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Abstract

This text consists of notes for two short lectures on advanced topics in computability� The

topic of the �rst lecture is Kolmogorov Complexity� and we merely present the most basic

de�nitions and results regarding this notion� The topic of the second lecture is a comparison of

two�sided error versus one�sided error probabilistic machines� when con�ned to the domain of

�nite automata�



Preface

These notes were prepared on the occasion of giving a guest lecture in David Harel�s class on
Advanced Topics in Computability� David�s request was the lecture should not rely on resource
bounds �equiv�� complexity measures�� This was a very challenging request for me� because all my
professional thinking evolves around resource bounds� Still� I was able to �nd within my �knowledge
base	 two topics that meet David�s request� although one may claim that I �cheated	
 these topics
too are �related to quantities	 and not merely to �qualities	�

� Kolmogorov Complexity

We start by presenting a paradox� Consider the following description of a natural number
 the

largest natural number that can be described by an English sentence of up�to ���� letters� �Some�
thing is wrong� because if the above is well�de�ned then so is the integer�successor of the largest

natural number that can be described by an English sentence of up�to ���� letters��
Jumping ahead� we point out that the paradox presupposes that any sentence is a legal de�

scription in some adequate sense� One adequate sense of legal descriptions is that there exists
a procedure that given a �possibly succinct� �implicit	 description of an object outputs the �ex�
plicit	 description of the object� Passing from implicit descriptions to explicit descriptions is what
Kolmogorov Complexity is about�

Let us �x a Turing machine M � The Kolmogorov Complexity �w�r�t M� of a binary string x�

denoted KM �x�� is the length of the shortest input y such that M�y� � x
 that is� KM �x�
def
�

minyfjyj 
M�y� � xg� �In case there is no such y� we let KM �x�
def
� ���

Clearly� KM �x� depends on M �and not only on x�� and so a question that arises is what
machine M should we �x� The answer is that any universal machine will do� This is justi�ed by
the following fact


Proposition ��� Let U be a universal Turing machine� Then for every Turing machine M � there

exists a constant c such that KU �x� � KM �x� � c� for every x � f�� �g��

Thus� universal machines provides the �most expressive	 syntax for describing strings� Furthermore�
the Kolmogorov Complexity is the same �up�to an additive constant� for any two universal machines�

Proof Sketch� Suppose that y satis�es both jyj � KM �x� and M�y� � x� and consider what
happens when the input �hMi� y� is fed to U � Clearly� U�hMi� y� � M�y� � x� Using a suitable
encoding of pairs �i�e�� using a pre�x�free code for the �rst input�� we have KU �x� � jhMij � jyj�
and the proposition follows since jhMij depends only on M �

Conceptual Discussion� Kolmogorov Complexity measures the length of the most succinct de�
scriptions of phenomena �or strings�� where descriptions are with respect to an �e�ective	 universal
language that comes together with a procedure for generating the full description of a phenomenon
out of its succinct description� Whereas some phenomena have very succinct descriptions� most
phenomena �i�e�� random phenomena� do not have succinct descriptions� These facts are stated in
Theorem ����

Properties of Kolmogorov Complexity� In light of Proposition ���� we may �x an arbitrary

universal machine U � and let K�x�
def
� KU �x�� The quantitative properties of Kolmogorov Com�

plexity are captured by the following
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Theorem ��� �KC � quantitative properties�


�� There exists a constant c such that K�x� � jxj� c for all x�s�

�� There exist in	nitely many x�s such that K�x� � jxj� Furthermore� for every monotonically

increasing recursive function f 
 N� N and in	nitely many x�s K�x� � f���jxj��


� There exists in	nitely many x�s such that K�x� � jxj� Furthermore� for most x�s of length n�
it holds that K�x� � jxj � ��

Proof Sketch� Part � follows by applying Proposition ��� to the machine Mid that computes the
identity function �and thus satis�esMid�x� � jxj for all x�s�� Part � can be demonstrated by binary
strings of the form yy �for which K�yy� � jyj� O����� Another example is provided by strings of
the form �n �for which K��n� � log� n � O����� The furthermore part can be shown by de�ning
xn � �f�n�� and observing that K�xn� � O��� � log� n � f���f�n�� � f���jxnj��

To prove Part �� observe that if K�x� � i then it means that there exists an input y of length
i that makes the universal machine U output x �i�e�� U�y� � x�� Since each input may yield
only one output� there exists a one�to�one mapping of x�s with K�x� � i to i�bit long strings
�satisfying U�y� � x�� Thus� jfx � f�� �g� 
 K�x� � igj � jfy � f�� �gi 
 U�y� � f�� �g�gj � �i

and jfx � f�� �gn 
 K�x� � kgj � �k�� � � follows �for all k�s and in particular for k � n� � and
k � n� ���

The main computational property of Kolmogorov Complexity is that it is not computable� That
is


Theorem ��� �KC � a computational property�
 The Kolmogorov Complexity function K de	ned

above is not computable�

The proof will be outlined at the end of the lecture� It is very related to resolving the initial
paradox�

