exists an integer e > 0 coprime to p such that for random a ∈ Fn, with high probability, not only is
the coefficient of yd in sa(f) nonzero, but so is the coefficient of ye. Choose the largest e that has
this property. After replacing f by sa(f), the polynomial ∂f+ct

∂y in the proof of Lemma 3.4 would

have degree e − 1 instead of d − 1 in y. Then degt(h) = e − 1 and the coefficient of te−1 in h is
ce−1(ec̄e)

d, which is nonzero iff c̄e = ce(0) is nonzero. The latter condition can be guaranteed with
high probability by performing the substitutions xi 7→ xi + bi for random b = (b1, . . . , bn) ∈ Fn.
Finally, it is not difficult to show that the choices of a and b can be derandomized by using an
explicit HSG for polynomials of degree O(d).
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4 Lecerf’s Techniques

We describe Lecerf’s techniques in this section. For simplicity, our discussion is restricted to the
special case where the base field is algebraically closed.

Let K be an algebraically closed field, and let f ∈ K[x, y] be a polynomial of degree
d ≥ 1 satisfying Hypothesis (H). Define f̄ := f(0, y) ∈ K[y]. As K is algebraically closed and

Res
(
f(0, y), ∂f∂y (0, y)

)
̸= 0, the univariate polynomial f̄ factorizes into distinct linear factors

f̄ =
d∏

i=1

(y − λ̄i)

where λ̄i ∈ K for i ∈ [d]. By Hensel’s lifting lemma, the above factorization of f̄ over K lifts to a
factorization of f into distinct linear factors

f =

d∏
i=1

(y − λi),

where λi ∈ K[[x]] and λi(0) = λ̄i for i ∈ [d].
Now we introduce new variables z = (z1, . . . , zn) and x, and define g := f(z1x, . . . , znx, y) ∈

K[z, x, y]. Then g factorizes into linear factors

g =

d∏
i=1

(y − λi(z1x, . . . , znx))

where each λi(z1x, . . . , znx) lives in K[z][[x]]. For i ∈ [d], let gi be the factor y − λi(z1x, . . . , znx)
of g, and let ĝi be its cofactor

∏
j∈[d]\{i} gj . So gi, ĝi ∈ K[z][[x]][y].

For h ∈ A[[x]][y] over a commutative ring A and (j, k) ∈ N2, denote by coeff
(
h, xjyk

)
∈ A the

coefficient of xjyk in h. We are now ready to define the linear system Dz,σ used in [Lec06, Lec07].

Definition 4.1 (Linear system Dz,σ [Lec06, Lec07]). Let σ ∈ N. Define Dz,σ to be the following
linear system over K(z) in the unknowns ℓ1, . . . , ℓd:

Dz,σ



d∑
i=1

coeff

(
ĝi
∂gi
∂y

, xjyk
)
· ℓi = 0, k ≤ d− 1, d ≤ j + k ≤ σ − 1,

d∑
i=1

coeff

(
ĝi
∂gi
∂x

, xjyk
)
· ℓi = 0, k ≤ d− 1, j ≤ σ − 2, d ≤ j + k ≤ σ − 1.

We have the following easy lemma.

Lemma 4.2. For (j, k) ∈ N2, coeff
(
ĝi

∂gi
∂x , x

jyk
)
, coeff

(
ĝi

∂gi
∂y , x

jyk
)

∈ K[z] are polynomials of

degree at most j + 1 and j respectively.

Proof. Consider arbitrary i ∈ [d] and (j, k) ∈ N2. As gi = y − λi(z1x, . . . , znx) and j ≥ 0, only
terms of degree at most j in z1, . . . , zn contribute to the coefficient of xjyk in gi. Then, as the
operator ∂

∂x is linear and sends xuyv to uxu−1yv for all u, v ∈ N, one can see that only terms of
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degree at most j + 1 in z1, . . . , zn contribute to the coefficient of xjyk in ∂gi
∂x . Also, ∂gi

∂y = 1 by
definition.

