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Abstract

The Stepanov-Bombieri proof of the Hasse-Weil bound also gives non-trivial bounds
on the bias of character sums over curves with small genus, for any low-degree function
f that is not completely biased. For high genus curves, and in particular for curves
used in AG codes over constant size fields, the technique fails to prove any non-trivial
result. We significantly strengthen the Stepanov-Bombieri approach and obtain strong
bounds on the bias of character sums over high genus curves. For example, we show
that the bias of the quadratic character over the Hermitian function field is small, for
any low-degree function f with odd degree. Our results also give non-trivial results for
the first levels of the Hermitian tower.

Technique-wise we analyze multiplicity in function fields in a better way, using
a new ’universal derivative-fix’ lemma we prove, building on the connection between
derivatives and differentials in function fields.

1 Introduction

Let Fq be a finite field with q odd, and let f(X) be a polynomial of (low) degree d. Then,
the classical Weil bound on character sums tells us that unless f(X) is the square of a
polynomial, we have:

Pr
x∈Fq

[f(x) is a perfect square in Fq] =
1

2
+O(

d
√
q
). (1)
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Note that about 1/2 of all elements in Fq are perfect squares; thus the statement above
shows that the values taken by a low-degree polynomial are quite randomly distributed.

Apart from being a basic expression of pseudorandomness, the Weil bound has numerous
applications in theoretical computer science and combinatorics. For example, it is use-
ful in constructions of epsilon-biased sets [AGHP92], better-than-random nearly-orthogonal
vectors in Euclidean space [Tao], k-universal graphs and tournaments [GS71], and extrac-
tors [Zuc90, GR08].

This paper is about generalizations of the Weil bound phenomenon to evaluations of
algebraic functions over algebraic curves. Evaluating algebraic functions on algebraic curves
is a natural and powerful generalization of evaluating polynomials in one variable. The
evaluation vectors so obtained are examples of algebraic-geometric codes (AG codes), and
choosing the curve to have a large genus and with a large number of Fq-points compared to
its genus – such as Hermitian curves or Garcia-Stichtenoth towers – yields amazing “better
than random” constructions of error-correcting codes. With an eye on applications in coding
theory and pseudorandomness, we are specifically interested in whether the Weil-bound
phenomenon occurs on such curves.

Specifically, consider an algebraic curve C over a finite field Fq, and a low-degree algebraic
function f on C. What is the probability that f evaluates to a perfect square at a uniformly
random Fq-rational point on C?

For curves of small genus g ≪ √
q, the Weil bounds themselves (along with related facts

about the zeta functions of curves) do give such a bound. They imply that for any algebraic
curve C of genus g contained in the plane, and any polynomial f(X, Y ) of degree d, unless
f is the square of an algebraic function over C, we have:

Pr
(x,y)∈C(Fq)

[f(x, y) is a perfect square in Fq] =
1

2
+Og,d

(
1
√
q

)
.

For large g (which is the case for the Hermitian and Garcia-Stichtenoth towers), however,
the original Weil bound machine does not say anything.

In this paper, we prove exactly this kind of character sum bound on curves such as the
Hermitian curves or the first levels of the Hermitian tower. We show, for example for C
being the Hermitian curve and f(X, Y ) being a polynomial of odd total degree d, and odd
pole order at infinity that:

Pr
(x,y)∈C(Fq)

[f(x, y) is a perfect square in Fq] =
1

2
+O

(√
d

q1/4

)
, (2)

where d is the total degree of the polynomial f(X, Y ). We conjecture that the error term

can be improved to O
(

d√
q

)
.

We can also give similar bounds for the first levels of the Hermitian curve, see Theorem 4.8
for details.
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Our proof method is to create a version of the Stepanov-Schmidt-Bombieri approach to
the original Weil bounds, ported to the context of C. The original approach of Stepanov-
Schmidt-Bombieri is a form of the polynomial method and the method of multiplicities; the
size of a set S ⊆ Fq of points is bounded from above by finding a non-zero, low degree
univariate polynomial g(X) that vanishes on all the points of S with high multiplicity. Our
version deals with a subset S of the curve C, and to bound its size we find a non-zero, low
degree algebraic function g on the curve C that vanishes on all the points of S with high
multiplicity. To implement this, we need to understand derivatives and multiplicities on
curves. Things can work quite counter-intuitively in this setting; for example, the derivative
of a low-degree algebraic function is often an algebraic function of higher degree. One
of our key technical contributions is a universal derivative-fix, showing that there exists a
universal low-degree element, that can compensate all poles that may originate by deriving
any function from a Riemann space. For a precise statement see Theorem 1.1. We believe
our toolkit could enable further applications of the polynomial method and the method of
multiplicities to the curve setting.

1.1 More about the technique

In the polynomial method, we want to bound the number of elements with some combina-
torial property. We do that by presenting a (low-degree) non-zero polynomial Q such that
all these elements can be derived from Q (e.g., they are roots of Q). For example, suppose
we are given as input a set {(ai, bi) ∈ Fq × Fq} and we want to bound the number of degree
d polynomials H(X) ∈ Fq[X] such that H(ai) = bi for at least A values i. The Guruswami-
Sudan algorithm [GS98] does that by first finding a low-degree polynomial Q ∈ Fq[X, Y ]
such that Q vanishes with high multiplicity over all points (ai, bi) in the set, and then proves
that every solution H(X) gives a factor Y − F (X) of Q. The Guruswami-Sudan algorithm
thus bounds the number of such H(X) by the degree of Q, and can explicitly find these
solutions by factoring.

The Stepanov method is similar, except that the polynomial Q has to vanish with high
multiplicity over a simple variety, rather than just an arbitrary set. For example, in the
form of the Weil bound described in Equation (1), we are interested in the (size of the) set
of (x, y) ∈ F2

q such that y2 = f(x), i.e., the variety1 of points (x, y) satisfying (1) y2 = f(x),
(2) xq = x, (3) yq = y. In the general polynomial method, one usually has independent
constraints per different points. However, in this case, independent constraints give nothing.
Instead, it is cheaper to enforce that Q vanishes as a polynomial over the variety, and this
is a key insight in Stepanov’s method.

In this work we want to count the number of points P ∈ C(Fq), such that f(P ) is a
non-zero square. As before, this corresponds to the number of points in the set:

{(z, P ) ∈ Fq × C(Fq) | z2 = f(P )}.
1Varieties are considered over algebraically closed fields; this is why we have to explicitly introduce the

xq = x and yq = y equations.
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We want to use the Stepanov method to find a Q that vanishes with high multiplicity
on this set; this leads us to search for such a Q in the function field F ′ = F [Z]/⟨Z2 − f⟩,
where F is the function field of C, and thus the function f on C is an element of F . This
is fairly straight forward when F is the rational function field. However, when F is a large
genus function field, things get complicated. To begin with, one needs to have derivatives
in the function field. Even though derivatives in function fields are well studied and share
many properties with derivatives over the rational function field, many essential differences
exist. For example, the degree of the derivative might be much larger than the degree of the
original function. These differences are responsible for many of the complications that arise.
To overcome these difficulties, we employ a general, powerful tool relating the pole divisor
of derivatives of f ∈ F with the pole divisor of f . We prove:

Theorem 1.1. Let F be a function field of genus g, and x ∈ F a separating element of F .
There exists ω ∈ F such that for every f ∈ F with poles only at P∞ and pole order at most
A, the derivative of f with respect to x, denoted Dx(f), satisfies:

• ωDx(f) has poles only at P∞

• The pole order of ωDx(f) is at most A+ 3g − 2 + 2 deg(x)

We are unaware of previous results of this form.