Resolving the paradox� The paradox may be recast as follows� For every natural number n�
we de�ne xn � f�� �g� to be the largest string �according to the standard lexicographic order�

that has Kolmogorov Complexity at most n
 that is� xn
def
� maxxfx 
 K�x� � ng� The paradox

implicitly and wrongly presupposes that there exists an input yn of length O�log n�� n that makes
the universal machine output xn �i�e�� xn � U�yn��� �Above� we assumed that the string described
by the paradox can be written in an adequate language �i�e�� allowing explicit reconstruction� by
using less than ���� symbols��

The paradox is actually a proof that xn cannot be produced by the universal machine on input

that is much shorter than n� This is proved by considering the string x�n de�ned as the successor
of xn� Observe that if yn � ��n� �� is an input that makes U produces xn then y�n � ���

n� �� makes
U produces x�n� where �

�
n �rst invokes �n and next invokes the constant program for computing

successors �on the result of �n�� Thus� K�x�n� � jy�nj � jynj�O��� � K�xn� �O��� � n �using the
contradiction hypothesis K�xn�� n�� which contradicts the de�nition of xn�

We comment that the wrong intuition regarding the existence of short programs for generating
xn is implicitly based on the wrong assumption that given n we can e�ectively enumerate all
strings having Kolmogorov Complexity less than n� �Note that if that was possible then we could
have computed K�x� by enumerating all strings having Kolmogorov Complexity less than i� for
i � �� ���� jxj � O���� This does NOT prove that K is not computable� because the reduction is in
the wrong direction��
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Outline for the proof of Theorem ���� For every n� consider the string zn
def
� minzfz 
 K�z� �

ng� �Note that zn is well�de�ned because there exists strings with Kolmogorov Complexity greater
than n�� It is easy to show that if K is computable then there exists an input of length log� n�O���
that makes the universal machine produce zn� Thus� K�zn� � log� n�O���� which �for su�ciently
large n� is impossible �because K�zn� � n by de�nition of zn��

A related exercise� For any unbounded function f 
 f�� �g� � N� de�ne zfn
def
� minzfz 
 f�z� �

ng� �Note that zfn is well�de�ned because f is unbounded�� Prove that if f is computable then
there exists an input of length log� n�O��� that makes the universal machine produce zfn� �Hint

given n� we generate zfn by computing f on �nitely many inputs �i�e�� all z�s that precede zfn in
lexicographic order as well as zfn itself���

� Probabilistic Finite Automata� Two�Sided versus One�Sided

Error

Probabilistic computation defers from non�deterministic computation in that the former is con�
cerned with the quantity of accepting computations� whereas the latter is only concerned with
their existence� That is� a non�deterministic machine M is said to accept �or non�deterministically
accept� the set L if

	 For every x � L there exists a computation of M�x� that halts in accepting state�

	 For every x 
� L there does not exist a computation of M�x� that halts in accepting state�

In contrast� a two�sided error probabilistic machine M is said to accept �or probabilistically accept�
the set L if

	 For every x � L a strict majority of the computations of M�x� halt in an accepting state�

	 For every x 
� L a strict majority of the computations of M�x� halt in a rejecting state�

We stress that �unlike in standard complexity�theoretic treatments�� we only required a separation
of the two cases� rather a signi�cant �separation�gap	
 that is� we only required a strict majority
in each direction� rather than asking for a special majority �e�g�� a ����majority��

We also consider one�sided error probabilistic machines� Such a machine is said to accept the
set L �with one�sided error on yes�instances� if

	 For every x � L a strict majority of the computations of M�x� halt in an accepting state�

	 For every x 
� L there does not exist a computation of M�x� that halts in accepting state�

Throughout the lecture we focus on �nite automata �i�e�� M above is a �nite automaton�� We
mention that similar phenomena �regarding two�sided error that is not bounded�away from ����
seem to occur also in other models�

The power of one�sided error� Observe that acceptance by probabilistic machines with one�
sided error on yes�instances is never stronger �and� in fact� is weaker in standard complexity classes�
than acceptance by non�deterministic machines� In our setting� of �nite automata� both models
coincide with deterministic machines�
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The power of two�sided error� In contrast to the above� we will show that a probabilistic
machine with two�sided error probability can accept non�regular sets� and thus this model is more
powerful than non�deterministic machines� Speci�cally� we will show a probabilistic machine with
two�sided error probability that accepts the set fw � f�� �g� 
 ���w� � ���w�g� where ���w�
denotes the number of ��s in w�

The basic idea is to let the machine scan the input while tossing a coin per each ��symbol it
sees� and maintain a record of whether all these coin tosses turned out to be head� �This record
can be encoded in the machine�s state�� Similarly �and in parallel�� while scanning the input� the
machine tosses a coin per each ��symbol it sees� and maintain a record of whether all these coin
tosses turned out to be head� �The latter fact is recorded in a separate part of the state��

