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Abstract

The matching and linear matroid intersection problems are solvable in quasi-NC, mean-
ing that there exist deterministic algorithms that run in polylogarithmic time and use
quasi-polynomially many parallel processors. However, such a parallel algorithm is un-
known for linear matroid matching, which generalizes both of these problems. In this
work, we propose a quasi-NC algorithm for fractional linear matroid matching, which is
a relaxation of linear matroid matching and commonly generalizes fractional matching
and linear matroid intersection. Our algorithm builds upon the connection of fractional
matroid matching to non-commutative Edmonds’ problem recently revealed by Oki and
Soma (2023). As a corollary, we also solve black-box non-commutative Edmonds’ problem
with rank-two skew-symmetric coefficients.
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1 Introduction

Algebraic algorithms play an important role in designing parallel algorithms because of the
existence of highly parallelizable algorithms to perform basic matrix operations such as matrix
multiplication and determinant computation. One of the earliest results in this direction can be
attributed to Lovász [Lov79], where the problem of testing the existence of a perfect matching
in a graph is reduced to non-singularity testing of the corresponding Tutte matrix [Tut47]. A
(randomized) algorithm is called an (R)NC algorithm if it takes poly-logarithmic time and
requires polynomially many parallel processors in terms of the input size. By assigning small
integral values chosen randomly to the variables, we can efficiently test the non-singularity
of a linear symbolic matrix, which is a matrix with linear forms in its entries. Using this,
Lovász [Lov79] gave an RNC algorithm to decide the existence of a perfect matching in a graph.

In the same work, he also reduced the more general linear matroid matching problem (also
known as the linear matroid parity problem) to non-singularity testing of an associated symbolic
matrix. In this problem, a set L of two-dimensional vector subspaces, called lines, of a vector
space Fn over a field F is given as an input. A subset M of L is called a matroid matching if the
dimension of the sum space of the lines in M is 2|M|, i.e., dim(∑l∈M l) = 2|M|. A matroid
matching of size n/2 is called perfect. Then, the (perfect) linear matroid matching problem asks
for a perfect matroid matching. This problem generalizes the problems of finding a perfect
matching in graphs as well as finding a common base of two linear matroids. For a set of lines
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L = {l1, l2, . . . , lm}, where li = span(ai, bi) with ai, bi ∈ Fn for i ∈ [m], Lovász [Lov79] defined
the following symbolic matrix A in variables x1, x2, . . . , xm:

A =
m

∑
i=1

(aib⊤i − bia⊤i )xi. (1)

Lovász showed that the determinant of A is non-zero if and only if a perfect matroid matching
exists, which in turn implies an RNC algorithm for linear matroid matching.

Lovász’s above algorithms only solve the decision problems, i.e., only check the existence
of a solution. Some years later, Karp, Upfal, and Wigderson [KUW86] and Mulmuley, Vazirani,
and Vazirani [MVV87] gave RNC algorithms to find a perfect matching in graphs. The algorithm
of Mulmuley, Vazirani, and Vazirani [MVV87] introduces weights on the edges of the graph
and then finds a maximum-weight perfect matching with respect to the assigned weights.
They observed that this can be efficiently performed in parallel if the weight assignment is
isolating, i.e., there exists a unique maximum-weight perfect matching. They showed that a
weight assignment with weights chosen randomly from a small set of integers is isolating with
high probability in their famous isolation lemma. Interestingly, the isolation lemma works not
just for perfect matchings but for arbitrary families of sets. Later on, Narayanan, Saran, and
Vazirani [NSV94] obtained an RNC algorithm to find a common base of two linear matroids
and a perfect matroid matching for linear matroids using the isolation lemma, along the same
lines as [MVV87].

In the deterministic setting, however, obtaining an NC algorithm is an outstanding open
question even for the simplest of the cases, that is, deciding whether a bipartite graph has a per-
fect matching. Fenner, Gurjar, and Thierauf [FGT16] made significant progress in the direction
of derandomization. They provided a quasi-NC algorithm (i.e., deterministic polylogarithmic
time with quasi-polynomially many parallel processors) for the bipartite matching problem,
derandomizing the work of [MVV87]. Later, Svensson and Tarnwaski [ST17a] and Gurjar and
Thierauf [GT17] gave quasi-NC algorithms for perfect matching and linear matroid intersec-
tion, respectively. All these results go via constructing an isolating weight assignment for
their respective problems in quasi-NC time. The deterministic construction of isolating weight
assignments in [FGT16, ST17a, GT17] relies on the linear program (LP) description of the as-
sociated polytope. For perfect matching and linear matroid intersection, the matching polytope
and the matroid intersection polytope are defined as the convex hulls of indicator vectors of all
the perfect matchings of the graph and all the common bases of two matroids, respectively.
Unfortunately, for linear matroid matching, an LP description of the linear matroid matching
polytope (the convex hull of indicator vectors of perfect matroid matchings) is still unknown,
hindering us from building a quasi-NC algorithm for linear matroid matching.

In this paper, we work with a relaxation of linear matroid matching polytopes, called frac-
tional linear matroid matching polytopes, introduced by Vande Vate [VV92] and Chang, Llewellyn,
and Vande Vate [CLV01b]. The linear fractional matroid matching polytope is defined for a set
of lines L = {l1, l2, . . . , lm} as follows. Let E be a (multi)set of 2m vectors {a1, b1, . . . , am, bm}
such that li = span(ai, bi) for i ∈ [m]. A subset S of E is called a flat if e /∈ span(S) holds for
every e ∈ E \ S. Then, a fractional matroid matching polytope is a collection of non-negative
vectors y ∈ Rm, called fractional matroid matchings, such that

m

∑
i=1

yi · dim(span(S) ∩ li) ≤ dim(span(S)) (2)

holds for all flats S of E. This polytope is a subset of [0, 1]m and the vertices are half-
integral [GP13]. The polytope is a relaxation of the matroid matching polytope in the sense
that the set of its integer vertices for L is exactly the integer vertices of the matroid matching
polytope for L [VV92]. The fractional matching polytope for a loopless graph and the matroid
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intersection polytope for two linear matroids coincide with the fractional matroid matching
polytope for an appropriately chosen set of lines [VV92]. The size of a fractional matroid
matching y ∈ Rm is defined as ∑m

i=1 yi. The (perfect) fractional linear matroid matching prob-
lem is to find a perfect fractional matroid matching, which is a fractional matroid matching of
size n/2. A polynomial-time algorithm for fractional linear matroid matching was given by
Chang, Llewellyn, and Vande Vate [CLV01a, CLV01b] and this result was extended to weighted
fractional linear matroid matching by Gisjwĳt and Pap [GP13].