Many problems are left open. The most crucial is to generalize the Hermitian curve
bound to degrees d above

√
q, or for general curves to work with functions coming from

Riemann-Roch spaces with degree above the genus. We remark that such improvements
might have far reaching consequences to the construction of explicit binary error correcting
codes close to the Gilbert-Varshamov bound.

We also do not know what the true error term in Equation (2) is, for example, it might
be that under natural conditions on f , the error is bounded by O( d

q3/4
). Without any further

conditions, the error cannot be reduced below O( 1√
q
).

Another question concerns the derivative-fix bound; we suspect that the 3g term in
Theorem 1.1 can be improved to 2g.

This paper is organized as follows. In Section 2 we briefly recall some results from
algebraic function fields, and set the notation used throughout this work. In Section 3 we
state and prove a generalization of Theorem 1.1. Then, in Section 4 we state our main
bound, Theorem 4.6, for a general curve in terms of certain parameters of the underlying
curve, and instantiate it for the Hermitian curve and the first levels of the Hermitian tower.
In Sections 5 and 6 we prove the main result itself.

2 Some function fields background

We assume familiarity with the basic notions of algebraic function fields (place, valuation,
genus, Riemann-Roch space and Riemann-Roch theorem, ramification, etc.).
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2.1 Hasse derivatives

Let F/K be a function field and z ∈ F separating3. The m-th Hasse derivative with respect
to z, denoted by Hm

z , is defined on K[z] by the K-linear extension of Hm
z (zn) ≜

(
n
m

)
zn−m to

all of K[z]. Hm
z can be uniquely extended to all of F/K so that they satisfy: (1) H0

z = idF ,
(2), Hm

z vanish on K for all m > 0, (3) Hm
z (fg) =

∑m
j=0H

j
z (f)H

m−j
z (g) (Product Rule)

and Hm
z ◦Hn

z =
(
m+n
m

)
Hm+n

z (Composition Rule). These uniquely determined extensions are
called the Hasse derivatives. A consequence of these properties is that

Corollary 2.1. Let F/K be a function field of characteristic p and let z be a separating
element. Then m!Hm

z = Dm
z , where Dm

z is the iterated derivative and Hm
z is the m-th Hasse

derivative.

In particular, when p = 0 or when p > 0 and m < p we get that Hm
z and Dm

z differ
by a non-zero constant, and so Hm

z (f) = 0 if and only if Dm
z (f) = 0. The fact that

Hasse derivatives capture multiplicity is given in the following claim, which is an immediate
corollary of [Gol03, Corollary 2.5.14 (Taylor’s Theorem)],

Claim 2.2. Let P be a place in F/K and let t be a separating element with vP (t) = 1. Let
f ∈ F and M ∈ N \ {0} , then vP (f) ≥ M ⇐⇒ ∀m < M (Hm

t (f))(P ) = 0.

A simple fact is

Fact 2.3 (Simple change of variable). Let z be a separating element in F/K, let f ∈ F and
α ∈ K, then for every m > 0, Hm

z (f) = Hm
z−α(f).

The following lemma tells us how Hasse derivatives behave on p-th powers:

Claim 2.4. [Tor00, Remark 2.4 and Remark 2.5], [Jeo11, Theorem 3.1] Let z ∈ F/K be a
separating element of a function field of characteristic p > 0. Let q = pk be a power of p and
f ∈ F . then:

1. Hm
z (f q) = (H

m/q
z (f))q if q divides m and Hm

z (f q) = 0 otherwise.

2. Hm
z (f) = 0 for m = 1, ..., q− 1 if and only if there exists some g ∈ F such that f = gq

3. H1
z (f) = Hp

z (f) = Hp2

z (f) = ... = Hpk−1

z (f) = 0 if and only if there exists some g ∈ F
such that f = gq

The following corollary will be useful to us later on:

Corollary 2.5. Let z ∈ F/K be a separating element of a function field of characteristic
p > 0. Let q be a power of p, m < q and f, g ∈ F , then: Hm

z (fgq) = Hm
z (f)gq.

Proof. Since m < q, all of the derivatives of gq that will appear in the expansion of Hm
z (fgq)

by means of the product rule are zero (from Claim 2.4) except for the term Hm
z (f)gq.
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2.2 Differentials

We follow the presentation at [Sti09, Chapter 4]. Let F/K be a function field. A derivation
is a K-linear map D from F to some F -module that upholds the product rule of derivatives,
i.e. D(fg) = fD(g) + gD(f). For example H1

z : F → F is a derivation for every separable
z ∈ F . One can define an F -module ∆F , such that all derivations of F factor through ∆F via
a canonical mapping d : F → ∆F , i.e., if δ : F → M is a derivation of F into some F -module
M , then there exists a unique F -linear map µ : ∆F → M such that δ = µ ◦ d. It turns out
that d is itself a derivation. For x ∈ F , d(x) is called the differential associated with x and
is denoted dx. The set ∆F of differentials of F contains all elements udx where u ∈ F and x
is separating, where this set is taken modulo the equivalence relation udx = vdy if and only
if u

v
= D1

x(y). With this we get a notion of division of differentials via udy
vdx

= u
v
D1

x(y).

We now define the notion of valuation of differentials. If P ∈ PF is a place of F and
udx ∈ ∆F a differential of F , we define vP (udx) as follows. We pick a local parameter t
of P (i.e., vP (t) = 1) and we find b ∈ F such that udx = bdt. Then vP (udx) = vP (b).
One can show that this definition is independent of the specific choice of local parameter t.
As differentials have valuations, differentials also have zeroes and poles, i.e., places where
the valuation is strictly positive or strictly negative, and this can be encoded in a divisor,
denoted (udx) and called the divisor associated with the differential udx. It turns out any
differential udx ∈ ∆F has only finitely many zeroes or poles and so the associated divisor
is indeed well defined. A divisor which is associated to some differential in ∆F is called a
canonical divisor. All canonical divisors have degree 2g − 2 and their Riemann-Roch space
has dimension g where g = genus(F ). The following claims will be useful:

Claim 2.6. Let u ∈ F , x, y ∈ F separating, then:

• (udx) = (u) + (dx)

• (D1
x(y)) = ( dy

dx
) = (dy)− (dx)

The first bullet is a restatement of [Sti09, Proposition 1.5.13] and the second one is an
immediate consequence of the first bullet and the equality 1dy = D1

x(y)dx.

There is a close relationship between the zeroes and poles of f and the zeroes and poles
of df . The following claim is stated in [Mas84, Chapter I (6)] for the case where K is
algebraically closed, but by considering a constant-field extension of F one can verify it
holds exactly as stated for any perfect base field K and even when P is not a place of degree
one (which is not a consideration when K is algebraically closed). We give the proof for
completeness.

