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Abstract

In this paper we present a new proof system framework CLIP (Cumulation Linear Induction
Proposition) for propositional model counting. A CLIP proof firstly involves a circuit, calculating
the cumulative function (or running count) of models counted up to a point, and secondly
a propositional proof arguing for the correctness of the circuit. This concept is remarkably
simple and CLIP is modular so allows us to use existing checking formats from propositional
logic, especially strong proof systems. Despite model counting being a harder problem than
unsatisfiability, we find that CLIP only has lower bounds from its propositional proof system
or if P#P is not contained in P/poly, similar to results in QBF proof complexity [6]. From a
proof complexity point of view we find it is exponentially stronger than existing proof systems
MICE [25] and KCPS(#SAT) [14] for propositional model counting.

1 Introduction

In mathematics, a proof by induction is a convenient and concise way of proving a fact for a
large or even infinite domain. The main driving force in a proof by induction is the proof of the
inductive step. Informally we can think of the induction step as universally quantifying over the
domain; whether each instance of the induction hypothesis is implied by the previous instance
of the induction hypothesis. Nonetheless an induction step is often used to simplify a seemingly
complicated theorem. We want to use this idea to develop a framework that takes model counting
problem and projects them into propositional tautologies representing an inductive step.

Propositional model counting (#SAT) is an extension of SAT-solving that counts the number
of models (satisfying assignments) of a propositional formula. Unsatifiability is just the special
case when the number of models is zero. For unsatisfiability, we have a number of powerful proof
systems, including the checking format DRAT (Deletion Resolution Asymmetric Tautology) [49],
Frege and Extended Frege systems and the Ideal Proof System (IPS)[29] which uses an unrestricted
circuit as a static certificate for an inconsistent set of polynomial equations. For IPS the existence
of lower bounds directly relates to circuit complexity. Where IPS only has super-polynomial lower
bounds if VNP ̸= VP. We should not focus too hard on these specific complexity classes here, but
instead note that one of best ways to demonstrate strength in a proof system is to make lower
bounds conditional on another complexity problem.

In the past few decade work has been undertaken to create efficient #SAT algorithms [11, 4, 42,
45, 23, 36]. Some work has also been undertaken for proof systems for #SAT. KCPS(#SAT) [14] is a
static model counting proof system that uses the checkability of dec-DNNFs (decision Decomposable
Negation Normal Form), but retains lower bounds from dec-DNNFs. The MICE proof system [25] is
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a dynamic system that argues from axioms involving a single model to more complicated expressions
with many models, however it was shown that MICE has an exponential lower bound involving
XOR-pairs [9].

For a number of applications, utilizing propositional model counting alongside proofs of cor-
rectness would be clearly beneficial. A proof may be a direct part of the application, i.e. if we
were to use model counting for part of a hard combinatorics problem. Proofs could be used as part
of a verified systems, i.e. in planning. Since propositional model counting can be used directly in
Bayesian inference, verification can add some trust into systems that use probabilistic methods.

We could perhaps compare progress in proofs for propositional model counting to that in Quan-
tified Boolean formulas (QBFs). QBF are another extension of SAT, that uses both existential and
universal variables. The main thing we need to know about QBF for this paper is that we have
many strong proof systems for QBF already [6, 30]. In fact some proof systems have conditional
optimality, where a QBF proof size lower bound exists if and only if either a propositional proof
size lower bound exists or an open circuit complexity conjecture is true [6].

1.1 Our Contribution: Certifying #SAT via Propositional Logic

Propositional model counting is #P-complete [39], this is an interesting position in computational
complexity; Toda’s Theorem [46] means #SAT is hard for every level of the polynomial hierarchy,
while also in functional PSPACE [1, p. 344].

Our initial approach was that because #SAT is in PSPACE we can translate the problem into a
series of QBF queries, and simply present a series of QBF proofs (or just one proof of a conjunction
of many QBFs). As long as the reduction was correct this would be sound, and we can use efficient
QBF proof systems. eFrege+∀red for example only has a lower bound if eFrege has a lower bound
or PSPACE ⊈ P/poly [6]. These are both long-standing open problems that we do not expect to
solve by simply attempting the current #SAT lower bounds for MICE and KCPS(#SAT).

However, while QBFs and the proof complexity of eFrege+∀red make a good point of compari-
son, the actual use of QBFs turned out to be unnecessary. If we observe the PSPACE algorithm for
#SAT we can skip unnecessary quantifying reasoning to find a proof system even more intuitive.

We can iteratively count the number of models of a propositional CNF formula Φ by evaluating
it 2n-times (for n variables) once in every possible complete assignment to its variables, and keeping
a cumulative count [39, Section 18.2]. Apart from storing the cumulative count, and the current
position (both binary integers each using n-bits), we can free up memory after each assignment
and retain polynomial space. This cumulative count effectively records the state of the counting
machine at the critical points of its runtime. We know this algorithm is correct by inductively
knowing the cumulative count is correct. Our proposal is to use a proof system of two parts:

1. A non-deterministically guessed Boolean circuit which when given the current assignment in
the runtime it returns the cumulative count of models.

2. A purely propositional proof by induction that said guessed circuit is correct.

The resulting system CLIP+P (Cumulative Linear Induction Proposition, Definition 5) is not
necessarily a static system, because its propositional part (P) may be dynamic. We can consider
part of the proof i.e. the choice of circuit for the cumulative count as static. If we allow the
propositional part to be a static proof system i.e. CLIP+IPS we get a fully static system. There
is also the idea to forego fitting Cook and Reckhow’s [22] notion of a proof system and use an
NP-oracle instead of a propositional proof.

If we either use a powerful propositional proof system CLIP+P or an NP-oracle CLIPNP we can
show using Fenwick assignment trees [24] that we have a framework that can simulate any model
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counting proof systems that is closed under restrictions, including KCPS(#SAT) (Theorems 5,6)
and MICE (Theorems 8,9). Furthermore we show that hard formulas for either system are easy for
CLIP proofs (Theorems 10,11).
Organisation of the paper: In Section 3 we define our CLIP framework for propositional model
counting proof systems. In Section 4 we give the arguments for how CLIP can simulate existing
proofs systems KCPS(#SAT) and MICE. In Section 5 we show that CLIP can handle formulas that
are hard for existing systems. We conclude this paper in Section 6 with some discussions and
possible directions for future research.

1.2 Related Work

Propositional model counting is the problem of counting the exact number of models of the given
CNF formula Φ. Other related problems in literature are weighted [10] and projected model count-
ing [2]. In weighted model counting, every total assignment is assigned a weight and the output is
the sum of weights of all models. Projected model counting asks to count models with respect to a
given set of projection variables, where models that are identical when restricted to the projection
variables count as only one model.
CPOG (Certified Partitioned-Operation Graphs): An important proof system CPOG was
defined in [12] to overcome the weakness (as discussed in [12, p.3]) of KCPS(#SAT) framework
when used as a solver [15]. CPOG works with any practical solver outputting a dec-DNNF by using
a external proof checker. This CPOG is inspired by DRAT [49] and Extended Resolution [47] and
works with partial ordered graphs. It works on both standard and weighted model counting.
Approximate Model Counting: Since exact model counting is hard, finding an approximation
of the count with high probability is interesting. It turns out that the problem of approximating
the model-count has several practical importance as well, for example, in fields like probabilistic
reasoning [41]. This leads to developing several practical solvers in the literature [27, 37]. For further
details on approximate model counting, interested readers are referred to the book chapters [28, 16].
SAT and QBF proof complexity: In propositional logic, we have weak proof systems like
Resolution [40], which capture solving techniques and stronger proof systems like DRAT [49] and
Extended Resolution, which are used as a checking format. Extensive work has been done in-
vestigating the relationship between propositional proof systems [44]. Quantified Boolean For-
mulas are the canonical PSPACE-complete language and there are again proof systems such as
QU-Resolution [48], Long distance Q-Resolution [50], ∀Exp+Res [33] and more powerful proof sys-
tems like QRAT [30] and eFrege+∀red [6]. Again, emerging works on QBF proof complexity have
uncovered the relationships between proof systems [21, 7, 3, 43]

2 Preliminaries

For a Boolean variable x, its literals can be x and ¬x. We use the notation ℓ = ¬x when ℓ = x and
ℓ = x when ℓ = ¬x. A clause C is a disjunction of literals and a conjunctive normal form (CNF)
formula Φ is a conjunction of clauses. We denote the empty clause by ⊥. vars(C) is a set of all
variables in C and vars(Φ) =

⋃
C∈Φ vars(C). We say Φ is a trivial CNF if it either contains an

empty clause or all its clauses contain the constant literal 1.

2.1 Assignments

Given a CNF Φ on n-variables (X = {x1, ..., xn}), a total assignment α to vars(Φ) is a function
which maps every variable ∈ X to 0/1. α is said to be a satisfying assignment (model) of Φ if every
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clause C ∈ Φ has a literal ℓ such that α(ℓ) = 1 (α(ℓ) = 1−α(ℓ)). Φ(α) = 1 if α is a model of Φ and
Φ(α) = 0 otherwise. We denote the total number of models of a CNF Φ as #models(Φ). The model
counting problem (#SAT) is the problem of computing #models(Φ) for a given CNF Φ. #SAT
is the canonical complete problem for the function class #P. The class of languages decidable in
polynomial time with an oracle to #SAT are denoted by P#P.

A partial assignment is a function which maps a subset of X to 0/1. For an assignment α,
vars(α) denotes the set of variables assigned in α. Let α, β be two partial assignments to variables
X, they are said to be consistent (α ≃ β) if vars(α) ∩ vars(β) are assigned the same 0/1-value in
both α and β, otherwise they are said to be inconsistent (α ̸≃ β). A partial assignment α when
appended with 0/1 assignment to the variables X \ vars(α), will form a total assignment α′ this is
said to be extending a partial assignment. Two partial assignments α, β are called non-overlapping,
if there does not exist any total assignment γ which can be obtained by extending both α and β
individually. For a CNF Φ, Φ|α (similarly C|α) denotes the restricted formula (or clause) resulting
from replacing all occurrences of vars(α) in Φ (or C) with assignments from α.