Recently, Oki and Soma [OS23] gave a relationship between fractional linear matroid match-
ing and non-commutative Edmonds’ problem. (Commutative) Edmonds’ problem is to test the non-
singularity of a given linear symbolic matrix A = ∑m

i=1 Aixi. Here, Ai’s are given n× n matrices
over a field F, and A is regarded as a matrix over the rational function field F(x1, . . . , xm). While
the random substitution yields an efficient randomized algorithm, it is a long-standing open
problem whether it can be derandomized. In non-commutative Edmonds’ problem, the vari-
ables x1, . . . , xm are regarded as pairwise non-commutative, that is, xixj ̸= xjxi if i ̸= j. Then,
non-commutative Edmonds’ problem asks to decide if the non-commutative rank, denoted as
nc-rank(A), of A is n or not. Here, the non-commutative rank is defined as the rank of A as a
matrix over the free skew field F<( x1, x2, . . . , xm>) , which is the quotient of the non-commutative
polynomial ring F⟨x1, x2, . . . , xm⟩ [Ami66]. The non-commutative rank can also be character-
ized by the (commutative) rank of the blow-up of A defined as follows. For d ≥ 1, the dth-order
blow-up of A, denoted by A{d}, is the dn× dn linear symbolic matrix in md2 variables given by

A{d} =
m

∑
i=1

Xi ⊗ Ai,

where Xi is a d × d matrix with a distinct indeterminate in each entry for i ∈ [m] and ⊗
denotes the Kronecker product. Then, nc-rank(A) is equal to maxd

1
d rank(A{d}) [IQS18]

and the inequality is attained for d ≥ n − 1 [DM17]. Unlike the commutative problem,
non-commutative Edmonds’ problem is known to be solvable in deterministic polynomial
time [GGOW16, IQS18, HH21] in the white-box setting, i.e., the coefficient matrices A1, . . . , Am
are given as input. The white-box setting is weaker than the black-box setting, in which we
need to construct a setH, called a non-commutative hitting set, of tuples of m matrices such that
for all A = ∑m

i=1 xi Ai with nc-rank(A) = n, there exists a tuple (T1, T2, . . . , Tm) ∈ H such that
det(∑m

i=1 Ti ⊗ Ai) is non-zero. Similar to the commutative setting, a hitting set of exponential
size can be constructed trivially using Shwartz-Zippel Lemma and the polynomial dimension
bounds of [DM17]. For non-commutative Edmonds’ problem under the black-box setting, even
a subexponential-time deterministic algorithm is unknown [GGOW20].

Oki and Soma [OS23] proved that the non-commutative rank of a linear symbolic matrix (1)
with rank-two skew-symmetric coefficient matrices Ai = aib⊤i − bia⊤i is n if and only if there is
a perfect fractional matroid matching in the corresponding fractional linear matroid matching
polytope, analogous to Lovász’ correspondence [Lov79] of commutative rank and matroid
matching. They further showed that nc-rank(A) = 1

2 rank A{2} holds for this A. That is, the
second-order blow-up is sufficient to attain nc-rank(A) if the coefficient matrices are rank-two
skew-symmetric. Based on their results, Oki and Soma developed a randomized sequential
algorithm for fractional linear matroid matching. Their result can be seen as a reduction from
the search version to the decision version for the problem of fractional linear matroid matching.
Then, the randomized algorithm decides the existence of a perfect fractional matroid matching,
which can also be made to run in RNC. However, it is not clear how to parallelize their reduction.

Contribution. In this paper, we present a quasi-NC algorithm for fractional linear matroid
matching, showing the following main theorem.

Theorem 1.1. Fractional linear matroid matching is in quasi-NC.
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Our algorithm comprises two parts: (i) constructing an isolating weight assignment and
(ii) finding the unique maximum-weight fractional matroid matching. This generalizes the
result of [GT17] as the linear matroid intersection polytope coincides with the fractional linear
matroid matching polytope for an appropriately chosen set of lines.

In the former part of our algorithm, we develop a quasi-NC algorithm to output a quasi-
polynomially large set W of weight assignments such that at least one weight assignment is
isolating for a given fractional linear matroid matching polytope. To this end, we employ a
parallel algorithm by Gurjar, Thierauf, and Vishnoi [GTV21]. For a polytope, they associate
a lattice to each of its faces. Then, they show that if the lattice associated with each face of
a polytope has polynomially bounded near-shortest vectors, then we can construct a quasi-
polynomially large set of weight assignments such that at least one of them is isolating for the
polytope (for details see Theorem 3.2). In their work, they show that a polytope for which
each face lies in an affine space defined by a totally unimodular matrix satisfies this property.
However, the faces of fractional linear matroid matching polytope do not lie in affine spaces
defined by totally unimodular matrices. Hence, their work does not directly imply an isolating
weight assignment for a fractional linear matroid matching polytope. To show that the lattice
associated with each face of the fractional linear matroid matching polytope satisfies the above-
mentioned property, we use the characterization of the faces of the fractional linear matroid
matching polytope given by Gisjwĳt and Pap [GP13].

The latter part of our algorithm uses the non-commutative matrix representation of frac-
tional linear matrix matching by Oki and Soma [OS23]. For matching and linear matroid
intersection, the parallel algorithm almost immediately follows using an isolating weight as-
signment. There is a one-to-one correspondence between the monomials of the pfaffian or
determinant of the symbolic matrix and the perfect matchings or common bases of the ma-
troids. After substituting the indeterminates of the symbolic matrix with univariate monomials
with degrees as weights from the weight assignment, a monomial corresponding to a matching
or a common base is mapped to a univariate monomial with degree equal to the weight of
that matching or common base. So, isolating a matching or a common base is equivalent to
isolating a monomial of the pfaffian or the determinant of the symbolic matrix, respectively.
However, for fractional linear matroid matching, it is not immediately clear how an isolating
weight assignment implies isolating a monomial in the pfaffian of the second-order blow-up of
the symbolic matrix after the substitution. To show this, we use the expansion formula of the
pfaffian of blow-up of the symbolic matrix and properties of extreme points of the fractional
matroid matching polytope of [OS23].