For a collection of polynomials h1, . . . , hs ∈ K[z][[x]][y] and h =
∏s

i=1 hi, we have

coeff
(
h, xjyk

)
=

∑
j1,...,js,k1,...,ks∈N∑

i ji=j,
∑

i ki=k

s∏
i=1

coeff
(
hi, x

jiyki
)
. (1)

We already know deg
(
coeff

(
gi, x

jyk
))

≤ j, deg
(
coeff

(
∂gi
∂x , x

jyk
))

≤ j + 1, and

deg
(
coeff

(
∂gi
∂y , x

jyk
))

= 0 for i ∈ [d] and (j, k) ∈ N2 by the above discussion. Choosing

(h1, . . . , hs) to be (g1, . . . , gi−1, gi+1, . . . gd,
∂gi
∂x ) and (g1, . . . , gi−1, gi+1, . . . gd,

∂gi
∂y ) respectively and

applying (1) proves the claim.

For a = (a1, . . . , an) ∈ Kn, we can assign a1 . . . , an to z1, . . . , zn respectively in the polynomi-

als coeff
(
ĝi

∂gi
∂x , x

jyk
)
, coeff

(
ĝi

∂gi
∂y , x

jyk
)

∈ K[z]. This yields a linear system over K, called the

specialization of Dz,σ at a and denoted by Da,σ.

Definition 4.3 (Specialization). For σ ∈ N and a = (a1, . . . , an) ∈ Kn, define Da,σ to be the
following linear system over K in the unknowns ℓ1, . . . , ℓd:

Da,σ



d∑
i=1

coeff

(
ĝi
∂gi
∂y

, xjyk
)
(a) · ℓi = 0, k ≤ d− 1, d ≤ j + k ≤ σ − 1,

d∑
i=1

coeff

(
ĝi
∂gi
∂x

, xjyk
)
(a) · ℓi = 0, k ≤ d− 1, j ≤ σ − 2, d ≤ j + k ≤ σ − 1.

For S ⊆ [d], define δS = (δS,1, . . . , δS,d) ∈ Kd by

δS,i =

{
1 i ∈ S,

0 i ̸∈ S.

For every factor f̃ of f , we may associate a set S ⊆ [d] such that f̃ =
∏

i∈S(y−λi), i.e., S is the

set of indices i ∈ [d] such that y − λi divides f̃ . Then irreducible factors f1, . . . , fr of f over K are
then associated with sets S1, . . . , Sr ⊆ [d], which form a partition of [d]. In [Lec06, Lec07], Lecerf
proved that, when σ is large enough, the solution space of Dz,σ is exactly spanned by the vectors
δS1 , . . . , δSr , and a similar statement holds for the specializations Da,σ. We state Lecerf’s results
formally as the following theorem.

Theorem 4.4 ([Lec06, Lec07]). Assume char(K) is zero or greater than d(d− 1). Let σ ≥ 2d. Let
f ∈ K[x, y] be a polynomial of degree d ≥ 1 satisfying Hypothesis (H). Then:

1. Suppose f =
∏r

i=1 fi is the factorization of f into its irreducible factors over K. For i ∈ [r],
let Si be the set of indices j ∈ [d] such that y − λj divides fi. Then δS1 , . . . , δSr form a basis
of the solution space of Dz,σ.
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2. Let a = (a1, . . . , an) ∈ Kn and fa = f(a1x, . . . , anx, y) ∈ K[x, y]. Suppose fa =
∏s

i=1 fa,i is
the factorization of fa into its irreducible factors over K. For i ∈ [s], let Sa,i be the set of
indices j ∈ [d] such that y − λj(a1x, . . . , anx) divides fa,i. Then δSa,1 , . . . , δSa,s form a basis
of the solution space of Da,σ.

The first item of Theorem 4.4 is explicitly stated as [Lec07, Lemma 1]. The second item follows
from [Lec06, Theorem 1 and Lemma 4]. For a detailed analysis of the linear systems Dz,σ and Da,σ,
and for a conceptual interpretation of these linear systems in terms of the closedness condition of
differential 1-forms, we refer the reader to [Lec06, Lec07], as well as to the earlier paper of Gao
[Gao03].