We can fix an ordering among variables in X that determines the binary encoding. In a vector
of Boolean variables (or constants) x1, . . . , xn we treat xn as the least significant bit and x1 as the
most significant bit (MSB). We denote num(α) as the integer corresponding to any total assignment
α of vars(Φ). To be precise, num(α) := Σi∈[n]α(xi) ∗ 2n−i for any total assignment α. Observe
that if total assignment α := {x1 = 0, x2 = 1, x3 = 1, x4 = 1} for n = 4, then num(α) = 7. We
can view assignments as integers or as a set or as a function interchangeably. In places where we
refer to arithmetic statements coded in propositional logic, we use a binary encoding for numbers.
For the reverse, we use the notation || . . . || to denote the conversion of arithmetic statements into
propositional logic. We denote [J ] to denote numbers {1, ..., J−1, J} and [J1, J2] to denote numbers
{J1, J1 + 1, ..., J2 − 1, J2}.

2.2 Proof Systems

A proof system [22] is a polynomial-time functions that maps proofs to theorems, where the set
of theorems is some fixed language L. A proof system is sound if its image is contained in L and
complete if L is contained in its image. A proof system takes in strings as its inputs. Let π be
such a proof we denote its size, i.e. the string length by |π|. Given two proof systems f and g for
the same language L. We say f simulates g when there is a polynomial function p, such that for
every g-proof π1 there is an f -proof π2, such that g(π1) = f(π2) and |π2| ≤ p(|π1|). We say that
f p-simulates g, when there is a polynomial time function r that maps g-proofs to f -proofs such
that g(π1) = f(r(π1)). f and g are said to be p-equivalent if they both p-simulate each other.

Definition 1 (Closure under restrictions [38]). A proof system P is closed under restrictions if for
every P -proof π of a CNF formula Φ and any partial assignment α to vars(Φ), there exists a P -
proof π′ of Φ|α such that |π′| ≤ p(|π|) for some polynomial p. In addition, there exists a polynomial
time procedure (w.r.t. |π|) to extract π′ from π.

This is the stricter definition which we use in this paper. A more weaker version which states
that the π′ need not be extracted from π is also used in the literature.
Propositional Proof Systems: The language UNSAT is the set of CNF formulas which have 0
satisfying assignments. Propositional proof systems map refutations to formulas from the language
UNSAT.

Resolution is arguably the most studied propositional proof system. It has the rule (C∨x) (D∨x)
(C∪D)

where C,D are clauses and x is a variable. Resolution refutation ρ of CNF Φ is a derivation of ⊥
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using the above rule (i.e ρ := Φ Res ⊥). Size of ρ (i.e |ρ|) is the number of times the above rule is
used in ρ. It is well-known that Resolution is closed under restrictions.

Frege systems [26] are important propositional proof systems. They consist of a sound and
complete set of axioms and rules where any variable can be substituted by any formula. All Frege
systems are p-equivalent [22]. Figure 1 gives one example of a Frege system.

1 x1 → (x2 → x1) ((x1 → 0)→ 0)→ x1

(x1 → (x2 → x3))→ ((x1 → x2)→ (x1 → x3))
x1 x1 → x2

x2

Figure 1: A Frege system for connectives →, 0, 1

Extended Frege (eFrege) [22] allows the introduction of new variables as well as all Frege rules.
Simultaneously we can imagine it as a Frege system where lines are circuits instead of formulas.
When showing that eFrege has short proofs we can use the fact it can simulate many different proof
systems such as Resolution, Cutting planes, Truth tables. In fact eFrege can simulate any proof
system as long as there is a short proof of the reflection principle of said proof system [32].
An NP-oracle is a theoretical concept which answers the membership question for NP in one step
i.e if a formula Φ is given, it can correctly return if Φ belongs to SAT or not. NP-oracles have been
used in QBF proof systems to skip propositional inference steps [17, 8].
The existing #SAT proof systems MICE′ and KCPS(#SAT) are defined in Section 4.

2.3 Circuits

A Boolean circuit σ on variables X is a directed acyclic graph, in which the input nodes (with
in-degree 0) are Boolean variables ∈ X and other nodes are the basic Boolean operations: ∨ (OR),
∧ (AND) and ¬ (NOT) and have in-degree at most 2. Every Boolean circuit σ evaluates a Boolean
function whose output is that of the node with out-degree 0 in σ. P/poly is the class of Boolean
functions computed by polynomial-sized circuit families.

A CNF Φ can trivially be represented as a Boolean circuit σ as follows: for every C ∈ Φ, σ has
|vars(C)| number of OR-gates. Then, σ has m − 1 AND-gates where m is the number of clauses
∈ Φ.

An arithmetic circuit is a DAG where every input gate (with indegree 0) is labelled by a variable
or a constant (∈ fixed field F ) and every other gate is labelled with either ‘+’ (for addition) or ‘∗’ (for
multiplication). Arithmetic circuits inherently represent polynomials. The class of polynomials with
polynomial degree that can be represented by arithmetic circuits of polynomial size are represented
by VP. VNP is the class of polynomials f(x1, ..., xn) such that given a monomial, its coefficient in
f can be determined efficiently with a polynomial size arithmetic circuit. We denote the Boolean
XOR gate with ⊕ in the paper.
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3 Cumulation Linear Induction Proposition (CLIP) Proof Frame-
work

In this section, we define propositional model counting proof framework (CLIP+P) for any propo-
sitional proof system P. Given a CNF Φ over n variables, a CLIP+P proof consists of a circuit
ξ (denoted as a cumulator) which outputs the total number of models of Φ from total assign-
ment 0 to a given total assignment num(α) (denoted as Cmodels(Φ, α), Definition 2). Clearly, when
num(α) = 2n−1, Cmodels(Φ, α) = #models(Φ). In addition, the CLIP+P-proof also requires a P-proof
of a statement which carefully encodes the correctness of cumulator ξ using the induction-principle
(see Definition 5). We need the following definitions.

Definition 2 (Cmodels(Φ, α)). Let Φ be an CNF formula, fix an order among vars(Φ). For
any assignment α to vars(Φ), the cumulative number of models of CNF Φ w.r.t α (denoted by
Cmodels(Φ, α)) is the number of models of Φ between assignment 0 to assignment num(α). In other
words Cmodels(Φ, α) := Σnum(β)≤num(α)1Φ(β), where 1Φ(β) is the indicator function for when β is a
model.

Definition 3 (Cumulator). A cumulator for a CNF Φ over n variables is a Boolean circuit ξ(α)
which takes as input an assignment α to vars(Φ) (as n binary bits) and calculates the cumulative
number of models of Φ i.e Cmodels(Φ, α) outputted as n+ 1 binary bits. As a result, when α is the
last assignment (i.e num(α) = 2|n| − 1), ξ(α) outputs the total number of models of Φ, we denote
this as the final output of ξ.

A trivial cumulator for Φ would be: to keep a counter and given any α, input every assignment
from 0 to num(α) into the trivial Boolean circuit representing Φ. If an assignment is a model then
increment the counter. This will take O(2|vars(Φ)|) computations in the case of α being the last
assignment.

Consider a CNF Φ and let k be its number of models. Given a cumulator ξ(α) for Φ, the correctness
of the cumulator can be encoded inductively as follows:

For the base case when num(α) = 0, we need to verify that the following is satisfied:
(Φ(α) & (ξ(α) = 1)) OR (Φ(α) & (ξ(α) = 0)). This covers the case that if the first assignment is
a model for Φ then the cumulator should return 1, else a 0.

For the inductive step when num(α) = num(β) + 1, the following should be satisfied
(Φ(α) & (ξ(α) = ξ(β) + 1)) OR (Φ(α) & (ξ(α) = ξ(β)). This covers the case that if the next
assignment α after β is a model of Φ, then the cumulator should increment its output by 1. Oth-
erwise, cumulator should output the same number under both assignments.

For the final case when num(α) = 2|vars(Φ)|− 1, it should be true that ξ(x) = k. This covers the
case that the cumulator computes the correct total number of models of Φ.

It is clear to see that if all of the above cases are true, the cumulator ξ is proven to be a correct
cumulator of Φ. From the above discussion, one can encode the correctness of ξ as the following
statement (|| || encloses the arithmetic comparisons needed):
||num(α) = 0|| →

(
(Φ(α) ∧ ||ξ(α) = 1||) ∨ (¬Φ(α) ∧ ||ξ(α) = 0||)

)
∧||num(α) = num(β) + 1|| →

(
(Φ(α) ∧ ||ξ(α) = ξ(β) + 1||) ∨ (¬Φ(α) ∧ ||ξ(α) = ξ(β)||)

)
∧||num(α) = 2|vars(Φ)| − 1|| → ||ξ(x) = k||.

To convert this into a purely propositional statement, we need Boolean circuits to implement
the arithmetic conditions ||x = y|| and ||y = x + 1|| for any integers x, y. We define polynomial
sized Boolean circuits for the same as E(x, y) and T (y, x) respectively in Definition 4 below.
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Definition 4. Let Z be a set of variables of size n, and let γ and δ be assignments to Z. For pairs
of individual variables a, b, use a = b to denote (¬a∨ b)∧ (¬b∧ a). We can encode polynomial size
propositional circuits:

• E(γ, δ), that denotes num(γ) = num(δ): En(γ, δ) := (γn = δn). For 1 ≤ i < n, Ei(γ, δ) :=
(γi = δi) ∧ Ei+1(γ, δ). E(γ, δ) := E1(γ, δ).

