Lo
’

&N
QU
-
==
P

“\. 4 74
Y
2s)

S
\\

Weizmann Institute of Science

Department of Computer Science and Applied Mathematics
Winter 2012/3

A TASTE OF CIRCUIT COMPLEXITY
PIvOoTED AT NEXP ¢ ACCPO
(AND MORE)

Gil Cohen

Preface

A couple of years ago, Ryan Williams settled a long standing open problem by show-
ing that NEXP ¢ ACC®. To obtain this result, Williams applied an abundant of
classical as well as more recent results from complexity theory. In particular, beau-
tiful results concerning the tradeoffs between hardness and randomness were used.
Some of the required building blocks for the proof, such as IP = PSPACE, Toda’s
Theorem and the Nisan-Wigderson pseduorandom generator, are well-documented in
standard books on complexity theory, but others, such as the beautiful Impagliazzo-
Kabanets-Wigderson Theorem, are not.

In this course we present Williams’ proof assuming a fairly standard knowledge in
complexity theory. More precisely, only an undergraduate-level background in com-
plexity (namely, Turing machines, “standard” complexity classes, reductions and com-
pleteness) is assumed, but we also build upon several well-known and well-documented
results such as the above in a black-box fashion. On the other hand, we allow our-
selves to stray and discuss related topics, not used in Williams’ proof. In particular,
we cannot help but spending the last two lectures on matrix rigidity, which is related
to a classical wide-open problem in circuit complexity.

[am thankful to all of the students for attending the course, conducting interesting
discussions, and scribing the lecture notes (and for putting up with endless itera-
tions): Sagie Benaim, Dean Doron, Anat Ganor, Elazar Goldenberg, Tom Gur, Rani
Izsak, Shlomo Jozeph, Dima Kogan, Ilan Komargodski, Inbal Livni, Or Lotan, Yuval
Madar, Ami Mor, Shani Nitzan, Bharat Ram Rangarajan, Daniel Reichman, Ron D.
Rothblum, Uri Sherman, Igor Shinkar, Avishay Tal, Tal Wagner, Eylon Yogev and
Asaf Ziv. T would like to thank Eli Ben-Sasson for allowing me to use his beautiful
template for these lecture notes (crafted by Eyal Rozenberg). I would like to thank
Oded Goldreich for coining the title of these notes and for his advice and guidance
to publish them. Finally, I would like to thank my advisor, Ran Raz, for his encour-
agement.

Table of Contents

Lecture 1: The Limits of Diagonalization

1.1 Complexity Classes 1-1
1.2 Universal Turing Machines 1-2
1.3 Two Time-Hierarchy Theorems 1-3
1.4 Oracles and Relativization 1-6
Lecture 2: The Polynomial Hierarchy; Introduction to
Circuit Complexity - Part 1

2.1 The Polynomial Hierarchy 2-1

2.1.1 Complete Languages in the Polynomial Hierarchy 2-5
2.2 Introduction to Circuit Complexity 2-5
2.3 Circuit Lower Bounds and Separating P from NP 2-9
Lecture 3: Introduction to Circuit Complexity - Part 2
3.1 Four Classical Theorems about Circuits 3-1
3.2 Restricted Circuits oL L 3-6
3.3 Uniformly Generated Circuits 3-9
Lecture 4: Razborov-Smolensky Theorem; Arithmetic Cir-

cuits

4.1 Razborov-Smolensky Theorem 4-1
4.2 Introduction to Arithmetic Circuits 4-6

4.2.1 The Determinant and the Permanent 4-7

4.2.2 Bipartite Matching and the Determinant 4-8
Lecture 5: Randomization in Computation
5.1 Complexity Classes for Randomized Computation 5-1
5.2 Efficient Randomized Computation vs.

Non-Determinism 52
5.3 Efficient Randomized Computation vs. Non-
Uniformity e 54

54 Pvs. BPP . . .

-7

5.5 Small-Bias Sets, 58

5.6 Pseudorandom Generators 5-11

Lecture 6: Derandomization and Circuit Lower Bounds;
Interactive Proof Systems

6.1 Interactive Proof Systems 6-3
6.2 Three Corollaries of IP =PSPACE 6-5

Lecture 7: Kabanets-Impagliazzo Theorem: Derandomiza-
tion implies Circuit Lower Bounds

Lecture 8: Impagliazzo-Kabanets-Wigderson Theorem

8.1 Turing Machines that Take Advice 8-1
8.2 Infinitely Often 8-3
8.3 A Proof for the IKW Theorem 84

Lecture 9: NEXP ¢ ACC" - Part 1

9.1 A NEXP-Complete Language 9-1
9.2 Proof of Theorem 9.1 9-3
9.3 SYM-+ Circuits and ACC? Circuits. oo oo 9-5

Lecture 10:NEXP ¢ ACC? - Part 2

10.1 Yao-Beigel-Tarui Theorem 10-1
10.2 Non Trivial Satisfiability Algorithm for ACC® 10-10

Lecture 11:Natural Proofs
11.1 More on the Largeness Condition 11-3

Lecture 12:Linear-Circuit Lower Bounds via Matrix Rigid-

1ty
12.1 Linear-Circuits e 12-1
12.2 Matrix Rigidity 124
12.3 Valiant’s Theorem 12-8

Lecture 13: Relations between Matrix Rigidity and Coding

Theory
13.1 Basics of Error Correcting Codes 13-1
13.2 Rigid Matrices from Algebraic-Geometry Codes 13-3
13.3 Dvir’s Approach to Matrix Rigidity 134
13.3.1 Local Decodability and Local Correction 13-4
13.3.2 Main Theorem L 13-5
13.3.3 Discussion 13-7

References

LECTURE 1
THE LIMITS OF DIAGONALIZATION

NOVEMBER 18T, 2012

LECTURER: Gil Cohen SCRIBE: Daniel Reichman

In this lecture, we define basic complexity classes that play a central role in complexity
theory. We will also touch upon a useful method for separating between complexity
classes, called diagonalization. The use of diagonalization in complexity theory was
inspired by the efficacy of this method in computability theory and in mathematical
logic. Despite these success, we will demonstrate the limitation of this method in
dealing with the very basic questions in complexity theory, such as the P vs. NP
problem. These limitations are one of the reasons why complexity theorists study
circuits - a major computational model in this course - instead of merely focusing on
Turing machines.

1.1 Complexity Classes

A central and astonishing discovery in the study of computation is that although
there are natural computational problems in the thousands, almost all of them can
be classified into a small number of classes that capture the problems’ computational
hardness. In this section we remind the reader of some of these classes.

A function f : N — N is time constructible if for every n, f(n) > n and there
is a Turing machine that given 1" as input, outputs 1/ in time O(f(n)). All
the functions that we will consider are time-constructible. Moreover, unless stated
otherwise, all languages are subsets of {0, 1}*.

Definition 1.1. Let 7: N — N. DTIME (T'(n)) is the class of all languages that
are decidedable by a Turing machine halting within O(T'(n)) steps.

Definition 1.2. The class P is defined as

P = | JDTIME (n°) = DTIME (n®").

c>1

In words, the class P captures all languages decidable in polynomial-time in the input
length.

1-1

Definition 1.3. The class EXP is defined as

EXP = | DTIME (2"') = DTIME (2""").

c>1

Definition 1.4. The class E is defined as DTIME (20(”)). That is, E is the class
of all languages that can be solved in time 2 on inputs of length n, where ¢ is some
positive constant. This is sometimes referred to as linear-exponential time.

Similar definitions apply for non-deterministic complexity classes. For example,

NP = | NTIME (n°) = NTIME (n°"), (1)

c>1

e.g., all languages that are decidable by non-deterministic Turing machines, whose
longest computation path is polynomially bounded in the input length. In other
words, NP is the class of all languages for which membership can be wverified in
polynomial-time (see also Definition 2.1). NEXP is the class of all languages de-
cidable by a non-deterministic Turing machine whose longest computation path is
bounded exponentially in the input length. Put differently, NEXP is the class of all
languages for which membership can be verified in exponential time.

1.2 Universal Turing Machines

We will use the fact that every Turing machine M can be encoded by a finite string
x € {0,1}*. When M is encoded by a string x, we denote this encoding by M, to
illustrate that the encoding is of M. A marvelous, yet simple to verify fact, is that
there exists a Universal Turing Machine U which, when given an encoding M, of
M and a string y € {0,1}*, outputs U(M,,y) = M(y). That is, U simulates the
computation of M on y and returns M (y), if it is defined.

We make use of two special properties of the encoding of Turing machines that will
be important for us. First, every string encodes some Turing machine. Second,
every Turing machine is encoded by infinitely many strings. The latter, seemingly
odd statement, is quite useful in proof by diagonalization. In fact, we will use this
statement twice in this lecture (see Theorem 1.6 and Theorem 1.7).

We formalize the above in the following theorem, whose proof is omitted (see Chapter
1 of Goldreich [2008] or Arora and Barak [2009] for details).

Theorem 1.5. There exists a Turing machine U, called the Universal Turing Ma-
chine, such that for every x,y € {0,1}* it holds that U(M,,y) = M(y). Furthermore,

1-2

if the running time of M on y is bounded by T, then the running time of U on M,,y
is bounded by c - T'logT, where ¢ is some positive constant independent of y.

Note: the constant ¢ in the above theorem depends only on the number of states and
tapes in M. Clearly the running time of the universal Turing machine must somehow
depend on the encoded machine M.

We also note that the name of this section is in plural (that is, the section is not titled
“The Universal Turing Machine”) because one can define a universal Turing machine
in different models of computation. For example, a universal Turing machine for
non-deterministic computation (which we will use in the proof of Theorem 1.7).

1.3 Two Time-Hierarchy Theorems

In complexity theory, one is usually interested in the tradeoff between different re-
sources such as time, space, non-determinism, etc. For example, the famous P vs.
NP problem asks whether non-determinism adds computational power to polynomial-
time computation. A harsh lesson we learned in the past few decades is that such
results are usually extremely hard to obtain.

An easier problem is whether more of the same resource adds to the computational
power. Such theorems are called hierarchy theorems. A key technique in proving
such theorems is diagonalization - a proof technique that was introduced by Cantor
in showing that there are real numbers that are irrational. Diagonalization is widely
used in computability theory (for example, showing that the Halting Problem is
undecidable). It is also used in mathematical logic in proving impossibilty results
such as Godel incompleteness theorem (see Chapter 6 of Papadimitriou [2003] for
details). We now state the deterministic time-hierarchy theorem.

Theorem 1.6 (Hartmanis and Stearns [1965]). Let f,g : N — N be two time con-
structible functions. Assume that f(n)log(f(n)) = O(g(n)). Then

DTIME (f(n)) € DTIME (g(n)).

Proof. Following Arora and Barak [2009], for simplicity, we will prove this theorem
for the special case f(n) = n and g(n) = n'5. The general case can be easily derived.
We define now a Turing machine D (stands for diagonalization) as follows. Given z
as input, D simulates M, on input z for |z|'? steps (|x| is the length of the string
x). If M, outputs a bit b and halts then D output 1 — b (and, of course, halts as
well). Otherwise, D outputs some arbitrary value, say 0, and halts. We note that the
language L, decided by D, belongs to DTIME (n!5). Indeed, by Theorem 1.5, the

1-3

simulation of M, incurs only a multiplicative factor of O(logn) to the running time,
and n'? - logn = o(n'?).

We now prove that L ¢ DTIME (n). The proof is by contradiction. Assume there
is a Turing machine M such that M decides L and halts in time O(n) on all inputs
of length n. When we ran the universal Turing machine U on the pair (M,,x), the
running time is bounded by c|z|log |z| for some fixed positive constant ¢ (the value
of the constant ¢ depends on the hidden constant in the running time of M and on
the constant in the running time of the Universal Turing machine U).

12 > emlogm and consider an encoding y

Take m € N large enough such that m
of M such that |y| > m (such an encoding exists as we know every Turing machine
is encoded by infinitely many strings). When receiving y as input, D will compute
M(y) after at most |y|'? steps and will output a bit different from M(y). Thus
D(y) # M(y) contradicting the definition of D. This contradiction concludes the

proof of the theorem. O

The proof of Theorem 1.6 is very similar to the proof by diagonalization of the
Halting Problem being undecidable. The following is a hierarchy theorem for non-
determinism. Its proof is also based on diagonalization, but requires a new idea.
Besides having a beautiful proof, we will use this theorem in the future (e.g., in
Theorem 7.1 and in Williams’ theorem, Theorem 9.1).

Theorem 1.7 (Cook [1973]). If f,g : N — N are time-constructible functions such
that f(n+1) = o(g(n)), we have that

NTIME (f(n)) ¢ NTIME (g(n)).

Proof. As in Arora and Barak [2009], for simplicity, we focus on the case f(n) =

15 The proof for the general case is similar. As a first attempt to

n, g(n) = n
prove this theorem, one might try and use a similar diagonalization argument as in
the deterministic time-hierarchy theorem, using a universal Turing machine for non-
deterministic machines (such a universal machine does exist. We will take this fact
for grunted in this course). Unfortunately, a naive implementation of this idea does
not quite work. The difficulty is the lack of symmetry with respect to accepting
and rejecting an input in the non-deterministic model. For example, the fact that a
language L is in NTIME (n) is not known to imply that the complement of L belongs
to NTIME (n'?®), as for a given z, to decide x ¢ L requires, at least naively, going
over all computational branches of the non-deterministic machine deciding L, which
does not seem to be possible to accomplish in non-deterministic polynomial-time. For
similar reasons, it is not clear whether NP is closed under taking complements and

in fact, it is widely believed NP # coNP.

1-4

We define recursively a function h : N — N as follows.

h(i41)=2M0" i > 1,

It can be verified that for any integer n, one can find the integer ¢ such that h(i) <
n < h(i + 1) in, say, O(n'?®) time.
The machine D is defined as follows.

1. For input z, if = ¢ 1* reject. Otherwise, z = 1". Compute i such that h(i) <
n < h(i+ 1), and let M; be the machine encoded by the binary representation
of 1.

2. If n € (h(i),h(i + 1)), using a non-deterministic universal Turing machine,
simulate M; on 1" for n'? steps and return an identical answer to M; (if M;
fails to halt then halt and accept).

3. If n = h(i + 1) then simulate M; for (h(:) + 1) steps. If M; fails to halt then
accept. Otherwise accept 17 if and only if M; rejects 1#)+1,

Observe that Part 3 requires going over all the computational branches of length
(h(i) 4+ 1)"2, which can be implemented to run in time 2O+ = O(h(i + 1)15).
Hence, the language decided by D belongs to NTIME (n!®) (as Parts 1,2 can also
be computed in this time limit).

Suppose towards a contradiction that the language decided by D belongs to NTIME (n)
and let M be a non-deterministic Turing machine deciding L in time cn for some pos-
itive constant c. As in the deterministic case, every non-deterministic machine is
represented by infinitely many strings. In particular, M is represented as the binary
encoding of a large enough ¢, such that for all inputs of length n larger than h(7),
simulating M; takes less time than n'2. By the way we constructed D, for every
h(i) < n < h(i+ 1) it holds that

D(1") = M;(1"*1). (2)
By the definition of M;, for every h(i) <n < h(i + 1),
D(1") = M;(1"). (3)

Combining Equation 2 and Equation 3 (many times) we have that M;(1"0+!) =
D(1"+D). On the other hand, as M; halts on 1"®+1 on every branch after less than

1-5

(h(i) + 1) time, we get by the way D was defined that
M;(h(i) + 1) # D(h(i + 1)).
This contradiction concludes the proof. O

We end this section with the following corollary.

Corollary 1.8.
P C NP C PSPACE C EXP.

Moreover, at least one of the containments is strict.

Proof. We give only a sketch of the proof (see Chapter 7 of Papadimitriou [2003]). The
first containment is trivial. As for the second one, every non-deterministic polynomial-
time machine can be simulated in polynomial space (simply go over all computation
branches, reusing space). The third containment holds since every polynomial space
machine that halts in fact halts in exponential time (the possible number of con-
figurations of a machine using polynomial space is exponential). However, by the
Deterministic Time-Hierarchy Theorem (Theorem 1.5) P # EXP. Thus, one of the
containments must be strict. 0

While it is strongly believed that all containments in the above theorem are strict,

it is not known how to prove that a single containment is strict. Proving it (or even
proving P # PSPACE) would be a major breakthrough.

1.4 Oracles and Relativization

The success of diagonalization techniques in separating between complexity classes
revealed in hierarchy theorems may lead one to believe that such methods can be
used to settle the P vs. NP problem. However, in the 70’s researchers have shown
that this is not the case - provably, new ideas are required.

Informally, these kind of results, where one shows that a natural and useful technique
is provably not enough to settle some problem, is referred to as a barrier. In this
section we show a barrier for proofs by diagonalization.

The key ingredient behind the formal proof of the limitation of diagonalization lies in
the use of oracles. Let O C {0, 1}*. Roughly speaking, an oracle Turing machine M
is a Turing machine that can test membership to O in a single computational step.
Namely, while running on an input, the machine can send a string to an oracle that
decides whether this string belongs to O and return an answer to M accordingly.

1-6

Definition 1.9. An Oracle Turing Machine M with oracle access to a language O
is a Turing machine with a special auxiliary tape (named the oracle tape) as well as
three special states Gyes; Gno, Gquery- When the machine is in gquery, it queries whether
the string written on the oracle tape is in O by moving to gyes if the string belongs
to O and to ¢,, otherwise. A query step is counted as a single computational step.
We denote the output of M with oracle access to O on input z, by M°(x). A similar
definition applies to non-deterministic Turing machines.

Definition 1.10. Consider O C {0,1}*. The class P? is the class of languages
that can be decided by an oracle Turing machine with oracle access to O that runs
in polynomial-time. Similarly, the class NP? is the class of all languages that can
be decided by a non-deterministic Turing machine with oracle access to O, with all
computational paths having polynomial length.