Bertinian Good/Bad Points. The classical Bertini irreducibility theorem [Sha94] states,
among other things, that over an algebraically closed field K, the intersection of an irreducible
variety with a plane in general position is still irreducible. This motivates the following definition:

Definition 4.5 (Bertinian good/bad points [Lec07]). Let f ∈ K[x, y] be a non-constant polynomial
satisfying Hypothesis (H). We say a = (a1, . . . , an) ∈ Kn is a Bertinian good point for f if for every
irreducible factor f̃ of f over K, the bivariate polynomial f̃a = f̃(a1x, . . . , anx, y) is also irreducible
over K. We say a = (a1, . . . , an) ∈ Kn is a Bertinian bad point for f if it is not a Bertinian good
point for f .

Lecerf [Lec07, Theorem 6] proved that given f , there exists a nonzero polynomial Q ∈
K[z1, . . . , zn] of degree at most (d − 1)(2d − 1) that vanishes at all Bertinian bad points for f ,
where d = deg(f). Let M be the matrix representing the linear system Dz,σ. Lecerf’s proof can
be sketched as follows: By Theorem 4.4, the solution space of Da,σ contains that of Dz,σ, and a
is Bertinian good as long as the two are equal. Thus, we may choose Q to be the determinant of
the largest nonsingular submatrix of M . This is because for such Q, if Q does not vanish at a,
then Dz,σ and Da,σ have the same rank, and hence their solution spaces must be equal. The bound
(d− 1)(2d− 1) on the degree of Q follows from Lemma 4.2.

In [Lec07], Lecerf also demonstrated that the degree bound (d−1)(2d−1) is asymptotically tight
by providing an example for which a degree of Ω(d2) of the polynomial Q is necessary. However,
our next lemma states that, perhaps surprisingly, the degree bound can be improved to 2d − 1 if
we allow the use of the zero loci of multiple polynomials to cover the Bertinian bad points for f .
For simplicity, we state the lemma in the special case where f is irreducible, which suffices for our
purpose.

Lemma 4.6. Assume char(K) is zero or greater than d(d − 1). Let f ∈ K[x, y] be a irreducible
polynomial over K of degree d ≥ 1 satisfying Hypothesis (H). Let m = 2d−1 − 1. Then there exist
nonzero polynomials Q1, . . . , Qm ∈ K[z] = K[z1, . . . , zn] of degree at most 2d−1 such that for every
Bertinian bad point a ∈ Kn for f , at least one polynomial Qi vanishes at a.

Proof. Let σ = 2d. Let N be the number of equations in Dz,σ. Let M be the N × d matrix over
F(z) representing the linear system Dz,σ. Note that by Definition 4.1, the entries of M are of the

form coeff
(
ĝi

∂gi
∂x , x

jyk
)
with j ≤ σ − 2 or coeff

(
ĝi

∂gi
∂y , x

jyk
)
with j ≤ σ − 1. By Lemma 4.2 and

the fact that σ = 2d, the entries of M are polynomials in K[z] of degree at most 2d− 1.
There are exactly m = 2d−1 − 1 proper subsets of [d] containing 1. Let S1, . . . , Sm be an

enumeration of them. Consider i ∈ [m]. As f is irreducible, by Theorem 4.4, δSi is not in the
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solution space of Dz,σ. So we can fix a row ri = (ri,1, . . . , ri,d) of M such that the inner product of

ri and δSi is nonzero, i.e.,
∑d

j=1 ri,jδSi,j ̸= 0. Let Qi =
∑d

j=1 ri,jδSi,j , which is a nonzero polynomial
in K[z] of degree at most 2d− 1. Choose Qi in this way for each i = 1, . . . ,m.