Claim 2.7. Let f ∈ F/K, df its associated differential, then:

• For every place P , vP (df) ≥ vP (f)− 1. In particular, If f has zeroes at P , df can lose
at most one zero at P . Also, df can have at most one more pole at P . Also,
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• If vP (f) ≥ 0 then vP (df) ≥ 0, i.e., df can have poles only at places where f has poles.

Proof of claim 2.7. Let f ∈ F/K, P ∈ PF , t ∈ F with vP (t) = 1. We are interested in (df)F

the divisor of df over F . We move to F̄ /K̄ = K̄ · F/K = K̄F/K̄ which is the constant field
extension of F/K with all of K̄, the algebraic closure of K. Let P̄ ∈ PF̄ be a place lying
over P . Since K̄ is algebraically closed we know deg(P̄ ) = 1. From [Sti09, Theorem 3.6.3]
we learn that vP̄ (t) = vP (t) = 1 and we can write:

f =
∞∑

n=n0∈Z

cnt
n (cn ∈ k̄, cn0 ̸= 0)

D1
t (f) =

∞∑
n=n0∈Z

n · cntn−1 (cn ∈ k̄, cn0 ̸= 0)

From the definition of valuation for differential we know that

vP̄ (1df) = vP̄ (D
1
t (f)dt) = vP̄ (D

1
t (f)) ≥ n0 − 1

From [Sti09, Theorem 3.6.3] we know that vP̄ (1df) = vP (1df) and vP (f) = vP̄ (f) and so we
get vP (1df) ≥ vP (f)− 1. Furthermore, if f has no pole at P , then f has no pole at P̄ and
so n0 ≥ 0 and so D1

t (f) has no pole at P̄ and therefore at P , meaning vP (1df) ≥ 0.

We mentioned before that deg(df) = 2g−2 for canonical divisors (df), and therefore when
g is large df has many more zeroes than f . We also know that df has a zero wherever f has
a zero of multiplicity at least 2. Finding the other zeroes of df is a bit more complicated. It
turns out that:

Claim 2.8. [Sti09, Sections 3.4 and 3.5] The zeroes of df are either at places that are zeroes
of f , or, at places of F/K that are ramified when F is viewed as an extension of K(f)/K.

2.3 Kummer extensions

An algebraic function field F ′/K ′ is a Kummer extension of F/K if K contains a primitive
n-th root of unity,2 and F ′ = F (Z) mod (Zn − u) where u ∈ F and u ̸= wd for all w ∈ F
and d|n such that d > 1. Kummer extensions are Galois. For P ∈ PF we denote by

L(P )
def
= ∪m∈NL(m · P ) the K-linear, infinite dimensional vector space of all function that

have poles only at P . The following claim follows from [Sti09, Corollary 3.7.4 and Proposition
3.11.1] and the Hurwitz Genus Formula [Sti09, Theorem 3.4.13]:

Claim 2.9. Let P∞ be a degree one place of a function field F/K of genus g, ℓ a prime
number and u ∈ L(P∞) which is not an ℓ-th power in F . Denote d = deg(u) = −vP∞(u)
and assume d is co-prime to ℓ. Let F ′ = F (Z) where Zℓ = u be the Kummer extension with
respect to u. Then:

2When K = Fq this means n|(q − 1).
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• F ′ is a degree ℓ extension of F

• P∞ is totally ramified in F ′.3 Also K is the full constant field of F ′.

• Z ∈ L(P ′
∞) and deg(Z) = d

• g′
def
= genus(F ′) satisfies ℓ(g − 1) ≤ g′ − 1 ≤ ℓ(g − 1) + d

From now on we assume that K is a finite field, K = Fq for some prime power q. Let ℓ
be a prime number that divides q − 1. Let P∞ be a degree one place, and S a set of degree
one places of F that does not contain P∞. Let u ∈ L(P∞) ⊂ F such that u is not an ℓ-th

power in F . We are interested in the number of P ∈ S such that u|P
def
= ϕP (u) ∈ K is an

ℓ-th power as an element of K (where ϕP is the evaluation function at P ). 4 The following
claim is standard and we omit its proof:

Claim 2.10. Suppose u|P ̸= 0 for some degree one place P ∈ S. Then:

• If u|P is not an ℓ-th power in K, then there is a single place above P in F ′ and it is a
place of degree ℓ (and ramification 1).

• If, however, u|P is a non-zero ℓ-th power in K, then the place P is totally split in F ′,
i.e. there are ℓ distinct degree one places above P (that have all ramification 1).

Definition 2.11. Let F be a function field with constant field K. Let S be a set of degree
one places of F/K. We say z ∈ F is derivative-useful for S, or, in short, S-useful, if for
every P ∈ S there exists α ∈ K such that vP (z − α) = 1.

The term ”S-useful” is not standard and does not hold any deeper meaning then saying
z ”works” for every place of S in the sense discussed above. We have:

Claim 2.12. Let F ′ = F (Z) mod (Zℓ − u) be a Kummer extension with ℓ prime and
u ∈ L(P∞) ⊂ F such that u is not an ℓ’th power of an element in F . Further assume K is
the full constant field of F ′. Let S be a set of degree one places F/K and assume P∞ ̸∈ S.
Suppose Sℓ ⊂ S is such that u|P is a non-zero ℓ-th power for all P ∈ Sℓ, and let S ′

ℓ be the
set of all places of F ′ lying over Sℓ.

Then: If x ∈ F is Sℓ-useful
5 then x when considered as an element of F ′ is S ′

ℓ-useful.

Proof. Let Q ∈ S ′
ℓ and denote P ∈ Sℓ the place of F lying below Q. Since u|P is a non-zero

ℓ-th power, P is totally split in F ′ (by claim 2.10). This means there are ℓ places lying over
P (Q among them), each of them with relative degree one and ramification 1 over P . Since
x ∈ F is S-useful and P ∈ Sℓ ⊂ S there exists an α ∈ K such that vP (X − α) = 1. Since Q
is lying over P and has ramification 1 we get vQ(X −α) = e(Q|P )vP (X −α) = 1 · 1 = 1. So
for any Q ∈ S ′

ℓ we found α ∈ K with vQ(X − α) = 1 completing the proof.
3We remind the reader that this means that P ′

∞ is the only place of F ′ above P∞, has degree one and its
ramification index over P∞ is ℓ.

4Notice that u|P is defined because u does not have a pole at any P ∈ S, and u|P ∈ K because any P ∈ S
is degree one.

5In practice, our way of ensuring x is Sℓ-useful will be to find an x which is useful for all of S.
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3 The universal derivative-fix lemma

In the polynomial ring K[X], the derivative of a non-constant polynomial is a polynomial of
a strictly smaller degree, and the more times we derive the smaller the degree gets until we
reach the zero polynomial. This gives the impression that derivatives are simpler, i.e. have
less poles than the original function. When transitioning to rational functions, this is no
longer the case. For example, when m is smaller then the characteristic of K, Dm

x (
1
x
) = cm

xm+1

for some non-zero constants cm. Now, the more we derive the more poles we get, and each
derivation increases the pole order by one. Similarly, if we look at Dm

x (
f
g
) we get some

polynomial in the derivatives of f and g divided by gm+1, meaning the poles at the zeroes of
g increase many-fold as we derive. Thus, both in the case of 1

x
and in the more general case

of f
g
, the poles ”stay where they were”, but the pole order increases. This gives us reason to

hope that deriving a regular function will leave us with a regular function.