Using our algorithm, we further derive an algorithm to construct a non-commutative hit-
ting set of quasi-polynomial size for non-commutative Edmonds’ problem where each Ai is
restricted to a rank-two skew-symmetric matrix, solving black-box non-commutative Edmonds’
problem under this constraint in deterministic quasi-polynomial time. See Section 5 for details.

Organization. The rest of this paper is organized as follows. Section 2 provides preliminaries
on fractional linear matroid matching and some results and definitions from linear algebra. The
proposed algorithm is described in Sections 3 and 4. Section 3 describes how we can construct
an isolating weight assignment and Section 4 gives an algorithm for finding a perfect fractional
linear matroid matching. Finally, we present a black-box algorithm for non-commutative
Edmonds’ problem with rank-two skew-symmetric coefficients in Section 5.

2 Preliminaries and Notations

We give the notations and definitions that we are going to use. Let R, Z, and Z+ represent the
set of real numbers, integers, and non-negative integers, respectively. For a positive integer n,
we denote by [n] the set of integers {1, 2, . . . , n}.

4



Let F denote the ground field of sufficient size. For a vector v ∈ Fn and i ∈ [n], vi denotes
the ith component of v. For vectors a, b ∈ Fn, let a ∧ b := ab⊤ − ba⊤. Let A be an n×m matrix
over F. For S ⊆ [n] and T ⊆ [m], A[S, T] denote the submatrix of A obtained by taking rows
and columns of A indexed by S and T, respectively. If S is all the rows, we write A[S, T] as
A[T]. If S and T are singletons, say S = {i} and T = {j}, we simply write A[{i}, {j}] as A[i, j].
For vector spaces V, W ⊆ Fn, we mean by V ≤ W that V is a subspace of W. For vectors
a1, . . . , ak ∈ Fn, ⟨a1, . . . , ak⟩ denotes the vector space spanned by a1, a2, . . . , ak.

For two real vectors x, y ∈ R, we mean by x ≤ y that xi ≤ yi holds for all i ∈ [m]. The
cardinality of a non-negative vector v ∈ Rm, denoted by |v|, is the L1 norm ∑m

i=1 |vi|. Let 1
denote the all-one vector of appropriate dimension.

2.1 Linear Algebra Toolbox

Here, we present some definitions and results of linear algebra that we use later. The following
result relates to the parallel computation of determinants, assuming that field operations take
unit time.

Theorem 2.1 ([BCP83]). For an n× n matrix A with entries as polynomials in a constant number
of variables with individual degree at most d, det(A) can be computed in polylog(n, d) time using
poly(n, d) parallel processors.

For an n× m matrix A = (ai,j)i,j and a p× q matrix B, the Kronecker product, denoted by
A⊗ B, is the np×mq matrix defined as

A⊗ B =

a1,1B a1,mB

an,1B an,mB

.

For a 2n× 2n skew-symmetric matrix A = (ai,j)i,j, its Pfaffian is defined as

pf(A) =
1

2nn! ∑
σ∈S2n

sgn(σ)
n

∏
i=1

aσ(2i−1),σ(2i)

where S2n is the set of permutations σ : [2n] −→ [2n]. The Pfaffian is defined to be zero for
skew-symmetric matrices with odd sizes, and it satisfies (pf(A))2 = det(A).

2.2 Fractional linear matroid matching

Oki and Soma [OS23] showed that the maximum cardinality of a fractional linear matroid
matching is equal to half the non-commutative rank of the linear symbolic matrix A given
in (1), analogous to Lovász’ result [Lov79]. They further showed that only second-order blow-
up is sufficient to attain the non-commutative rank for A, summarized as follows.

Theorem 2.2 ([OS23, Theorem 3.1]). Let P be a fractional linear matroid matching polytope and A
the associated linear symbolic matrix defined by (1). Then, it holds that

max
y∈P
|y| = 1

2
nc-rank(A) =

1
4

rank(A{2}).

We use the following refinement of Theorem 2.2. For a half-integral vector y ∈ {0, 1/2, 1}m,
let

A{2}(y) =
m

∑
i=1

Yi ⊗ Ai,
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where Yi = UiUT
i and Ui is a 2× 2yi matrix with indeterminates in its entries for i ∈ [m].

In other words, A{2}(y) is the matrix obtained by substituting the 2× 2 symmetric matrix Yi
of rank 2yi into Xi in the second-order blow-up A{2} for i ∈ [m]. Note that rank A{2}(y) ≤
rank A{2}(1) ≤ rank A{2} always holds.

Theorem 2.3 ([OS23, Lemma 4.5]). Let P be a fractional linear matroid matching polytope and A the
associated linear symbolic matrix defined by (1). For y ∈ {0, 1/2, 1}m, if rank(A{2}(y)) = rank(A{2})
holds, then there exists z ∈ {0, 1/2, 1}m such that z ≤ y, z ∈ P, and |z| = maxx∈P |x|. Conversely, if
there exists such a point z which is an extreme point of P, then rank(A{2}(y)) = rank(A{2}) holds.

The matrix A{2}(y) is skew-symmetric because each Yi is symmetric. Oki and Soma also
gave the following expansion formula for the Pfaffian of A{2}(y) that we will use later. Let
Bi = [ai bi] for i ∈ [m].

Theorem 2.4 ([OS23, Lemma 4.1]). For y ∈ {0, 1/2, 1}m, it holds that

pf(A{2}(y)) = ∑
z∈{0, 1

2 ,1}m
,

|z|= n
2 , z≤y

∑
(J1,...,Jm)∈J y(z)

det([(U1 ⊗ B1)[J1] · · · (Um ⊗ Bm)[Jm]]), (3)

where J y(z) is the family of m tuples (J1, J2, . . . , Jm) such that

Ji =


{1, 2, 3, 4} if zi = 1,
{1, 2}or{3, 4} if yi = 1, zi = 1/2,
{1, 2} if yi = zi = 1/2,
∅ if zi = 0.