Now let a be a Bertinian bad point for f . Then fa = f(a1x, . . . , anx, y) factorizes into more than
one irreducible factor over K. Let f̃a be the irreducible factor of fa divisible by y−λ1(a1x, . . . , anx).
Let S be the set of j ∈ [d] such that f̃a is divisible by y − λj(a1x, . . . , anx). Then S is a proper
subset of [d] containing 1. So S = Si for some i ∈ [m]. By Theorem 4.4, δSi is in the solution space
of Da,σ. As Da,σ is the specialization of Dz,σ at a, the vector (ri,1(a), . . . , ri,d(a)) is a row of the

matrix representing Da,σ. So
∑d

j=1 ri,j(a)δSi,j = 0, i.e., Qi(a) = 0.

The Number of Low-Degree Polynomials Needed. It is an intriguing mathematical question
to us how many low-degree polynomials are needed to cover the Bertinian bad points for f . We
now formalize this question.

Definition 4.7. Let K be an algebraically closed field. For positive integers d and D, define
N(d,D,K) to be the smallest N ∈ N such that the following holds: Let f ∈ K[x, y] be an irreducible
polynomial of degree at most d over K satisfying Hypothesis (H). Then there exist N nonzero
polynomials in K[z] of degree at most D such that the union of the zero loci of these polynomials
contains all Bertinian bad points for f in Kn.

If such N does not exist, define N(d,D,K) = ∞.

In our application, it suffices to consider polynomials of the special form f + c · t, where c ∈ F×,
f ∈ F[x, y] and K = F(t). Moreover, by performing a variable substitution t 7→ −c−1t, we may
assume c = −1. This motivates us to introduce the following variant of Definition 4.7:

Definition 4.8. Let F be a field. For positive integers d and D, define N∗(d,D,F) to be the
smallest N ∈ N such that the following holds: Let f ∈ F[x, y] be a polynomial of degree at most d
such that f − t is an irreducible polynomial over F(t) satisfying Hypothesis (H). Then there exist
N nonzero polynomials in F(t)[z] of degree at most D such that the union of the zero loci of these
polynomials contains all Bertinian bad points for f − t in Fn

.
If such N does not exist, define N∗(d,D,F) = ∞.

Lecerf’s result [Lec07, Theorem 6] can be interpreted as the statement that when char(K) is
zero or greater than d(d− 1), it holds that

N(d,D,K) = 1 for D ≥ (d− 1)(2d− 1).

Our Lemma 4.6 states that under the same condition, we have

N(d,D,K) ≤ 2d−1 − 1 for D ≥ 2d− 1.

In [Lec07], Lecerf gave an example showing that the degree boundO(d2) for the smallestD satisfying
N(d,D,K) = 1 is asymptotically tight.2 As one can always combine the N(d,D,K) polynomials of
degree at most D into a single polynomial of degree at most N(d,D,K) ·D by taking their product,
this implies N(d,D,K) ·D = Ω(d2), i.e., N(d,D,K) = Ω(d2/D).

2See the example before Theorem 6 in [Lec07].
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Question 4.9. Give improved upper bounds (or lower bounds) on N(d,D,K) and N∗(d,D,F), at
least when the characteristic of K or F is zero or large enough.

By definition, N∗(d,D,F) ≤ N(d,D,F(t)). A subexponential upper bound on N∗(d,D,F) for
D = O(d) will improve the required field size in Theorem 1.1.

Finally, it might be possible to exploit some extra structure to derive better bounds on
N∗(d,D,F) than those obtained for N(d,D,K). For example, if we modify the definition of
N∗(d,D,F) by only considering those polynomials f of prime degree, then N∗(d, 2d − 1,F) ≤ 1.
This is because if fa − t is reducible over F(t), then fa is decomposable over F by Lemma 2.8. But
as deg(f) is prime, fa must be of the form g(h) with deg(g) = deg(f) and deg h = 1. This in turn
implies that fa− t factorizes into deg(f) linear factors over Fq(t). In Theorem 5.4, we use this idea
to show that the required field size can be improved to O(d4/ε2) if we only want to fool polynomials
whose degrees are prime and at most d.

5 Proofs of the Main Theorems

In this section, we present our PRG construction and prove the main theorems.
Let n and d be positive integers. Let Fq be a finite field of characteristic at least d(d− 1) + 1.