A close inspection on diagonalization-based proofs, such as those used in the hierarchy
theorems presented at the previous section, reveals that they rely on the encoding
of Turing machines that allows a universal Turing machine to simulate any other
machine M’ using the encoding of M’ without much increase of the time complexity
of M'. As it turns out, it is possible to encode oracle Turing machines such that a
universal Turing machine can efficiently simulate oracle Turing machines.

The implication is clear yet powerful: any complexity result proved for ordinary
Turing machines using only the existence of an encoding of Turing machines and a
universal Turing machine that simulates them in a black-box manner, carries over to
oracle machines as well. In this case, we say that the result relativize, because the
same result holds relative to any oracle. If we are able to find, for two complexity
classes €, and Csy, two oracles O; and O, such that 191 = €9t but ;92 #+ Cy?2,
then equality and inequality of C7 and C5 do not relativize. In other words, plain
diagonalization cannot be used to prove or disprove C; = Cs.

As we see next, Baker et al. [1975] proved that this is the situation for P and NP.
We note that there are many more examples of similar flavor. For example, for the
polynomial hierarchy PH that will be defined in Lecture 2 (see Section 2.1), there
exist oracles Oy, Oy, such that PH?" = PSPACE?" whereas PHY? # PSPACE®?
(see Yao [1985]).

Theorem 1.11 (Baker et al. [1975]). There exist oracles A, B C {0,1}* such that
P4 =NP* and yet PP #NP",

Proof. We first show how to construct an oracle A such that P4 = NP*. The idea is
to construct a powerful oracle that will “cancel” the non-determinism advantage NP
machines have over deterministic polynomial-time computation.

1-7

Take A to be an arbitrary EXP-complete language (in this course, completeness is
always with respect to polynomial-time reductions). Such a language exists. An
oracle access to A enables a Turing machine to solve any problem in EXP in a single
query. Hence EXP C P4. On the other hand, one can simulate in deterministic
exponential-time a non-deterministic polynomial-time Turing machine, with oracle
access to A. This is done by going over all computation branches (in exponential
time) and answer A queries (where every query can be answered in exponential time).
Thus NP4 C EXP. As clearly P4 C NP for any oracle A, the result follows.

As for the second part of the theorem, for a given language B we define Ug to be the
unary language

Up = {1"] there exists a string of length n in B}.

Clearly Ug € NP? as a non-deterministic polynomial-time machine, can guess a
string s in B (if such exists) and use the oracle to verify whether s € B. We show
how to construct a language B such that Up ¢ P5.

Given ¢ € N, let M; be the oracle Turing machine encoded by the binary representation
of i. B is constructed iteratively (initially B is set to be the empty language), such
that M; will not decide Up in less than 2"/10 time steps, when running on inputs of
length n.

At the i*" stage, for a finitely many strings a decision has been made whether they
belong to B or not. Call strings that are decided to be in B - black, strings that
are decided not to be in B - white and strings for which no decision has been made
yet - gray. Take n to be larger than the length of all strings that are either black or
white. Run M; on input 1™ for exactly 2"/10 steps. When M, queries strings that
are known to belong (or not to belong) to B (e.g., black or white), the oracle answers
consistently with B. If M; uses the oracle to query strings that are not yet decided
to belong to B (that is, gray strings) then these strings are declared white.

Our goal is to make sure that the answer of M; on 1" will lead to a contradiction. By
now, the decision whether to include a string to B or not was made for at most 2" /10
strings in {0, 1}". Every string of length n we have encountered thus far is white, by
the way our iterative construction work. If M; accepts 1" then we declare all of the
gray strings in {0, 1}" as not belonging to B (that is, white). Otherwise, we choose a
gray string of length n (note that as the number of strings of length n that we have
encountered thus far is bounded by 2"/10, there must be at least one gray string)
and declare it to be in B, that is, set it to black.

This completes the description of how B is constructed. Our construction ensures
that every machine M with oracle access to B, running in polynomial-time, will err
on 1" for some n. Thus Up ¢ PP. Even more strongly, the above proof implies that

1-8

Up ¢ DTIME (f(n)?) for every time-constructible f with f = o(2"). O

A neat aspect of the proof of Theorem 1.11, which shows that diagonalization is in
some sense “weak”, is that it uses diagonalization!

1-9

LECTURE 2

THE POLYNOMIAL HIERARCHY; INTRODUCTION TO
CIRCUIT COMPLEXITY - PART 1

NOVEMBER 8TH, 2012

LECTURER: Gil Cohen ScRrRIBE: Tom Gur

In Lecture 1 we talked about diagonalization. We discussed the seminal result
by Baker et al. [1975] (see Theorem 1.11), that shows that resolving the P versus
NP problem, in some sense, cannot be accomplished using only black-box simula-
tions of Turing machines, a property of diagonalization-based proofs. This result
gives a central motivation for the study of circuits, which, as we will see, are more
amendable to white-box inquiry than Turing machines.

In this lecture we will complete some background and cover the basics of the Poly-
nomial Hierarchy (see Section 2.1). We then start studying the theory of circuits
(see Section 2.2).

2.1 The Polynomial Hierarchy

The Polynomial Hierarchy, denoted by PH, introduced by Meyer and Stockmeyer
[1972], is a hierarchy of complexity classes that generalize the classes P, NP and
coNP." Before we give the formal definition, let us begin with a couple of motivating
examples. Consider the language

CLIQUE = {(G,k) | G = (V, E) has a clique of size at least k}.

Note that (G, k) € CLIQUE if and only if 35 C V such that |S| = k is a clique. Hence,
the condition can be expressed as an existential (First Order Logic) formula, where the
quantified condition (i.e., |S| = k is a clique) can be computed in polynomial time.
In general, recall the definition of NP (the definition for NP below is, of course,
equivalent to the somewhat less formal definition in Equation 1 from Lecture 1).

Definition 2.1. A language L is in NP if and only if there exist polynomials p and
¢, and a deterministic Turing machine M, such that

o Vz,w € {0,1}*, the machine M runs in time p(|z| + |w|) on input (z,w).

*One can view the Polynomial Hierarchy as the resource-bounded counterpart to the Arithmetical
Hierarchy (the Kleene-Mostowski Hierarchy) from mathematical logic, which classifies certain sets
based on the complexity of formulas that define them.

2-1

e v € L < there exists a proof string (witness) w of length ¢(|x|) such that
M(z,w) = 1.

According to Definition 2.1, we see that CLIQUE € NP. Now consider a natural
variant of CLIQUE, namely,

EXACT —CLIQUE = {(G, k) | The largest clique in G = (V, E) has size exactly k} .

Note that (G,k) € EXACT—CLIQUE if and only if 35 C V such that |S| = k
is a clique and VI' C V, |T| > k is not a clique. Hence, the condition can be
expressed by a formula with one existential quantifier and one universal quantifier.
For the EXACT —CLIQUE language, the order of the quantifiers does not matter, as
the conditions on S, T are independent. However, this is not always the case; e.g.,
consider the language

MIN—EQ—DNF = {(¢, k) | 3 DNF ¢ of size k that is equivalent to ¢}.

Here, (¢, k) € MIN—EQ—DNF if and only if 3 DNF 9 of size k such that Vz ¢(x) =
¥(x). The class of all languages that can be expressed by an existential quantifier
followed by a universal quantifier is denoted by 3. * It is known Umans [1998] that
MIN—EQ—DNF is a complete language for 5.

Definition 2.2. A language L is in X% if and only if there exist polynomials p, g1, o,
and a deterministic Turing machine M, such that

e Vz,w,z € {0,1}*, the machine M runs in time p(|z|+|w|+]|z|) on input (z, w, 2).
e v L < Fwe{0,1}ul) vz e {0, 1}20D) Mz w, 2) =1
If we change the order of the quantifiers, we get the class IT5 . Formally,

Definition 2.3. A language L is in IT5 if and only if there exist polynomials p, g1, o,
and a deterministic Turing machine M, such that

e Vz,w,z € {0,1}*, the machine M runs in time p(|z|+|w|+]|z|) on input (z, w, 2).
e v € L <= Ywec{0,1}202D) 3z ¢ {0, 1}20=D) M(z,w,z) = 1.

In a similar fashion, for every i € N we define the class 3P as the extension of X5
for formulas with ¢ alternating quantifiers, starting with an existential quantifier, and
ITP as the extension of IT§ for formulas with i alternating quantifiers, starting with
an universal quantifier. Note that 3§ = IT§ = P, X7 = NP, and II} = coNP.

*In the language of mathematical logic, 3% is a class of Second Order Logic formulas.

2-2

NEXP

EXP

PSPACE

PH

=P o
| |
| |
" >< B

NP = 3P I° = coNP

N

Figure 1: The Polynomial Hierarchy.

We can also formulate these classes, known as the levels of the Polynomial Hierarchy;,
in terms of oracles: For example, it can be shown that 5 = NPNP . More generally,
for ¢ > 0 it holds that

P, = NP
P, = coNP* .

See Theorem 5.12 in Arora and Barak [2009] for a proof of the equivalence between
the two definitions.

2-3

Definition 2.4. The Polynomial Hierarchy is defined by

PH = =P

i>1

It is easy to show that PH is contained within PSPACE, but it is not known whether
the two classes are equal.” The following lemma states that if a level of the Polynomial
Hierarchy is closed under complement then the Polynomial Hierarchy collapses to that
level.

Lemma 2.5. For any i € N, 3P =II? = PH = X}. In this case we say that the
Polynomial Hierarchy collapses to its i level.

Proof. We start by making the following observation (see Proposition 3.9 in Goldreich
[2008] for a full proof):

Observation 2.6 (rephrased). For every k > 0, a language L is in X}, if and only if
there exists a polynomial p and a language L’ € II} such that

L={z:3ye{0, 13D st (z,y)eL'}

With this observation in mind, assume that 3P = IIY. We start by showing that

1 P
Ei-&-l i+1

exists a polynomial p and a language L' € II} such that

= XP. For any language L € X by the aforementioned observation, there

L={x:3yc{0, 13?1V st (z,y) L'}

By the hypothesis L' € XP, and so (using the observation and ¢ > 1) there exists a

1)

polynomial p’ and a language L” € II} | such that
L'={z":3 {0, 1D st. («/,9) e L"}.
Hence,
L={z:3ye {0,123z € {0,1}7®ED st ((z,y),2) € L"}.

By collapsing the two adjacent existential quantifiers and using the aforementioned

observation, we conclude that L € XP. Then, we note that X7, = 3P implies
Y2 o = X7 (again, by the aforementioned observation), and likewise P, , = X2,
for every j > i. Hence PH = X?. O

*One useful reformulation of this problem is that PH = PSPACE if and only if second-order logic
over finite structures gains no additional power from the addition of a transitive closure operator.

2-4

As an immediate corollary of Lemma 2.5 we get:
Corollary 2.7. P=NP — P =PH.

Namely, if one quantifier “doesn’t help” then no constant number of them will.

2.1.1 Complete Languages in the Polynomial Hierarchy

We observe that if PH = U;>1 3} has any complete language L then there exists an
i such that L is complete for 3. As a consequence, the Polynomial Hierarchy would
collapse to its it" level. Thus, we believe that PH does not have a complete language.
Since there are PSPACE-complete languages, we infer that if PSPACE = PH
then the Polynomial Hierarchy must collapse. This is served as an evidence for
PH # PSPACE.

On the other hand for every i > 1 there exists a complete languages for X as well as
for IIY. These complete languages are based on Totally Quantified Boolean Formulas
(hereafter TQBF). A TQBF is a Boolean formula wherein all of the variables are
quantified. We notice that since there are no free variables, a TQBF is either true or
false. For example,

Vedy (x Ay) V(T AY)

is a TQBF that is always true, as indeed, for every x there exists a y that equals to
x. On the other hand, the TQBF

JxVy (x Ay)V (T AG)

is false (well, unless the set from which x,y are drawn is a singleton). For every i € N
we define TQBF,; as the set of all true TQBF that contain i quantifiers (starting with
an existential quantifier). For every i € N, TQBF, is a 3}-complete language (where
completeness is, as always in these notes, defined by polynomial time reductions),
while TQBF is PSPACE-complete Stockmeyer and Meyer [1973] (for a proof, see
e.g., Theorem 5.15 in Goldreich [2008]).

2.2 Introduction to Circuit Complexity

An n-input Boolean circuit is a directed acyclic graph with n sources and one sink.
All non-source vertices are called gates and are labeled with one of {V, A, =}, i.e.,
disjunction (logical OR), conjunction (logical AND) and negation gates. The in-
degree of the negation gates is always 1. In this lecture, we consider disjunction and
conjuction with in-degree 2.

2-5

The depth of the circuit C, denote by depth(C) is the number of edges in the longest
path between the sink and a source. The fan-in is the maximum in-degree of the
graph. The fan-out is the maximum out-degree of the gates in the graph. The size
of a circuit C, denoted by size(C'), is the number of wires in the graph.

In order to evaluate a circuit on an input = = (zy,...,2,), for every vertex of the
circuit we give a value as follows: if the vertex is the " source, then its value is
the ™" bit of the input (that is, z;). Otherwise the value is defined recursively by
applying the vertex’s logical operation on the values of the vertices connected to it.
The output of the circuit is the value of the sink.

For example, consider the following circuit (taken from Williams [2011a]).

T4 T2 T3 Ta

This circuit is the smallest possible circuit (found by Kojevnikov et al. [2009] using
a SAT solver) that computes the MOD3 function, where MODj : {0,1}* — {0,1} is
defined by

MODs(z1, 9, x3,24) =1 <= x1+ 22+ 23+ 24 (mod 3) = 0.

Let us consider Boolean circuits that compute functions f : {0,1}* — {0,1}. We
show the following basic facts regarding the representation of Boolean functions by
Boolean circuits.

Theorem 2.8. FEvery function f : {0,1}" — {0,1} can be computed by a Boolean
circuit of size O (n -2")." Moreover, “most” (an arbitrary constant fraction) functions
require circuits of size Q (2" /n).

*In fact we can do even better: Lupanov [1958] proved that every Boolean function on n variables
can be computed by a circuit with size (1 + a,,)Z-, where o, ~ 10% (see Theorem 1.15 in Jukna
[2012]).

2-6

Proof. Given a function f : {0,1}" — {0,1}, we can write down its truth table in
Congunction Normal Form (CNF). Then we can build a logarithmic depth circuit
(note that we can implement an AND gate with n inputs using a tree of fan-in 2
AND gates, with size O(n) and depth O(logn)) that expresses the aforementioned
CNF. Since the size of the truth table is 2", the size of the circuit will be O (n - 2").
For the “moreover” part, let us count and compare the number of possible circuits of
size s, and Boolean functions with n variables. On one hand, we can bound the size
of the representation of a size s Boolean circuit by O(slogs) (simply by listing each
gate and a pointer to its 2 neighbors, each described by logs bits). On the other
hand, the size of the description of the truth table of a Boolean function on n bits
is 2. If O(slogs) < 2", then there are not enough Boolean circuits to compute all
functions on n variables. Thus, an arbitrary fraction of the Boolean functions on the
hypercube requires size that is proportional to 2" /n. O

While a Turing machine can handle inputs of every length, Boolean circuits can only
get inputs of a fixed-length. Hence, the computational model of Boolean circuits is
defined as a family of circuits C = {C,, }22,, where the circuit C,, has n inputs. Given
x, the computation is done by applying C),| to x. This kind of computational model is
called non-uniform, since it allows a different treatment for inputs of varying length,
or infinite number of algorithms, if you will.

The non-uniformity of Boolean circuits gives a surprisingly strong power to the model.
In fact, it can actually solve undecidable languages. To see this, consider an unde-
cidable language encoded in unary. Since we can design a circuit per input length, in
the case of unary languages (where there is only one input of each length) we can fit
a degenerate circuit (that simply returns the right answer) for each input.

This irksome strength of circuits does not bother us so much, mainly because our
concern will be to prove that small circuits cannot accomplish certain tasks, and so,
we do not care if very small circuits can accomplish tasks we are not interested in to
begin with. Let us now formalize what we mean by “small circuits”.

Definition 2.9. Given a function s : N — N, a language L is in SIZE(s(n)) if and
only if there exists a family of Boolean circuits C = {C,,}°°, that decides L, such
that size(C,,) < s(n) for all n.

Definition 2.10. The class P/poly,” is defined as the class of languages decided by

*The name P /poly comes from an equivalent complexity class: the class of languages recognized
by a polynomial-time Turing machine with a polynomial-bounded advice string. We will address
this definition later in the course (see Section 8.1).

2-7

families of circuits of polynomial size, namely,

P/poly = |_J SIZE(n®).

c>1

Similarly to the time hierarchy theorems (Theorem 1.6, Theorem 1.7), we have a size
hierarchy theorem.

Theorem 2.11. If n < s(n) < 2~ then SIZE(s(n)) & SIZE(4-5(n)).

For simplicity we prove a somewhat weaker theorem, namely, that for large enough
n, SIZE(n?) & SIZE(n?). The proof of Theorem 2.11 can be found in Jukna [2012],
Chapter 1.

Proof. By Theorem 2.8, there exists a constant ¢ such that for every ¢ there exists a
function hy : {0,1}* — {0, 1} that cannot be computed by a circuit of size 2¢/(c - £).
Let £ = £(n) be the smallest number such that 2¢/(c - ¢) > n% Consider the function
fn:{0,1}" — {0, 1} that applies h; to the first ¢ (out of n) inputs.

By Theorem 2.8, there exists a constant d for which h, can be computed by a circuit
C, of size at most d - 2. Thus, f, can be computed by a circuit C, of size at most
d - 20 < n®, where the inequality holds for large enough n (as a function of the two
constants ¢, d).

Thus, the language L, decided by the family of circuits {C,},, is in SIZE (n?) \
SIZE (n?), which completes the proof. O

An important fact concerning polynomial-size Boolean circuits is their ability to em-
ulate any (deterministic) polynomial-time Turing machine. This is captured by the
following theorem.