Now consider derivatives of the form D1
g(f) where f, g ∈ K(x)/K. From the chain rule

D1
g(f) =

df
dg

= df
dx

dx
dg

= f ′

g′
we see that D1

g(f) may have poles also where g′ has zeroes, and the
more zeroes g has, the more new poles we introduce when deriving. Thus, it greatly matters
with respect to which function g we choose to derive.

Next, we look beyond the genus zero rational function field. We take the Hermitian
function field. Let F = Fp2(x, y) mod yp + y − xp+1. The elements x and y are regular,
i.e., they only have poles at a single degree one place, which we denote P∞. It holds that
vP∞(x) = −p and vP∞(y) = −(p+1). Now, xp = Dx(x

p+1) = Dx(y
p+y) = Dx(y

p)+Dx(y) =
Dx(y), and so, Dx(y) = xp has p2 poles at P∞ while y has only p+1 poles at P∞, an increase
of p2 − p− 1 = 2genus(F )− 1.

For a divisor D we let (D)0 denote the zero-divisor of D, and (D)∞ the pole divisor of
D, so that D = (D)0 − (D)∞. We let DegSupp((x)∞) be the degree of the support of the
pole divisor of x, i.e., the degree of the pole divisor of x when all positive coefficients are
reduced to one. We prove:

Theorem 3.1. Let F/K be a function field of genus g. Let x ∈ F be a separating element
of F/K and P∞ a degree one place of F . Let

G = 3g − 2 + deg(x) + DegSupp((x)∞).

Then there exists an element

0 ̸= ω = ω(x, P∞) ∈ L(G · P∞ − (dx)0) ⊆ L((G−max{v∞(dx), 0})P∞)

such that for every A ≥ 0 and every f ∈ L(AP∞) it holds that

ω ·Hx(f) ∈ L((A+G+min{v∞(dx), 0}+ 1) · P∞).

Proof. Let us denote f ′ := H1
x(f) = D1

x(f). By Claim 2.6, f ′ = df
dx

and (f ′) = (df) − (dx).
It follows that the poles of f ′ can come either from poles of df , or, from zeroes of dx. Since

9



f ∈ L(AP∞), Claim 2.7 tells us all the poles of f and df are at P∞. Claim 2.7 also tells us
that v∞(df) ≥ v∞(f)− 1 ≥ −(A+ 1), and so df has at most A+ 1 poles, all of which must
be at P∞. We wish to find ω ∈ F s.t. ω · f ′ ∈ L(P∞) so we need to choose ω that cancels
the poles of f ′ at all places other than P∞. These poles can arise only from zeroes of dx.
More precisely, we are interested in the zeroes of dx outside P∞. While we are interested in
the zeroes of dx, we first consider the poles of dx. By Claim 2.7:

• The poles of dx are at the same places as the poles of x, i.e., vP (dx) < 0 implies
vP (x) < 0, and,

• At any place P where dx and x have a pole, dx may have at most one more pole than
x, i.e., vP (dx) ≥ vP (x)− 1.

It therefore follows that deg((dx)∞) ≤ deg(x) + DegSupp((x)∞). We now use the fact
that (dx) is a canonical divisor, and therefore has degree 2g− 2. Thus, the number of zeroes
of dx is exactly 2g − 2 more than the number of poles of dx, and in total we get

deg((dx)0) ≤ deg(x) + DegSupp((x)∞) + 2g − 2 = G− g.

Now, set D = G · P∞ − (dx)0. Thus,

deg(D) = G− deg((dx)0) ≥ g.

By the Riemann-Roch Theorem there exists some 0 ̸= ω ∈ L(D). Fix any such ω. Set
∆ = G+min{v∞(dx), 0}. Then,

Claim 3.2. ωf ′ = ω · df
dx

∈ L((A+ 1 +∆)P∞).

Proof. For any P ̸= P∞, vP (D) = −vP ((dx)0). Hence,

vP (ω) ≥ −vP (D) = vP ((dx)0), and,

vP (ωf
′) = vP (ω) + vP (df)− vP (dx)

≥ vP (ω) + vP (df)− vP ((dx)0) ≥ vP (df) ≥ 0.

Next we compute the pole order of wf ′ at P∞. We have w ∈ L(D) ⊆ L((G−max{v∞(dx), 0})P∞).
Thus,

−v∞(ωf ′) = v∞(dx)− v∞(ω)− v∞(df)

= v∞(dx) +G−max{v∞(dx), 0} − v∞(df)

≤ A+ 1 +G+ v∞(dx)−max{v∞(dx), 0},

because v∞(df) ≥ v∞(f)− 1 ≥ −A− 1 = −(A+ 1). However,

v∞(dx)−max{v∞(dx), 0} = min{0, v∞(dx)},

and the proof is complete.
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3.1 General derivation order

We now generalize Theorem 3.1 to any derivation order m. We remind the reader that
Hm

x (f) is the m-th Hasse derivative of f with respect to x.

Theorem 3.3. Let F/K be a function field of genus g over a base field of characteristic p.
Let x ∈ F be a separating element of F/K and P∞ a degree one place of F . Let G be as
before, and,

W = G−max{v∞(dx), 0}
∆ = G+min{v∞(dx), 0}.

There exists an element 0 ̸= ω = w(x, P∞) ∈ L(G · P∞ − (dx)0) ⊆ L(WP∞) such that for
every positive integer m < p (or any integer m, if p = 0) and every f ∈ L(A · P∞),

ω2m−1 ·Hm
x (f) ∈ L(Am · P∞).

where Am = A−W +m · (∆ +W + 1).

Proof. We use the same w as before. We prove by induction. We already saw them = 1 case.
Assume for m and let us prove for m+ 1. The m+ 1-th Hasse derivative is the same as the
m+1-th iterated derivative Dm+1

x up to multiplication by a non-zero scalar (see corollary 2.1
and using m+ 1 < p when the characteristics is finite). Now,

ω2Dx(ω
2m−1Dm

x f) = ω2 [ Dx(ω
2m−1)Dm

x f + ω2m−1Dx(D
m
x f) ]

= (2m− 1) · ωDx(ω) · ω2m−1Dm
x f + ω2m+1Dm+1

x f

Thus,

ω2m+1Dm+1
x f = ω2Dx(ω

2m−1Dm
x f)− (2m− 1) · ωDx(ω) · ω2m−1Dm

x f.

By the induction hypothesis and the m = 1 case:

ω2m−1 ·Dm
x f ∈ L(Am · P∞),

ωDx(ω
2m−1Dm

x f) ∈ L((Am + (∆ + 1)) · P∞).

Also ω ∈ L(WP∞). By the m = 1 case,

ω ·Dx(ω) ∈ L((W + (∆ + 1)) · P∞)

The term ω2Dx(ω
2m−1Dm

x f) is in L((Am+W+∆+1)P∞). The term ωDx(ω) ·ω2m−1Dm
x f

is also in L((Am +W +∆+ 1)P∞). Altogether, ω2m+1Dm+1
x f is in L(Am+1P∞) = L((Am +

W +∆+ 1)P∞).