• T (γ, δ), that denotes num(γ) = num(δ) + 1. For 0 < i ≤ n and accepting the empty conjunc-
tion as true, S(δ)i := ¬(δi =

∧j≤n
j>i δj). T (γ, δ) := E(γ, S(δ)) ∧

∨i≤n
i≥1 δi.

Definition 5 (CLIP +P). For every propositional proof system P, the CLIP +P system for #SAT
is a cumulator ξ for a CNF Φ along with its correctness presented as a valid P-proof of the following
statement check(ξ). Let num map assignments to integers using the standard binary encoding, and
num−1 be its inverse. Let E(γ, δ) be a circuit that verifies equality (γ = δ), let T (γ, δ) denote a
Boolean circuit that verifies if num(γ) = num(δ) + 1. Let A and B be two disjoint copies of the
variables in Φ. The following is a tautology in the variables of A ∪B:

check(ξ) :=
E(A,num−1(0))→

(
(Φ(A)→ E(ξ(A),num−1(0))) ∧ (Φ(A)→ T (ξ(A),num−1(0)))

)
∧

T (B,A)→
(
(Φ(B)→ E(ξ(B), ξ(A))) ∧ (Φ(B)→ T (ξ(B), ξ(A)))

)
∧

E(A,num−1(2|vars(Φ)| − 1))→ E(ξ(A),num−1(k))

The existence of a valid P−proof of check(ξ), ensures that ξ is correct and the final output k
of ξ is the correct number of models of Φ. Note that for practical purposes the proof of inductive
step (i.e line 2 in check(ξ)) is sufficient to verify the cumulator ξ, as the base and final case can be
managed in the checker.

Theorem 1. If P is a propositional proof system then CLIP+P is a propositional model counting
proof system

Proof. CLIP+P is sound and complete for #SAT as: a trivial cumulator always exists for any Φ
and the propositional proof system P is sound and complete. Note that for a refutational proof
system P ′, CLIP+P ′ can include the correctness of ξ by including a P ′-refutation of check(ξ) from
the above definition.

For polynomial time checkability, we perform 3 steps: 1) verify that ξ is indeed a circuit. 2)
Using ξ, generate check(ξ) once again, to make sure it matches (where P does not accept circuits
a canonical translation, i.e. Tseitinisation is needed). 3) verifying the P proof.

Theorem 2. CLIP+eFrege has a super-polynomial lower bound only if eFrege has a super-
polynomial lower bound or P#P ⊈ P/poly

Proof. Suppose there is a family (Φn)n≥0 of propositional formulas that are a super-polynomial
lower bound to CLIP+eFrege. Let fn,i be the ith bit of the cumulative function for Φn.

(fn,i)
0≤i≤|vars(Φn)|
n≥0 is a P#P family. Finding the value of the cumulator at assignment α can be

found by adding a constraint to Φ that the only acceptable models are less than or equal to α and
querying for the number of models.

Now suppose P#P ⊂ P/poly, then there are polynomial size circuits for each fn,i and thus a
polynomial size cumulator ξn for each Φn. For each n, check(ξn) is also polynomial size in Φn.
Thus the family (check(ξn))n≥0 is super-polynomial lower bound for eFrege.

We observe that if we use the powerful static proof system IPS (Ideal Proof System) [29] within
the CLIP framework, we can relate lower bounds in the clip framework with the famous open
problem in arithmetic circuit complexity. To be precise, we have the following.
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Theorem 3. If CLIP+IPS has a super-polynomial lower bound then VNP ̸= VP or P#P ⊈ P/poly

Proof. Suppose CLIP+IPS has a super-polynomial lower bound and P#P ⊂ P/poly. Then as in the
previous proof there is a family (check(ξn))n≥0 that is a super-polynomial lower bound for IPS. A
super-polynomial lower bound for IPS implies VNP ̸= VP [29, Theorem 1.2].

The lesson here seems to be that circuits are a powerful way to compactly represent proofs.

Definition 6 (CLIPNP ). The proof system CLIPNP for #SAT is a cumulator ξ for CNF Φ along
with its correctness encoded by the statement check(ξ) from Definition 5 and verified by an NP-
oracle instead of a proof.

For CLIPNP, size is determined by check(ξ) only. CLIPNP is a proof system only if P = NP.

4 CLIP framework Simulations of existing #SAT Proof Systems
via Cumulator Extraction

In this section, we give a general framework of extracting efficiently a cumulator circuit from the
existing propositional model counting proof systems. This helps in the simulations of these proof
systems via the CLIP framework. We need the following definition for the same.

Definition 7 (Disjoint binary partial assignment cover (PAC(J1,J2))). Let J1, J2 be some total
assignments to variables X := x1, ..., xn in this order. The cover PAC(J1,J2) is a set of partial
assignments to X which are non-overlapping and together cover the entire assignment space between
J1 and J2 inclusive of both.

For instance, let X := {x1, x2, x3, x4}, J1 := 5 and J2 := 15. One possible PAC(J1,J2):= {{x1 =
1}, {x1 = 0, x2 = 1, x3 = 1}, {x1 = 0, x2 = 1, x3 = 0, x4 = 1}}. Observe that the first partial
assignment (i.e. {x1 = 1}) is covering all assignments from [8 , 15 ]. Similarly the second and third
partial assignments are covering the assignments [6 , 7 ] and 5 respectively.

Let us now outline the general extraction technique.
Cumulator Extraction Technique: Let P ∈ {MICE′,KCPS(#SAT)} be a propositional model
counting proof system. Consider a CNF Φ over n variables and its P-proof π. In order to efficiently
extract a correct cumulator ξ for Φ, we follow the following steps:

1. Show that P is closed under restrictions (see Definition 1).

2. For any total assignment J to vars(Φ), find the set of non-overlapping partial assignments
(to vars(Φ)) which cover the entire assignment space from assignments 0 → J (i.e PAC(0,J)
see Definition 7).

Using Fenwick’s idea [24], it is easy to compute PAC(0,J) for any total assignment J , such
that |PAC(0,J)| ≤ n (Lemma 1).

3. For each partial assignment α ∈ PAC(0,J), restrict π with α and consider the P-proof π′ of
CNF Φ|α. Since P is closed under restrictions, this step takes O(|π|) time for every α.

4. Finally add the number of models returned by all the π′ proofs obtained in the above step
(This step will need a full-adder circuit as integers are represented as (n+ 1)-bit numbers).

This process will return Cmodels(Φ, J) and takes O(n.|π|) time.
We prove Step-1 of our extraction technique individually for both existing proof systems in

Sections 4.1 and 4.2. Let us now focus on proving Step-2 of our extraction technique.
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Lemma 1. Given an input size n, and binary integer 0 ≤ J < 2n. There is a polynomial time
algorithm in n that returns a disjoint binary partial assignment cover for [0 , J ] (PAC(0,J)) with at
most n many partial assignments.

Proof. Refer to Algorithm 1 for the exact procedure. The idea is as follows: given any total
assignment J , it finds the index of the least significant 1 (from the right) in its binary representation
(say r) and subtracts (2r+1) from J to find its parent assignment. The process repeats recursively
for the parent assignment while it remains > 0. However all these parent assignments are total.
In order to find the required partial assignments, we simultaneously remember (in the dash array)
logarithm of the difference between any assignment and its parent. As a result, the dash array
records the number of variables (from the right end) that need to be removed from the corresponding
total assignment.

The correctness of Algorithm 1 stems from the correctness of Fenwick trees [24] which efficiently
computes the cumulative sum of numbers stored between index 0 to any other index of the array
by visiting least possible indices in the tree. A Fenwick tree guarantees that it visits logarithmic
number of indexes in the worst case. Algorithm 1 similarly computes PAC(0,J) by finding the
least number of partial assignments to include such that they cover the entire range from [0 , J ].
Hence the maximum partial assignments returned from Algorithm 1 is log(2n) = n. We provide
Example 1 to illustrate the use of Algorithm 1.

Algorithm 1 Fenwick tree [24] based algorithm to find PAC(0,J)

Require: J < 2n

function Fenwick-assignments(int J , int n)
int α := {}, dash:= {}
int indx← J + 1 /*assignments ∈ [0, 2n − 1] but the Fenwick tree handles [1, 2n]*/
while indx > 0 do

parent = indx− (indx & − indx) /*& is the bit-wise AND operator*/
α.append(parent)
dash.append(log(indx − parent)) /*records no. of variables to forget from α*/
indx← parent

end while
return α′ = process(α, dash)
/*‘process’ function does the following: for i ∈ |α|, α′[i] is the partial assignment obtained from
α[i] after discarding ‘dash[i]’ number of variables from the right end of the fixed ordering of
variables*/
end function

Example 1. Let n = 5 and J = 22. The Algorithm 1 will initially find the parent of indx = 23,
this is done as follows:

indx = 10111, −indx = 01001
=⇒ (indx & − indx) = 00001 =⇒ indx− (indx & − indx) = 10110 = (22)10

Doing this recursively gives the parent chain as 22→ 20→ 16→ 0.
The sets α, dash are {22, 20, 16, 0} and {0, 1, 2, 4} respectively. The corresponding PAC(0,22) is the

following set of partial assignments:
{
{x1 = 1, x2 = 0, x3 = 1, x4 = 1, x5 = 0}, {x1 = 1, x2 =

0, x3 = 1, x4 = 0}, {x1 = 1, x2 = 0, x3 = 0}, {x1 = 0}
}
.
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We handle Step-3, 4 of our extraction technique individually for proof systems KCPS(#SAT)
and MICE′ in the Sections 4.1 and 4.2 respectively. This completes the extraction technique.