Theorem 2.12. P C P/poly.

Proof. We follow the proof in Arora and Barak [2009]. Note that in this discussion
we allow using circuits with many outputs. Recall (by the proof of the Cook-Levin
theorem) that one can simulate every time O(T'(n)) Turing machine M by an oblivious
Turing machine M (a machine whose head movement depends only on the input
length) running in time O(T'(n)?) (or even O(T(n)logT'(n)) if we try harder). Thus, it
suffices to show that for every oblivious 7T'(n)-time Turing machine M, there exists an
O(T(n))-sized circuit family {Cy, },en such that Cp, (z) = M(z) for every x € {0, 1}*.
Let M be such an oblivious Turing machine, that has k tapes. Let = € {0,1}* be
some input for M and define the transcript of M’s execution on x to be the sequence
21,. .., 2rm) of snapshots (the machine’s state and symbols read by all heads) of the

2-8

execution at each step in time. We can encode each such snapshot z; by a constant-
size binary string, and furthermore, we can compute the string z; based on k bits
from the input x, the previous snapshot z;_; and the snapshots z;,, ..., z;,, where z;;
denotes the last step that M’s j*" head was in the same position as it is in the i*" step.
Because these are only a constant number of strings of constant length, this means
that we can compute z; from these previous snapshots using a constant-size circuit
(essentially due to Theorem 2.8, which promise us we can compute any function).

The composition of all these constant-size circuits gives rise to a circuit that computes
from the input x the snapshot zp(,) of the last step of M’s execution on x. There
is a simple constant-size circuit that, given z7(,), outputs 1 if and only if zp(,) is an
accepting snapshot (in which M outputs 1 and halts). Thus, there is an O(T(n)?)-
sized circuit C,, such that C,(z) = M (x) for every x € {0, 1}". O

Note that the proof of Theorem 2.12 shows that not only there exists a family of
polynomial-size circuits that decides any language in P, but in fact, given the machine
M and n € N, the circuit C,, can be computed by a Turing machine in poly(n) time.
In this case we say that {C,}, .y can be uniformly generated (see Section 3.3 for some
more information about the circuits uniformity.)

2.3 Circuit Lower Bounds and Separating P from
NP

Although Theorem 2.12 is quite simple to prove, it yields a new route for attacking
the P vs NP problem, or more precisely, to try and separate P from NP. Indeed,
by Theorem 2.12, in order to show that P £ NP, it suffices to show that there exists
a language in NP that is not in P/poly, that is, NP € P /poly. This type of result
is called circuit lower bounds, as we are interested in proving a lower bound on the
size of a circuit (or circuit family to be more precise) for some language (in NP in
this case).

The current state of our knowledge of circuit lower bounds is very meagre. We can’t
even show that NEXP (and even EXPNF) is not contained in P/poly. The smallest
class we do know of that is not contained in P /poly is MAgxp Buhrman et al. [1998];
we will prove this statement later during the course (see Theorem 6.13). In terms of

things we have learned so far, we can only show that NEXPNF is not contained in

P/poly. In fact, an easier exercise is to show that EXPSPACE ¢ P/poly.
Williams’s result (Theorem 9.1), which is the main topic of this course, is a circuit
lower bound. It shows that some type of circuits (which we will define in the next
lecture) cannot compute some language in NEXP.

2-9

LECTURE 3
INTRODUCTION TO CIRCUIT COMPLEXITY - PART 2

NOVEMBER 15TH, 2012

LECTURER: Gil Cohen SCRIBE: Anat Ganor, Elazar Goldenberg

3.1 Four Classical Theorems about Circuits

In this section we prove four classical theorems concerning circuits. These theorems
were chosen out of many beautiful and useful theorems. The chosen four give further
insights regarding the computational power of non-uniformity, and we will actually
make use of the first two later in the course.

In Lecture 2 we saw that P C P/poly (see Theorem 2.12). Therefore, one way to
prove that P # NP is to show that NP ¢ P/poly. Is this a reasonable route for
separating P from NP7 Is it plausible that poly-size non-uniformity cannot simulate
poly-time verification of proofs?

The computational power of non-uniformity is surprising. For example, we saw in Lec-
ture 2 that there exists a family of circuits of the condescending size 1 that computes
a non-decidable language. On the other hand, there is some kind of undecidability
implicit in non-determinism, as indeed, a witness y for the membership of an element
x can be any function of z, and this function y = y(z) can be undecidable. More-
over, intuitively it seems impossible to “compress” the witnesses for all (exponentially
many) inputs that share the same length, in such a small circuit, thus, the witnesses
should have some structure to fit to the circuit.

These arguments are very weak, and are far from being formal. Do we have a more
solid reason to believe that NP ¢ P /poly? Yes! In 1980, Karp and Lipton proved
that if this is not the case then the Polynomial Hierarchy collapses.

Theorem 3.1 (Karp and Lipton [1980]). NP C P/poly — PH = X}.

Proof. By Lemma 2.5, to show that PH = X3, it is enough to show that IT} C X5.
Consider the IT5-complete language IT;SAT consisting of all unquantified Boolean
formulas ¢ € SAT for which the following holds.

Vg, .oy ty 301, U (U, e Uy V1, ey Uy) = L (4)
Note that ¢ has size poly(n, m). Consider the following quantified Boolean formula
3C € {0,130 o € {0, 13" p(u, Clp,u)) = 1, (5)

3-1

where C' is interpreted as a “small” circuit (polynomial in the size of ¢’s description
and n = |u|) that outputs m bits, and C(¢p, u) is its evaluation on the inputs ¢ and u.
Note that given C', the output of C' on inputs ¢, u can be calculated deterministically
in polynomial time. This means that the language of formulas ¢ for which Equation 5
holds is in X5. Therefore, in order to prove that II;SAT € X% it is enough to prove
that for every unquantified Boolean formula ¢, Equation 4 holds iff Equation 5 holds.
If NP C P/poly then there exists a polynomial-size circuit family {C), },en such that
for every Boolean formula ¢ and every partial assignment u € {0,1}" to the first n
variables, it holds that C'(y,u) = 1 for an appropriate circuit C' in the family iff there
exists an assignment v € {0,1}"™ to the last m variables such that ¢(u,v) = 1.

An algorithm that solves SAT (the decision problem) can be converted into an al-
gorithm that outputs a satisfying assignment whenever one exists. The algorithm
that finds the satisfying assignment, given that such an assignment exists, using the
decision SAT solver, is in P and can be implemented by a polynomial-size circuit,
as P C P/poly (see Theorem 2.12). Therefore, we obtain from {C),},cn another
polynomial-size circuit family {C/ }, ey such that for every unquantified Boolean for-
mula ¢ and every u € {0,1}", if there exists v € {0,1}™ for which ¢(u,v) = 1,
then C’(p,u) outputs such a string. This implies that whenever Equation 4 is true,
Equation 5 is also true. If Equation 4 is false, then for some u € {0,1}" there is
no string v € {0,1}"™ such that ¢(u,v) = 1. Therefore, there is no circuit that can
output such a (non-existing) string, and Equation 5 is also false.]

Currently, not only we do not know how to prove that NP ¢ P /poly, but we do not
even know how to show that EXP ¢ P/poly. Therefore, it is interesting to find out
what can be said if this is not the case. The following theorem shows that P /poly is
unlikely to contain EXP. This theorem appears in Karp and Lipton [1980], but it is
attributed to Albert Meyer.

Theorem 3.2 (Meyer’s Theorem). EXP C P/poly — EXP = X}

In fact, we currently don’t even know that NEXP ¢ P/poly, and the consequences
of NEXP C P/poly are studied in Theorem 7.2 (which, interestingly enough, uses
Theorem 3.2).

Proof of Theorem 3.2. Let L € EXP. Then, there exists a 27" _time, oblivious Turing
machine M that computes L, for some constant k& € N. Fix an input string « € {0, 1}"
and denote by z1,..., 2,,» the snapshots of M running on input x. Assume that M
has t tapes. For an index i € [2""] of a snapshot and for j € [t], consider the location
on the j** tape of the relevant head during the i** snapshot. Let i; be the index
of the snapshot where this location was last updated. Note that we assume M is

3-2

oblivious, therefore, the relevant locations of the heads can be computed given 7 and
do not depend on z. If x € L then for every i € [2”k]7 the indices 7,11,...,4; and the
snapshots z;, z;,, ..., z;, should satisfy the following. If 7 = 27" then z; should encode
M outputting 1. Moreover, the value on the j* tape in the location of the relevant
head during the i* snapshot, as written in Zi;, should be consistent with what is
written in z;. It is easy to see that given x and ¢, one can, in exponential time,
compute z;. Therefore, as we assume EXP C P/poly, there exists a polynomial-size
circuit family {C), },en that given = and i outputs z;. Suppose that the size of C,, is

at most n¢ for some constant ¢ € N. Then, for every x € {0,1}", it holds that
x €L < 3C € {0,1}" Vie {0,1}" T(z,C(x,i),C(z,iy),...,Clz,i)) =1,

where T is some polynomial-time Turing machine that checks that the transcript
satisfies all local criteria described above. Note that the binary representation of the
indices is polynomial in n. This implies that L € 3%, which completes the proof. [

Theorem 3.2 implies the following interesting corollary. It shows that even circuit
upper bounds can potentially be used to separate P from NP, as opposed to the
lower bound NP ¢ P /poly.

Corollary 3.3. EXP C P/poly — P # NP.

Proof. Assume towards a contradiction that P = NP and EXP C P/poly. By
Corollary 2.7, the assumption that P = NP implies that the polynomial hierarchy
collapses, i.e. P = PH. Since EXP C P/poly, by Theorem 3.2, EXP = X%,
and thus, EXP = PH. Therefore, EXP = P, which contradicts the deterministic
polynomial-time hierarchy theorem (see Theorem 1.6). [

Proving NP ¢ P/poly means that there is L € NP that cannot be computed by
a family of circuits of size n* for every k. A step towards proving this would be to
prove that NP ¢ SIZE (nk) for some constant £ > 1. In such case we say that NP
does not have fized polynomial-size circuits. We currently do not know how to prove
even such claim, however, an analog theorem for the class X% was proved by Kannan.

Theorem 3.4 (Kannan [1982]). For every k > 1, it holds that 35 ¢ SIZE (n*).

Proof. First we prove the following lemma.

Lemma 3.5. For every k > 1, it holds that 3§ € SIZE (n*).

Proof. Fix k > 1. Recall that for every large enough n > ng(k) € N, it holds that
SIZE (n*) C SIZE (4n"*) (see Theorem 2.11). For every n > no(k), let C,, be the

3-3

first circuit in lexicographic order (according to some reasonable defined encoding)
contained in SIZE (4n*) \ SIZE (n*).

We show that the language Ly = {z : Cj(z) = 1} is in 3§. Note that in order to
define Ly based on a circuit contained in SIZE (4n*) \ SIZE (n*), we must pick a
specific circuit in this set. That is why we picked the first one, according to some
reasonable defined order. The following proves that Ly € X§, merely by showing that
six alternating quantifiers are expressive enough to capture the definition of Lj.

3C of size at most 4n”

VC' of size at most n*

3y € {0,1)" st Cly) £ C'(y)

VC" that precedes C' in lexicographic order
3C" of size at most n”

Vz € {0,1}" C"(2) = C"(2)

Cla(z) =1

Given zx of length n, the first three quantifiers make sure that the circuit we simulate
has size at most 4n*, but is not equivalent to any circuit of size at most n*. The
following three quantifiers are responsible for us choosing the first lexicographic such
circuit. The last line simply simulates the unique circuit that answers all criteria.
This can be done in poly(n) time as the circuit has size 4n*, and evaluating a circuit
is done in time linear in its size. All other (somewhat implicit) operations such as
evaluating C' and C’ on y, check the size of the circuits C,C’, C”, etc, can also be
executed in time poly(n). O

To complete the proof of Theorem 3.4, note that if NP ¢ P/poly we are done.
Otherwise, by Theorem 3.1, ¥ = PH. In particular, we get that X§ = 3% and
Lemma 3.5 concludes the proof. [

We saw that for every constant k, there exists a language high in X% that does not
have circuits of size n*. In the next theorem we are trying to find a language in the
(potentially) smaller class P that does not have small circuits. We show a theorem
by Schnorr [1974] that gives a lower bound of 3n — 3 on the circuit size of PARITY
on n variables. This bound is tight. The best known lower bound for a function in
P is 5n — o(n), due to Iwama et al. [2002], using essentially the same method, but in
a significantly more involved manner.

The following theorem uses a technique called gate elimination. Given a circuit for
PARITY on n variables, we induce from it another circuit with exactly 3 gates less
that computes PARITY on n — 1 variables. By continuing this way until we are left

34

with only 2 input variables and at least 3 gates, we in fact show that the original
circuit must had at least 3n — 3 gates. Note that when an input to a gate is constant
(either 0 or 1), this gate can be removed from the circuit without changing the output
of the circuit.

Theorem 3.6. Let C' be a Boolean circuit that computes PARITY over n variables.
Then, size(C') > 3n — 3.

Proof. We prove the theorem by induction on the number of variables. For n = 2, this
is clear, as the circuit is Boolean and the PARITY function on 2 inputs is different
than AND and OR. Assume that the claim holds for n — 1, where n > 2, and let
C be a circuit that computes PARITY on n variables, x1,...,x,. Let g; be a gate
whose both inputs are variables and w.l.o.g its inputs are x1, zs.

Suppose that g; is an A gate (the case where g is an V gate is similar). We construct
a circuit that computes PARITY on n — 1 variables using |C| — 3 gates. Note that

PARITY (zs,...,x,) = PARITY (0, xo, ..., x,).

If both x; and x5 are not connected to another gate, then when z; = 0, the output
of C' doesn’t depend on x,. Therefore, both of x1, x5 must be connected to another
gate. Denote by g, # ¢, the gate that z; is connected to. The output of g; cannot be
the output of C'. Therefore the output of ¢; is an input to a gate denoted by g3 # ¢g1.
We now split the analysis to two cases.

Suppose g, and g3 are different gates.

x1 x2

When z; = 0, both g; and g5 have an input 0, and we can eliminate them from the
circuit. Since, the output of g; is 0 (recall that g; is an AND gate), g3 has an input
0, so we can eliminate g3 as well.

Suppose g, and g3 are the same gate.

3-9

%1 x2

When z; = 0, the output of go = g3 doesn’t depend on x5. Therefore, the output
of go = g3 cannot be the output of C' and it must be the input to another gate g,.
When z; = 0, both ¢g; and g5 = g3 have an input 0, and we can eliminate them from
the circuit. Since, the output of ¢; is 0, both inputs to g = g3 are 0’s, then also the
output of go = g3 is 0. In this case g, has an input 0, and we can eliminate g4 as
well.

By the gate elimination technique (which was explain right above the proof), the
proof follows. O

3.2 Restricted Circuits

As mentioned, our holly grail is to show that NP ¢ P /poly. We also discussed the
implications of EXP C P/poly (see Theorem 3.2). A potentially easier goal is to
show that NEXP ¢ P/poly. Unfortunately, the weakest uniform class for which we
do have super-polynomial circuit lower bounds is M Agxp, which we will prove later
in the course (see Theorem 6.13). Another natural subgoal would be to change the
right-hand side, that is, understand natural subclasses of P/poly. We turn to define
such subclasses.

Definition 3.7. A language L is in NC? if there exists a family of Boolean circuits
{C,}2,, a constant d, and a polynomial p such that:

o size(C,,) < p(n).
e Vn, depth(C,) < d.
e The fan-in of the AND,OR gates is 2.

o Vo Cp(z) =1 <= z € L.

36

Since each gate has fan-in 2, an NC° circuit cannot even read the whole input. In

particular,
AND, OR, PARITY,MAJORITY ¢ NC°.

We can only wish that all lower bounds would have been so easy!

Definition 3.8. A language L is in AC? if there exists a family of circuits {C,,},
a constant d, and a polynomial p such that:

o size(C,) < p(n).
e Vn, depth(C,) < d.
e The fan-in of the AND,OR gates is unbounded.

o Vo Cp(z) =1 <= z € L.

Although it is clear that the AND and OR functions can be computed in AC® (using
just one gate), it is not at all clear whether PARITY or MAJORITY are in ACP°.
We will have to invest some effort to prove that PARITY € AC® (see Theorem 4.3).
MAJORITY has the same fate.

We define NC* (ACY) similarly to NC° (AC?), except that the depth is O(log’n).
Observe that every AND/OR gate with unbounded fan-in can be simulated by a
circuit of polynomial size and depth O(logn) of fan-in 2 AND/OR gates, so AC' C
NC™. Thus,

NC° C AC°CNC'C AC'CNC?C --- C P/poly.

Are those containments strict? We do believe it, but our knowledge is very poor.
We do know NC° C AC? (since, e.g., OR € AC®\ NC°). It is easy to see that
PARITY € NC'. However, we will prove that PARITY ¢ AC® (see Theorem 4.3).
Therefore, we get AC® C NC*. This is all we know in terms of the strictness of the
containments. In this spirit, it is worth mentioning that we don’t even know how to
prove that NC! # PH.

The class NC! is surprisingly strong. It is easy to see that addition of integers
can be computed in NC*. It is somewhat more challenging to show that integer
multiplication can be done in NC*. The fact that division between integers can be
computed in NC! is considered a classical breakthrough, discovered by Beame et al.
[1986]. A classical result by Barrington [1989] shows that NC* is equivalent in power
to another non-uniform class that captures bounded space computation.

We define . .
AC=[JAC' |, NC=|[JNC.

i=0 =0

37

The last class we define is ACC® which is the same as the class AC® but allowing
also to use counters gates. This class is natural, since PARITY ¢ AC°, and we
would like to extend the model in order that simple functions (as PARITY) could be
implemented with constant depth circuits. The class ACCP(4) is the same class as
ACP except that we allow MOD; gates (MOD;(x) = 0 if 2 +--- +)y is divided by
i, and is equal to 0 otherwise). Formally, the class ACC° is defined as:

AcCC’= |] ACC(my,...,my).