Remark 3.4. Note that if Dx(ω) is in L(P∞), we can multiply by a single ω per derivative,
instead of multiplying by ω2.

Corollary 3.5. Assume the above setting. Let m > 0 then ω ∈ L((3g + 2deg(x) − 1)P∞),
and Am ≤ A+ (2m− 1)(3g + 2deg(x)− 1).
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3.2 Discussion

Example 3.6. Consider the Hermitian function field when we derive by x. Dx(y) = xp. In
fact, (dx) = (2g−2)P∞, i.e., it has no poles, and all its zeroes are at P∞. Then, we can take
w = 1. Furthermore, for every f ∈ L(AP∞), −v∞(Hx(f)) = v∞(dx)−v∞(df) ≤ 2g−2+A+1.
For a general m, Am ≤ A+m(2g − 1).

Example 3.7. Now consider the Hermitian function field when we derive by y. Then,
Dy(x) =

1
xp and (dy) = (p + 2)P∞ − p(x)0. Nevertheless, since all functions in L(P∞) are

polynomials in x and y, we get that if we are deriving with respect to y we can choose w to
be xp to cancel out the 1

xp which is the derivative of x with respect to y. With this choice of
ω we again get that if f ∈ L(AP∞) then ωmHm(f) ∈ L((A+m(2g − 1))P∞).

The bounds we obtained are worse. This is because:

• We paid an additive g to guarantee a certain Riemann-Roch space is nonempty, by
forcing the degree of its divisor to be at least g. While there are divisors of degree
g − 1 which have empty Riemann-Roch spaces, there are divisors of degree 0 which
have non-empty Riemann-Roch spaces. It is conceivably possible that the 3g − 1 we
have is not mandatory and can be replaced with 2g − 1 as we have in the Hermitian
curve. Perhaps, using the Riemann-Roch theorem with canonical divisors would do
the trick.

• Additionally, the 2m factor is a side effect of the inductive argument which requires
us to apply the induction hypothesis twice - once for Hm−1(f) and once for H1ω.
If, however, H1ω is regular, we can apply the induction hypothesis once and so ωm

would be sufficient. Alternatively, if the poles of Dm(f) which exceed those of Dm−1(f)
behave like ”dividing by a function again and again”, similarly to what we saw with
Dm

x (
f
g
) in K(x) or to Dy(f) for regular f in the Hermitian function field, we would

again get that ωm is sufficient.

• The requirement m < p is also a side effect of the induction, but when looking at the
p-th Hasse derivative of yp we get from claim 2.4 Hp

x(y
p) = H1

x(y)
p = xp2 which is of

pole order p3 = p(p + 1) + (2g − 1)p, an increase of exactly 2g − 1 times the order of
the derivative.

To summarize this, an optimistic reading of the proof would lead us to believe that the
following version of theorem 3.3 could hold:

Conjecture 3.8. Let F/K be a function field of genus g. Let x ∈ F be a separating element
of F/k. Let P∞ be a degree one place of F . There exists an element 0 ̸= ω = w(x, P∞) ∈ F
such that for every m ∈ N and every f ∈ L(P∞), ωm · Hm

x (f) ∈ L(P∞). Furthermore,
ω ∈ L((2g− 1+ deg(x) +DegSupp((x)∞)) ·P∞) and so if f ∈ L(A ·P∞) then ωm ·Hm

x (f) ∈
L(Am · P∞) for Am = A+m(2g − 1 + deg(x) + DegSupp((x)∞) + min{v∞(dx), 0}).
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4 The character sum bound

4.1 The function fields we work with

Let F be a function field with constant field K. Let S be a set of degree one places of
F/K. We recall that z ∈ F is S-useful, if for every P ∈ S there exists α ∈ K such that
vP (z − α) = 1. We have:

Claim 4.1. If z is S-useful and for all 0 ≤ m < M the function Hm
z (f) vanishes at all

places in S, then f vanishes with multiplicity at least M at every place of S.

Proof. Fix P ∈ S. As z is S-useful there exists some α ∈ K such that vP (z − α) = 1. By
Fact 2.3 we see that

(
Hm

z−α(f)
)
|P = (Hm

z (f)) |P = 0 for all 0 ≤ m < M . Hence Claim 2.2
tells us vP (f) ≥ M as desired.

In the following, we will work with a function field F/Fq, a set S of degree one places, a
degree one place we call P∞, and, an element X0 ∈ L(P∞) that is S-useful. Note that this
implies that P∞ /∈ S. We now state the assumptions we put on the function field F/Fq, S
and X0.

1. We assume q = p2 and p is a prime number.6

2. We also want F to have many degree one places and a small genus. Let P1
F denote

the set of degree one places of F , and N1 = |P1
F |. From the Drinfeld-Vladut Bound

[Sti09, Theorem 7.1.3] we know that in any sequence of function fields over Fq, with
N1 going to infinity, the genus tends in the limit to at least N1

p−1
, and there are several

constructions attaining this bound [Sti09, Section 7]. In particular we assume:

gF
def
= genus(F ) ≤ a · N1

p
, (3)

for some constant a ≥ p
p−1

≥ 1.

3. We would like deg(X0) to be as small as possible. It is well-known that every element
f ∈ F with deg(f) > 0 has deg(f) ≥ N1

q+1
(see, e.g., [BATS09, Lemma 10]). We assume

deg(X0) = b · N1

q
, (4)

for some constant b, and so b ≥ 1− 1
q+1

. We want b to be small.

6A large part of our work is applicable even when p is a prime power and not just prime, but the use of
theorem 3.3 is pivotal, and at this point our proof only holds for M < p where p is the characteristic of the
field.
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We now see several examples of such function fields:

Example 4.2. Let F/Fq be the Hermitian function field, with N1 = p3+1 and genus p(p−1)
2

.
Let S = P1

F \ P∞, |S| = p3. Let X0 = x and notice that indeed X0 = x is S-useful. We have

deg(X0) = p. Thus, a = 1
2
> p·g

N1
= p3−p

2N1
, and, b = q·deg(x)

N1
= 1− 1

N1
.

Example 4.3. Next, we look at the Hermitian tower function field of level e, Fe (where the
Hermitian function field is F2). When 2e < p we have the genus of Fe is at most epe. Let S
be all the degree one places other than P∞, |S| = pe+1. Let X0 = x1 and notice that indeed

X0 is S-useful. We have deg(X0) = pe−1. Then, a ≤ e (because e = epe+1

pe+1 ≥ p·g
N1

), and,

b = q·deg(X0)
N1

= q·pe−1

pe+1+1
= 1− 1

N1
.

Example 4.4. Our final example is the GS tower of level e. The genus of Fe is less then pe.
X0 = x1 is S-useful for a set of pe(p− 1) degree one places (which are exactly the evaluation
points in the GS error correcting code). We have deg(X0) = pe−1. Thus, a = p

p−1
= p·pe

pe(p−1)
≥

p·g
N1

, and, b = q·deg(x)
N1

≤ q·pe−1

pe(p−1)
= p

p−1
.