4.1 CLIP framework simulation of KCPS(#SAT)

In this section, we apply our extraction technique to the Knowledge Compilation based Proof
System (KCPS(#SAT)). In [14], the authors define a static propositional model counting proof
system based on the knowledge representation known as dec-DNNF(see Definition 8). First we
redefine the KCPS(#SAT) propositional model counting proof system (Definition 10) from [14]. We
then show that KCPS(#SAT) is closed under restrictions (Theorem 4), which is the first step in
our extraction technique. Step-3, 4 of the extraction technique are proved in Lemma 2.

Definition 8 (dec-DNNF [31]). A decision Decomposable Negation Normal Form (dec-DNNF) cir-
cuit D on variables X is a directed acyclic graph (DAG) with exactly one node of indegree 0 called
the source. Nodes of outdegree 0, called the sinks, are labeled by 0 or 1. The other nodes have
outdegree 2 and can be of two types: decision-nodes or ∧-nodes. Decision nodes are labeled with a
variable x ∈ X and have one outgoing edge labeled with 1 and the other labeled by 0.

If there is a decision node in D labeled with variable x, we say that x is tested in D. A valid
dec-DNNF has the following properties:

• Every x ∈ X is tested at most once on every source-sink path of D.

• Every ∧-gate of D is decomposable: there are no common variables tested in both of the
dec-DNNFs rooted at the end of its outgoing edges.

For an example of a dec-DNNF, refer [14, Figure 1]. Given any dec-DNNFD, it is easy to find
the number of models of D (denoted by #models(D)) and it is also easy to test if a total assignment
is satisfying D or not. We briefly explain the procedure for the same.

Testing if α is a model of dec-DNNF: Given a dec-DNNFD and a total assignment α, start
from the source of D: if the node is a decision node, follow the outgoing edge consistent with α
and if the node is an ∧-gate, follow both the outgoing edges. Repeat this process recursively until
all the paths followed reach sink-nodes. α is a satisfying assignment of D (i.e., D(α) = 1) only if
all sink-nodes reached by these paths are 1-sinks, else D(α) = 0.

Finding #models(D) for a dec-DNNFD: To find the total number of models for a dec-DNNFD,
maintain a counter at each node and start from the sinks (in bottom-up fashion): if the node is a
sink, assign the value of the sink to the counter. If the node is a decision node, assign its counter
with the sum of the children counters. If the node is an ∧-node, assign its counter with the product
of the children counters. Finally the counter at the source holds the #models(D). As a result, we
have the following.

Proposition 1. [13, Proposition 1.57][14, p.92] Given a dec-DNNF D and a total assignment α
to vars(D), there exists polynomial time procedures to find if α is a satisfying assignment of D and
also to find the total number of models of D.

KCPS(#SAT) proof system uses cert-dec-DNNF which is a restriction of dec-DNNF.

Definition 9 (cert-dec-DNNF [14]). A certified dec-DNNF D on variables X is a dec-DNNF such
that every 0-sink s of D is labeled with a clause Cs. D is said to be correct if for every assignment
α to vars(X) if there is a path from the source of D to a 0-sink (s) following edges according to α,
Cs|α = ⊥. We denote by F (D) :=

∧
s∈0-sinks(D)

Cs.
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It is known that Proposition 1 holds even for cert-dec-DNNFs.

Definition 10 (KCPS(#SAT) [14]). Given a CNF Φ, a certificate in the KCPS(#SAT) system that
Φ has k satisfying assignments is a correct cert-dec-DNNF D such that

• every clause of F (D) is a clause of Φ,

• D computes Φ : for every clause C ∈ Φ, D → C, this can be verified by (D ∧ C) having 0
satisfying assignments.

• D has k satisfying assignments.

Theorem 4. KCPS(#SAT) is closed under restrictions.

Proof. Let Φ be a CNF formula over n variables and cert-dec-DNNF D be the KCPS(#SAT) proof
of Φ. Let |D| = t. We show that given any partial assignment α to vars(Φ) there exists a cert-dec-
DNNF D′ = D|α of Φ|α with size at most t.

Given D and α, we prune the tree starting from the source node: if the node is a decision node
of variable x and x ∈ vars(α), we remove the decision node x (along with its two outgoing edges)
and replace it with the child node which was on the consistent outgoing edge of decision-node x
w.r.t. α. If the node is an ∧-gate or a decision node of variable x ̸∈ vars(α), we keep both the
outgoing edges. Repeat this process recursively until you reach the sinks in all the retained paths.
At this point, we have almost finished pruning D only the labels of 0-sinks, in all the retained
paths, need to be updated correctly w.r.t. α. To finish pruning, if any of the retained paths in D
end in a 0-sink s, update its label Cs with Cs|α. Let us denote this pruned cert-dec-DNNF as D′.
For an example of pruning a dec-DNNF, see Example 2. To show that #models(D

′) = #models(Φ|α),
we show below that D′ ↔ Φ|α.

To show Φ|α → D′: Since D is correct, we know that F (D) ⊆ Φ. Observe that the above
pruning updates the labels of D such that F (D′) ⊆ Φ|α.

For the other direction, we need to show that D′ → Φ|α: Since D is correct, we know that
D → C, for all C ∈ Φ. That is, for all total assignments γ to vars(Φ), if D(γ) = 1 then C|γ = 1.
We need to prove the following:

D′ → C|α for all C|α ∈ Φ|α (1)

The easy case is when the partial assignment α satisfies all the clauses in Φ. That is, for every
clause C ∈ Φ, α sets at least one of its literals to 1. Then conclusion of equation 1 is always true
and we are done.

For the remaining partial assignments α, assume for contradiction that equation 1 is not true.
Then, there is a total assignment β for

(
vars(Φ) \ vars(α)

)
and a C|α ∈ Φ|α such that D′(β) = 1

and (C|α)|β = 0. Note that α and β do not share any common variables and α ∪ β is a total
assignment for vars(Φ). D′ is obtained by pruning D with paths consistent w.r.t. α. We know
that β is a model of D′, therefore D′(β) reaches only 1-sinks. In other words, if one begins with D
and starts testing if α ∪ β is a model, it also ends with all 1-sinks (i.e D(α ∪ β) = 1). But we have
(Cα)|β = Cα∪β = 0 which is a contradiction. This is not possible as D → C for all C ∈ Φ is the
assumption.

Example 2 ([14]). Consider a simple example of a CNF computing x = y = z as Φ := (x ∨ y) ∧
(y∨x)∧ (x∨ z)∧ (z ∨x). Φ has 2 models x = y = z = 0 and x = y = z = 1. A KCPS(#SAT) proof
of Φ is shown in Figure 2a. The decision nodes are shown as diamond-shaped with the label of its
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(x ∨ z)

0
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(a) cert-dec-DNNF D for CNF Φ [14]

∧

y z

1 0

(y)

1 0

(z)

0 1 0 1

(b) cert-dec-DNNF D′ for CNF Φ|α1 with α1 :=
{x = 0}. Observe that we keep the left-child of
decision-node x (since x = 0) from D in D′.

∧

y0

(⊥)

0

(y)

1

0 1

(c) cert-dec-DNNF D′′ for CNF Φ|α2 with α2 :=
{x = 1, z = 0}. Observe that we keep the right-
child of decision node x (since x = 1) and left-
child of decision node z (since z = 0) from D in
D′′.

Figure 2: cert-dec-DNNF used in Example 2

corresponding variable inside it. The ∧-nodes are shown as square-shaped with the label of ∧ inside
it. The sink-nodes are shown as circle-shaped with their label of 0/1 value inside it. All 0-sinks s
are additionally labelled with their corresponding Cs clauses just below them.

Now consider the partial assignment α1 := {x = 0}. The CNF Φ|α1 := (1) ∧ (y) ∧ (1) ∧ (z).
Following the pruning procedure of Theorem 4, we build the cert-dec-DNNFD′ for Φ|α1 as shown in
Figure 2b. Note that #models(D

′) = #models(Φ|α1) = 1 (i.e x = y = z = 0).
Now consider the partial assignment α2 := {x = 1, z = 0}. The CNF Φ|α2 := (y)∧(1)∧(⊥)∧(1).

Following the pruning procedure of Theorem 4, we build the cert-dec-DNNF D′′ for Φ|α2 as shown
in Figure 2c. Note that #models(D

′′) = #models(Φ|α2) = 0.

Lemma 2. Given a KCPS(#SAT) proof π of Φ and a binary integer 0 ≤ J < 2n where n =
|vars(Φ)|. There is a polynomial time procedure in |π| that returns the cumulative number of models
of Φ in [0, J ] (up to and including J (Cmodels(Φ, J)))

Proof. Find the partial assignment cover PAC(0,J) by running Algorithm 1. According to Lemma 1,
this PAC(0,J) contains a maximum of n partial assignments. For each of these partial assignments
α ∈ PAC(0,J), we restrict the cert-dec-DNNF D in π to obtain the cert-dec-DNNF D′ corresponding
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to Φ|α (as described in Theorem 4). For each such D′, we use Proposition 1 to find the individual
model-counts of Φ|α’s. Finally, we add all these counts to return the required Cmodels(Φ, J). This
procedure takes O(n.|π|) time.

Corollary 1. From KCPS(#SAT) proofs we can efficiently extract cumulator circuits.

Theorem 5. CLIPNP simulates KCPS(#SAT).

Proof. From a KCPS(#SAT) proof we extract the cumulator circuit ξ in polynomial time. Therefore
check(ξ) is polynomial size, and is true because of the correctness we have argued for Theorem 4
and Lemma 1. The NP-oracle finds check(ξ) in a single line.

In Kraj́ıček’s book on Bounded Arithmetic, Propositional Logic, and Complexity Theory [32] it
discusses how relationships between bounded arithmetic and propositional proof complexity show
that eFrege is capable of the power to simulate any propositional proof system S, provided it is
equipped to access the reflection principle of S. The reflection principle codifies the correctness of S
in arithmetic, but can be re-translated back into propositional logic through a family of tautologies,
that are polynomial-time recognisable. We only use this here for a more concrete statement about
simulations without the use of an NP-oracle.