In the literature our definition for ACC? is sometime written as ACC because ACC!
for ¢ > 0 hasn’t been studied much.

In order to get some feeling of the above definition we show ACC°(2,3) = ACC°(6).
Observe that MODg(x) = 0 iff MODy(x) = 0 and MODj3(z) = 0, so each MODg
gate can be implemented by depth-2 circuit with MODy and MOD3 gates. The other
direction is also easy, since MODs(x) = 0 iff MODg(2x) = 0, a MOD;3 gate can be
easily implemented by a MODyg gate, and similarly MOD, gate can be implemented
by a MODg gate.

Another easy observation is that ACC® C NC'. We prove it by translating each
MOD; gate into a circuit with log(n)-depth. It is easy to check that the resulting
circuit is indeed in NC'. Formally, for every constants i, j € N, we define the gate
MOD; (x) = 0 iff 1 + - - - 4+ 2|5 has residue j in division by i. We prove by induction
on n that MOD, ; gate can be computed by a depth O(logn)-circuit. For simplicity
we assume n = 2.

For n = 2, the claim is true. Assume that for every constants 7,7 € N we have a
circuit of depth O(logn) that computes MOD,; ;(z) for = of length n. Consider x of
length 2n. It holds that

MODZJ(I') =1 «<— \/ (MODin(l‘l, c.. ,I‘n) A\ MODi,j—k(mn—&—ly . ,l’gn))7

where the subtraction j — k£ is done modulo 7. Using this observation it is easy to see
how to build a circuit of depth O(logn) that computes MOD; ;(x) for = of length 2n.
Now let us briefly summarize two main results associated with those classes. The
first result is by Razborov [1987] which was later simplified by Smolensky [1987]. The
result shows that PARITY ¢ ACC?(p) for all odd prime p. In particular, this result
reproves the result of Furst et al. [1984] showing that PARITY ¢ AC°. We prove
this in Theorem 4.3.

Theorem 4.3 states that, as expected, ACC®(p), for a prime p # 2, is not so powerful,
as it cannot even compute a simple function like PARITY. What happens when we

3-8

allow for two types of counter gates, or equivalently (as shown above) one counter
that is not a prime power, say 6. Is there an ACC(6) circuit for SAT?

Barrington [1989] raised the following open problem: are all languages in NEXP
solvable by polynomial sized depth-3 circuits with unbounded fan-in AND, OR, NOT
and MODg gates? The expected negative answer had to wait for more than 20 years.

Theorem 3.9 (Williams [2011b]). NEXP ¢ ACC°

Presenting Williams’ proof is the main goal of this course, and we build our way
towards it.

3.3 Uniformly Generated Circuits

In some cases one is interested in circuits that can be constructed uniformly, by a
Turing machine. That is, given n as input, the Turing machine should print out the

I circuit C,, in some family of circuits {C,}. In such case we say that the family

nt
of circuits {C,} is uniformly generated. More precisely, if the Turing machine runs
in poly(n)-time, the generated circuit family is called P-uniform. This notion was
introduced by Beame et al. [1986].

Obviously, there is no point talking about families of circuits in P/poly that are
P-uniform. Indeed, the class of languages decided by these families is exactly P.
Nevertheless, there is much interest, for example, in families of circuits of low-depth
(say, NC') that are P-uniform (we believe that P # NC', and even that P # NC,
though currently we are unable to separate even PH from NC?').

There are other, stronger notions of uniformity, that is more suitable for small circuits,

such as ACP. In this course however, we will not cover this theory.

3-9

LECTURE 4
RAZBOROV-SMOLENSKY THEOREM; ARITHMETIC CIRCUITS

NOVEMBER 22ND, 2012

LECTURER: Gil Cohen SCRIBE: Rani Izsak, Ilan Komargodski

This lecture consists of two main parts. The first is presenting the famous Razborov-
Smolensky Theorem, and the second is an introduction to arithmetic circuits.

4.1 Razborov-Smolensky Theorem

In this section we present the Razborov-Smolensky Theorem, which gives a lower
bound related to ACCP circuits. Our presentation is highly based on the presentation
of Arora and Barak [2009]. The reason we present Razborov-Smolensky Theorem in
these notes is the motivation it gives for the problem that was finally resolved by
Williams, as discussed in Lecture 3. We, however, do not use Razborov-Smolensky
for the proof of Williams’ result.

We begin by recalling some definitions from Lecture 3. We recall some definitions
related to ACC? circuits (see also Section 3.2).

Definition 4.1. For any m € N, the MOD,,, gate outputs 0 if the sum of its inputs
is 0 modulo m, and 1 otherwise.

Definition 4.2. Let my, ..., m; > 2 be integers. A language L isin ACC®[my, ..., m4],
if there exists a circuit family computing it, such that:

e The circuits are of polynomial size.
e The circuits are of constant depth.

e The circuits are consisted (only) of the following gates: —, A,V and MOD,,,,
.., MOD,,,.

A language L is in ACCP if it is in ACC®[my,...,my| for some & € NU {0} and
integers my,...,my > 2. For convenience, we sometimes refer also to circuits as
belonging to ACC® (meaning, the circuits are restricted as above).

Note that ACC? is just “AC® with counters” and that the definitions are actually
identical, except that ACC? is allowed to have also “counters” (i.e. MOD gates). In
particular, AC® is completely identical to ACC®[my, ..., my] for k = 0. Note also
that for any k € N, ACCK is defined analogously to ACX.

4-1

As stated before, in this section we present the Razborov-Smolensky Theorem. This
is an impressive lower bound for ACP circuits extended by any one type of a prime
MOD gate (or alternatively, for ACC? circuits restricted to have only one type of a
prime MOD gate).

Theorem 4.3 (Razborov [1986]; Smolensky [1987]). Let p,q be distinct (i.e., p # q)
primes, such that q # 2. Then, it holds that

MOD, ¢ ACC°[q].

We give a proof for the special case of p = 2 and ¢ = 3. That is, we show the MOD,
function (i.e. the PARITY function) cannot be computed in ACC®[3].* The proof
can be generalized to give Theorem 4.3 (see also Section 2.1 in Viola [2009]). The
proof is by a method known as the method of approzimating polynomials that was
originated by Razborov [1986] and then strengthened by Smolensky [1987].

It is a major open problem whether this lower bound may be extended (or generalized)
to circuits that are allowed to have more than one type of MOD gate.

Proof of Theorem 4.3 for p =2 and q = 3.
The proof is composed of 2 steps:

Step 1 We show that for every ¢ € N and any ACCP°[3] circuit C' with n inputs,
depth d and size s, there exists a polynomial p € Fs[zy,...,z,] of degree at
most (2¢)? which agrees with the output of C on at least 1 — o fraction of the
inputs. If we set 20 = ¢ - n'/?**, where ¢ is a constant smaller than 1, we obtain
a polynomial of degree at most c¢?y/n < cy/n that agrees with C on at least
1— s/(20/2en'*) fraction of the inputs.

Meaning, for any small enough ¢ < 1 and circuit C € ACC°[3] with n inputs,
depth d and size s, there exists a polynomial p € Fs[zy, ..., x,] such that:

o deg(p) <c-vn
° Pl“xe{o,1}n[C(x) #* p(x)] <s- 2—(1/2).C.n1/2d

Step 2 We show that no polynomial in F3[z1, ..., z,] of degree at most c¢-/n agrees
with MOD, (i.e. PARITY) on more than 32 fraction of the inputs.

Meaning, for every polynomial p : F§ — F3 of degree at most ¢ - y/n, it holds
that

1
Pr (@) # MODa(@)] > =1

* Indeed, we defined ACC® in terms of languages and MOD; is a function, not a language...
However, it is straightforward to define a language for any Boolean function.

4-2

Together, the two steps imply that for any depth d circuit computing MOD,, its size
s must be exponential in nfld, thus proving the theorem. We turn to the proof of both
steps.

Step 1 Let £ € N and let C' be an ACC°[3] circuit with n inputs, depth d and size
s. We show how to construct a polynomial in F3[zq,...,x,] that agrees with C'
on at least 1 — 5 fraction of the inputs in {0,1}".. We denote the elements of
the field F3 by {—1,1,0}. Since we only care about agreement with C', whose
output is Boolean, we only care about the output of the polynomial over the
Boolean cube.

The proof is by induction on the depth d of the circuit. For d = 0, we simply
have for an input x;, the polynomial z;. Correctness is straightforward. For
d =d > 0, we apply the theorem by induction for any 0 < d < d and show
how to extend it for a gate g at height d’. We separate the proof by the possible

type of g:

— gate: Let gy_1 be the gate that its output is the input of g. Then, by the
induction hypothesis, we have an approximator g1 € F3[xy,..., z,] for
the original circuit whose output gate is gy_;. We may use it and have
g=1— gy_1 as an approximator for g. Note that this introduces neither
new error nor higher degree. By no error we mean that if on input x the
original polynomial o _;(z) agreed with the output of the circuit without
the — gate, then g(x) will necessarily agree with the output of the circuit
with the — gate.

MODj; gate: Let g} ,...,g% | be the gates that their output is an input of
g. Let gt | ... g% | be their respective appoximators. Since we have

assumed we are dealing only with Boolean inputs, we may have the ap-
2

proximator (Zle gg,_1> . This introduces no new error and it obeys the
requirement of Theorem 4.3, with respect to the degree, since by the in-
duction hypothesis, each approximator g%, , has degree at most (26)(5”_1)
and then we have degree at most 2 - (20)¢~1 < (20)?, as desired.

V gate: Let gl ,,...,g% | be the gates that their output is an input of g.
Let gb_,,...,g% , be their respective approximators. Firstly, note that
the naive approach, of using the polynomial 1 — Hle(l — g% ,) as an
approximator, does not work, since the degree of the approximator may
be (much) too large. We show another approach that does work. We
randomly pick ¢ subsets of indices of the inputs of ¢g: Si,...,S,. Each

such subset contains each index with probability exactly %, independently.

4-3

We then compute for each subset S; the polynomial pg, = <Z ies; gé,_l)Q.
Finally, we compute the V of these ¢ terms, using the naive approach (i.e.,
we composite these polynomials with the polynomial that naively computes
V). It is straightforward to verify that the degree requirement is obeyed
(since deg(p) < ¢-max;ep deg(ps,) < €-2(20)4" = (20)%), but this solution,
not surprisingly, introduces some new error. Additionally, we would like to
have an explicit polynomial (a polynomial cannot flip coins...). We bound
the error and then get rid of the randomness (that is, derandomize the
construction).

Bounding the error: We first show that the probability of error for a
single choice of indices S; is bounded by % Notice that the output
of an V gate is 1 if and only if at least one of the inputs is 1. Hence
if the output of the V gate is 0, it is straightforward to see that the
approximator gives 0, as well, regardless of the random choices. For
output 1, all we need to show is that with probability at least % it
holds that Zjesi Gy is either -1 or 1. Let ks be the index of the
last 1 in the inputs of the V gate. Consider the partial list of indices
1,..., kst — 1. We separate to cases (again):

\/f:it_l gfl,_l = 0: If k. is chosen to S;, we have overall sum of 1,

and thus we are fine with probability %, in this case.

Klacp —1 4 . . .
\/i:it gy, = 1: We are fine in any case; if k. is not chosen to

S;, the 1 remains; otherwise, we have -1, which is fine, as well.

\/?:it_l 93/_1 = —1: We are fine if ks is not chosen to S; (analo-
gously to the case of partial sum 0), and thus, again, we are fine
with probability %

Since the subsets Sy, ..., .S, are chosen independently, the error of the

computation of the V gate is at most 1/2, as desired.

Getting rid of the randomness: We have shown thus far that for any
input (for which the inputs to the gate are all correct) the probability
of error, over the random choices of the subsets Sy, ..., Sy is bounded
by 1/2¢. If we show the statement with reversed quantifiers, i.e. that
there exist subsets Sq,...,.S, such that the probability of error over
the inputs is bounded by 1/2¢, we are done, since we may simply plug
in these subsets into the construction. The latter is true, by just
averaging over all inputs and choises of Si,...,S, (this is a simple
application of the the probabilistic method). Note, however, that
using the last argument makes the proof non constructive. That is,

4-4

it does not give us an efficient way to find these subsets Si,...,S; in
order to construct the polynomial that is proved to exist.

N gate: The approximator polynomial for A gates may be concluded by using
the argument for V gates together with De Morgan’s laws.

Since there are s gates in the circuit C, and since our maximal possible proba-
bility of error, for any gate, is 1/2¢, we have by the union bound that the overall
probability of error is at most s/2°.

This concludes the proof of Step 1. O

Step 2 We now show the correlation proved to exist in Step 1 does not hold for
MOD, (PARITY). Formally speaking, let f € Fs[zy,...,z,] be a polynomial
of degree bounded by c¢-+/n and let G' = {z € {0,1}" : f(x) = MODy(x)} be
a set. We show that for an appropriate choice of ¢, |G| < (g—g) 2", Firstly, we
change our groundset to be {—1,1}, i.e., we define for any input variable z;,
another, transformed, input variable y; = x; + 1(mod 3). That is, 0 becomes 1
and 1 becomes -1. Let G C {—1,1}" be the output of the transformation on
the input variables G’ C {0, 1}", and let g be the transformed polynomial (i.e.
the polynomial defined as f defined, but on the y;s). Then, |G| = |G’| and the
degree of g has not been changed (as we only conducted a linear transformation),
and in particular has not exceeded ¢ - v/n. This means, we may now show the
desired claim using G and g. Let’s see how does MODs looks like with respect
to the transformation:

1 = [, y=-1
MODy(z1, ..., x,) = H;*Iy
0 = Jlu=1

Intuitively, all we should now show is that any degree c¢-/n polynomial cannot
approximate well the polynomial above, which is of degree n (this seems very
reasonable...). Formally speaking, let F; be the set of all possible functions fg :
G — {0,1,—1}. We show that |F| < 3(3)2" which concludes Step 2, since (of
course) |Fg| = 3/¢1. For this, we do another (last!*) transformation. We show
that for any function f; € Fi there exists another polynomial gg : Fy — Fs
with monomials of degree bounded by % + ¢ - v/n, totally agreeing with it on
G. Then, finally, we just bound the possible number of the latter polynomials,
concluding the desired. Let fo € Fg.

*but composed of (simple) sub-transformations...

4-5

Transforming to gg: Of course, there exists some (non further restricted)
polynomial g, : F§ — F3 (totally) agreeing with f; on G. Since G C {—1,1}",
for any input ;, we have y? = 1, and therefore, any exponent may be reduced by
any even number. In particular, this means g;; may be transformed to another
polynomial which is multi-linear (i.e. without any exponent greater than 1). To
finish the transformation, we just need to show the existence of a polynomial
that does not have large degree monomials, that still agree with fg on G. Let
[T.c; vi be one of the monomials with |I| > %. Denote I = [n]\ I. We transform
this monomial to:

HyiHyi:g(yh-u,yn)-Hyi .
=1

i= i€l iel

which has degree at most & 4 ¢ - /n (note that this is no longer a monomial,
but rather a polynomial). This is correct since by our assumption for Step 2,
g has degree at most c - y/n, and since [],.;v; has degree strictly less than %
(since |I| > %, by our assumption for this specific monomial). This gives the

desired properties of the transformation.

It is left to bound the possible number of polynomials with degrees of all mono-
mials bounded by % +c-y/n. It is straightforward that this number is bounded

by:
g(number of monomials with degree at most Z-+c.v/n)

(since any monomial may appear with coefficient 0 (i.e., to not appear), 1 or -1).
The number of monomials with degree at most § + ¢ - /n is bounded by:

gtevn
>
(5
d=0
which is upper bounded by (%) 2™ for some constant ¢ by bounds on the tails
of the binomial distribution. This concludes the proof of Step 2. n
The proof of Theorem 4.3 is concluded from Steps 1 and 2. O]

4.2 Introduction to Arithmetic Circuits

In this section we introduce arithmetic circuits. While a Boolean circuit computes a

Boolean function, an arithmetic circuit computes a polynomial (think of the deter-

*Note that this equality only holds over the Boolean cube.

4-6

minant of a matrix for example). Studying arithmetic circuits is natural on its own,
but our interest in them is their application for our main goal - proving William’s
result. For more information, we refer the reader to a recent survey by Shpilka and
Yehudayoff [2010].

We first define the basic notions, following Arora and Barak [2009]. In general, an
arithmetic circuit computes a polynomial over a field F. The following definition is
almost exactly as the definition of Boolean circuits in Section 2.2:

Definition 4.4. An n-input arithmetic circuit is a directed acyclic graph with n
sources and one sink. All non-source vertices are called gates and are labeled with
one of {4, x}. In this lecture we consider gates with fan-in 2.

Definition 4.5. A polynomial P over a field F is the (identically) zero polynomial if
all its coefficients are 0.

4.2.1 The Determinant and the Permanent

In this section we introduce the Determinant and Permanent polynomials.

Definition 4.6. The determinant of an n x n matrix X = (X;;) is defined as

Det(X) =)~ (=1 [[io),
=1

O'ESTL
where S, is the group of all n! permutations on {1,2,...,n}.

The determinant of an n x n matrix X = (Xj;) can be computed using the familiar
Gaussian elimination algorithm. This algorithm uses at most O(n?) addition and
multiplication operations and thus one obtains an arithmetic circuit of size O(n?).
The (famous) determinant polynomial is a nice example for the fact that a polynomial
may generally have exponentially many monomials (in this case n!), but nevertheless,
be computable by a family of polynomial-size circuits.

The determinant polynomial is a complete problem for the class VP (also known as
AlgP 1), defined as follows:

Definition 4.7 (VP, Informal). VP is the class of polynomials f of polynomial
degree that have polynomial size arithmetic circuits computing them.

For a formal definition, see for example Arora and Barak [2009].