4.2 The problem

We continue with the notation set before. Let ℓ be a prime number dividing q − 1. Note
that ℓ is different from the characteristic of F . f ∈ L(rN1P∞), where r is a parameter. We
assume deg(f) = −vP∞(f) is coprime to ℓ. This assumption implies f is not an ℓ-th power
in FqF , where FqF is the constant field extension of F with the algebraic closure of Fq. Our
goal is to estimate the number of places P ∈ S such that f |P ∈ Fq is an ℓ-th power. We
define

F ′ = F (Z) mod Zℓ − f.

By Claim 2.9, F ′ is a Kummer extension of F and P∞ is totally ramified in F ′. Also
g′ = genus(F ′) satisfies ℓ(g − 1) ≤ g′ − 1 ≤ ℓ(g − 1) + degF (f). Let P ′

∞ denote the single
place of F ′ above P∞. As P ′

∞ is totally ramified we have:

• deg(P ′
∞) = 1,

• vP ′
∞(X0) = ℓ · vP∞(X0), and vP ′

∞(f) = ℓ · vP∞(f),

• ℓ · vP ′
∞(Z) = vP ′

∞(f) = ℓ · vP∞(f) and so vP ′
∞(Z) = vP∞(f) ≤ rN1. In fact, Z ∈

L(rNP ′
∞).

Let Sℓ ⊆ S be the set of all places P ∈ S where f |P ∈ Fq is a non-zero ℓ-th power. Let S ′
ℓ

be the places of F ′ that lie over Sℓ. By Claim 2.10, Sℓ totally split in F ′, and so

|S ′
ℓ| = ℓ|Sℓ|.

In this terminology, our goal is to identify a large vector space of functions f , for which
|Sℓ|, or equivalently, |S ′

ℓ|, is about right.
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4.3 Our result

Our bound will be good for f such that t = −vP ′
∞(Z) = −vP∞(f) is close to a multiple of

vP∞(X0) which is not a multiple of ℓ · vP∞(X0).
7 Formally, write

−vP∞(f) = −(ℓc1 + d1)vP∞(X0) + e1 (5)

where c1, d1, e1 ∈ Z, 0 < d1 < ℓ and |e1| minimal. Note that we do not allow d1 to be zero.
We want |e1| to be small, and if t = −vP∞(f) is close to a multiple of vP∞(X0) which is not
a multiple of ℓ · vP∞(X0), then |e1| is indeed small. If, however, t is close to a multiple of
ℓ · vP∞(X0), then, as we do not allow d1 = 0, we must take |e1| to be fairly large (about
|vP∞(X0)|).

Let A be some (large) positive integer. In Section 5 we prove:

Theorem 4.5. In the above notation, suppose A < bN1 − (ℓ − 1)q|e1| and let {ai} be any
basis of L(AP ′

∞). Then {aiXjqZkq|j ∈ N; 0 ≤ k < ℓ} are independent over Fq.

In Section 6 we prove:

Theorem 4.6. In the above notation, assume further

r <
a

p
(6)

ℓ2

ℓ− 1
<

1

9a+ 3b
(b− ℓq|e1|+ 1

N1

)

√
rp3

a
. (7)

Then:

|Sℓ| ≤
bN1

ℓ

(
1 + (ℓ− 1)

√
rp

a
+

ℓ(9a+ 3b)
√
a( qr

b
+ ℓ

ℓ−1
)

b
√
rp3 − ℓ

ℓ−1
(9a+ 3b)

√
a− qℓ|e1|+1

N1

)

Note that if p is large and a and |e1| are small, then we can bound the second error term
with:

ℓ(9a+ 3b)
√
a( qr

b
+ ℓ

ℓ−1
)

b
√

rp3 − ℓ
ℓ−1

(9a+ 3b)
√
a− qℓ|e1|+1

N1

= O(
ℓqr

b
√

rp3
) = O(

ℓ

b
· √rp)

making it roughly equal to the first error term which is (ℓ− 1)
√

rp
a
.

For the Hermitian function field the following simplification holds:

7Recall that f,X0 ∈ L(P∞). If f is a polynomial in X0, i.e., f = P (X0), then the requirement that
deg(f) is not an ℓ-multiple of deg(X0), implies that deg(P ) is coprime to ℓ, and, in particular, f is not an
ℓ’th power of a polynomial in X0.
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Theorem 4.7. Let p > 500 be a prime number, q = p2 and let ℓ be a prime number that
divides q − 1. Let f(x, y) be a rational function in the Hermitian function field with total
degree d and pole order at infinity d∞. Assume that: Both d and d∞ are not divisible by ℓ,
ℓ < O(

√
dp), and, d < O

(
q
ℓ

)
. Then:

∣∣{P ∈ C(Fq) | f(P ) is a perfect ℓth power in Fq}
∣∣ = p3

ℓ

(
1 +O

(
ℓ

√
d

p

))

For ℓ = 2 we can also prove the above under the more general assumption that f is not a
square of any function in a constant field extension of the Hermitian function field (replacing
the conditions that d and d∞ are odd), but for brevity, we decided to omit it from this paper.

For the Hermitian tower of level e (as in Example 4.3), we have a = e and b = 1− 1
N1

. Fix
r = β e

p
for some β < 1 that will be determined later. This allows every f ∈ L(rN1P∞), and,

in particular, all polynomials f(x0, x1, . . . , xe−1) of total degree at most d for d < rN1

(p+1)e−1 ≈
rpe+1

pe−1 = rq = βep. We assume b− ℓq|e1|+1
N1

≥ 1
2
. As b ≈ 1 andN1 ≥ pe+1, this allows |e1| as large

as about pe−1

2ℓ
. Then, Equation (7) becomes (approximately) ℓ2

ℓ−1
< Oe(

√
dp), and is satisfied

for p large enough. Theorem 4.6 shows that |Sℓ| is about N1

ℓ
(1 + ℓ

√
β + Oℓ,e(

qr
p
√
rp
)), where

O( qr
p
√
rp
)) = O(

√
rp) = O(

√
βe). Thus, the error term is Oℓ,e(

√
d
p
), and we get meaningful

results for polynomials of total degree d ≤ cp, for some c < 1 that depends only e and ℓ.
Formally,

Theorem 4.8. Fix ℓ. Let e be constant and Fe(x0, . . . , xe−1) the e-level of the Hermitian
tower over Fq, where p is a large enough prime (as a function of e and ℓ) and q = p2, and
further assume ℓ divides q− 1. Let f(x0, . . . , xe−1) have total degree at most d. Assume that
d is not not divisible by ℓ, and, furthermore, if we express

−vP∞(f) = −(ℓc1 + d1)vP∞(X0) + e1 (8)

where c1, d1, e1 ∈ Z, 0 < d1 < ℓ and |e1| minimal then |e1| ≤ pe−1/2ℓ. Then:

∣∣{P ∈ C(Fq) | f(P ) is a perfect ℓth power in Fq}
∣∣ = pe+1

ℓ

(
1 +Oℓ,e

(√
d

p

))

5 Independence

Before we prove Theorem 4.5 we focus on a special basis of a relevant Riemann-Roch space.
Let A be some positive integer. Let T ⊆ N be the set of integers i such that there exists an
element bi ∈ L(P ′

∞) with vP ′
∞(bi) = −i.8 The set {bi}i∈T,i≤A is a basis of L(A · P ′

∞) ⊂ F ′.