Theorem 6. There is a family of propositional tautologies ||Ψ|| which can be recognized in polyno-
mial time such that CLIP +eFrege +||Ψ|| simulates KCPS(#SAT).

Proof. Consider a new proof propositional system Extract(KCPS(#SAT). Recall that a proof sys-
tem is a function that maps proofs (as strings) to theorems.

Extract(KCPS(#SAT))(π) =


ϕξ,k, π is a KCPS(#SAT) proof of #models(ϕ) = k

and ξ is the cumulator circuit extracted from it,

eFrege(π), otherwise.

Extract(KCPS(#SAT)) is complete since it accepts any eFrege proof. Its soundness is
shown through correctness of the cumulator extraction of Lemma 2. Hence we can add
Extract(KCPS(#SAT)) to CLIP. What we end up getting is that CLIP +Extract(KCPS(#SAT))
almost trivially simulates KCPS(#SAT). The only thing we have to provide is the cumulator cir-
cuit which is extracted from KCPS(#SAT) via Cor. 1. The rest is trivial because every KCPS(#SAT)
proof is automatically accepted by Extract(KCPS(#SAT)), proving exactly the propositional state-
ment we want. There is no conversion of proof needed.

Every propositional proof system can be simulated by eFrege plus a polynomial-time
recognisable set of tautologies [32]. Extract(KCPS(#SAT)) is simulated by eFrege +
∥refl(Extract(KCPS(#SAT)))∥, where ∥refl(S)∥ is a p-time recognisable set of propositions that
encode an arithmetic statement of correctness of S, for propositional proof system S.

4.2 CLIP framework simulation of MICE′

In this section, we apply our extraction technique to MICE′ (Model-counting Induction by Claim
Extension) [25, 9]. MICE′ is a propositional model counting proof system which is shown to be p-
equivalent to MICE [25] but has simpler inference-rules. Hence extracting cumulator circuits from
MICE′ proofs is sufficient. First we redefine the MICE′ (Definition 11) from [9]. We then show that
MICE′ is closed under restrictions (Theorem 7). Step-3, 4 of the extraction technique are proved in
Lemma 3.
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Definition 11 (MICE′ [9]). Let Φ be a CNF with k models. A MICE′ derivation of Lf := (Φ, ∅, k)
from Φ is a sequence π = L1, ..., Lf of claims where each Li = (Fi, Ai, ci) keeps track of the number
of models of the CNF (Fi|Ai

) as ci. These claims are derived using the rules in Figure 3. MICE′ has
two complexity measures, steps(π) counts the number of inference steps whereas size(π) includes
the size of the Resolution refutations (|ρ|) used in the Composition-lines of the proof as well.

Axiom: Composition:

(∅, ∅, 1)
(F,A1, c1) . . . (F,An, cn)

(F,A,Σi∈[n]ci), ρ

(C1) vars(A1) = · · · = vars(An) and Ai ̸= Aj for i ̸= j

(C2) A ⊆ Ai for all i ∈ [n]

(C3) ρ := (A ∪ F ∪ {Ai | i ∈ [n]}) Res ⊥

Join: Extension:

(F1, A1, c1) (F2, A2, c2)

(F1 ∪ F2, A1 ∪A2, c1 · c2)
(F1, A1, c1)

(F,A, c1 · 2|vars(F )\(vars(F1)∪vars(A))|)

(J1) A1 ≃ A2 (E1) F1 ⊆ F

(J2) var(F1) ∩ var(F2) ⊆ Ai | i ∈ [n] (E2) A|vars(F1) = A1

(E3) A satisfies F \ F1

Figure 3: MICE′ derivation rules

In the proof of Theorem 7, we need the following definition.

Definition 12. [Invalid MICE′ claims] Let Φ be a CNF formula and α be a partial assignment to
vars(Φ). Let π be a MICE′ proof of Φ and L = (F,A, c) be any claim in π. We say that any claim
L′ = (F |α, A \ vars(α), c′) is invalid w.r.t α if any of the following holds:

a. the formula F |α has an empty clause in it.

b. all the hypothesis claims of L in π are invalid w.r.t α and A ̸≃ α.

c. if at least one hypothesis claim of L in π is invalid w.r.t. α and L was derived by the Join-rule
in π.

d. if L was derived by an Extension-rule in π and L′ does not satisfy condition-E3 of the
Extension-rule.

Observe that in cases b,c and d above, the models in c were dependent on the restriction of A which
is inconsistent with α.

Theorem 7. MICE′ is closed under restrictions.

Proof. Let Φ be a CNF formula and π := {L1, ..., Lf} be a MICE′ proof of Φ of size s. We show
that given any partial assignment α there exists a MICE′ proof π′ : {L′

1, ..., L
′
f} of Φ|α of size at

most s.
We first deal with the partial assignments which satisfy or falsify the CNF formula Φ: Firstly,

if α is a partial/ total assignment which satisfies Φ (i.e α satisfies every clause ∈ Φ), π′ is derived
as follows: (∅, ∅, 1) by the axiom-rule, (Φ|α, ∅, 2|vars(Φ|α)|) by extension-rule. Secondly, if α is a
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partial/ total assignment which falsifies Φ (i.e α falsifies every literal in a clause ∈ Φ), π′ is derived
as follows: (Φ|α, ∅, 0), ρ by using the composition-rule with 0 hypothesis where ρ is the Resolution

refutation of Φ|α.
Now we are left with partial assignments α for which Φ|α is a nontrivial CNF. In this case, we

build π′ from π in two passes. In the first pass using induction on the size of π, we derive π′-claims
and also mark some of them as invalid (Ref. definition 12) in the process. In the second pass, we
discard all the invalid claims and the resultant is the required π′.
Phase I:
Induction Statement: Let Φ be a CNF formula and α be a partial assignment such that Φ|α is
a non-trivial CNF. Given a MICE′ proof π = {L1, .., Lf} of Φ, by induction on i ∈ [f ] we show that
corresponding to Li := (Fi, Ai, ci) ∈ π we can derive the claim L′

i := (Fi|α, Ai \ vars(α), c′i) ∈ π′

such that if L′
i is not invalid (as discussed above), then c′i = #models(Fi|α∪Ai\vars(α)).

Base case: For the base case i = 1, Li could either be derived by an axiom-rule or a composition-
rule with 0 hypothesis. In the former case, L′

i is equal to Li and it is valid. In the latter case i.e

(Fi,∅,0),ρ , ρ := Fi Res ⊥ and as Resolution is closed under restrictions, ρ|α := Fi|α Res ⊥. Therefore
L′
i = (Fi|α, ∅, 0), ρ|α and it is valid. Both the cases satisfy the induction statement as the empty

CNF is always true and unsatisfiable CNF is always false.
Inductive Step: For the inductive step assume that the statement is true until i − 1. Li ∈ π
must be derived from one of the four MICE′ rules. For each of the rules, we show below that the
induction statement holds for L′

i as well:

1. If Li is derived by an axiom-rule, L′
i is also the same claim.

2. If Li is derived by an Extension-rule as follows:

Lj := (F1, A1, c1)

Li := (F, A, c1.2|vars(F )\(vars(F1)∪vars(A))|)
, j < i

for the corresponding claim L′
i in π′, following four cases can occur.

(a) The corresponding hypothesis claim L′
j := (F1|α, A1 \ vars(α), c′1) in π′ is valid and the

restriction A ≃ α. Then set

L′
i := (F |α, A \ vars(α), c′1.2

|vars(F |α)\(vars(F1|α)∪vars(A\vars(α))|).

This is sound as the conditions E1, E2, E3 are satisfied in this case.

(b) The corresponding hypothesis claim L′
j := (F1|α, A1 \ vars(α), c′1) in π′ is valid but the

restriction A ̸≃ α.

• Verify if {A \ vars(α)} satisfies (F |α \ F1|α). If yes, set

L′
i := (F |α, A \ vars(α), c′1.2

|vars(F |α)\(vars(F1|α)∪vars(A\vars(α))|).

This is sound as the conditions E1, E2 are satisfied and we specifically verified that
E3 is also satisfied.

• If no, mark L′
i in π′ as an invalid claim.

(c) The corresponding hypothesis claim L′
j := (F1|α, A1 \ vars(α), c′1) in π′ is either invalid

or valid but CNF F |α has a empty-clause in it. Mark L′
i in π′ as an invalid claim in this

case.
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3. If Li is derived by a Join-rule as follows:

Lj := (F1, A1, c1), Lk := (F2, A2, c2)

Li := (F1 ∪ F2, A1 ∪A2, c1.c2)
, j, k < i

for the corresponding claim L′
i in π′, following two cases can occur.

(a) The corresponding hypothesis claims L′
j := (F1|α, A1 \ vars(α), c′1), L

′
k := (F2|α, A2 \

vars(α), c′2) in π′ are valid. Then set

L′
i := ((F1 ∪ F2)|α, A1 \ vars(α) ∪A2 \ vars(α), c′1.c

′
2)

This is sound as the conditions J1, J2 are satisfied in this case.

(b) One or both of the corresponding hypothesis claims L′
j , L

′
k are invalid. In this case, mark

L′
i in π′ as an invalid claim.

4. If Li is derived by a Composition-rule as follows:

Lk1 := (F, A1, c1)...Lkn := (F, An, cn)

Li := (F, A, Σi∈[n]ci), ρ
, k1, ..., kn < i

for the corresponding claim in π′, following four cases can occur.

(a) The corresponding hypothesis claims L′
k1

:= (F |α, A1\vars(α), c′1), ..., L′
kn

:= (F |α, An\
vars(α), c′n) in π′ are valid. Then set

L′
i := (F |α, A \ vars(α), Σi∈[n]c

′
i), ρ|α.