We now present the construction of our PRG

G : S → Fn+1
q

for polynomials f ∈ Fq[x, y] = Fq[x1, . . . , xn, y] of degree at most d. To simplify our notation, these
polynomials are assumed to be (n+ 1)-variate rather than n-variate.

Construction 5.1. The construction is as follows:

• Let H : T → Fn
q be an explicit HSG for n-variate polynomials of degree at most 2d− 1 over

Fq with density 1− δ and seed length log |T | = O(d log n+ log(1/δ)), where δ = C0(2d− 1)/q
and C0 > 0 is an absolute constant. For i ∈ [n] and s ∈ T , denote the i-th coordinate of H(s)
by H(s)i. The existence of H is guaranteed by Theorem 2.3.

• Let S = T × T × Fq × Fq. Define G : S → Fn+1
q by

G(r, s, u, v) = (H(s)1 · u+H(r)1 · v, . . . ,H(s)n · u+H(r)n · v, v).

In other words, we use random (r, s) ∈ T × T to pick a plane in Fn+1
q , and use random (u, v) ∈

Fq×Fq to pick a point on the plane. The following lemma states that with high probability, a given
indecomposable polynomial f ∈ Fq[x, y] remains indecomposable when restricted to the plane.

Lemma 5.2. Let f ∈ Fq[x, y] be an indecomposable polynomial of degree at most d over Fq. Let
(r, s) be a random element of T × T . Let a = (a1, . . . , an) = H(r) and b = (b1, . . . , bn) = H(s).
Finally, let F = f(b1x+ a1y, . . . , bnx+ any, y) ∈ Fq[x, y]. Then

Pr [F is indecomposable over Fq] ≥ 1− 2d−1δ.
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Proof. Recall that sa is the Fq-linear automorphism of Fq[x, y] that fixes y and sends xi to xi+aiy.
As f is indecomposable over Fq, so is sa(f). By Lemma 2.6, sa(f) is also indecomposable over Fq.

So sa(f)− t is irreducible over Fq(t) by Lemma 2.8.
By Corollary 3.5, there exists a nonzero polynomial B ∈ Fq[x] of degree at most d such that if

B(a) ̸= 0, then
sa(f)− t = c · g (2)

where c ∈ F×
q and g ∈ Fq(t)[x, y] ⊆ Fq(t)[x, y] is a degree-d polynomial satisfying Hypothesis (H).

By the HSG property of H, the event B(a) ̸= 0 happens with probability at least 1− δ. Condition
on this event, so that (2) holds. As sa(f)− t is irreducible over Fq(t), so is g.

Letm = 2d−1−1. By Lemma 4.6, there exist nonzero polynomialsQ1, . . . , Qm ∈ Fq(t)[z1, . . . , zn]
of degree at most 2d − 1 such that the union of the zero loci of these polynomials contains all
b∗ = (b∗1, . . . , b

∗
n) ∈ Fn

q for which g(b∗1x, . . . , b
∗
nx, y) is reducible over Fq(t). By Fact 2.4, H is an

HSG with density 1 − δ for polynomials of degree at most 2d − 1 over Fq(t).
3 Therefore, for each

i ∈ [m], the probability that Qi(b) = 0 is at most δ. Condition on the event Q1(b), . . . , Qm(b) ̸= 0.
Then g(b1x, . . . , bnx, y) is irreducible over Fq(t). On the other hand, note that

c · g(b1x, . . . , bnx, y)
(2)
= (sa(f))(b1x, . . . , bnx, y)− t = f(b1x+ a1y, . . . , bnx+ any, y)− t = F − t

where the second step uses the definition sa(f) = f(x1+a1y, . . . , xn+any, y) ∈ Fq[x, y]. So F − t is

irreducible over Fq(t). By Lemma 2.8, F is indecomposable over Fq. So it is indecomposable over
Fq.