8If g′ = genus(F ′) > 0 then T is non-consecutive and contains up to g′ gaps. However, it is a semi-group,
and is called the Weierstrass semigroup of P ′

∞.
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Theorem 5.1. In the above notation, suppose A < bN1 − (ℓ− 1)q|e1|. Let i, i′, j, j′, k, k′ be
non-negative integers, such that i, i′ ≤ A and k, k′ < ℓ. Then two elements biX

jqZkq and
bi′X

j′qZk′q have the same P ′
∞-valuation if and only if (i, j, k) = (i′, j′, k′).

Proof. Let us compute vP ′
∞(biX

jq
0 Zkq):

vP ′
∞(biX

jq
0 Zkq) = vP ′

∞(bi) + jq · vP ′
∞(X0) + kq · vP ′

∞(Z)

= −i+ jqℓ · vP∞(X0) + kq(ℓc1 + d1) · vP∞(X0)− e1kq.

Plugging in vP∞(X0) = −bN1

q
we get:

vP ′
∞(biX

jq
0 Zkq) = −i− bN1(ℓj + (ℓc1 + d1)k)− e1kq = −ℓbN1(j + kc1 + k

d1
ℓ
+

i+ e1kq

ℓbN1

)

and so if vP ′
∞(biX

jq
0 Zkq) = vP ′

∞(bi′X
j′q
0 Zk′q) we get that:

j − j′ + (k − k′)(c1 +
d1
ℓ
) =

i′ − i+ (k′ − k)qe1
ℓbN1

Which means i′−i+(k′−k)qe1
ℓbN1

must be an integer multiple of 1
ℓ
. However, this quantity (in abso-

lute value) is at most A+(ℓ−1)q|e1|
ℓbN1

< 1
ℓ
by the assumption on A. We get that i′−i+(k′−k)qe1

ℓbN1
= 0,

giving us j − j′ + (k− k′)(c1 +
d1
ℓ
) = 0. Considering the fractional part of this equation and

remembering 0 < d1 < ℓ gives k = k′, which in turn gives us j = j′ and i = i′.

Remark 5.2. In the case where vP∞(f) is divisible by ℓ there are two cases to consider. If
P∞ does not split at all, and has a single extension in F ′ with full relative index, the proof
can be modified to get a similar result to theorem 5.1, which is enough for us to continue
the analysis as in the later sections of this work. If, however P∞ has more than one place
lying over it in F ′ the whole framework of our proof is no longer applicable. As the more
general case is the one where P∞ splits in F ′ we limit ourselves to the case where vP∞(f) is
not divisible by ℓ for the sake of both simplicity and brevity.

We are ready to prove Theorem 4.5:

Proof. (of Theorem 4.5) We first prove it for the basis {bi}i∈T,i≤A from Theorem 5.1. Suppose∑
ci,j,kbiX

jqZkq = 0. As all the elements in the sum have distinct valuations at P ′
∞, the

valuation of the sum is the minimal valuation of biX
jqZkq with a non-zero coefficient ci,j,k.

However, the valuation is v(0) = ∞. Hence all the coefficients ci,j,k are zero.

Now suppose
∑

j,k gj,kX
jq
0 Zkq = 0 for gj,k ∈ L(AP ′

∞). Write each gj,k as
∑

i ci,j,kbi. From
the previous argument we see that all ci,j,k are zero, hence all gj,k are zero. In particular let
{ai} be an arbitrary basis of L(AP ′

∞). Let gj,k =
∑

i ci,j,kai ∈ L(AP ′
∞) to obtain gj,k = 0 for

all j, k. From the independence of ai we conclude that all ci,j,k must be zero, finishing the
proof.
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6 Bounding the bias

In this section we prove Theorem 4.6. We do this using a version of Stepanov method. We
remind the reader that Sℓ ⊆ S is the set of all places P ∈ S where f |P ∈ Fq is a non-zero
ℓ-th power, and S ′

ℓ is the set of places of F
′ that lie over Sℓ. We also saw that by Claim 2.10,

Sℓ totally split in F ′, and so |S ′
ℓ| = ℓ|Sℓ|.

Proof of theorem 4.6. Set an integer M < p to be determined later. Our goal is to find
0 ̸= R ∈ F ′ such that deg(R) is not too large, and, for every P ′ ∈ S ′

ℓ, vP ′(R) ≥ M . It then

follows that M · |S ′
ℓ| ≤ deg(R) and therefore |Sℓ| ≤ deg(R)

ℓM
. We search for R in the following

vector space: Let A < bN1 − (ℓ− 1)q|e1| and B be parameters that will be chosen later. Let
{ai} be a basis of L(AP ′

∞). Set

U = {aiXjq
0 Zkq | j < b and k < ℓ}

We search forR in the Fq-linear span of U . By Theorem 4.5 the elements in U are independent
and so the dimension of span(U) is the size of U . Hence,

dim(span(U)) ≥ ℓ ·B · (A− g′ + 1).

As ai ∈ L(AP ′
∞), X0 ∈ L(ℓbN

q
P ′
∞), and Z ∈ L(rN1P

′
∞), we see that

span(U) ⊆ L((A+ ℓ(B − 1)bN1 + (ℓ− 1)qrN1)P
′
∞). (9)

In particular, if R ∈ span(U) then deg(R) ≤ A+ ℓ(B − 1)bN1 + (ℓ− 1)qrN1.

Express R =
∑

ci,j,kaiX
jq
0 Zkq. We want to find a set of linear constraints on ci,j,k that

guarantees that vP ′(R) ≥ M for all P ′ ∈ S ′
ℓ. For that end, for 0 ≤ m < M define:

gm = ωm ·
∑

ci,j,kH
m
X0
(ai)X

j
0Z

k,

where ω0 = 1 and ωm = ω2m−1 for 0 < m < M , and ω is as in Theorem 3.3. We claim:

Lemma 6.1. If for every 0 ≤ m < M , gm = 0 as an element of F ′, then R vanishes M
times on all of S ′

ℓ.

Proof. (of Lemma 6.1) Fix P ′ ∈ S ′
ℓ and 0 ≤ m < M . Assume gm = ωm·

(∑
ci,j,kH

m
X0
(ai)X

j
0Z

k
)

is zero as an element of F ′. Notice that ωm is either 1 or ω2m−1 where ω is not zero, and so
ωm is never the zero function, meaning it is invertible in F ′. Therefore,

∑
ci,j,kH

m
X0
(ai)X

j
0Z

k

is zero as an element of F ′. In particular it is zero on P ′. Now,

Hm
X0
(R)|P ′ = Hm

X0
(
∑

ci,j,kaiX
jq
0 Zkq)|P ′ = (

∑
ci,j,kH

m
X0
(ai)X

jq
0 Zkq)|P ′ ,
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using Corollary 2.5 and the Fq-linearity of Hm. P ′ is a degree one place of F ′, and so
φP ′(X0) = X0|P ′ and φP ′(Z) = Z|P ′ are both elements of Fq (P ′ ̸= P ′

∞ so X0 and Z are
indeed defined at P ′). Therefore

Xq
0 |P ′ = φP ′(Xq

0) = φP ′(X0)
q = φP ′(X0) = X0|P ′ ,

Zq|P ′ = φP ′(Zq) = φP ′(Z)q = φP ′(Z) = Z|P ′ ,

and Hm
X0
(R)|P ′ =

(∑
ci,j,kH

m
X0
(ai)X

j
0Z

k
)
|P ′ = 0. We conclude that Hm

X0
(R) vanishes on P ′.