4-7

Definition 4.8. The permanent of an n x n matrix X = (X;;) is defined as

Perm(X) = Z ﬁxio(i),

oc€Sy =1
where S, is the set of all n! permutations on {1,2,...,n}.

The permanent polynomial that, at first sight, seems to be very similar to the deter-
minant, is conjectured to be much harder to compute. In particular, it is conjectured
that there is no family of circuits of polynomial size that computes it. The permanent
polynomial is a complete problem for the class VNP (also known as AlgNP /poly)
Valiant [1979b]:

Definition 4.9 (VNP, Informal). VNP is a complexity class of polynomials such
that the coefficient of any given monomial can be computed efficiently (i.e. by a
polynomial size arithmetic circuit).

For a formal definition, see for example Arora and Barak [2009].

4.2.2 Bipartite Matching and the Determinant

This section is partially based on lecture notes of Rubinfeld [2006]. Let’s consider the
following motivating decision problem.

Problem 4.10. Given a bipartite graph G = (V' UU, E), does a perfect matching exist?

We show an algorithm for Problem 4.10 that does not rely on network flows, but is
based on algebraic techniques. Let G = (VUU, E) be a bipartite graph. We construct
the matrix Ag = [a;;], known as Edmond’s matriz (see e.g., Motwani and Raghavan
[1995]), where a;; gets some free variable X;; if (i,7) € E, and a;; = 0 otherwise. We
prove the following theorem.

Theorem 4.11. Given a bipartite graph G = (VU U, E), G has a perfect matching
if and only if Det(A¢) # 0.

Proof. Recall that
Det(Ac) = Y (=) [zioo-
oESh =1

Observe that each permutation o corresponds to a possible perfect matching, and
vice-versa, in the natural way, namely ¢ is matched to o(i). The product [[}_; i@
will be non-zero if and only if V;ep,) 1 (vs,v5,4)) € £. In this case, o corresponds to a
perfect matching in G. The polynomial Det(Ag) is non-zero if and only if any term in

4-8

the determinant is non-zero (notice that there are no cancellations since every term
corresponds to a different monomial that differs in at least one variable). O

In other words, in order to check whether there is a perfect matching in GG, all we need
to do is to check if Det(Ag) is the (identically) zero polynomial. This problem can
be reduced to a famous problem known as Polynomial Identity Testing (henceforth
PIT):

Problem 4.12 (PIT). Given two polynomials P and @), is it true that P = Q7

A straightforward way to solve this problem is just by expanding P and () and
comparing their coefficients (one by one). However, these expansions may result in
exponentially many terms (in the number of variables) which, in turn, results in an
inefficient algorithm.

We show an alternative algorithm solving Problem 4.12 in polynomial-time, but using
randomness. The algorithm we present actually checks whether a polynomial is the
zero polynomial (this is known as the ZEROP problem). Since for any polynomials
P and @, P = Q if and only if P — @ = 0, this algorithm solves (also) Problem 4.12.
This algorithm may work for any representation of the polynomial as long as there
is an efficient algorithm for evaluating the polynomial at any input point z. That is,
since there exists a family of polynomial-size circuits computing the determinant of
a given matrix (or, even better, an efficient algorithm for doing so), we may use the
algorithm we show below, in order to solve Problem 4.10, as well.

Algorithm 4.13. For an input polynomial (over Z)* of degree d, sample integer ran-
dom variables in the range [10d], and then evaluate the polynomial on these points.
Return TRUE if and only if all the evaluations result with 0 value.!

The analysis of Algorithm 4.13 follows, straightforwardly, from a lemma known as
the Scwartz-Zippel Lemma:

Lemma 4.14 (Zippel [1979]; Schwartz [1980]). Let p € Z[x1, xs, . .., z,] be a non-zero
polynomial of degree d. Then, it holds that
d
VSCZ: Pr p(ry,...,r) =0 < —

71,00, TnERS - |S| ’

* Arithmetic circuits are interesting over any field, and also over the ring of integers Z. In addition,
we note that a similar technique works for finite fields.

TA circuit of size s might compute a polynomial of degree 2° and thus the numbers that can
be computed along the way could get as high as (25)25, and so just representing this numbers will
require exponential number of bits in the input length. One solution to this problem is to do all the
computation modulo a randomly chosen prime. Details are omitted.

4-9

Note that it is not known whether Algorithm 4.13 may be derandomized. Moreover,
it is not known at all whether PIT may be solved deterministically in polynomial-time;
in fact it is a major open problem:

Open Problem 4.15. Does there exist a deterministic polynomial-time algorithm solv-
ing PIT?

In Theorem 7.1 we show that if PIT can be derandomized, some kind of circuit lower
bounds follow. Optimistic would consider such result as a motivation for deran-
domizing PIT. The more pessimistic of us might consider this result as a barrier for
derandomizing PIT.

4-10

LECTURE 5
RANDOMIZATION IN COMPUTATION

NOVEMBER 29TH, 2012

LECTURER: Gil Cohen SCRIBE: Inbal Livni, Shani Nitzan

5.1 Complexity Classes for Randomized Computa-
tion

A priori, it is not clear that there is any relation between randomized computation
and circuit lower bounds. But in fact, they are as related as they could be. The
bottom line is that circuit lower bounds will imply derandomization of any efficient
algorithm, and vice versa! Even without a formal treatment, one can appreciate such
a deep discovery, which I personally consider to be one of the most joyful pearls in
complexity theory (yes yes, PCP is cooler..)

To the light of that, it is clear that a formal treatment of randomness in computation
is necessary in a self contained document concerning circuit lower bounds. This
treatment is what will occupy us in this lecture. We define probabilistic Turing
machines and complexity classes that capture randomized computation. We then
discuss the relations of these complexity classes to familiar classes. We end this
lecture with a derandomization of one specific and simple randomized algorithm.

Definition 5.1. A Probabilistic Turing Machine is a Turing machine that has an
additional state, gsample- If the machine is in state gsample the next state will be either
Qo or ¢, with probability % for each state.

An equivalent definition is a Turing machine that has an additional tape, with random
bits on it. This tape is read only and the machine can only go forward on it.

We now define complexity classes that capture randomized computation. The first
is analog to DTIME (-) and the second to P. The initials BP in both definitions
stands for “Bounded Probabilistic”, as the probability of error is bounded.

Definition 5.2. Let 7: N — N. L € BPTIME (T'(n)) if there exists a probabilistic
Turing machine M that halts within O(T'(n)) steps on input of size n, such that

o Vxe L, PriM(z)=1]

v
[SS])

o V¢ L, PriM(z)=1]<

Wl

o1

where the probability is over the random bits of the Turing machine, and not over
the inputs.

Definition 5.3.
BPP = | | BPTIME (n°)

c>1

Notice that P C BPP as DTIME (f(n)) € BPTIME (f(n)) for every f. The class
BPP arguably models efficient computation better than P, as (arguably) random
bits can be efficiently obtained in the real world (unlike, say, non-determinism). This
is supported by the tendency of researchers in algorithms to settle for randomized
algorithms for all practical purposes.

It is not known whether P is strictly contained in BPP. An immediate upper bound
on efficient randomized computation is given by BPP C PSPACE. To see this,
notice that when fixing the random string in a BPP algorithm, the randomized
algorithm is in fact a polynomial-time deterministic algorithm. One can reuse the
same space in order to simulate this deterministic algorithm for every possible random
string, and count for how many random strings the computation ends in the accepting
state. Since the length of the random strings is polynomial in the input length (as it is
bounded by the running time), the counter will count only to something exponential
in the input length, which requires only polynomial space.

5.2 Efficient Randomized Computation vs.
Non-Determinism

Unfortunately, the tradeoff between efficient randomized computation and efficient
verification (that is, NP computation) is much less understood. That is, it is not
known what is the relation between BPP and NP. Nevertheless, going up one level
in the Polynomial Hierarchy, we have the following result.

Theorem 5.4 (Sipser [1983]).
BPP C X2 N IIE

In fact, Sipser “only” proved that BPP C PH. The (potentially) stronger result
stated above is due to Gacs. It is worth noting that Theorem 5.4 has found many
alternative proofs, e.g., Nisan and Wigderson [1994]; Goldreich and Zuckerman [1997].
We will follow a proof by Lautemann [1983].

o2

Although we won’t use Theorem 5.4 in these notes, we find its proof to be quite
insightful for randomization as well as for the expressive power of alternating quan-
tifiers.

Proof. * Since BPP is closed under complement, it is enough to show BPP C 5.
Suppose L € BPP. Then using repetition (see Lemma 5.7), there exists a polynomial-
time randomized Turing machine M such that

x € L = Pr[M(xz,r) accept] > 1 — 272"

x ¢ L = Pr[M(z,r) accept] < 27"
Let m = poly(n) be the number of random bits M uses for inputs of length n.

Fix x € {0,1}" and consider the set S, C {0,1}"™ of all random strings for which
x € {0,1}" is accepted by M. That is,

res, < Mx,r)=1.

We have a dichotomy: if x ¢ L then |S,| < 2m~2" while if x € L then |S,| >
2™ . (1 —272"). For a vector u € F3* and a set S C F3* define the shift of S by u as

u+S={u+s:seS},

where addition is vector addition over F%* (i.e. bitwise XOR). We claim the following
lemma.

Lemma 5.5. For k = [m/n], © € L iff there exist uy,...,ur € F3 such that
Uf:l (ui + ;) = Fy".

Proof. For x ¢ L, we know that S, is small, and thus for any k vectors uy, ..., uy €
Fo*:

k

Juwi+ So| <k |S,] < k-2 < 2m

i=1

for n large enough.

For x € L, we will use the probabilistic method to show the existence of vec-
tors uy,...,u, € F3J such that Ule u; + 5, = Fy'. Choose uniformly at random
Uy, ..., ur € FJ'. What is the probability that a certain element y € F3' is not cov-
ered by Ule u; + S,7 The probability that y is not covered by one shift, y ¢ w; + S,,
is exactly the probability that y + u; ¢ S,. Since y + u; is a uniformly random

*The proof of this theorem was scribed by Avishay Tal.

-3

vector in FJ') this probability is exactly 1 — |S;|/2™. Since wuq,us, ..., u; are chosen
independently:

Pr[y is not covered] = (1 — |S,|/2™)F < (272)m/m = 272m
By union bound
Pr[3y which is not covered] < 2™ .27 < 27

Thus, most choices of uy, ..., u; give Ule u; + S, = Fo. O
We return to the proof of the claim. Using Lemma 5.5 we know

k
r € Le Juy,...,u, € {0,1}" Uui+Sx:IF’2".
i=1

We can write this equivalently as

k
re€Ll e Juy,...,u €{0,1}" Vye{0,1}™ \/M(x,y—l—ui).

=1

As the inner expression \/f:1 M (z,y + u;) can be computed by a polynomial-time
Turing machine, and all strings in the quantifiers are of length poly(n) this shows
that L € X5. [

The lack of understanding regarding the tradeoff between randomization and non-
determinism is also given by the following major open problem:

Open Problem 5.6. Prove that BPP is strictly contained in NEXP.

5.3 Efficient Randomized Computation vs. Non-
Uniformity

We now turn to discuss the tradeoff between randomization and non-uniformity. For

that we will need the following lemma, which shows that the constants %
the definition of BPP are arbitrary. In fact, even when replacing them with an

and % in

exponentially vanishing quantities, the class BPP remains as is.

Lemma 5.7. For any L € BPP and any constant ¢ > 0, there exists a probabilis-
tic Turing machine that on input x runs in polynomial-time in |z|, and fails with

clz|

probability less than 2~

54

Proof. Let L € BPP. There exists a probabilistic Turing machine M, that runs in
polynomial-time, such that

2

Vo e L,Pr[M(z) =1] > 3

and 1
Vo ¢ L,Pr[M(z) =1] < 3

The proof idea is as follows. Given M, x one can think of M (z) as a random variable
that can be sampled efficiently (as the running time of M on z is polynomial in |z]).
If M accepts « this random variable has high expectation (at least %), whereas if
M rejects x, the random variable M (z) has low expectation (at most 3). We now
show that a polynomial number of samples of M(z) is enough to approximate the
expectation of M (x) to within, say 1/10, with probability 2=¢/*I. This concludes the
proof as + 15 < 3 — <.

We now make it formal. For a number m to be determined later on, we con-
struct a probabilistic Turing machine M’ that on input x, will estimate E[M (z)] =
Pr[M(z) =1]. M’ will simulate M on z for m times independently, and calculate
the ratio of acceptance, denoted by

. number of runs in which M accepts

m

. . . 2 1 .- .
M’ will accept if and only if A > 5 — §5. To calculate M’ probability of mistake,

denote by A; the random variable M (x) on the ¢’th run. Using this notation,

By linearity of expectation, we have that E[A|z € L] > 2, and E[A|z ¢ L] < 3. The
expectation of E[A|z € L] and E[A|z ¢ L] are far away, which makes it possible to
distinguish between the two cases with high probability. M’ is mistaken only when A
differs from its expectation by at least m/10. Since the simulations are independent,

29

we can bound the probability for error by Chernoff’s inequality.

i 1
Pr(M'(z) =0z € L] = Pr A<__E xEL}
r 1
<Pr|A-E[A] < ——
I 10
(1 & 1 & 1
' m ; m IZI - 10]
[m m 1
|Lae (Sl <
S@_Q(ﬁm)Q%
—e_s)om7
and similarly
Pr[M'(z) = 1|z ¢ L] = Pr Azg_ﬁ ngL]
i 7
=Pr|A-E[A] > —
i 30
1 & 1 & 7
=Pr|—- A, —E |— Al > —
[m m 7
=P A, —E Al > —
DS _BOm]
§6_2(%m)2%
Se’%m.

We conclude the proof by choosing t

he minimal m such that e~ 5™ < 27¢m,

that m = O(n), which concludes the proof.

We can now show that non-uniformity is, in some sense, stronger than randomization.

Theorem 5.8 (Adleman [1978|). BPP C P/poly.

Before proving the theorem, it is worth noting that it implies that Open Problem 5.6

is easier (or not less hard) than showing that NEXP ¢ P/poly.

Proof. Take L € BPP. By Lemma 5
Turing machine M, that has a probability of error less than 2= (+1 . Let t,, which

-6

.7 there exists a polynomial-time probabilistic

is polynomial in n, be the maximal number of random bits that M uses, running
on inputs of length n. Denote by M,(x) the result of M on x, using the string r
as the random string. As before, M, is a deterministic Turing machine. Since the

(n+1

probability of error is less than 2~("+1) for any z of length n,

|{T € {0,1}"|M,(z) is wrong }| < 9~ (1) . otn,
Taking the union bound of these sets for all x € {0, 1}"
[{r € {0,1}"|3z € {0,1}", such that M, (z) is wrong }| < 2" .27+ 2 = ofn 1,

Meaning that there are at least 2»~! random strings that when M uses them on any
input of length n the result is correct. For any n, let 7, be such string. For every
n, the deterministic Turing machine M, is correct for all inputs of length n, and
runs in polynomial-time. From the proof of P C P/poly (see Theorem 2.12), for any
polynomial-time Turing machine there exists a polynomial size circuit C), such that
Cy(z) = M, (x). This concludes the proof, as the family {C,,}, decides L. O

5.4 P vs. BPP

We postponed the perhaps most natural question of all - does randomization con-
tributes to efficient computation? In other words, is P strictly contained in BPP?
There are examples of computational problems that we do know how to solve ef-
ficiently with randomness and do not know how to efficiently solve without. One
prominent example would be the PIT problem, introduced in Lecture 4. At the early
days, the answer to this question wasn’t clear, and people might had the tendency to
think that the containment is strict.

Nowadays, it is believed by many that P = BPP, and it will be hard to find a
complexity theorist that doesn’t believe that any randomized algorithm can be sim-
ulated by a deterministic subexponential time algorithm. Thus, randomization is, in
some sense, an algorithmic design tool - it doesn’t believed to add to computational
power, but it is certainly a helpful way of thinking of solutions to computational
problems. Moreover, even in cases where we do have deterministic algorithms, it is
quite common that randomized algorithms are simpler and faster.

How would one prove that P = BPP? or, even simply improve upon the trivial
derandomization obtained by enumerating all possible random strings, and taking
the majority vote? The key idea is to “convert” an efficient randomized algorithm to
a deterministic one by exploiting the fact that the algorithm is efficient, and thus, may
not have enough time to “appreciate” the purely random string we feed to it. Thus, the

o7

conversion is done by replacing the completely random string with a “pseudorandom
string” - a string that looks random to an efficient observer. The hope is that the
sample space of pseudorandom strings has small support, and thus, one can simulate
the algorithm on all pseudorandom strings, and answer according to the majority.
This procedure, which is a natural method for derandomization, might seem a bit
abstract, thus we find it helpful to start with an example. In the next section we
derandomize one simple efficient algorithm. After all, if you want to derandomize all
efficient algorithms, it is wise to start with a simple one. As it turns out, derandom-
izing this simple algorithm is extremely fruitful, and we will use it in the proof of
Williams Theorem (see Lecture 10).

5.5 Small-Bias Sets

The algorithm below is an example of a probabilistic algorithm for which we do know
how to efficiently construct a sample space with support that has a polynomial-size
(as appose to exponential size). The algorithm, given x € {0,1}" as input, returns a
parity of a random subset of z’s bits.

Random Parity Algorithm: On input x € {0,1}"

1. Sample n random bits, y ~ {0, 1}".
2. Return < z,y >=3>"" | z;y; (mod 2).

Although this algorithm might look like an odd “toy example”, its pseudorandom
sample space is extremely important and central in theoretical computer science,
with an overwhelming range of applications!

Denote the algorithm by A. The returned value by this algorithm, for every x # 0,
satisfies Pr[A(z) = 1] = 3, because y is chosen uniformly at random. In other words,
the bias of A(z), which is defined as |E, [(—=1)4®] | is 0 for every input x # 0.