This is sound as the conditions C1, C2 are satisfied in this case and C3 is satisfied as
Resolution is closed under restrictions.

(b) One or more of the hypothesis claims (say L′
k1

:= (F |α, A1 \ vars(α), c′1), ..., L
′
kj

:=

(F |α, Aj \ vars(α), c′j)) are invalid but A ≃ α. Then set

L′
i := (F |α, A \ vars(α), Σi∈[j+1,n]ci), ρ|α

This is sound as C1, C2 are obviously satisfied and C3 is satisfied as follows: Since F |α
is same among all hypothesis, the invalid hypothesis should be a result of A1, ..., Aj ̸≃ α.

π being a valid MICE′ proof, we know that ρ := (F ∪ A ∪ {Ai|i ∈ [n]}) Res ⊥ now

because A1, ..., Aj ̸≃ α restricting ρ|α := (F |α ∪ A \ vars(α) ∪ {Ai|i ∈ [j + 1, n]}) Res ⊥
as imposing α satisfies the clauses representing A1, ..., Aj and hence can be dropped.

(c) All the hypothesis claims are invalid and A ̸≃ α or F |α has a empty-clause in it. In this
case, mark the L′

i in π′ as invalid.

Note that the last claim L′
f was definitely not marked as invalid in the above process. This

is because the last inference would be only from either a Composition-rule or a Join-rule with
hypothesis restrictions A1, A2 = ∅. In the former case, Lf is the claim (Φ, ∅, k) and ∅ ≃ α so
this is the case 4a or 4b above, both of these do not result in invalid claims. In the latter case
with join-rule, Lf would be derived as follows: (F1, ∅, c1),(F2, ∅, c2)

Lf :=(Φ:=F1∪F2, ∅, c1.c2)
. In the case 3a above, L′

f is

definitely valid and we can see that this is the only possibility as case 3b would be only possible
when Φ|α has a empty-clause in it and this case was handled before the start of phase-I itself.
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Phase-II : Finally, prune through the π′ from the last line L′
f (which as discussed above is

valid) and recursively include the valid hypothesis used at every line until you reach the axiom
clause. This will get rid of all the invalid claims and the redundant claims which are deriving these
invalid claims. Now π′ is a correct MICE′ proof of Φ|α as every retained inference was shown to be
sound and satisfying all the conditions of MICE′ inference rules.

Example 3. Consider a simple example of a CNF computing x = y = z as Φ := (x∨ y)∧ (y∨x)∧
(x ∨ z) ∧ (z ∨ x). Φ has 2 models x = y = z = 0 and x = y = z = 1. A MICE′ proof of the same is
as follows:

π :=
{
(∅, ∅, 1) by axiom,

(Φ, x = y = z = 0, 1) by Extension,
(Φ, x = y = z = 1, 1) by Extension,

(Φ, ∅, 2) by Composition with ρ := (x ∨ z), (x ∨ z), (z), (z),⊥
}
.

Now consider a partial assignment α := {x = 0}. Following the above procedure, we build π′ for
Φ|α as follows.

π′ :=
{
(∅, ∅, 1) by axiom,

(Φ|α, y = z = 0, 1) by Extension,
¡Invalid-claim¿,

(Φ|α, ∅, 1) by Composition with ρ|α := (z),⊥
}

We derive π′ using the procedure defined in proof of Theorem 7. Precisely, claim 1 of π′ is
derived from case 1 and claim 2 is derived from case 2b. Claim 3 is declared as invalid from case
2b as y = z = 1 does not satisfy Φ|α := (y) ∧ (z)). Finally, claim 4 is derived from case 4b.
Now starting from the last claim of π′, we retain it and include its valid hypothesis claims. So the
final π′ := {(∅, ∅, 1), (Φ|α, y = z = 0, 1), (Φ|α, ∅, 1), ρ|α := (z),⊥}. This is valid MICE′ proof of
Φ|α with the correct model-count.

Lemma 3. Given a MICE′ proof π of Φ and a binary integer 0 ≤ J < 2n where n = |vars(Φ)|.
There is a polynomial time procedure in |π| that returns the number of models of Φ in [0, J ] i.e
(Cmodels(Φ, J))).

Proof. Run Algorithm 1 on (J, n) to find the disjoint binary partial assignment cover PAC(0,J).
According to Lemma 1, this PAC(0,J) contains a maximum of n partial assignments. For each of
these partial assignments α ∈ PAC(0,J), follow the procedure described in Theorem 7 (which takes
|π| time) to find the MICE′ proof π′ = L′

1, ..., L
′
f of Φ|α. Add the number of models (c′) in the

last line (L′
f = (Φ|α, ∅, c′f )) of all the above restricted MICE′ proofs (π′s) to get Cmodels(Φ, J). This

procedure takes O(n.|π|) time.

Corollary 2. From a MICE′ proof π of Φ you can efficiently extract cumulator circuits.

Theorem 8. CLIPNP simulates MICE′.

Proof. Corollary 2 demonstrates that one can extract cumulator circuits of polynomial size from
any MICE′ proof. The proposition check(ξ) is polynomial in the original propositional formula.
Since these circuits are correct, owing to Theorem 7 and Lemma 1, the NP-Oracle in CLIPNP

always returns true.

Theorem 9. There is a family of propositional tautologies ||Ψ|| which can be recognized in polyno-
mial time such that CLIP +eFrege +||Ψ|| simulates MICE′.

Proof. This works the same as the proof of Theorem 6 but we substitute MICE′ for KCPS(#SAT).
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5 Exponential Improvement on Existing #SAT proof systems

In this section, we give short CLIP framework proofs for hard formulas of existing proof systems.
In Section 5.1, we give short proofs of XOR-PAIRS in CLIP+eFrege system (Theorem 10). These
formulas were previously proven to be hard for MICE′ system [9, Theorem 23]. In Section 5.2, we
give short proofs of Symmn in the CLIP framework (Theorem 11). The function corresponding to
these formulas are shown to be hard for KCPS(#SAT) [34, Theorem 10.3.8].

5.1 XOR-PAIRS

Definition 13 (XOR-PAIRS [9]). Let X = {x1, . . . xn} and Z = {z1,1, z1,2 . . . , zn,n−1, zn,n}.
C1
ij = (xi ∨ xj ∨ z̄ij), C

2
ij = (x̄i ∨ xj ∨ zij), C

3
ij = (xi ∨ x̄j ∨ zij), C

4
ij = (x̄i ∨ x̄j ∨ z̄ij)

Φ(X,Z) contains C1
ij , C

2
ij , C

3
ij , C

4
ij for i, j ∈ [n].

The models of XOR-PAIRS are the assignments where zi,j = (xi ⊕ xj) for all i, j ∈ [n]. Hence,
#models(XOR-PAIRS) = 2n. The family XOR-PAIRS is hard for proof systems MICE and MICE′ [9,
Theorem 23]. We will show in Theorem 10 that these formulas are easy in CLIP.

Definition 14. Fix an input length n, and let γ and δ be vectors of n variables. For pairs of
individual variables a, b, use a = b to denote (¬a ∨ b) ∧ (¬b ∧ a). We can encode polynomial size
propositional circuits: L(γ, δ), that denotes num(γ) < num(δ).

We define the following gates. Ln(γ, δ) := (¬γ0∧δ0). For 1 < i ≤ n, Li(γ, δ) := (¬γi∧δi)∨((γi =
δi) ∧ Li−1(γ, δ)). L(γ, δ) := L1(γ, δ).

Lemma 4. Let γ and δ be vectors of n variables
There is a short eFrege proof of L(γ, δ)→

∨i≤n
i≥1 γi.

Proof. Induction hypothesis: Lj(γ, δ)→
∨i≥1

i≤j γi.
Base Case: j = n and Ln(γ, δ)→ γn ∧ δn so Lj(γ, δ)→ γj .

Inductive Step: Lj(γ, δ)→ (γj ∧ δj) ∨ Lj+1 so Lj(γ, δ)→ γj ∨
∨i≤n

i>j γi via I.H.

Lemma 5. Let γ and δ be vectors of n variables. Recall Definitions 4 and 14. We have linear
eFrege proofs of L(γ, δ) ∨ L(δ, γ) ∨ E(δ, γ).

Proof. For pairs of individual variables a, b, we use a < b to denote ¬a ∧ b and a = b to denote
(¬a ∨ b) ∧ (¬b ∧ a). Also for brevity, denote the functions Li(γ, δ) as L

γ,δ
i (see Definition 14), and

Ei(γ, δ) as E
γ,δ
i (see Definition 4).

Induction hypothesis: Lγ,δ
i ∨ Lδ,γ

i ∨ Eγ,δ
i has a O(n− i)-size eFrege proof.

Base Case: ¬Lγ,δ
n → (γn = δn) ∨ (δn < γn) and hence Lγ,δ

n ∨ Lδ,γ
n ∨ Eγ,δ

n

Inductive Step: ¬Lγ,δ
i → ((γi = δi) ∨ (δi < γi)) ∧ (¬(γi = δi) ∨ (¬Lγ,δ

i+1)). We can distribute

this out: ¬Lγ,δ
i → ((γi = δi) ∧ (¬Lγ,δ

i+1)) ∨ ((δi < γi) ∧ (¬(γi = δi)) ∨ ((δi < γi) ∧ (¬Lγ,δ
i+1)). In fact

(δi < γi) is sufficient for Lδ,γ
i , so we simplify to ¬Lγ,δ

i → ((γi = δi) ∧ (¬Lγ,δ
i+1)) ∨ (δi < γi).