The weighted fractional linear matroid matching problem is to find a fractional matroid matching
y that maximizes w · y for a non-negative weight assignment w : L −→ Z+. Gĳswĳt and Pap
[GP13] gave a polynomial time algorithm for weighted fractional linear matroid matching.
They also gave the following characterization for maximizing face of the polytope with respect
to a weight function. It is derived by showing the existence of a solution to the dual of the
linear program of maximizing w · y over the inequalities (2) such that the support of the solution
forms a chain.

Theorem 2.5 (see [GP13, proof of Theorem 1]). Let L = {l1, l2, . . . , lm} be a set of lines with li ≤ Fn

and w : L −→ Z be a weight assignment on L. Let F denote the set of fractional linear matroid matchings
maximizing w and S ⊆ [m] such that every y ∈ F has ye = 0 for e ∈ S. Then for some k ≤ n, there
exists a k×m matrix DF and bF ∈ Zk such that

• the entries of DF are from {0, 1, 2},

• the sum of the entries in any column of DF is exactly two, and

• a fractional matroid matching y is in F if and only if ye = 0 for e ∈ S and DFy = bF.

3 Isolating Weight Assignment for Fractional Matroid Parity

In this section, we describe how we can construct an isolating weight assignment for fractional
matroid parity with just the number of lines as input. Our main theorem of this section is the
following.

Theorem 3.1. There exists an algorithm that, given m ∈ Z+, outputs a set W ⊆ Zm
+ of mO(log m)

weight assignments with weights bounded by mO(log m) such that, for any fractional linear matroid
matching polytope P of m lines, there exists at least one w ∈ W that is isolating for P, in time
polylog(m) using mO(log m) many parallel processors.
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To prove Theorem 3.1, we use the following theorem given by Gurjar, Thierauf, and Vish-
noi [GTV21] that gives an isolating weight assignment for any polytope satisfying a certain
property. For a face F of a polytope, let LF denote the lattice defined by

LF = {v ∈ Zm | v = α(x1 − x2) for some x1, x2 ∈ F and α ∈ R}.

Let λ(L) denote the length of the smallest non-zero vector of a lattice L ⊆ Zm.

Theorem 3.2 ([GTV21, Theorem 2.5]). Let k be a positive integer and P ⊆ Rm a polytope such that
its extreme points are in {0, 1/k, 2/k, . . . , 1}m and there exists a constant c > 1 with

|{v ∈ LF | |v| < cλ(LF)}| ≤ mO(1)

for any face F of P. Then, there exists an algorithm that, given k and m, outputs a set W ⊆ Zm of
mO(log km) weight assignments with weights bounded by mO(log km) such that there exists at least one
w ∈ W that is isolating for P, in time polylog(km) using mO(log km) many parallel processors.

It should be emphasized that the algorithm provided in Theorem 3.2 requires only k and m
and does not access the polytope P itself.

Remark 3.3. The result of [GTV21, Theorem 2.5] gives an algorithm for a polytope with only
integral extreme points. However, the proof can be easily modified to show the above theorem.

Since a fractional matroid parity polytope P is half-integral [GP13], we just have to show
that the number of near shortest vectors in LF is polynomially bounded for any face F of P to
apply Theorem 3.2. Let DFx = bF be a system of equalities defining the affine space spanned
by a face F. Then, LF is exactly the set of integral vectors in the null space of DF, i.e.,

LF = {v ∈ Zm | DFv = 0}.

From Theorem 2.5, we can take DF such that its entries are in {0, 1, 2} and the sum of entries
of every column is 2. Now, we prove the following lemma, which directly implies Theorem 3.1
using Theorem 3.2.

Lemma 3.4. Let D ∈ {0, 1, 2}p×m be a matrix such that the sum of entries of each column equals 2.
Let LD denote the lattice {v ∈ Zm | Dv = 0}. Then, it holds that

|{v ∈ LD : |v| < 2λ(LD)}| ≤ mO(1).

To prove Lemma 3.4, we introduce additional notions from [ST17b, Definition 3.1]. Let G
be a multigraph with loops and C = v0

e0−→ v1
e1−→ . . .

ek−2−−→ vk−1
ek−1−−→ v0 a closed walk of even

length in G with edge repetition allowed. The size of a closed walk C denoted by |C| is the
number of edges in the walk. The alternating indicator vector, denoted by (±1)C, of C is defined
to be a vector (±1)C := ∑k−1

i=0 (−1)i1ei , where 1e ∈ Rm is the elementary vector having 1 on
position e and 0 elsewhere. We say that C is an alternating circuit if its alternating indicator
vector is non-zero. Note that for an alternating circuit |(±1)C| ≤ |C|. For x, y ∈ Rm, we say
that x is conformal to y, denoted by x ⊑ y, if xiyi ≥ 0 and |xi| ≤ |yi| holds for all i ∈ [m].

Now we are ready to prove Lemma 3.4.

Proof of Lemma 3.4. Let GD be a multigraph with vertex set [p] and m edges defined as follows.
For every e ∈ [m], the eth edge of GD is drawn between vertices s and t if D[s, e] = D[t, e] = 1
for some s, t ∈ [m] and it is a self-loop on vertex s if D[s, e] = 2 for some s ∈ [m].

Claim 3.5. For any x ∈ LD, there exists alternating circuits C1, C2, . . . Ct in GD such that x =
(±1)C1 + (±1)C2 + · · ·+ (±1)Ct , (±1)Ci ⊑ x, and |(±1)Ci | = |Ci| for all i ∈ [t].
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Proof. First, we show that (±1)C ∈ LD holds for any alternating circuit C = v0
e0−→ v1

e1−→
. . .

ek−2−−→ vk−1
ek−1−−→ v0. Let D[i, ∗] denote the ith row of A.

Then, by definition of GD, we have

D[i, ∗] · (±1)C =
k−1

∑
j=0

(−1)jD[i, ej] (4)

for all i ∈ [p]. Only those edges of C can contribute to the above sum with one or both the
endpoints as vertex i in GD. We can partition these edges such that each part contains edges
that appear continuously in the walk. For example, es−→ vs+1

es+1−−→ · · · et−1−−→ vt
et−→ forms a part

of the partition if vs ̸= i, i = vs+1 = vs+2 = · · · = vt and i ̸= vt+1. This part contributes
(−1)s + 2 ∑t−1

j=s+1 (−1)j + (−1)t to the sum (4). If the number of self-loops is even, then s and t
have different parties, and otherwise, they are the same. Hence, each block contributes zero to
the sum (4), implying D · (±1)C = 0.