One can prove (this is not hard) that the only way to get a zero bias for any non-zero
input will require sampling a completely uniform string y ~ {0, 1}". Therefore, our
goal is to find an algorithm, that samples y from a polynomial-size set S C {0,1}",
and gives a bias close to 0 for all x # 0.

Definition 5.9 (Naor and Naor [1990]). A set * S C {0,1}" is called e-biased if
Vo € {0,1}™\ {0} it holds that

[Eys (1)< <e.

*In fact, S might be a multi-set as it is the support of some sample space. Still, the term
“Small-Bias Set” is somewhat more common than “Small-Bias Sample Space”, and se we stick to it.

-8

How small can we expect an e-biased set to be, as a function of n,e? This question
might be a bit odd at first look, after all, how can we hope to know something about
the size of e-biased sets without actually finding one? In other words, is it easier
to show that an e-biased set of such and such size exists without finding one? The
answer to this question is yes, and this is the case in many situations where one wants
to mimic random behavior. The idea is to show that a sufficiently, yet not too large
random set S C {0, 1}" is, with positive probability, an e-biased set. This gives us no
clue on how to find such a set efficiently yet assures us of its existence. We actually
used this method, known us the probabilistic method, several times before (e.g., in the
proof of Theorem 4.3 and Theorem 5.4).

Lemma 5.10. For everyn € N and € > 0 there exists an e-biased set S C {0,1}" of
size S = O(n/e?).

Proof. Let S be the multiset {y1,...,yr}, where each y; is sampled uniformly from
{0,1}" independent of all other y;’s (so it’s possible to have repetitions). For input
x € {0,1}", define the random variables [; , =< z,y; > and U, = Z§:1 I; » (where
the sum is not modulo 2). Note that

k k
s [0 [<2 = e (125,049 5
By linearity of expectation,
k Lk
E[Ux] = ZE[IJ}:L’] = Z 5 = 5
j=1 j=1

Therefore, by Chernoff bound,

Pe 10, - Blo)| >

NN

'E} §2-e’2'('T:2'e’T.

By taking the union bound over all z € {0,1}"\ {0},

2

Pr [Elx,]Ux — E[U,]] > ge] <o.2.eF

52 . o1 .
For k > i—’;, the expression 2" - 2 - e~"5 < 1. This means that the probability of this
“bad event” (of a random set not to be an e-biased set) is strictly smaller than 1 (and
in fact, exponentially small), and therefore there exists an S of size O(n/e?) which is

e-biased. n

-9

In their seminal paper, Naor and Naor [1990] not only defined small-bias sets, but
also gave an explicit construction of such sets with size O(n/e¢), for some constant
c > 3. By “explicit construction” of an e-biased set we mean that there exists an
efficient algorithm that given n,e as inputs, outputs an e-bias set in {0,1}". We
present an alternative construction (incomparable in terms of size) called the Powering
Construction.

Theorem 5.11 (Alon et al. [1992]). There exists an explicit construction of an e-
biased set S such that |S| = O <(§)2>

Proof. This construction uses the fact that Fom is isomorphic to F3', where Fam is the
field with 2™ elements, and F1' is the m dimensional vector space over Fy, the field
of 2 elements. We define

S = {Supla,b € Fom, (Sap), =< a',b>}.

Meaning, every element in S is indexed by two field elements, a,b € Fam, and |S| =
2m.2m = 22m We need to find an m = m(n,) such that S will be an e-biased set. For
every x # 0, we want to find an upper bound on |Ea7bey2m(—1)<z’sa’b>|. To do this,
we bound the difference between the number of S,; such that < z,S5,, >= 1, and
those that give < z, 5,5, >= 0. Notice, that when calculating a’, a is treated as an
element in Fom (hence the name “The Powering Construction”), and when calculating
the inner product, a’ and b are both treated as vectors in F3.

By the linearity of inner product,

n n n
< x,Sup >= Zazl (Sap); = le <a'b>= <Z x;a’, b>)
i=1 i=1 i=1

For every x € {0,1}", define the polynomial p,(y) = Y7, x; - y* (x; are the coeffi-
cients). For a fixed a which is a root of p,, p.(a) = 0, and for every b € Fom,

< x,Sup >= <i xiai,b> = (pz(a), by = (0,b) =0,

i=1
{b € Fom <Z:Uiai,b> = OH =2m,
i=1

For a fixed a which is not a root of p,, Y 1", z;a’ = p,(a) is a non-zero field element

and thus, for such a,

5-10

and therefore a non-zero vector, and so

{b € Fom <Zxab> :o}‘ - Hbe Fom <Zxab> = 1}‘ =om1
i=1 i=1

For such a, the number of S,;’s such that < z,5,, >= 1 equals to the number of
Sap's such that < x,5,;, >= 0. This means that the only difference will be from an
a which is a root of p,. p, is a polynomial of degree at most n, so it has at most n

roots. Hence,

2m . n n
z,Sq, o
anberm [(1)< b>]‘ < 22m 2m

To find the right m(n, <), m needs to satisfy 5 < e, meaning m > log 2. For this m,
S| =22 =0 <(§)2> It can be shown that the set S can be constructed efficiently,
that is, in time poly(n/e). O

The above theorem states that there are near-optimal small-bias sets that can be
computed in P. It is interesting to add that in fact, near-optimal small-bias sets can
even be computed in uniformly generated (see Section 3.3) ACCP®[2], that is, in AC°
circuits with PARITY gates. Such circuits, in fact, can preform impressively powerful
tasks (see Healy [2006]).

5.6 Pseudorandom Generators

Now we are heading towards a PRG for any polynomial-time algorithm, as apposed
to the “toy example” in the previous section.

Definition 5.12. For S : N — N a function G : {0,1}* — {0, 1}* is called S-pseudo
random generator, if

1. |G(2)] = S(]z]), for any z € {0, 1}*.
2. G on input of length ¢ runs for 290 steps.

3. For U, (a uniform random string of length ¢) and any circuit C' of size O (S(¢)?),
[Pr[C (Usiy) = 1] = Pr[C (G (Un) =1]| < 5.

Theorem 5.13. If there exists an S-pseudo random generator then BPTIME (S(¢)) C
DTIME (2°1).

511

Example: If there exists an exp(¢)-pseudo random generator then BPP = P. How-
ever, a more modest pseudo random generator will still give some non-trivial result.
For example, if there exists an exp(¢¢)-pseudo random generator for some constant e
this gives a deterministic simulation of BPP in exp(log®n) for some constant ¢ = ¢(e).

Proof. Let L be a language that is determined by the random Turing machine M
with running time S(¢), on input of length ¢. Let r € {0,1}°® be the random bits
that M uses. If G can be used to derandomize the pseudo-random generator then
the proof is done. If not, this can be used to create circuits that will contradict G as
a pseudo-random generator. If G satisfies the following:

1
P MT = 1 - P M P e 1 < —
T‘E{O,II}.»S(Q (x)] Ze{ofl}g[G()(m)] = 10

We can use G to derandomize M: Let M’ be a deterministic Turing machine. For
every z € {0,1}, M’ simulates Mg,)(z) and decides by the majority. M’ will be
correct on all input x, for each x € L:

2
Pr [M.(x)=1] > 3

r€{0,1}56)
2 1 17
bty Mow(@) =1] 2 3= 75 =55
And for each x ¢ L : .
Pr [M.(z)=1] <=
re{0,1}5) 3
1 1 13
Pr [Moo(z) =11 < = + — = —
ze{oﬁ}f [o)(x) } -3 + 10 30

The runtime will be S(¢) - 2°, which is 29 (because S(f) = 2°).
If G does not satisfies the previous condition, meaning

i (M, (z) = 1] — zEEﬁ}JMG<Z><$> =1 > 15
for an infinite number of z’s, then it can be used to contradict the definition of G as
a pseudo random generator (if this is true only for a finite number of z’s, then we
can create M" that has these x’s hard-coded, and then we can use G to derandomize
M" | as explained before).
Let {x;}ier be an infinite series of x’s, one for each length, that satisfy the above
condition. The series of circuits {C;}, such that C; on input r, has z; hard-coded,

5-12

and simulates M, (x;) (if there is no z; of its length, C; returns 0). {C;} distinguishes
between 7 and G(z) with probability larger than 5. SIZE (C;) = O ((S(¢))?), in the
proof of P C P/poly (Theorem 2.12), we have seen that there exists a circuit of size
O(t?) for any deterministic Turing machine with runtime ¢. {C;} contradicts that G

is a pseudo-random generator.
m

In the proof above, we have seen that if we a have pseudo random generator that fools
polynomial-size circuits, we can use it to derandomize polynomial-time algorithms.
We needed the generator to fool small circuits (rather than efficient algorithms),
because in the proof above, to get a contradiction, for every input length n, the input
x; has to be hard coded into the circuit. This is perhaps a first clue on the connection
between circuits and derandomization of efficient uniform computation. In the next
lecture, we will see this connection in its full glory.

513

LECTURE 6

DERANDOMIZATION AND CIRCUIT LOWER BOUNDS;
INTERACTIVE PROOF SYSTEMS

DECEMBER 6TH, 2012

LECTURER: Gil Cohen SCRIBE: Sagie Benaim, Yuval Madar

In the last lecture, Section 5.6, we discussed pseudorandom generators against circuits
and the implication of such pseudorandom generators for the derandomization of
efficient uniform computation.

Unfortunately, we currently do not know how to construct a pseudorandom generator,
even one with a modest stretch. However, we do know something remarkable - we
know how to translate circuit lower bounds to the construction of pseudorandom
generators. In other words, if one can generate the truth table of a “hard” function
(namely, a function that cannot be computed by small circuits) then one can generate
a string that looks random to small circuits (and then use it to derandomize efficient
uniform computation).

Nisan and Wigderson [1994], following Yao [1982]; Blum and Micali [1984], showed
that given a strong enough circuit lower bound, it is possible to construct a pseudoran-
dom generator and therefore get a (perhaps partial, yet non-trivial) derandomization
of BPP. The result of Nisan and Wigderson [1994] were improved and simplified
over the years. We state a more recent result by Umans [2003].

Theorem 6.1 (Umans [2003]). There exists a universal constant 0 < ¢ < 1 such that
the following holds. Let S : N — N. Given the truth table of a function f:{0,1}* —
{0,1} that cannot be computed by a circuit with size at most S(s), there exists an
S(s)¢-pseudorandom generator.

Informally, Theorem 6.1 states that given a hard function, there exists a PRG with
stretch that is polynomial in the hardness of the function. Unfortunately, due to time
(and space) constraints, we do not provide a proof for Theorem 6.1 in these notes. We
will apply the theorem in the future (see Theorem 7.2), but for now, only consider its
immediate implication - for the derandomization of efficient computation, it is enough
to prove strong circuit lower bounds. Perhaps in the early 90s, researchers were more
optimistic about proving such bounds. With time, however, it was realized that
circuit lower bounds are hard to prove (we discuss one reason for that in Lecture 11),
and therefore people considered whether derandomization can be based on uniform
hardness assumptions. The following theorem (which we will not prove and not use

6-1

during the course, however it is certainly worth stating) shows that under the plausible
complexity assumption that BPP # EXP *, this is indeed possible, to some extent.

Theorem 6.2 (Impagliazzo and Wigderson [1998]). Assume BPP # EXP. Then
for every L € BPP there exists a subexponential (2"0(1)) time deterministic algorithm
A such that for infinitely many n’s

Pr [L(z)=A(x)]>1-1/n.

In fact, the above theorem holds even when z is sampled from any distribution that
can be sampled efficiently, that is, a distribution for which there exists a Turing
machine, that given n, samples a string of length n from the distribution, in time
poly(n). This means that it would be computationally difficult to output an instance
x (for infinitely many input lengths) such that the above derandomization fails.
Although Theorem 6.2 shows that some kind of derandomization is possible under
uniform hardness assumptions, it does not give a full fledge derandomization. Indeed,
although it beats the naive exponential time derandomization, it still runs in subex-
ponential (as apposed to polynomial) time, and it is promised to work for most, but
not for all inputs.

A beautiful and surprising result states that, in fact, one cannot derandomize efficient
uniform computation while avoiding proving some sort of circuit lower bounds! This
is an deep statement - circuits are crucial to derandomization not just because of
our proof techniques (namely, derandomization via pseudorandom generators, that in
turn are currently based on non-uniform hardness assumptions) - circuits are crucial
to derandomization inherently.

The formal statement relies on the definitions of the complexity class VP (Defini-
tion 4.7), the problem ZEROP (Problem 4.12) and the permanent of a matrix (Defi-
nition 4.8).

Theorem 6.3 (Kabanets and Impagliazzo [2004]). If ZEROP € P, then either
NEXP ¢ P/poly or PERM ¢ VP.

Note the first lower bound (that NEXP ¢ P/poly) is believable yet a somewhat
weak bound. Indeed in the next section we prove (unconditionally) that the random-
ized version of NEXP is not contained in P/poly. It is commonly believed that the
second lower bound (PERM ¢ VP) is also true.

The proof of Theorem 6.3 (which we do give) is quite involved and requires some
more background. One particular result needed is IP = PSPACE and so in the next

*While it is widely believed that BPP # EXP, we don’t even know how to separate BPP from
NEXP (see Open Problem 5.6).

6-2

section we introduce the notion of interactive proof systems. As a side tour, in the
next section we also prove the best known lower bound for P /poly (Theorem 6.13),
which is also based on IP = PSPACE. Moreover, we prove necessary results for the
proof of Theorem 6.3, such as a strengthening of Meyer’s Theorem which we saw in
Lecture 3 (see Theorem 3.2). In the next lecture we will prove Theorem 6.3 given a
theorem due to Impagliazzo et al. [2001] (see Theorem 7.2), which its proof we defer
to Lecture 8. Theorem 7.2 is crucial to the proof of Williams’ Theorem as well. This
is indeed quite a long journey!

6.1 Interactive Proof Systems

We first give the notion of an Interactive Proof System:

Definition 6.4 (Interactive Proof System). An interactive proof system is a multi-
round protocol between two parties, a prover and a verifier, such that on each round,
messages are exchanged between the verifier and the prover to establish if a string
belongs to the language or not. We assume that the prover is all powerful, but cannot
be trusted, while the verifier has bounded resources. An interactive proof system must
satisfy the following properties:

Completeness There exists a proof strategy for the prover, such that if a string is
in the language, then the verifier is convinced of this.

Soundness If a string is not in the language, then no proof strategy (no prover) can
convince the verifier that the string is in the language.

Recall the definition of NP (given also in Lecture 2, see Definition 2.1): A language
L € NP if there exists a Turing machine M for which the following holds:

ve L < Jye {0, 1} M,y =1,

for some constant c. NP is therefore a simple Interactive Proof System where the
verifier is a P machine: The prover produces a polynomial size certificate and the
verifier verifies it in polynomial time. Note that in the definition of NP there is no
assumption on the hardness of computing y = y(x). The fact that the prover is com-
putationally unbounded is formalized by the existential quantifier. In the following
definition, we look at an Interactive Proof System, where the verifier can use random
bits to decide if to accept a certificate sent by the prover.

6-3

Figure 2: The relation of M A to other complexity classes.

Definition 6.5 (MA). We define MA as the class of languages L for which there
exists a probabilistic Turing machine M such that:

e L= 3ye{0, 1} Pr[M(z,y) =1 >2/3
v L=Vye{0, 1} Pr[M(z,y) =1] <1/3.

Similarly to NP, the class M A can be viewed as an Interactive Proof System, where
the verifier (Arthur) is a probabilistic polynomial time machine (instead of determin-
istic), and the prover (Merlin) has unbounded resources.

The relation between M A and other complexity classes is illustrated in Figure 2. One
can informally think of M A as a randomized version NP, which means that both
BPP and NP are contained in MA. The top relation in the diagram (MA C X5)

was proven in Russell and Sundaram [1998|.

Definition 6.6 (IP, Goldwasser et al. [1985]). IP is the class of languages described
by an Interactive Proof System, where the two parties communicate using messages
of polynomial length sent over polynomially many rounds. That is, there exists a
prover P and a verifier V s.t, for all provers)

x € L = Pr[V < P accepts z| >

r ¢ L= Pr[V < @ accepts z| <

W~ Wl Do

How large is IP? Namely how much power does interactive proofs gives? Clearly

64

NP C IP. At the “early days” researchers had a good reason to believe that coNP ¢
IP.

Theorem 6.7 (Fortnow and Sipser [1988]). There exists an oracle O such that
coNP? ¢ IPY.

Recall Section 1.4 - given Theorem 6.7, in order to prove that coNP C IP one has
to supply a non-relativizing proof. In particular, diagonalization arguments alone are
not enough. Some new ideas are required. New ideas were found!

Theorem 6.8 (Shamir [1992] (based on Lund et al. [1990])).
IP = PSPACE

We do not prove Theorem 6.8 in these notes. One can found a proof in Goldreich
[2008], Thoerem 9.4. An extension of the class IP was provided in Ben-Or et al.
[1988], called MIP:

Definition 6.9 (MIP). MIP (Multi prover Interactive Proof) is an interactive proof
system in which there are several provers who cannot communicate from the moment
the verification process begins.

It was shown in Ben-Or et al. [1988] that having more than two, but a constant

number of provers, does not increase the class’s computational power. It was shown
in Babai et al. [1991] that MIP = NEXP.

6.2 Three Corollaries of IP = PSPACE

In Theorem 3.1 it was shown that NP C P/poly = PH = X3. This can be read as a
conditional lower bound as it is equivalent to saying that if the Polynomial Hierarchy
does not collapse to its second level, then NP does not have polynomial size circuits).
We now prove an additional conditional lower bound:

Corollary 6.10.
PSPACE C P/poly = PSPACE = MA

Proof. The interaction between Merlin and Arthur is an instance of TQBF (True
Quantified Boolean Formula), and so the the prover Merlin is a PSPACE machine.
Since PSPACE = IP and by the assumption, Merlin can be replaced by a polynomial
size circuit family {C),}.