The indecomposability of F over Fq relies on the conditions B(a) ̸= 0 and Q1(b), . . . , Qm(b) ̸=
0. By the union bound, these conditions are simultaneously satisfied with probability at least
1− δ −mδ = 1− 2d−1δ, which completes the proof.

Now we are ready to prove Theorem 1.1.

Theorem 5.3 (Theorem 1.1 restated). There exists an absolute constant C > 0 such that for
ε > 0 and q ≥ C(d2d/ε + d4/ε2) with char(Fq) ≥ d(d − 1) + 1, G as in Construction 5.1 is a
PRG for (n + 1)-variate polynomials of degree at most d over Fq with error ε and seed length
O(d log n+ log q).

Proof. Let f ∈ Fq[x, y] be a polynomial of degree at most d. We want to prove that f(G(US)) and
f(UFn+1

q
) are ε-close (in statistical distance). We may assume that f is a non-constant polynomial,

i.e., deg(f) ≥ 1, since the claim is trivial otherwise.
Our next step is the same as in [DV22]: f can always be written in the form f = g(h), where

g ∈ Fq[z] is a univariate polynomial and h ∈ Fq[x, y] is indecomposable over Fq. Let D = h(G(US))
and D′ = h(UFn+1

q
). Then f(G(US)) = g(D) and f(UFn+1

q
) = g(D′). If D and D′ are ε-close,

then g(D) and g(D′) are also ε-close. Thus, by replacing f with h, we may assume that f is
indecomposable over Fq.

Let r, s,a,b and F be as in Lemma 5.2. Then by Lemma 5.2, the probability that F is
decomposable over Fq over random r and s is at most 2d−1δ = C02

d−1(2d− 1)/q, where C0 is as in
Construction 5.1. Fix r and s such that F is indecomposable over Fq. Then f(G(r, s, u, v)) = F (u, v)

3Note that we are applying Fact 2.4 to the infinite extension Fq(t)/Fq. In principle, it should be possible to
make the argument finitary by making some adaptations, such as considering specific values of t. However, this may
increase the complexity of the proof.
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by definition. Applying Lemma 2.7 to F shows that, for such fixed r and s, the distribution of
F (u, v), i.e., f(G(r, s, u, v)), over random u, v ∈ Fq is ε′-close to UFq , where ε′ = C1d

2/
√
q and

C1 > 0 is an absolute constant. It follows that the statistical distance between f(G(US)) and UFq

is at most 2d−1δ + ε′.
On the other hand, as f is also indecompsable over Fq, applying Lemma 2.7 to f shows that

f(UFn+1
q

) is ε′-close to UFq . Therefore, the statistical distance between f(G(US)) and f(UFn+1
q

) is
at most

(2d−1δ + ε′) + ε′ = 2d−1δ + 2ε′ = C02
d−1(2d− 1)/q + 2C1d

2/
√
q (3)

which is bounded by ε provided that q ≥ C(d2d/ε + d4/ε2) and C > 0 is a large enough absolute
constant. The seed length of G is

2 log |T |+ 2 log q = O(d log n+ log(1/δ) + log q) = O(d log n+ log q)

as δ = C0(2d− 1)/q.

We conclude this section by proving Theorem 1.2, which states that the required field size can
be improved to O(d4/ε2) if we only want to fool polynomials of prime degree.

Theorem 5.4 (Theorem 1.2 restated). There exists an absolute constant C > 0 such that for
ε > 0 and q ≥ C(d4/ε2) with char(Fq) ≥ d(d − 1) + 1, G as in Construction 5.1 is a PRG for
(n+1)-variate polynomials of prime degree up to d with error ε and seed length O(d log n+ log q).

Proof Sketch. Let f ∈ Fq[x, y] be a polynomial whose degree d′ is prime and at most d. We
want to prove that f(G(US)) and f(UFn+1

q
) are ε-close (in statistical distance). Suppose f is

decomposable over Fq. Then f = g(h) for some polynomials g, h over Fq where deg(g) ≥ 2, and as
d′ = deg(f) is prime, we must have deg(g) = d′ and deg(h) = 1. In this case, the theorem follows
by replacing f with h, which has degree one, and applying Theorem 5.3. So we may assume that
f is indecomposable over Fq.