We show Claim 3.5 by decomposing given x into alternating indicator vectors by an iterative
algorithm described in Algorithm 1.

Algorithm 1 Decomposition of a lattice vector
1: while |x| ̸= 0 do
2: y← 0, j← 1
3: Let e0 ∈ [m] such that xe0 > 0
4: ye0 ← 1 and let e0th edge in GD be {v0, v1}
5: while True do
6: if ∃e ∈ [m] such that the eth edge is {vj, u}, |xe| > |ye|, and (−1)jxe > 0 then
7: ye ← ye + (−1)j

8: ej ← e, vj+1 ← u
9: j← j + 1

10: else
11: Output x /∈ LD
12: end if
13: if j ≡ 0 (mod 2) and vj = v0 then
14: x ← x− y
15: output y and exit inner while loop
16: end if
17: end while
18: end while

Let x denote the lattice vector of the current iteration. The inner while loop always ter-
minates as |y| increases each step and cannot exceed |x|. In each iteration, the algorithm
follows a walk in GD. If the current iteration ends at Line 13, then we get a closed cyclic
walk of even length, say C, such that y is its alternating indicator vector. Since |y| > 0, C is
indeed an alternating circuit. We further have |y| = |C| and y ⊑ x by construction, implying
|x− y| = |x| − |y| < |x|. Since y is the alternating indicator vector of an alternating circuit, we
have y ∈ LD, which in turn implies x− y ∈ LD.

Now, we show that Algorithm 1 never goes to Line 11 if x ∈ LD, i.e., we always get an
alternating circuit in each outer iteration. Suppose to the contrary that at some iteration there
is no edge e ∈ δ(vj) such that |xe| > |ye| and (−1)jxe > 0, where δ(vj) denote the set of edges
adjacent to vj in GD. Let P = v0

e0−→ v1
e1−→ . . .

ej−1−−→ vj be the walk obtained till now in the
current iteration. By the same argument as above, we can show that Diy = 0 holds for every
i ∈ [p] except i ∈ {v0, vj}. In fact, Dvj y > 0 if j is odd and otherwise Dvj y < 0. Without loss of
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generality, let j be odd. Let supp+(x) and supp−(x) denote the subsets {i ∈ [m] | xi > 0} and
{i ∈ [m] | xi < 0}, respectively. Then, we have

Dvj x = ∑
e∈supp+(x)∩δ(vj)

D[vj, e]|xe| − ∑
e′∈supp−(x)∩δ(vj)

D[vj, e′]|xe′ | = 0

and
Dvj y = ∑

e∈supp+(y)∩δ(vj)

D[vj, e]|ye| − ∑
e′∈supp−(y)∩δ(vj)

D[vj, e′]|ye′ | > 0. (5)

By construction of y, we have y ⊑ x. Since there does not exist any e ∈ δ(vj) such that |xe| > |ye|
and −xe > 0, supp−(x) ∩ δ(vj) is the same as supp−(y) ∩ δ(vj) and |xe′ | = |ye′ | holds for
e′ ∈ supp−(y) ∩ δ(vj). This contradicts equation (5) as |xe| ≥ |ye| for e ∈ supp+(y) ∩ δ(vj).
Hence, the sum amount to y in the current iteration is exactly the alternating indicator vector of
an alternating circuit. Inductively, the algorithm successfully finds a decomposition of x.

Now, we show that all the near-shortest vectors are alternating indicator vectors of an
alternating circuit.

Claim 3.6. Any lattice vector x ∈ LD with |x| < 2λ(LD) is an alternating indicator vector (±1)C of
some alternating circuit C in GD such that |x| = |C|.

Proof. Suppose to the contrary that the claim is not true. From Claim 3.5, there exists alternating
circuits C1, C2, . . . Ct with t ≥ 2 such that x = (±1)C1 + (±1)C2 + · · ·+ (±1)Ct with (±1)Ci ⊑ x
and |(±1)Ci | = |Ci| for all i ∈ [t]. We then have |x| = ∑t

i=1 |(±1)Ci | ≥ tλ(LD) ≥ 2λ(LD), a
contradiction. Hence, x = (±1)C for some alternating circuit C with |x| = |C|.

Claim 3.6 implies that λ(LD) is equal to the size of the smallest alternating circuit of GD.
It also implies that we just need a bound on the number of alternating indicator vectors that
correspond to alternating circuits of size at most 2λ(LD) to prove Lemma 3.4. The required
bound on the number of near-shortest alternating circuits is given by the following theorem of
Svensson and Tarnawski [ST17b]. ( The node-weight of an alternating circuit defined in [ST17b]
is same as its size for our case. )

Theorem 3.7 ([ST17b, Lemma 5.4]). Let G be a graph on n vertices such that the size of the smallest
alternating circuit is λ. Then, the cardinality of the set

{(±1)C : C is an alternating circuit in G of size at most 2λ}

is at most n17.

This completes the proof of Lemma 3.4.

4 Finding Fractional Linear Matroid Matching via Isolation

In this section, we present an algorithm to find a fractional linear matroid matching to show
Theorem 1.1. Let W be a set of weight assignments provided by Theorem 3.1. Let L =
{l1, . . . , lm} be a set of lines with li = ⟨ai, bi⟩ for i ∈ [m] and A the associated matrix (1). Recall
that, for y ∈ {0, 1/2, 1}m, the matrix A{2}(y) is defined as ∑m

i=1 Yi⊗ Ai, where Yi = UiUT
i and Ui

is 2× 2yi matrix with indeterminates in its entries for i ∈ [m]. Before presenting our algorithm,
we show the following lemma.

Lemma 4.1. Let w ∈ Zm be an isolating weight assignment with distinct weights for a fractional
matroid parity polytope P. Let t1,1, t1,2, t2,1, t2,2 be indeterminates and Ãw be the 2n × 2n matrix
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obtained by substituting twi
p,q for the (p, q) entry of Ui in A{2}(1) for i ∈ [m] and p, q ∈ [2]. Then,

pf(Ãw) ̸= 0 if and only if there is a perfect fractional matroid matching. Moreover, it holds that

deg(pf(Ãw)) = 4 max
y∈P, |y|= n

2

w · y,

where deg means the total degree as a polynomial in four indeterminates t1,1, t1,2, t2,1, t2,2.