6-5

The interaction between Merlin and Arthur can now be carried in one round: Given
input z of length n, Merlin sends to Arthur C,, which is of polynomial size in |z|.
Arthur then simulates the interactive proof getting answers from C), instead of Merlin.
Note that if the input is not in the language, then every circuit sent to Arthur by
Merlin fails to act as a prover (it does not have a reasonable chance to convince the
verifier). O

We can also improve upon a result by Meyer (Theorem 3.2), which states that
EXP C P/poly = EXP = X5,

Corollary 6.11 (Babai et al. [1993]).
EXP C P/poly = EXP = MA

Proof. Assume EXP C P/poly. Since PSPACE C EXP it follows by Corol-
lary 6.10 that PSPACE = MA. On the other hand, since EXP C P/poly, Theo-
rem 3.2 yields EXP = 5. The proof then follows since

EXP = X% C PSPACE = MA.
]

Definition 6.12 (MAgxp). MAEgxp is the class of languages decided by a one round
Interactive Proof System where the verifier has exponential time (and exponential
number of random bits) and the prover sends an exponentially long proof (this is an
exponential analogue to the class MA defined earlier).

We now present the current best unconditional circuit lower bound for P /poly.
Theorem 6.13 (Buhrman et al. [1998]). MAgxp ¢ P/poly.

Proof. We prove this by contradiction:

MAEXP g P/pOly

= PSPACE C P/poly (Since PSPACE C EXP C MAgxp)
= PSPACE = MA (By Corollary 6.10)
= EXPSPACE = MAgxp (Explained below)

= EXPSPACE C P/poly.

6-6

But, EXPSPACE ¢ P/poly, since in exponential space, one can go over all func-
tions, and for each such function simulate all polynomial size circuits, until a function
is found which doesn’t agree with any of the circuits (and then output as this function
does).

Now we show that if PSPACE = MA, then EXPSPACE = MAgxp using a
standard padding argument described below:

Let L € EXPSPACE. Therefore L € DSPACE (n*) for some constant c. Define
L' = {z-1"" | € L}. Then I’ € PSPACE as given 2 we check if it is in L’
by simply checking if the first ¢ - log,(|x|) bits are in L using polynomial space and
using a counter of size || to check that it is followed by the correct number of 1’s.
Therefore, by our assumption, L' € MA.

We have that L € MAgxp since, given z, we can write 2/*° 1’s at the end of z and
check that it is in L' O

6-7

LECTURE 7

KABANETS-IMPAGLIAZZO THEOREM: DERANDOMIZATION
IMPLIES CIRCUIT LOWER BOUNDS

DECEMBER 13RD, 2012

LECTURER: Gil Cohen SCRIBE: Avishay Tal

In previous lectures we mentioned that hardness implies derandomization, by the
works of Nisan, Wigderson and Impagliazzo. In paritcular, if E = DTIME (20("))
contains a language which requires exponential size circuits then P = BPP. This
was great news for algorithmic people two decades ago, who thought that circuit
lower bounds were right around the corner, thus implying derandomization of all
randomized efficient algorithms. However, the work of Razborov and Rudich [1997]
on natural proofs showed that proving circuit lower bounds such as E ¢ P/poly
cannot be proven by a ‘“natural” proof, assuming the existence of a cryptographic
primitive called one way function (we will discuss this in Lecture 11).

The question remained whether derandomization can be achieved in other ways?
The work of Kabanets and Impagliazzo [2004] (based on previous work of Impagli-
azzo et al. [2001]) showed that actually derandomization implies some circuit lower
bounds: either for Boolean circuits or for arithmetic circuits. Thus, both problems
are essentially related, and one cannot hope to solve one without the other. In this
lecture we show this proof. More formally, we prove the following (Theorem 6.3,
restated).

Theorem 7.1 (Kabanets and Impagliazzo [2004]). If ZEROP € P then either NEXP ¢
P/poly or PERM ¢ VP.

Note that as ZEROP € BPP (and even ZEROP € coRP), derandomizing BPP or
even coRP would yield, according to Theorem 7.1, some circuit lower bounds which
are out of our current reach.

The proof of Theorem 7.1 uses many classical as well as more modern results in
complexity theory. We now state these results, and then turn to prove Theorem 7.1.
We start with the following beautiful theorem.

Theorem 7.2 (Impagliazzo et al. [2001]).
NEXP C P/poly — NEXP = EXP

We will see the (quite involved) proof of this theorem in Lecture 8. The next the-
orem we use, attributed to Meyer, was previously stated and proved in Lecture 3

7-1

(see Theorem 3.2).

Theorem 7.3 (Karp and Lipton [1980]).
EXP C P/poly — EXP = X¢

We state without proof two beautiful theorems (see Arora and Barak [2009], Chapter
17 for proofs) concerning the complexity class #P. We must appolagize, #P deserves
a broader introduction, but due to lack of space we only give its definition and two
relevant classical results concerning it.

Definition 7.4. The complexity class #P is the class of functions counting the
number of accepting paths of an NP machine.

[€ #P < 3 polynomial time non-deterministic M : f(z) = [{y | M(x,y) = 1}|

Theorem 7.5 (Toda [1989]). PH C P#P
Theorem 7.6 (Valiant [1979a]). PERM is #P-complete

Note that PERM is also complete for VNP, which is a completely different complex-
ity class defined by (the same) Valiant (we mentioned this class in Lecture 4, see
Section 4.2). The following lemma is the last piece of the puzzle needed to prove
Theorem 7.1.

Lemma 7.7. If PERM € VP and ZEROP € P then PPERM C NP.

Proof. The proof idea is to simulate the oracle to PERM by guessing (using the
non-determinism of NP) small circuits for the Permanent (which exist, under the
assumption PERM € VP). The guessed circuits are verified using the polynomial-
time algorithm for ZEROP, which is assumed to exists. We now make this formal.
Let L € PPERM_ Let M be a polynomial-time Turing machine with oracle access to
PERM that decides L. Let p(n) be a polynomial bounding the running time of M
on input of length n. Clearly, M can’t ask questions of size larger than p(|x|) on
input z, so it is enough to simulate the oracle for questions of size < p(|z|). Also by
our assumption there are circuits of size g(n) that computes the permanent of n x n
matrices correctly for some polynomial ¢(-).

We describe a non-deterministic machine M’ that decides L in polynomial-time. On
input x, M’ will guess circuits {C;} solving PERM for input size i = 1,...,p(|z]).
Each C; will be of size < ¢(i) using our assumption that PERM € VP. M’ will then
validate that these circuits do compute the permanent of the corresponding sizes. If

72

the circuits were successfully verified, M’ will simulate M on input x evaluating the
circuits on each query to the oracle, and accept/reject according to M.

We will now see how M’ can verify the correctness of the circuits it guesses. M’ will
check that C} is the circuit with one gate computing PERM; (A) = A; ;. Fort > 2, M’
will verify C; computes the permanent of ¢ X ¢t matrices assuming that C;_; computes
the permanent of (t—1) x (t— 1) matrices. To show this we will use the self-reducible
nature of the permanent and our assumption that ZEROP € P. Recall that

PERM;(A) = zt:Au ’ PERMt—l(Ml,i(A)) (6)

i=1

where M, ;(A) is the ¢, j minor of A, i.e. the matrix A without the ith row and jth
column. It is enough to verify that

Cy(A) = Z Ay Cry(My;(A)) (7)

since by the induction hypothesis and Equation 6 the RHS equals PERM,(A) for all
As. Equation 7 is equivalent to

Cy(A) — Z Ay Coy(My;(A) =0 (8)

and there is a small circuit of size |Cy| +t - |C—1| + O(t) which computes the LHS of
Equation 8. Hence, we can use the polynomial time algorithm for ZEROP to verify
this equation. O

We are finally ready to prove Theorem 7.1.

Proof of Theorem 7.1. We will show an equivalent form of the statement in the the-
orem - all of the following can’t hold together:

e ZEROP € P
e NEXP C P/poly

e PERM € VP.

We will assume all three hold, and arrive to a contradiction.

NEXP=EXP (NEXP C P/poly, Theorem 7.2)
=35 (EXP C P/poly, Theorem 3.2)
CPH (by definition)
cp#P (Toda, Theorem 7.5)
—PPERM (Valiant, Theorem 7.6)
CNP (ZEROP € P, PERM € VP, Lemma 7.7)

However, by the non-deterministic time hierarchy (see Theorem 1.7) we know that
NP is strictly contained in NEXP, thus we reach a contradiction. O

74

LECTURE 8
IMPAGLIAZZO-KABANETS-WIGDERSON THEOREM

DECEMBER 27TH, 2012

LECTURER: Gil Cohen SCRIBE: Gil Cohen, Igor Shinkar

In this lecture we complete the proof of Theorem 7.1 from Lecture 7, by proving The-
orem 7.2, which asserts that NEXP C P/poly —> NEXP = EXP. Theorem 7.2
has the “same flavor” as other theorems we have encountered, such as

e NP C P/poly =— PH = X} (see Theorem 3.1).
e PSPACE C P/poly = PSPACE = MA (see Corollary 6.10).
e EXP C P/poly = EXP = MA (see Corollary 6.11).

In all of the above, we assume that P /poly contains some uniform complexity class,
an assertion that we believe to be false, and conclude a collapse between uniform
complexity classes, hoping to get a contradiction. As it turns out, the known proof
for Theorem 7.2 is significantly more involved than the proofs of the other, similar in
spirit, results. This is said with some reservation, as Corollary 6.10 and Corollary 6.11
are “easy” to prove only given IP = PSPACE.

In order to prove Theorem 7.2 we need to introduce two notions that are interesting
on their own right - the notion of advice, and the notion of infinitely often.

8.1 Turing Machines that Take Advice

The class P /poly was defined in Lecture 2 (see Definition 2.10) in terms of circuits, in
order to model non-uniformity. Historically however, P /poly was defined in terms of
Turing machines that “take advice” - circuits were not involved. Informally, a Turing
machine is said to take an advice if for every input length n the machine has access
to a string «,, on top of its input.

Definition 8.1. Let t : N — N and a : N — N be two functions (which we think of
as the time and advice functions, respectively). We say that a language L is in the
complexity class DTIME (¢(n))/a(n) if there exists a Turing machine M that runs
in time ¢(n) on inputs of length n, and a family of strings {«, }°°,, with |a,| < a(n)
for all n, such that

rel <+~ M(a:,o%‘) =1.

8-1

The name of the class P/poly is perhaps clearer at this point: to the left of the
slash we have the complexity class P and to the right poly which represents advice
of polynomial length. The following theorem makes this formal.

Theorem 8.2.
P/poly = | | DTIME (n*)/n’

a,beN

Proof. We first prove the C direction. The idea is simple - evaluating a circuit on
a given input can be done in time which is polynomial (and even linear) in the
description length of the circuit and the input. Thus, one can use the advice to store
the circuit description. We make this formal. Let L € P/poly. Then there exist a
constant ¢ > 1 and a family of circuits {C,, } computing L such that (for large enough
n) size(Cy,) < n°. Given x and a reasonable description of Cl|, a Turing machine can
compute Cl,((z) in time O(|z|). By considering the description of C,, as the advice
ay,, we get L C DTIME (n€)/n°.

As for the other direction, let L € DTIME (n®)/n® for some constants a,b. The idea
again is simple. Since P C P/poly the Turing machine for L can be simulated by
a circuit family. We then take an advantage of the non-uniformity by hard-wiring
the advices, one in each circuit. We make this formal. There exist a Turing machine
M that runs in time O(n®) for inputs of length n, and a family of strings {«,} with
la,| < nP such that € L <= M(z,qy) = 1. By Theorem 2.12 there exists a
family of circuits {C,} of size O(n?*) that agrees with M. By hard-wiring the advice
o, to the circuit C,, we get a family of circuits {C/ } that decides L. This conclude
the proof as size(C’) < O(n?®). O

By examining Theorem 8.2 one can see a downside of modeling non-uniformity using
circuits - the advice and the computation are mixed, as evaluating a circuit is done in
time linear in its size. When considering the Turing machines with advice definition,
one can separate the computation time from the advice length. For example, one can
consider the class P /1, namely, efficient computation with one bit of advice. This
class is already strong enough to solve some version of the Halting Problem!

Recall that NEXP = U,NTIME (Q”a) and that P/poly = U,SIZE (nb). In The-
orem 7.2 we assume that NEXP C P/poly. Therefore one can ask whether for
every a there exists a b = b(a) such that NTIME (2") C SIZE (n’). Of course, for
general sets this doesn’t hold (take A = (0,1] = U,(0,1] and B = U, [+, 1]. Although
A = B, there is no n such that A C [, 1]). Nevertheless, since we are dealing with
very structured sets (complexity classes), this assertion (and more) is true, and will
be useful for us.

82

Lemma 8.3 (Impagliazzo et al. [2001]). If NEXP C P/poly then for every a € N
there exists b = b(a) such that

NTIME (2")/n C SIZE (n").

Proof. For a given a € N consider a universal non-deterministic Turing machine
U,(+,-) that on input (z,7) € {0,1}* x N simulates the i’th non-deterministic Turing
machine M; on input z for 21*I* steps. Note that L(U,) € NEXP, and hence, by
the assumption of the lemma we have L(U,) € P/poly. Therefore, there exists
a family of circuits {C,} of size |C,| = n° such that C),; computes L(U,), i.e.,
C|z,i|<x7 Z) = Ua(xv Z)

We now prove NTIME (2”a)/n C SIZE (nb) Take a language L € NTIME (Q”G)/n.
Then, there is a sequence of advices {a;, }neny With |a,| = n, and an index i = i, such
that for every x € {0,1}* we have x € L if and only if M;(x, a|,) has an accepting
computation path, where M; is the i’th non-deterministic Turing machine. Taking
the family of circuits {C,} as above we have Cy o, i, |(; @)z, ir) = L(z). Therefore,
by fixing the inputs ., ¢, we obtain the desired family of circuits that computes L
whose size is at most most (2n + |ir|)"!. The lemma follows. O

8.2 Infinitely Often

Another notion we use in the proof of Theorem 7.2, which is also quite common
in complexity theory, is the notion of infinitely often. Roughly speaking, given a
complexity class C, the infinitely often version of C contains all languages that agree
with some language from C on infinitely many input lengths.

Definition 8.4. Let C be a complexity class. Define the class io—C to contain all
languages L for which there exist a language L' € C and an infinite set [C N such
that for every n € I, LN {0,1}" = L' n {0, 1}

One can easily verify that

Lemma 8.5. Let Cq, Cy be two complexity classes. Then
Cl - CQ — iO—Cl - iO—CQ.

We will also make use of the following lemma.

Lemma 8.6 (Impagliazzo et al. [2001]). For any fized ¢ € N it holds that
EXP ¢ io—SIZE (n°).

8-3

Proof. By the Size Hierarchy Theorem (Theorem 2.11), there exists ng = ng(c) such
that for every n > ng there exists a function f,, on n inputs that cannot be computed
by circuits of size n® yet can be computed by circuits of size at most 4 - n¢. Given n,
one can find, say, the first lexicographic such function and simulate it in exponential
time. Denote the resulting language by L..

If L. € i0—SIZE (n°) then there exists a family of circuits {C,, } such that size(C,,) <
n¢, where infinitely many of them computes f,, (that is, L. on the respective input
length) correctly. This contradicts the fact that at all but the first ng circuits in the
family cannot compute L. correctly. O

As a corollary we obtain
Corollary 8.7. If NEXP C P/poly then for every fized a € N it holds that
EXP ¢ io—[NTIME (2") /n].

Proof. By the assumption that NEXP C P/poly and by Lemma 8.3, there exists
b = b(a) such that
NTIME (2")/n C SIZE (n").

By Lemma 8.5 it follows that
io—[NTIME (2") /n] C io—SIZE (n").

However, by Lemma 8.6,
EXP ¢ io—SIZE (n’),

which concludes the proof. O

8.3 A Proof for the IKW Theorem

Recall that we wish to prove Theorem 7.2, which asserts that NEXP C P/poly —
NEXP = EXP. In other words, we want to show that NEXP C P/poly and
NEXP # EXP cannot both hold together. Corollary 8.7 states that under the
assumption that NEXP C P/poly it holds that

Va € N EXP ¢ io—[NTIME (2") /n]. (9)

Given that, all that is left is to prove is

84

Lemma 8.8. I[f NEXP # EXP then
Ja € N MA C io—[NTIME (2"") /n]. (10)

This would conclude the proof of Theorem 7.2. Indeed, since we assume that NEXP C
P/poly (and thus EXP C P/poly), by Corollary 6.11, EXP = MA. Hence, Equa-
tion 9 and Equation 10 stand in contradiction to each other. Therefore, we are left to
prove Lemma 8.8. The proof idea is very elegant, and is based on the “easy witness”
method introduced by Kabanets [2000].*

Proof of Lemma 8.8. Under the assumption NEXP # EXP there exists a language
L* € NEXP\ EXP (any complete language for NEXP will do). Since L* € NEXP,
there exist a constant ¢* = ¢*(L*) and a non-deterministic Turing machine M*, that
runs in time O(2"") on inputs of length n, such that

ze ¥ < 3Jye{0, 1}2'z‘c M*(z,y) = 1.

What is the implication of L* ¢ EXP 7 Well, any attempt at deciding L* in de-
terministic exponential time is bound to faill How are we to take advantage of this
hardness of L*? We will suggest a specific attempt at deciding L* in deterministic
exponential time, and benefit from it failing. Clearly, we need double-exponential
time in order to simulate the non-determinism of M* by enumerating over all possi-
ble witnesses y. The key idea is to consider only “easy” witnesses, namely, y’s that
are the truth table of functions that can be computed by small circuits. We make
this formal.

For any constant d, consider the following deterministic Turing machine M;: On
input z of length |2| = n, enumerate over all circuits of size n? with n® inputs. For
any such circuit C, consider its truth table y = tt(C), which is a string of length
2"8*, and check whether M*(z,y) = 1. If we found no such y, the machine rejects z.
Otherwise, the machine accepts z.