We say a ��win occurred if all coins tossed for ��symbols turned out to be head� Similarly�
we de�ne the notion of a ��win� Note that it may be that we have both a ��win and a ��win
or neither a ��win nor a ��win �the latter is most likely for most su�ciently long inputs�� The
probability that there is ��win �resp�� ��win� on an input x is exactly �����x� �resp�� �����x���
Thus� if ���x� � ���x� then the probability of a ��win smaller by a factor of at least two than the
probability of a ��win� whereas if ���x� � ���x� then these the probability of a ��win is greater or
equal to the probability of a ��win� This motivates the following procedure�

�� We run the procedure described above� while recording whether a ��win and�or a ��win has
occurred�

�� If either no win has occurred or both wins have occurred then we accept with probability
exactly ����

�� Otherwise �i�e�� exactly one win has occurred� then we decide as follows
 If a ��win has
occured then we accept else �i�e�� a ��win has occurred� we reject�

Note that on input x� we reach Step � with probability exactly

	�x�
def
�

�
�����x� � ��� �����x�� � �����x� � ��� �����x��

�

which may be exponentially vanishing with jxj� Still conditioned on reaching Step �� we accept
with probability

Pr � ��win has occured j a single win has occured � �
�����x�

�����x� � �����x�

�
�

� � ����x�����x�

�Veri�cation of the �rst equality is left as an exercise�� Let us denote ��x�
def
� ���x� � ���x��

Thus� if ���x� � ���x� �i�e�� ��x� � ��� then� conditioned on reaching Step �� we accept with
probability ������	�x�� � ��������� � ���� On the other hand� if ���x� � ���x� �i�e�� ��x� � ��
then� conditioned on reaching Step �� we accept with probability ������	�x�� � ������� � ���� It
follows that if ���x� � ���x� �resp�� ���x� � ���x�� then the above �nite automaton accepts with
probability at least ���	�x��� ���	�x��

�

 �

�
��exp��jxj� �resp�� at most ���	�x��� ���	�x��

�
� �

�
���

We conclude that x�s in the langauge are accepted with probability strictly greater than ����
whereas x�s not in the language are rejected with probability at least ���� This almost meets
the de�nition of two�sided probabilistic acceptance� All that is needed is to �shift the acceptance
probabilities	 a little� Towards doing so� observe that x�s in the langauge are actually accepted with
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probability at least ���	�x�� � ���	�x� � �
 �
�
��

��x�
� � where 	�x� 
 �����x� ���������x�� 
 ��jxj���

Thus� if unconditionally decrease the acceptance probability of each x by ��jxj �or so� then we�ll be
�ne� This can be achieved by performing the above process in parallel to tossing a coin per each
input bit �regardless of its value�� and rejecting if all the latter coins turned out HEAD�

A more complex example

The above example of a non�regular set that is accepted by a �nite automaton was suggested in
class by Amos Gilboa� after I have presented the following more complex example� Speci�cally� I
showed a probabilistic machine with two�sided error probability that accepts the �non�regular� set
fw � f�� �g� 
 ���w� � ���w�g�

Following the above discussion� observe that if ���x� � ���x� then the probability of a ��win
equals the probability of a ��win� whereas if ���x� 
� ���x� then these probabilities are at least
a factor of � away from one another� Thus� to decide membership in the language we should
approximate both probabilities� or rather the ratio between them� This cannot be done by running
the above procedure� which provides us �in case we reach Step �� with the result of one lottery
with odds �����x� 
 �����x� for ��win versus ��win� In order to approximate the odds �or rather
distinguish the ��
�� case from the other cases�� we need to obtain several results of the same
lottery� This motivates the following procedure�

�� We run ���� �parallel� copies of the basic procedure �described above�� where each copy
records whether a ��win and�or a ��win has occurred�

�� If in at least one of these ���� copies either no win has occurred or both wins have occurred
then we accept with probability exactly ����

�� Otherwise �i�e�� in each of the ���� copies exactly one win has occurred� then we decide as
follows
 If the number of ��wins is between ��� and ��� then we accept else we reject�

Note that on input x� we reach Step � with probability exactly

	�x�
def
�

�
�����x� � ��� �����x�� � �����x� � ��� �����x��

�����

which may be exponentially vanishing with jxj� Still conditioned on reaching Step �� if ���x� �
���x� then we accept with high probability �e�g�� higher than ����� On the other hand� if ���x� 
�
���x� then in Step � we accept with low probability �e�g�� lower than ����� Proving the last two
statements is left as an exercise� It follows that if ���x� � ���x� �resp�� ���x� 
� ���x�� then the
above �nite automaton accepts with probability at least �� � 	�x�� � �� � 	�x� � �
 


�
� � exp��jxj�

�resp�� at most ��� 	�x�� � �� � 	�x� � �
 �
�
� � exp��jxj���

Exercise� Present a probabilistic machine with two�sided error probability that accepts the set
f�n�n 
 n � Ng� Same for f�an�bn�c 
 n � Ng� where a� b and c are �xed �positive� integers� Finally�
show that the restriction on �a� b and� c being positive can be removed�
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