Proof. Firstly, we show the backward direction: pf(Ãw) ̸= 0 =⇒ pf(A{2}(1)) ̸= 0. This
implies A{2}(1) has full rank, i.e., 2n. From Theorem 2.2, we have

max
y∈P
|y| = 1

2
nc-rank(A) =

1
4

rank(A{2}(1)) =
n
2

.

Now, we show the other direction. From theorem 2.4,

pf(A{2}(1)) = ∑
z∈{0, 1

2 ,1}m,
|z|=n/2

∑
(J1,...,Jm)∈J (z)

det([(U1 ⊗ B1)[J1] · · · (Um ⊗ Bm)[Jm]])

where J (z) is the family of m tuples (J1, J2, . . . , Jm) such that

Ji =


{1, 2, 3, 4} if zi = 1,
{1, 2}or{3, 4} if zi = 1/2,
∅ if zi = 0.

Let Qz = ∑(J1,...,Jm)∈J (z) det([(U1 ⊗ B1)[J1] · · · (Um ⊗ Bm)[Jm]]) and Q̃z denote Qz after the sub-
stitution. Now, we show the following claim.

Claim 4.2. For z ∈ {0, 1/2, 1}m, if Q̃z ̸= 0 then, degree of any monomial in Q̃z is 4w · z.

Proof. Let (J1, J2, . . . , Jm) ∈ J (z) and B be the matrix [(U1 ⊗ B1)[J1] . . . (Um ⊗ Bm)[Jm]] after
the substitution. For i ∈ [m] with Ji ̸= ∅, each entry of (Ui ⊗ Bi)[Ji] has degree wi after the
substitution. This also implies that for a fixed column of B, all the non-zero entries have the
same degree. Hence, if det(B) ̸= 0, the degree of any of its monomials is equal to the sum of
the degrees of the non-zero entries of all the columns. This sum is equal to ∑m

j=1 |Jj|.wj = 4w · z.
Hence, degree of any monomial in Q̃z is 4w · z.

From [OS23, Lemma 4.3], Qz ̸= 0 implies that z is a point in fractional matroid polytope.
Let z∗ be the unique fractional matroid matching maximizing w. Hence, using claim 4.2 we
can say that if Q̃z∗ ̸= 0, then pf(Ãw) ̸= 0 with deg(pf(Ãw)) = 4w · z∗ as for any other z in the
polytope deg(Q̃z) < deg(Q̃z∗).

Now, we show that Q̃z∗ ̸= 0. For J = (J1, . . . , Jm) ∈ J (z), let Bz(J) denote the matrix
[(U1 ⊗ B1)[J1] . . . (Um ⊗ Bm)[Jm]], Qz(J) denote det(Bz(J)) and Q̃z(J) denote the four variate
polynomial obtained by substitution. Let LD(y) = {i ∈ m | yi = a} where y ∈ {0, 1/2, 1}m

and a ∈ {0, 1/2, 1}. Let J = (J1, . . . , Jm) ∈ J (z∗) such that Ji = {1, 2} for i ∈ L1/2(z∗). After
substitution, for i ∈ [m] with Ji ̸= ∅, there are two columns in Bz(J) such that each non zero
entry in those columns has either twi

1,1 or twi
2,1. Hence, every monomial of Qz∗(J) is mapped to a

monomial such that the sum of the powers of t1,1 and t2,1 is ∑
i∈L1/2(z∗)∪L1(z∗)

2wi. For any other

tuple J′ ∈ J (z∗), the sum of the powers of t1,1 and t2,1 in the mapping is strictly less. Hence,
Q̃z∗ ̸= 0 iff Q̃z∗(J) ̸= 0.

Now, we show that Q̃z∗(J) ̸= 0. Without loss of generality, let z∗i = 1 for 1 ≤ i ≤ p and
z∗i = 1/2 for p < i ≤ p + q and 0 otherwise such that p = |L1(z∗)| and q = |L1/2(z∗)|. Then,

Qz∗(J) = det

[
x1

1,1B1 x1
1,2B1 . . . xp

1,1Bp xp
1,2Bp xp+1

1,1 Bp+1 . . . xp+q
1,1 Bp+q

x1
2,1B1 x1

2,2B1 . . . xp
2,1Bp xp

2,2Bp xp+1
2,1 Bp+1 . . . xp+q

2,1 Bp+q

]
.
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z∗ is an extreme point of the fractional matroid polytope. From [OS23, proof of Lemma 4.4]
the above matrix can be transformed into the following matrix by changing the basis and then
permuting the rows and columns:

T ∗ ∗ ∗ ∗ ∗ ∗
Ui1 Ui′1

∗ ∗ ∗ ∗

Ui2 Ui′2

∗
Uiq Ui′q




.

These operations can be done by multiplying it with matrices in GL(2n, R) from both sides.
Note that this doesn’t affect the fact that whether the determinant of the matrix is non-zero.
Here, Uj is 2× 1 matrix [xj

1,1, xj
2,1]

T and ik ̸= i′k for k ∈ [q] and belong to {p + 1, . . . , p + q}. The
determinant is non-zero when T and [Uik Ui′k

] for k ∈ [q] are non-singular. After substitution,

[Uik Ui′k
] 7→

t
wik
1,1 t

wi′k
1,1

t
wik
2,1 t

wi′k
2,1

 .

Since weights of w are distinct and ik ̸= i′k, the matrix is non-singular. The only thing left is
to show that T is non-singular after the substitution. From [OS23, proof of Lemma 4.4], T is a
4p× 4p matrix that can be defined as follows:

T =

[
x1

1,1a′1 x1
1,1b′1 x1

1,2a′1 x1
1,2b′1 xp

1,1a′p xp
1,1b′p xp

1,2a′p xp
1,2b′p

x1
2,1a′1 x1

2,1b′1 x1
2,2a′1 x1

2,2b′1 xp
2,1a′p xp

2,1b′p xp
2,2a′p xp

2,2b′p

]
.