Using the induction hypothesis we get ¬Lγ,δ
i → ((γi = δi) ∧ (Eγ,δ

i+1 ∨ Lδ,γ
i+1)) ∨ (δi < γi) and this

distributes to ¬Lγ,δ
i → ((γi = δi) ∧ Eγ,δ

i+1) ∨ ((γi = δi) ∧ Lδ,γ
i+1)) ∨ (δi < γi). Essentially this is the

Lγ,δ
i ∨ Lδ,γ

i ∨ Eγ,δ
i .

Lemma 6. Let γ and δ be vectors of n variables. We have linear eFrege proofs of (L(γ, δ) ∨
E(δ, γ))→ L(δ, γ). Also for brevity, denote the functions Li(γ, δ) as Lγ,δ

i (see Definition 14), and

Ei(γ, δ) as Eδ,γ
i (see Definition 4).
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Proof. For pairs of individual variables a, b, we use a < b to denote ¬a ∧ b and a = b to denote
(¬a ∨ b) ∧ (¬b ∧ a). Also for brevity, denote the functions Li(γ, δ) as L

γ,δ
i (see Definition 14), and

Ei(γ, δ) as E
γ,δ
i (see Definition 4).

Induction hypothesis: (Lγ,δ
j ∨ Eδ,γ

j )→ L
δ,γ
j

Base Case: (j = n) Lδ,γ
n → (δn ∧ γn) and (δn ∧ γn)→ E

δ,γ
n ∧ L

γ,δ
n

Inductive Step: Study the definition of Lδ,γ
j , Eδ,γ

j ∨ Lγ,δ
j contradicts (δj ∧ γj). So we check the

(δj = γj) ∧ Lδ,γ
j+1 part. (δj = γj) ∧ Lγ,δ

j forces Lγ,δ
j+1 to be true, and Eδ,γ

j forces Eδ,γ
j+1 to true. Since

Eδ,γ
j+1 ∨ Lγ,δ

j+1 implies L
δ,γ
j+1, (δj = γj) ∧ Lδ,γ

j+1 is also refuted by Eδ,γ
j ∨ Lγ,δ

j .

Lemma 7. Let α, β and γ be vectors of n variables. Recall Definitions 4 and 14. We have
polynomial size proofs of

T (β, α)→ L(β, α) ∧ (L(α, γ) ∨ L(γ, β))

Proof. For each i : 1 ≤ i ≤ n, we prove the following tautology: T (β, α) → ((αi ∧
∧j≤n

j>i αj) →
(βi ∧

∧k≥1
k<i (αk = βk))) which follows from the definition of T .

We can first prove (αi ∧ βi ∧
∧k≥1

k<i (αk = βk) →
∧j≥1

j≤i Lj(α, β)) in a linear size proof. T (β, α)

implies
∨i≤n

i≥1 αi so we get L1(α, β).

We can inductively prove
∧j≤n

j≥i αj → Li(α, γ)i. Likewise with
∧j≤n

j≥i βj → Li(γ, β)i. Therefore

both αi ∧
∧j≤n

j>i αj ∧ Li(α, γ)i → γi, and βi ∧
∧j≤n

j>i βj ∧ Li(γ, β) → γi have linear size proofs in

n− i. Since αi∧
∧j≤n

j>i αj and βi∧
∧j≤n

j>i βj are equivalent under T (β, α) and
∨

1≤i≤n αi∧
∧j≤n

j>i αj is

implied by T (β, α). We only have to show one more thing, That for any k, αk = βk ∧ (Lk+1(α, γ)∨
Lk+1(γ, β)) → (Lk(α, γ) ∨ Lk(γ, β)) which comes out the definition of L. Assembling this all
together we get T (β, α)→ L(β, α) ∧ (L(α, γ) ∨ L(γ, β)).

Lemma 8. Let α, β, γ and δ be vectors of n variables. Recall Definition 4. We have short eFrege
proof of T (α, β) ∧ T (γ, δ)→ (E(α, γ) = E(β, δ))

Proof. Suppose T (α, β) ∧ T (γ, δ) ∧ E(α, γ) then we can prove for each bit βi = (αi ⊕
∧

j≥i αj) =
(γi ⊕

∧
j≥i γj) = δi and this can be assembled into E(β, δ).

Now for the converse, suppose T (α, β) ∧ T (γ, δ) ∧ E(β, δ). We can prove by induction starting
with (αn = γn) that each bit is the same.

Lemma 9. Let α, β and γ be vectors of n variables. Recall Definitions 4 and 14. We have
polynomial size proofs of

L(α, β)→ ((E(β, γ) ∨ L(β, γ))→ L(α, γ)).

Proof. For brevity, denote the functions Li(γ, δ) as Lγ,δ
i (see Definition 14), and Ei(γ, δ) as Eγ,δ

i

(see Definition 4).

Induction Hypothesis: Lα,β
j ∧ (Lβ,γ

j ∨ Eβ,γ
j )→ Lα,γ

j

Base Case: (αn ∧ βn) contradicts (βn ∧ γn) and if βn = γn then (αn ∧ γn)

Inductive Step: (αj ∧ βj) contradicts (βj ∧ γj), so if (αj ∧ βj) and Lβ,γ
j ∨Eβ,γ

j are both true then
βj = γj and thus (αj ∧ γj).

Now suppose instead (αj = βj)∧Lα,β
j+1. If (βj ∧ γj) then (αj ∧ γj), otherwise the only other way

to have Lβ,γ
j ∨E

β,γ
j true is to have both βj = γj and Lβ,γ

j+1 ∨E
β,γ
j+1 which proves Lα,γ

j+1. Since αj = γj
we get Lα,γ

j+1.
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Theorem 10. CLIP+eFrege has short proofs of XOR-PAIRS

Proof. First we fix that all Z-bits are less significant than all X-bits, otherwise the cumulator
function is affected by the variable ordering. We begin by arguing that the cumulative function
for XOR-PAIRS is easy to compute. This comes from the fact the truth function itself behaves in
a way that makes it amenable to counting, it only ever increases by one, once for each complete
assignment to X. There is a function p : 2X → 2Z that maps the binary assignment α on X to
the unique assignment in Z such that Φ(α, p(α)) for every α. We can construct a multi-output
circuit P (a sequence of circuits Pi,j for i, j ∈ {|X|}) for p, easily through O(Z) many gates:
Pi,j(X) = (xi ∨ xj) ∧ (xi ∨ xj).

We then express the cumulative function in a cumulator circuit that we will use for CLIP.

ξ(α, β) =

{
α β < P (α)

α+ 1 β ≥ P (α)

Note that since ξ(α, β) outputs in binary we can actually express each digit as a Boolean circuit:
ξ(α, β)i = (L(β, P (α))∧αi)∨(L(β, P (α))∧(αi⊕

∧i<j
j≤n αj)). Now we have to argue why the remaining

propositional proof is easy for eFrege. This is basically a number of tautological implications we
have to show individually. The idea is to break each implication into a number of cases. Case
analysis is typically easy for eFrege as it is just resolving with a disjunction of possibilities. This is
where we use Lemma 5 which gives us the disjunction of possibilities.
Base case: If AX = 0, P (AX) always evaluates to 0. If AZ is also 0, Φ(AX , AZ) evaluates to true,
while L(AZ , P (AX)) evaluates to false (because of strictness). This makes ξ(α, β) evaluate to the
integer 1 (in other words ξ(α, β)i = 1 if and only if i = n). Each of these evaluations are shown
in eFrege through the extension clauses. These will satisfy the two disjunctions that use the base
case.
Inductive Step: Here we firstly argue that Φ(BX , BZ)↔ E(BZ , P (BX)) has a short eFrege proof.
We show that for each pair i, j the four clauses are implied by (xi ∨ xj) ∧ (xi ∨ xj) ↔ zi,j . And
then we show the four clauses show the truth table for(xi ∨ xj)∧ (xi ∨ xj)↔ zi,j . The proof size is
linear. If BX = AX and BZ = AZ + 1, we use Lemma 5 to make 3 cases.

1. Let BZ = P (BX), we can get a short eFrege proof of ¬L(BZ , P (BX)) (Lemma 5) and
L(AZ , P (AX)) (Lemma 9), and thus a proof of T (ξ(BX , BZ), BX) and E(ξ(AX , AZ), AX).
We use BX = AX to show T (ξ(BX , BZ), ξ(AX , AZ)). Φ(BX , BZ) ↔ E(BZ , P (BX)) is a
proven tautology.

2. Let BZ < P (BX), we get a short eFrege proof that L(AZ , P (AX)) is true, and thus
a proof that E(ξ(BX , BZ), BX) and E(ξ(AX , AZ), AX). We use BX = AX to show
E(ξ(BX , BZ), ξ(AX , AZ)). Φ(BX , BZ) falls into provable contradiction with L(BZ , P (BX))
by showing a bit must be different.

3. Let BZ > P (BX), we can get a short eFrege proof of ¬L(BZ , P (BX)) (Lemma 5)
and ¬L(AZ , P (AX)) (Lemma 7), and thus a proof that T (ξ(BX , BZ) = BX + 1) and
T (ξ(AX , AZ) = AX + 1). We use BX = AX to show E(ξ(BX , BZ), ξ(AX , AZ)). Φ(BX , BZ)
falls into provable contradiction with L(P (BX), BZ).

Now consider ||BX = AX + 1||, ||BZ = 0|| and ||AZ = 2|Z| − 1||. Part of the trichotomy is
impossible. We can prove L(P (BX), BZ) fails when ||BZ = 0||. For the remaining cases we firstly
prove that ¬||2|Z| − 1 < P (AX)|| which is proven from the fact that one digit must be 0 to be less
than. Therefore ξ(AX , AZ) = AX + 1 in both cases.