The rest of the proof follows that of Theorem 5.3, except that we could bound the probability
that F is decomposable over Fq by 2δ, rather than by 2d−1δ, using the following observation:

In the application of Lemma 4.6, the polynomial has the special form g∗ = f∗ + ct, where
f∗ ∈ Fq[x, y], c ∈ F×

q , and deg(f∗) = d′. By making the substitution t 7→ −c−1t, we may assume

c = −1. Consider any a ∈ Fn
q such that g∗a = g∗(a1x, . . . , anx, y) is reducible over Fq(t)

n
. We claim

that g∗a factorizes into linear factors over Fq(t). To see this, note that f∗
a = f∗(a1x, . . . , anx, y) is

a decomposable polynomial over Fq of degree d′ by Lemma 2.8 and the fact that g∗a = f∗
a − t is

reducible over Fq(t). So we may write f∗
a = α(β) where α ∈ Fq[z], β ∈ Fq[x, y], and deg(α) > 1.

As d′ is prime, we must have deg(α) = d′ and deg(β) = 1. As α is univariate, α− t factorizes into
linear factors α1, . . . , αd′ over Fq(t). So g∗a = α(β)− t = (α− t)(β) factorizes into the linear factors

α1(β), . . . , αd′(β) over Fq(t).
This observation shows that there is only one bad factorization pattern to rule out, namely, the

complete factorization into linear factors. This allows us to save a factor of 2d−1−1 and reduce the
error probability in Lemma 5.2 from (2d−1)δ+δ to δ+δ = 2δ. The bound on the statistical distance
between f(G(US)) and f(UFn+1

q
) in (3) now becomes 2δ+2ε′ = 2C0(2d− 1)/q+2C1d

2/
√
q, which

is bounded by ε provided that q ≥ C(d4/ε2) and C > 0 is a large enough absolute constant.
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6 Open Problems

We conclude with some open problems. The most obvious one is reducing the required field size in
our construction. Using Bogdanov’s [Bog05] paradigm, it seems necessary for the field to be of size
at least polynomial in d, since this argument relies on the Weil bound (and indeed, as mentioned
in Section 1, the seed lengths of the known constructions over small fields like F2 are worse). Still,
one could hope to obtain seed length O(d log n) with q being polynomial in d, and not exponential
in d. In our construction, q is exponential in d due to the need to apply a union bound over all
possible vectors in {0, 1}d characterizing the factorization pattern of fa. It could very well be that
there is a more clever argument that rules out multiple vectors at once. We also mention again
Question 4.9. As explained in Section 4, improved upper bounds on the quantity N∗(d,D,F) in
that question would improve the field size required by our construction.

A related open problem is removing the requirement that the characteristic of Fq is at least
d(d − 1) + 1. This requirement comes from using Lecerf’s [Lec07] arguments (dating back to Gao
[Gao03] and Ruppert [Rup86, Rup99]).

Finally, low-degree polynomials form a natural “weak” class of polynomials. However, rather
than assuming bounds on the degree of polynomials, one can also consider other weak classes of
polynomials, where the restriction comes from bounding their algebraic circuit complexity. This
forms another interesting avenue for generalizing the results on PRGs for low-degree polynomials.
As an analogy, in the context of Boolean computation, the problem of constructing explicit PRGs
for weak computational classes (such as bounded-depth circuits or read-once oblivious branching
programs) is well studied (see [Vad12]). For algebraic computational models, however, much less is
known. Most of the research in this area has focused on constructing hitting sets of limited models
of algebraic circuits (see [SY10, Sax09, Sax14] for some surveys on this topic), due to the relation
to the famous Polynomial Identity Testing Problem. To the best of our knowledge, there is no
known explicit construction of PRGs for any natural class of algebraic computation. A concrete
and intriguing open problem is to explicitly construct PRGs for the class of sparse polynomials, for
which, as described in the references above, there are many known explicit constructions of hitting
sets.
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