Here, a′i, b′i ∈ F2p such that the matrix D = [a′1, b′1, . . . , a′p, b′p] is non-singular. Let T′ denote
the matrix T after the substitution and W = 2 ∑

p
i=1 wi. By putting t1,2 and t2,1 to 0 in T′, the

determinant of T′ is det(D)2tW
1,1tW

2,2 which is non-zero. In conclusion, we showed

Q̃z∗(J) ̸= 0 =⇒ Q̃z∗ ̸= 0 =⇒ pf(Ã) ̸= 0,

as required.

Now, we give Algorithm 2 to find a fractional matroid matching. Before that, here is an
observation that we will use to get isolating weight assignments with distinct weights.

Observation 4.3. Let w ∈ Zm such that there is a unique z∗ in the fractional matroid matching polytope
maximizing w and N be an integer m2. Then, w′ with w′i = Nwi + i is maximized uniquely by z∗ and
w′i ̸= w′j for i ̸= j.

The above statement shows that we can construct an isolating weight assignment with
distinct weights by a polynomial blow-up in the weights. From now on, we assume that the
weight assignments have distinct weights.

For a weight assignment w ∈ Zm and e ∈ [m], let we define a new weight assignment on [m]
with we

i = 4wi + 1 if i = e otherwise 4wi. For a given fractional linear matroid matching instance
given as m rank 2 skew-symmetric n× n matrices Ai for i ∈ [m] and a weight assignment w on
[m] and a vector v ∈ {0, 1/2, 1}m, let

Ãw(v) =
m

∑
i=1

Vi ⊗ Ai
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where Vi is the 2× 2 zero matrix if vi is 0 otherwise Vi = TiTT
i . Here, Ti is

[
twi
1,1 twi

1,2
twi
2,1 twi

2,2

]
if vi = 1

and [twi
1,1 twi

2,1]
T otherwise. Let 1 and 0 denote the m-dimensional vectors with all ones and all

zeros.

Algorithm 2 Quasi-NC algorithm to find a perfect fractional linear matroid matching
Input: Ai ∈ Fn×n∀i ∈ [m] such that each Ai is rank 2 skew-symmetric.
Output: A perfect fractional matroid matching.

1: y← 0
2: Compute a family of weight assignmentsW as promised by Theorem 3.1.
3: for all w ∈ W do in parallel
4: W ← deg(det(Ãw(1))).
5: if W > 0 then
6: for all e ∈ [m] do in parallel
7: We ← deg(det(Ãwe(1)))

8: ye ←


1 if We = 4W + 8
1/2 if We = 4W + 4
0 otherwise.

9: end for
10: if |y| = n/2 and det(Ãw(y)) ̸= 0 then
11: Output y
12: end if
13: end if
14: end for
15: Output "No perfect fractional matroid matching exists."

Remark 4.4. The Algorithm 2 can be modified to solve the weighted fractional linear matroid
matching in quasi-NC as well if the weights are quasi-poly(n). Since any subface of the
maximum weight face of the fractional linear matroid matching polytope is again a face of the
polytope, from Theorem 3.1 we can construct a set of weight assignmentsW such that one of
them isolates a maximum weight fractional matroid matching. For input weight assignment
v ∈ Zm

+, and N > n maxw∈W ,i∈[m] wi, let Wv = {Nv + w | w ∈ W}. In the third step of
Algorithm 2, we choose weight assignments fromWv instead ofW to find a maximum weight
matching.

Proof of Correctness. Let P be the fractional linear matroid matching polytope for lines
⟨ai, bi⟩ for i ∈ [m] such that Ai = ai ∧ bi. Suppose there doesn’t exist a perfect fractional
matroid matching, then from theorem 2.2

rank(A{2}(1)) = rank(A{2}) = 4 ·max
z∈P
|z| < 2n.

Since A{2}(1) is not full rank, for any substitution of indeterminates det(A{2}(1)) = 0. Hence,
the algorithm doesn’t return any perfect fractional matroid matching.

Now, suppose there exists a perfect fractional matroid matching. First, we show that if
the algorithm returns y ∈ {0, 1/2, 1}m with |y| = n/2, then y is indeed a perfect fractional
matroid matching. Since det(Ãw(y)) ̸= 0, rank(A{2}(y)) = 2n that is equal to the rank of
A{2}. Hence, from Theorem 2.3, there exists z ∈ {0, 1/2, 1}m such that z is a perfect fractional
matroid matching with z ≤ y. Since |y| = n/2 and y ∈ {0, 1/2, 1}m, we have y = z. Hence, y
is a perfect fractional matroid matching.
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Now, we show that we get a perfect fractional matroid matching for at least one w ∈ W . From
Theorem 3.1, there exists an isolating weight assignment for P inW . From Observation 4.3, we
can assume that the weights of weight assignment w are distinct for all w ∈ W . Let w∗ ∈ W
be a weight assignment such that z∗ ∈ P uniquely maximizes w∗. From Lemma 4.1 and the
fact that the determinant of a skew-symmetric matrix is the square of its Pfaffian, for w∗, W in
Algorithm 2 satisfies

W = 8 max
x∈P,|z|= n

2

w∗ · z = 8w∗ · z∗.

Also, we have

we · z∗ =


4w∗ · z∗ + 1 if z∗e = 1,
4w∗ · z∗ + 1

2 if z∗e = 1
2 ,

4w∗ · z∗ if z∗e = 0.

(6)

Let z ∈ {0, 1/2, 1}m be any other fractional matroid matching. Since weights of w∗ are positive
integers and w∗ is an isolating weight assignment for half-integral polytope P, w∗ · z∗−w∗ · z ≥
1/2. Hence, we · z∗ − we · z ≥ 1 for e ∈ [m]. This implies z∗ uniquely maximizes we for e ∈ [m].
Hence, using equation (6) and Lemma 4.1, y = z∗ for weight assignment w∗. Since |z∗| = n/2,
from Theorem 2.4, we get the following expansion of pf(Ãw∗(z∗)) after the substitution in
A{2}(z∗),

pf(Ãw∗(z∗)) = ∑
(J1,...,Jm)∈J z∗ (z∗)

det([(V1 ⊗ B1)[J1] · · · (Vm ⊗ Bm)[Jm]]),

where J z∗(z∗) is the family of m tuples (J1, J2, . . . , Jm) such that

Ji =


{1, 2, 3, 4} if z∗i = 1,
{1, 2} if z∗i = 1/2,
∅ if z∗i = 0.