Now X0 is S-useful, and therefore it is Sℓ-useful. By Claim 2.12, X0 is S
′
ℓ-useful. As this

is true for every m < M , Claim 4.1 implies that R vanishes M times on P ′ as desired.

Our next step is to show each requirement gi = 0 imposes a bounded number of homo-
geneous linear constraints on the coefficients ci,j,k. We prove:

Lemma 6.2. For every m,i, j, k, ωmH
m
X0
(ai)X

j
0Z

k ∈ L(AmP
′
∞) where A0 = A+(B−1)ℓbN1

q
+

(ℓ−1)rN1 and Am = A0+(2m−1)(3g′+2bN1

q
) for m > 0, where g′ = genus(F ′) ≤ ℓg+rN1.

Proof. (of Lemma 6.2) Xj
0Z

k and ωmH
m
X0
(ai) are regular at P ′

∞. The degree of Xj
0Z

k is at
most (B − 1)ℓbN1

q
+ (ℓ− 1)rN1. For m = 0, the degree of ωmH

m
X0
(ai) = ai is at most A. For

m > 0 we have ωmH
m
X0
(ai) = ω2m−1Hm

X0
(ai), which by corollary 3.5 is a regular function with

degree at most A+(3g′− 1+2 deg(X0))(2m− 1). Altogether, wmH
m
X0
(ai)X

j
0Z

k ∈ L(AmP
′
∞)

for every i, j, k.

Now choose a basis for L(AmP
′
∞) and represent each ωmH

m
X0
(ai)X

j
0Z

k ∈ L(AmP
′
∞) as

a vector of length dim(AmP
′
∞). gm =

∑
ci,j,kωmH

m
X0
(ai)X

j
0Z

k and therefore the constraint
gm = 0 gives dim(AmP

′
∞) ≤ Am linear homogeneous equations in the variables ci,j,k. Al-

together we get a system of
∑M−1

m=0 Am linear, homogeneous equations in ℓ · B · dim(AP ′
∞)

variables. Choosing parameters such that
∑M−1

m=0 Am ≤ ℓ·B·dim(AP ′
∞) guarantees a non-zero

solution R, and then |Sℓ| ≤ deg(R)
ℓM

.

The number of constraints is at most

M−1∑
m=0

Am ≤
M−1∑
m=0

(A0 + (6g′ + 4b
N1

q
)m) ≤ MA0 + (6g′ + 4b

N1

q
)
M2

2

≤ MA+ (3g′ + 2b
N1

q
)M2 +M((B − 1)ℓb

N1

q
+ (ℓ− 1)rN1).

Notice that the number of degrees of freedom is less than ℓBA while the number of
constrains is more than MA. Therefore, in order for the number of degrees of freedom to
exceed the number of constraints, we must have M < ℓB. We shall therefore write

ℓB = M + E.
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We now compare the number of constraints with the number of degrees of freedom, demand-
ing that the number of constraints be smaller:

(M + E)(A− g′ + 1) > MA+ (3g′ + 2b
N1

q
)M2 +M((B − 1)ℓb

N1

q
+ (ℓ− 1)rN1)

EA > ℓB(g′ − 1) + (3g′ + 2b
N1

q
)M2 +M((B − 1)ℓb

N1

q
+ (ℓ− 1)rN1)

And so it is enough to ask:

E

M
> g′(

3M

A
+

ℓB

MA
) + 2b

MN1

qA
+ (B − 1)ℓb

N1

qA
+ (ℓ− 1)

rN1

A
, or,

E

M
≥ N1

A

(
(3M +

ℓB

M
)(
aℓ

p
+ r) +

2bM + (B − 1)ℓb

q
+ r(ℓ− 1)

)
, (10)

because g′ ≤ ℓg + rN1 ≤ N1(
aℓ
p
+ r). We now choose

A = bN1 − qℓ|e1| − 1,

M = ⌊ ℓ− 1

ℓ(9a+ 3b)

A

N1

√
rp3

a
⌋,

B = ⌈M
ℓ
(1 +

MN1ℓ

A
(
4a

p
+

4r

ℓ
+

3b

q
+

r(ℓ− 1)

Mℓ
))⌉

and denote E = ℓB − M . We check that these choices satisfy our constraints. First,
clearly, A < bN1 − q(ℓ − 1)|e1|. Also, A < bN1 and r < a

p
(Equation (6)) and therefore

M < b
9a+3b

p < p. Also,

Claim 6.3. B ≤ M and ℓ ≤ M .

Proof. We first prove ℓ ≤ M . Since ℓ is an integer it is enough to show that ℓ < ℓ−1
ℓ(9a+3b)

A
N1

√
rp3

a
,

which holds because of our choice of A and Equation (7). We next prove B ≤ M . It is enough
to show that

1 +
MN1ℓ

A
(
4a

p
+

4r

ℓ
+

3b

q
+

r(ℓ− 1)

Mℓ
) ≤ ℓ.

We have 4r
ℓ
≤ 4a

p
, r(ℓ−1)

Mℓ
≤ a

p
(because of Equation (6)), and, therefore, it is enough to show

that M ≤ ℓ−1
ℓ

A
N1

p
9a+3b

. This last inequality holds because of Equation (6) and the definition
of M .

Also note that

E

M
=

ℓB

M
− 1 ≥ N1

A
Mℓ(

4a

p
+

4r

ℓ
+

3b

q
+

r(ℓ− 1)

Mℓ
)
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and Equation (10) follows (using Claim 6.3 and ℓB
M

≤ M). This concludes the check that our

choices satisfy our constraints. We conclude that |Sℓ| < degR
M

. By Equation (9), deg(R) ≤
A+ ℓ(B − 1)bN1 + (ℓ− 1)qrN1, and

|Sℓ| ≤
deg(R)

ℓM
≤ A

ℓM
+

ℓ(B − 1)bN1

ℓM
+

(ℓ− 1)qrN1

ℓM

<
A

ℓM
+

(M + E)bN1

ℓM
+

(ℓ− 1)qrN1

ℓM
<

bN1

ℓ

(
1 +

E

M
+

(ℓ− 1)qr

bM
+

A

bN1M

)
and so |Sℓ| < bN1

ℓ
(1 + E) where E = E+1

M
+ (ℓ−1)qr

bM
. Substituting M and E we get

E =
E + 1

M
+

(ℓ− 1)qr

bM
≤ MN1ℓ

A
(
4a

p
+

4r

ℓ
+

3b

q
+

r(ℓ− 1)

Mℓ
) +

ℓ

M
+

(ℓ− 1)qr

bM

≤ ℓ− 1

p

√
rp3

a
+

bℓ+ (ℓ− 1)qr

bM
≤ (ℓ− 1)

√
rp

a
+

ℓ(9a+ 3b)
√
a( qr

b
+ ℓ

ℓ−1
)

b
√

rp3 − ℓ
ℓ−1

(9a+ 3b)
√
a− qℓ|e1|+1

N

,

completing the proof.
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