20



1. Let BZ = P (BX) then we can get a short eFrege proof that L(BZ , P (BX)) is false and so
ξ(BX , BZ) = BX+1 = AX+1+1 = ξ(AX , AZ)+1. We can use the T function and Lemma 8
to find an equality proof here. Φ(BX , BZ)↔ E(BZ , P (BX)) is a tautology,

2. Let L(BZ , P (BX)) be true so ξ(BX , BZ) = BX = AX +1 = ξ(AX , AZ). Φ(BX , BZ) falls into
provable contradiction with L(BZ , P (BX)).

For the final case, we once again use ¬||2|Z| − 1 < P (AX)||, hence ξ(2|X| − 1, 2|Z| − 1) =
2|X| − 1 + 1 = 2|X|.

5.2 Permutation matrices

Consider the Boolean function fSymm
1 which verifies if a Boolean [n × n] matrix is a permutation

matrix i.e each row and each column contains exactly one entry 1. The satisfying models i.e f−1
Symm(1)

are all n! row-permutations of the n-by-n identity matrix. This function is hard to represent as a
dec-DNNF [34, Theorem 10.3.8][5, Corollary 3.8] and hence it is hard to count models of the CNF
representing fSymm (Symm, Definition 15) with the existing static proof system KCPS(#SAT) [14].
We show that these formulas are easy in CLIP (Theorem 11).

Definition 15. Let every cell in an [n×n] matrix be a variable xi,j where i is the row number and
j is the column number. CNF Symmn with O(n3) clauses is defined as follows:

C1
i,j := xi,j → (xi,1 ∧ ... ∧ xi,j−1 ∧ xi,j+1 ∧ ... ∧ xi,n ∧ x1,j ∧ ... ∧ xi−1,j ∧ xi+1,j ∧ ... ∧ xn,j),

C2
i := (xi,1 ∨ xi,2 ∨ ... ∨ xi,n), C

3
i := (x1,i ∨ x2,i ∨ ... ∨ xn,i)

Symmn :=
∧

i,j∈[n]
C1
i,j ∧

∧
i∈[n]

C2
i ∧

∧
i∈[n]

C3
i

Theorem 11. CLIPNP has short proofs of Symmn.

Proof. In order to show that Symmn is easy for CLIPNP , we first present an Algorithm which given
Symmn and a partial assignment α returns the Cmodels(α) (see Algorithm 2). Observe that any
row-permutation of an identity matrix of size [n× n] is a model of Symmn. Algorithm 2 maintains
a ascending list (i.e pos rows array in Algorithm 2) of all rows of an identity matrix of size [n× n].
Given any total assignment α, the Algorithm breaks it row-wise as J1, ..., Jn. Starting from J1, it
compares Ji with every row in pos rows. If Ji > a row in pos rows (i.e row in Algorithm 2), we
can include all (n − i)! additional models which have the same row as the ith row in them. If any
row-vector (i.e row) is equal to the Ji, we remove it from the pos rows array and repeat the process
for Ji+1. As we always maintain pos rows array in the ascending order, we can stop when any Ji is
< a row and return the cumulative number of models. In the worst case, J1 is greater than n− 1
rows and equal to nth row, similarly J2 is greater than n − 2 rows and equal to (n − 1)th row and
so on, resulting in O(n2) complexity. A polynomial size cumulator for Symmn can be built based
on Algorithm 2.

For a detailed version of Algorithm 2, see Appendix B. We provide Example 4 to illustrate the
working of Algorithm 2.

Example 4. Consider a [3 × 3] Boolean matrix (i.e n = 3). The pos rows array for this ma-
trix will be := {1, 2, 4}. Consider an assignment num(α1) = 511 i.e the last assignment where
every variable is set to 1, in this case the Algorithm 2 should return the total #models(Symm3) =

1In [34], this function is denoted as PERM. To avoid confusion with the #P-complete problem ‘permanent’, we
denote it here as fSymm for ‘Symmetric group’ of the identity matrix along with its permutations.
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Algorithm 2 Pseudocode to compute Cmodels(Symmn, α)

Require: num(α) < 2n
2
, variables are in row-major order (i.e x1,1, ..., x1,n, x2,1, ..., x2,n, ...)

function cumulative-symm-models(total assignment α, int n)
partition α row-wise → J1, ..., Jn /*Ji is the num(α) restricted to the ith row)*/
int pos rows = {1, 2, ..., 2n−1} /* possible rows in any model*/
int i = 1, int models = 0
for row ∈ pos rows do /* pos rows is always in ascending order*/

if row < Ji then /*include all models having row as their ith row*/
models← models+ (n− i)!

else if row > Ji then break the loop
else

pos rows ← pos rows \ row /*remove row = Ji from the possible rows*/
restart the loop for Ji+1 with the updated pos rows array in ascending order.

end if
end for

return models
end function

Cmodels(Symm3, 511) = 6. In the algorithm, J1 = 7 which is greater than all elements of the pos rows
array, therefore the algorithm will return 2! + 2! + 2! = 6 in just O(n) steps.

Consider another assignment num(α2) = 154. In the algorithm, J1 = 2, J2 = 3, J3 = 2.
First J1 >pos rows[0] hence the current model count is 2!. Next, J1 =pos rows[1] hence the updated
pos rows array is := {1, 4}. Next, J2 >pos rows[0] hence current model count is 2! + 1!. Lastly
J2 <pos rows[1] therefore the algorithm stops here and returns the Cmodels(Symm3, 154) = 3. To
cross-verify the three models before α2 are 84, 98 and 140.

Since here we used an NP-oracle the separation is incomplete. To show a separation using
CLIP+eFrege, one needs eFrege-refutation of the cumulator’s correctness from Theorem 11.

6 Conclusion

We have shown the existence of the CLIP framework for propositional model counting and demon-
strated its advantages. Our approach here has been theoretical and no version of CLIP has been
implemented.

Future work on applicable checking formats that iterate on the strength we have demonstrated
in CLIP should take into account weighted and projected model counting. For future theory, work
needs to be done to understand CPOG in terms of proof complexity, and in comparison to the
existing systems including CLIP proof systems. In propositional logic, DRAT has been shown to
be p-equivalent to eFrege [35], but surprisingly in QBF QRAT has been shown to be conditionally
separated from eFrege +∀red[20]. It is difficult to know what result to expect. The theoretical
results presented in this paper gesture towards a proof complexity result, which is yet to be fully
proved. We can formulate this as a conjecture.

Conjecture 1. CLIP+eFrege simulates MICE′ and KCPS(#SAT).

A similar conjecture was made in [18] for QBF, where a number of proof systems were listed
and each conjectured to be simulated by QBF extended Frege, see Conjecture 1 in [18]. Most
have since been simulated [21, 19]. The techniques used in these papers may be useful here. One
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technique [21] is local extraction, in QBF we would be extracting Herbrand functions, in model
counting we would be extracting the cumulator circuits. The locality refers to the circuits being
attached to a proof (MICE′) line, so each line has a local cumulator. Simultaneously we would take
a propositional interpretation of the correctness of each line and make sure the cumulator affirms
the line in an eFrege proof. The eFrege proof would be inductive until we get to the final line. The
other technique [19] involves arguing for correctness when hitting a proof by a restriction. This
could be very useful in MICE′ since it has closure under restrictions, and restrictions are used to
calculate a cumulator circuit. Either way the QBF proofs use large amounts of extension variables
which need to be defined correctly and kept track of, so the actual proof of simulation could well
be substantial, but likely to be possible.
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Appendix

A Algorithm from Section 4

We provide a more detailed version of Algorithm 1.

Algorithm 1 Fenwick tree [24] based algorithm to find D(0, J)

Require: J < 2n

function Fenwick-assignments(int J , int n)
int α := {}, dash:= {}
int indx← J + 1 /*assignments ∈ [0, 2n − 1] but the Fenwick tree handles [1, 2n] */
while indx > 0 do

parent = indx− (indx & − indx) /*& is the bit-wise AND operator*/
α.append(parent)
dash.append(log(indx − parent)) /*records number of variables to forget from the corre-

sponding total assignment α*/
indx← parent

end while
int len = |α|, D[len, n]
/*D is a 2d array where every row is a partial assignment of length n*/
for i ∈ [len] do

for j ∈ [n− dash[i]− 1] do
if binary(α[i])[j] == 1 then /* if jth bit in binary representation(α[i])= 1 */

D[i, j] := 2
else

D[i, j] := 1 /* if jth bit in binary representation(α[i])= 0 */
end if

end for
for j ∈ [n− dash[i], n− 1] do

D[i, j] := 0 /* if jth variable is not included in partial assignment */
end for

end for
/* if αi(xj) = 1→ D[i, j] = 2, if αi(xj) = 0→ D[i, j] = 1, if xj ̸∈ vars(αi)→ D[i, j] = 0*/
return D
end function

B Algorithm from Section 5.2

We provide a more detailed version of Algorithm 2.
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Algorithm 2 Algorithm to compute Cmodels(Symmn, α)

Require: num(α) < 2n
2
, ordering of variables is in row-major order.

(i.e x1,1, ..., x1,n, x2,1, ..., x2,n, ...)
function cumulative-perm-models(assignment α, int n)

int J1, ..., Jn = 0
for i ∈ [n] do

for j ∈ [n] do
Ji = Ji ∗ 10 + α(xi,j) /*Ji is the num(α restricted to the ith row)*/

end for
end for
int pos rows = {1, 2, 4, 8, ..., 2n−1} /* possible rows in any model*/
int i = 1, int models = 0, int flag = 0
while flag=0 do

for row ∈ pos rows do
if row < Ji then /*include all models having row as the ith row in them*/

models = models+ (n− i)!
else if row > Ji then /*break the loop and return the number of models*/

flag= 1
break-loop

else/*if Ji=row, remove row from array and start for-loop again with Ji+1*/
i++, flag= 0
pos rows = pos rows \ row
break-loop

end if
flag= 1

end for
end while

return models
end function
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