In the proof of Lemma 4.1, we have already shown that pf(Ãw∗(z∗)) ( Q̃z∗(J) ) is not equal to
zero if z∗ is an extreme point of P and z∗ uniquely maximizes w∗. Hence, the algorithm outputs
z∗ for weight assignment w∗.

Time Complexity. From Theorem 3.1, in polylog(m) time using mO(log m) parallel processors,
we can construct a set of mO(log m) weight assignmentsW such that for w ∈ W and i ∈ [m], wi is
bounded by mO(log m) and there exists an isolating weight assignment w ∈ W for the fractional
linear matroid matching polytope. For w ∈ W , the weights of we for e ∈ [m] are mO(log m).
Hence, the entries of Ãw(1) and Ãwe(1) are polynomial in four variables with the individual
degrees at most mO(log m). Hence, from Theorem 2.1, the determinant of these matrices can
be computed in polylog(m) time using mO(log m) parallel processors. Hence, Algorithm 2 is a
quasi-NC algorithm, and Theorem 1.1 has been proved.

5 Black-box Algorithm for Non-commutative Edmond’s Problem with
Rank-two Skew-symmetric Coefficients

In this section, we explain that our results can be used to solve black-box non-commutative
Edmonds’ problem with rank-two skew-symmetric coefficients.

We first review the black-box and white-box settings for (commutative) Edmonds’ problem
and polynomial identity testing. Recall that Edmonds’ problem is to test the non-singularity
of a given linear symbolic matrix A = ∑m

i=1 Aixi. Since the non-singularity of A is equivalent
to det(A) = 0, it is a special (and actually equivalent) class of polynomial identity testing (PIT),
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which is to test if a given polynomial is zero. In the white-box setting, a polynomial is given
as an explicit formula such as an algebraic branching program or the coefficient matrices
A1, . . . , Am in Edmonds’ problem, and in the black-box setting, we can only access to an oracle
to evaluate a polynomial. While a random substitution yields a randomized polynomial-time
algorithm under the black-box setting, it is a long-standing open problem whether it can be
derandomized, even for the white-box setting.

In non-commutative Edmonds’ problem, a white-box algorithm requires explicit matrices
A1, . . . , Am as input same as the commutative problem. In the black-box setting, recall from
Section 1 that an algorithm is required to construct a non-commutative hitting setH, that is, a set
of m-tuples of square matrices over F such that for all A = ∑m

i=1 xi Ai with Ai ∈ Fn×n for i ∈ [m]
and nc-rank(A) = n, there exists (T1, . . . , Tm) ∈ H such that det (∑m

i=1 Ti ⊗ Ai) ̸= 0. Similar to
the commutative setting, a random setH of polynomial size consisting of tuples of matrices of
size at least n− 1 works [DM17]. Deterministically finding a hitting set, even of subexponential
size, is still open [GGOW20]. Nevertheless, some non-trivial results are known when we
put some constraints on symbolic matrices. Gurjar and Thierauf [GT17] construct a quasi-
polynomial size hitting set when each Ai has rank one. In this case, rank(A) = nc-rank(A). For
a non-commutative algebraic formula with addition, multiplication, and inversion gates, there
exists a symbolic matrix that has full non-commutative rank if and only if the non-commutative
rational function computed by the formula is “defined” [HW15]. For such symbolic matrices,
Arvind, Chatterjee and Mukhopadhyay [ACM23] construct a quasi-polynomial size hitting set.

Here, we show the following corollary of Theorem 3.1 and Lemma 4.1, which determinis-
tically constructs a hitting set of quasi-polynomial size for the case where each Ai is restricted
to a rank-two skew-symmetric matrix, solving black-box non-commutative Edmonds’ problem
under this constraint in deterministic quasi-polynomial time.

Corollary 5.1. For m ∈ Z+ and a field F of sufficient size, we can construct in time quasi-poly(m) a
set H of size quasi-poly(m) that consists of m-tuples of 2× 2 matrices over F such that, for all n× n
symbolic matrix A = ∑m

i=1 xi Ai with rank-two skew-symmetric matrix Ai and nc-rank(A) = n, there
exists a tuple (T1, T2, . . . Tm) ∈ H that satisfies det (∑m

i=1 Ti ⊗ Ai) ̸= 0.

Proof. Let W be the set of weight assignments w : [m] −→ Z+ from Theorem 3.1 that can be
constructed in quasi-poly(m) time. Let D = max

w∈W ,i∈[m]
wi and S ⊆ F of size 2nD + 1. Then, for

each w ∈ W and (a, b, c, d) ∈ S4, we put the tuple (T1, T2, . . . , Tm) in H such that Ti = ViVT
i

where,

Vi =

[
awi bwi

cwi dwi

]
Let A = ∑m

i=1 xi Ai with nc-rank(A) = n and Ai as rank two skew-symmetric matrix for i ∈ [m].
Note that n ≤ 2m. From Theorem 3.1, there exists an isolating weight assignment w for
fractional linear matroid matching polytope for A. From Lemma 4.1, Ãw is a 2n× 2n matrix
with entries as four variate polynomials with individual degree at most D and det(Ãw) ̸= 0. It
is a four variate polynomial with individual degree at most 2nD. Hence, from the Schwartz–
Zippel lemma, there exists a tuple (T1, T2, . . . , Tm) ∈ H corresponding to weight assignment w
such that det(∑m

i=1 Ti ⊗ Ai) is non-zero. The size ofH is |W| · |S|4, which is quasi-polynomially
bounded in m and hence can be constructed in time quasi-poly(m).

6 Conclusion

We showed that the problem of fractional linear matroid matching is in quasi-NC. The parallel
complexity of linear matroid matching is still open. We also gave a black-box algorithm for
non-commutative Edmond’s problem for a symbolic matrix A = ∑m

i=1 xi Ai where each Ai is a
rank two skew-symmetric matrix. A natural question is whether we can extend our techniques
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to design a black-box algorithm when each Ai has rank at most two or some larger positive
integer constant.
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