Observe that if z € L* then there is no witness for z being in L*, and thus certainly
there is no easy witness for this false claim. Thus, M, rejects z. Observe further that

*It is certainly worth mentioning that in Kabanets [2000], among other results, the author shows
that any RP algorithm can be simulated by a subexponential zero-error probabilistic algorithm with
some reservations that we choose to omit here.

8-9

the running time of My is

number of circuits of size n? with n® inputs x
time to evaluate each such circuit on all inputs (so to compute the truth table) x

time to run M™ on the resulting truth table

<o ((07)- (2) (7)) =i

That is, for every fixed d, My runs in exponential time, and thus cannot compute L*
correctly. Moreover, we can assume that M fail to compute L* correctly on infinitely
many inputs, as otherwise we could have “correct” My by adding to it the finite table
of the inputs it fails to compute correctly. That is, for every d, there exists an infinite
sequence of inputs Z; = {Zi(d)}iejd for which Md(zi(d)) # L*(zi(d)), where I; C N is the
set of lengths for which there are “bad inputs” (notice that we may take one input
per length and Z; would still remain infinite).

Moreover, we note that My makes only one-sided error. Namely, if z ¢ L* then, for
every d, M, would correctly reject z. The only mistakes are false-negative, namely,
rejecting inputs that should have been accepted. This may (and will) occur for inputs
that has only hard witnesses, that is, witnesses that cannot be computed by circuits
of size |z|9.

The conclusion of all of this is that for every d, there exists a non-deterministic Turing
machine M/, that given n, runs in time 97" and uses n bits of advice, such that on
infinitely many n’s prints the truth table of a function that cannot be computed

d

by circuits of size n®. We now explain this last assertion. The machine M} will

work properly for the input set I;, which is infinite. For an input n € I;, and

advice string z,gd), the machine M), guesses a string y € {0, 1}2nc and checks whether
M*(zy(ld), y) = 1. If the answer is true, the machine M) prints y.
Note that the machine uses n bits of advice (the string 27(;1)), and runs in time O(2™)

)

- the time required to guess y, check whether M *(z,gd ,y) = 1 and print y. Moreover,

if n € I; then 2% is an input that is falsely rejected by M, and thus, by the above

discussion, 29 e L*, though any witness for this fact - and there are such witnesses

- cannot be computed by circuits of size n?. This implies that the machine M/, would

guess and print a y € {0,1}2" that is the truth table of a function that cannot be
computed by circuits of size n¢, as long as n belongs to the infinite set I;, which was
our assertion.

With {M/},4 in hand, we are ready to prove Equation 10. Let L € MA. Then there
exists a constant d = d(L) such that for any input x, Merlin (the non-determinism)
sends Arthur (the probabilistic verifier) a proof y € {0,1}*!* for the claim “z € L”.

86

Arthur then tosses |z|¢ random bits, and decides (deterministically, given the random
bits) in time |x|? whether to accept z given .

We now derandomize Arthur. We restrict ourselves to the case where n = |z| €
I;. By the above, there exists a Turing machine M} that runs in time 0(2"6*),
which is exponential in this universal constant c¢*, and is independent of d. The
machine M), prints the truth table of an n-hard function. This hard function can
be used with the Nisan-Wigderson PRG (Theorem 6.1), which in turn, allows us to
derandomize Arthur. This simulation of Arthur takes time n°®. Since we are using

n-bits of advice, runs in non-deterministic time on®’ +n0@ = O <2"C*> *, and correctly

computes L for all inputs with length in I, we get that L € io—[NTIME (2“C*>/n]

The proof then follows since this holds for every L € M A with the same constant c*
in the right hand side. O

As mentioned, Theorem 7.2 is used not only to prove Theorem 7.1, but also to prove
Williams’ Theorem - our main goal in the course. In the next two lectures we finally
give a full proof for Williams’ Theorem.

At this point a magic / cheating of asymptotic is crucial - ¢ is fixed before d, as ¢* is some
function of a fixed language in NEXP\ EXP, while d may vary depending on the language L € MA.

Nevertheless, both ¢* and d are constants in n. Thus, the expression 2" asymptotically dominates
O(d)
n“\4,

87

LECTURE 9

NEXP ¢ ACC" - PART 1

JANUARY 3RD, 2013

LECTURER: Gil Cohen SCRIBE: Dean Doron

In this lecture we finally prove Williams’ theorem.
Theorem 9.1 (Williams [2011b]). NEXP ¢ ACC°

Though the result is interesting by itself, what is perhaps more interesting is the
conceptual message of Williams’ work (which already appeared in Williams [2010]) -
a non-trivial algorithm for satisfiability can be used to prove circuit lower bounds.

Consider a Boolean circuit C' of size s on n inputs. Checking whether C' is satisfiable,
namely, whether there exists an input x € {0, 1}" for which C(z) = 1, can be done
naively in time O(s - 2"). In particular, we haven’t used the output of the circuit C'
on one input for the other inputs, and therefore we could not have avoided the 2"
factor in the running time. A key step in the proof of Theorem 9.1 is the following
theorem, that states that for ACC? circuits, one can do slightly better than time 2".

Theorem 9.2 (Williams [2011b]). For every depth d there ezists a § = 6(d) > 0 and
an algorithm, that given an ACC® circuit C' on n inputs with depth d and size at
most 27, the algorithm solves the circuit satisfiability problem of C' in 27" time.

Thus, Williams’ idea of proving lower bounds is through improving algorithms for
circuit satisfiability for different classes of circuits. This proof technique is quite
general and works for all “natural” circuit classes. In fact, the reason it currently
applies only to ACC® (and not to, say, NC* or P/poly) is that we don’t have an
analog of Theorem 9.2 for other classes of circuits.

We begin this lecture by proving Theorem 9.1 modulo Theorem 9.2. We start proving
the latter theorem at the end of this lecture and continue to do so in Lecture 10.

9.1 A NEXP-Complete Language

The class NEXP is a key player in Williams’ theorem. In particular, we want to
show that NEXP ¢ ACCP. A natural attempt at proving that is to focus on some
NEXP complete language, and show that this language is not in ACCP. If one
throws a rock in a descent computer science faculty (this is ill-advised), he is likely
to hit a student that knows of half a dozen NP complete problems. We now present
a natural NEXP complete problem.

9-1

Consider a 3CNF formula ¢ on 2" variables. Assuming there are no two equal clauses
in the formula (namely, clauses that contain the same literals), the number of clauses
in ¢ is at most (2-27)% = 23("*1) (there are 2" variables and so 2-2" literals). Consider
a function f : {0,1}3™+1) — {0, 1} that gets as input (the binary representation of)
a clause number and outputs the clause description in some natural encoding. That
is, f(k) outputs the indices of the three variables that appears in the clause as well
as the respective negations. Clearly, t = 3(n + 1).

The function f can be computed by a circuit of size at most 2°™ (every output bit of
f can, Theorem 2.8, and there are O(n) of them), and the size of the smallest circuit
for computing f depends on the complexity of ¢ (maybe it is better to say that the
size of such circuit can be used as a definition for the complexity of ¢). Let C, be
the smallest circuit for computing f (if there is more than one such circuit, we take
the first in lexicographic order, say). We say that C, encodes ¢. On the other hand,
every circuit encodes some 3CNF formula, and for a circuit C' we denote by ¢ the
3CNF formula encoded by C.

We now describe the NEXP complete problem that we will work with. The problem
SUCCINCT-3SAT is the following. Given a circuit C' on 3(n + 1) inputs, of size
poly(n), decide whether ¢ € SAT. Clearly, SUCCINCT-3SAT € NEXP as one
can reconstruct ¢ in time 2™ by applying C' on each clause number, and then guess
an exponentially long satisfying assignment to ¢, and check whether it satisfies ¢,
in time 29 It turns out that SUCCINCT-3SAT is in fact NEXP complete in a
very strong sense.

Theorem 9.3 (Papadimitriou and Yannakakis [1986]). For every language L €
NTIME (3—1"0) there exists an algorithm that given x € {0,1}", outputs a circuit
C on n+ O(logn) inputs, in time O (n°) (and thus C has size O (n®)) such that

x €L < C(z) € SUCCINCT-3SAT.

We leave Theorem 9.3 without a proof both due to lack of time and space but also
due to the fact it is somewhat technical. The idea is to obtain more efficient Cook-
Levin proofs. We refer the reader to the discussion following Theorem 2.2 in Williams
[2011c].

Intuitively, if ¢ is a 3CNF formula on 2" variables such that size(C,,) = poly(n) then
¢ must be very structured, so to allow for such a compression. One might suggest
that if ¢ € SAT then, perhaps, a satisfying assignment for ¢ is also compressible.
More precisely, there exists a circuit W on n inputs, with size poly(n), that on input
i € {0,1}", the circuit W interprets i as a number in {1,2,...,2"} and outputs the
bit value assigned to the i*" variable. As it turns out, this assertion is true assuming

9-2

NEXP C P/poly. We state here the theorem that captures this in a somewhat
informal manner.

Theorem 9.4 (Williams [2010]). If NEXP C P/poly then SUCCINCT-3SAT has
a succinct witness.

Proof. The proof of this theorem is in fact implicit in the proof of Theorem 7.2. Re-
call how we proved Theorem 7.2. Our goal was to show that NEXP C P/poly
and NEXP # EXP cannot live together. In particular, we showed that NEXP C
P /poly implies Equation 9 while NEXP # EXP implies the contradicting Equa-
tion 10.

We don’t really care about these equations at this point. What is important is how
did we prove that NEXP # EXP implies Equation 107 Well, we took some language
L* in NEXP \ EXP (such a language exists by the assumption) and considered a
specific attempt at solving L* in exponential time. Such attempt, of course, cannot
work and we then found a way to benefit from its failure and to conclude Equation 10.
For the proof of this theorem, lets recall what was that specific attempt? Wel*l,
given x, for deciding if x € L*, we iterated over all “casy witnesses” y € {0, 1}2W ,
namely y’s that has a succinct representation in terms of a small circuit. Therefore,
to deduced Equation 10 one doesn’t have to assume that NEXP # EXP, but rather
it is enough to assume that SUCCINCT-3SAT does not have succinct witnesses.
This concludes the proof of the theorem. n

9.2 Proof of Theorem 9.1

Proof of Theorem 9.1. We prove the theorem by contradiction. We assume that
NEXP C ACC? and deduce that

n

NTIME (2—) C NTIME (2"—"5>

nlo

for some constant 6 > 0. This stands in contradiction to the non-deterministic time-
hierarchy theorem (Theorem 1.7). Let L € NTIME (25) and z € {0,1}*. Let C

nl
be the (efficiently computable) instance of SUCCINCT-3SAT guaranteed by Theo-
rem 9.3 with respect to L,x. We need to design an algorithm that decides whether

or not ¢ is satisfiable in NTIME (2"‘”6)

The following claim states that if P C ACC® (which is implied by our assumption
NEXP C ACCP°) then there is an ACC? circuit Cj that is equivalent to C' and has
size comparable to that of C.

9-3

Claim 5. If P C ACC?, then there exists an ACC? circuit Cy that is equivalent to
C' and such that size(Cy) = poly(size(C)). *.

Proof. since evaluation of a circuit can be done in polynomial (even linear) time,
CIRCUIT-EVAL € ACC®. Hence, there exist constants ¢, d and an ACC° circuit
family EVAL,, such that the depth of each circuit is at most d and the size of EVAL,
is at most n®. Given C, the circuit Cj can be obtained by hardwiring the constants
corresponding to the description of C' into the ACC? circuit for CIRCUIT-EVAL,
keeping the input of EVAL, that corresponds to the input of C| free. m

The claim above states that there exists an ACCP circuit C, equivalent to C of
comparable size. Hence we can guess it. We now want to show how to check that our
guess Cj is indeed equivalent to the the circuit C'. One attempt would be to consider
the circuit that on input z outputs 1 iff C'(z) # Cy(x) and run Theorem 9.2 on it to
check whether it is satisfiable or not (it is satisfiable iff C' and Cj are not equivalent).
Although C, Cy are small circuits, C' is not an ACC? circuit and so the described
circuit is also not an ACC? circuit, which means that Theorem 9.2 does not apply.
The problem with the attempt above is that it treated C,Cj in a black-box fashion.
The reason we like circuits so much is their nice structure that allows for some white-
box analysis. This is exactly what we will exploit. More precisely, we will do the
following. Label the wires of C' from 0 to ¢, where 0 is the label of the output wire.
For every wire i of C' we guess an ACC? circuit C; that is supposed to compute the
value on the i*" wire of C'. Notice the nice notational trick - for i = 0 we get our
original guess Cy. More formally, if the i*® wire in C is the result of the AND of the
J™ and k™ wires then for every z € {0,1}" it should hold that C;(z) = C;(z) A Cy(z).
A similar condition holds for OR and NOT gates, as well as wires that are connected
to the inputs.

Now, consider the ACC? circuit C’ that outputs the AND of all those conditions over
all wires ¢ of C'. This circuit also has a constant depth (the maximal depth over all
C;’s plus some constant) and size polynomial in the size of C'. Moreover, if it outputs
1 for every x, then for every i the circuit C; is indeed equivalent to the i*® wire of
C. Hence, since the output wire of C' is labeled by 0, C' is equivalent to Cy iff C” is
not satisfiable. Since C’ is an ACC? circuit, we can check if it is satisfiable using the
algorithm from Theorem 9.2.

One important thing to notice is that C’ has the same number of inputs as C', which
according to Theorem 9.3 is n + O(logn), where n is the length of the string that we

*In order to be more formal one should consider the circuit family from which C is taken (as a
function of L, x) and talk about the circuit family to which Cy belongs to. However, as custom, we
will speak of a specific circuit and understand that there is a circuit family in the background.

94

are trying to decide whether it belongs to some language in L € NTIME (3—1"0) It is
crucial that the number of inputs is n + O(logn) as it is and not just, say, O(n) as
the saving that we are exploiting in Theorem 9.2 is very modest.

Now that we have the ACC? circuit C, which we verified to be equivalent to C,
we apply Theorem 9.4 to deduce the existence of a polynomial-size circuit W that
encodes a satisfying assignment for ¢c. All that is left is therefore to guess such
circuit and verify that it indeed encodes a satisfying assignment for ¢-. Note that
we might as well guess our easy witness W to be an ACCP circuit, as we know such
exists by following the same argument as in Claim 5.

How do we verify that the ACCP circuit W encodes a satisfying assignment for ¢¢?
Again we reduce this problem to an instance of ACC? circuit satisfiability and then
apply Theorem 9.2. For that we construct the circuit D, which as input gets a (binary
encoding of a) clause number k. The output of D on £k is 0 iff the assignment encoded
by W to the variables in the k' clause are such that the clause is satisfied. Since
Cy, W are ACC? circuit, the circuit D can be constructed as an ACCP? circuit as well.
To complete the proof, note that D is satisfiable iff W does not encode a satisfying
assignment for ¢q. O]

9.3 SYM- Circuits and ACC® Circuits.

We are left with proving Theorem 9.2. The proof of this theorem relies on a structural
result for ACC? circuits. To describe this structural result we give the following
definition.

Definition 9.6. A SYM+ circuit of degree d, size s and n input bits is a pair (P, ©),
such that P : {0,1}" — Z is a multilinear polynomial of degree d with coefficients in
Z of magnitude at most s and © : Z — {0,1}.

We say that a SYM+ circuit computes f : {0,1}" — {0,1} if f(x) = ©(P(z)) for
every x € {0,1}". As it turns out, the above model of computation captures the
strength of ACC?, in the following sense:

Theorem 9.7 (Beigel and Tarui [1994]). There is an algorithm, that given an ACC°
circuit C' of depth d, size s and n input bits, runs in time 2P°¥1°86) and outputs a
SYM+ circuit (P,©) of degree at most polylog(s) and size at most 2PoW1°e() sych
that C(z) = ©(P(z)) for every x € {0,1}". The implicit quasi-polynomial depends
on the constant d.

In the next lecture we prove Theorem 9.7 and deduce from it Theorem 9.2. We end
this lecture by proving the following claim that we will use next time.

9-5

Claim 8. Given a multi-linear polynomial p : {0,1}" — Z such that every co-
efficient is of magnitude at most s, one can evaluate p on all 2" points in time

2" - poly(n,log(s)).

Note that the trivial algorithm requires 2" - 2" - poly(n,log(s)) time. The 2" factor
that we save stands for the potential number of monomials.

Proof. By induction on a recursive algorithm. For n = 1 the claim is trivial. Assume
the claim holds for n — 1 and take p of n input bits. As p is multilinear, we can write

p(T1, .. xn) = 1@ (X2, ., Tp) + qa(xe, ... Ty) (11)
Now, run in recursion on ¢; and ¢;. The running time R(n) is thereby
R(n) <2R(n — 1) + 2"poly(n,log(s)) (12)

where 2"poly(n,log(s)) is the time that takes to merge the two arrays of evaluations.
The merging technique (Lemma 4.2 of Williams [2011b], first appearing in Yates
[1937]) can be done by dynamic programming. The result immediately follows.]

9-6

LECTURE 10
NEXP ¢ ACC" - PART 2

JANUARY 17TH, 2012

LECTURER: Gil Cohen SCRIBE: Ami Mor, Or Lotan

In this lecture we complete the two missing parts of Williams’ proof from Lecture 9. In
the first part part (Section 10.1) we present Yao-Beigel-Tarui’s theorem for translating
an ACC? circuit into a pseudo-polynomial sized SYM+ circuit (Theorem 9.7). In the
second part (Section 10.2) we present a non-trivial satisfiability algorithm for ACC®
(Theorem 9.2).

10.1 Yao-Beigel-Tarui Theorem

We first present a structural result for the ACC? circuits. This result states that
we can efficiently translate an ACC? circuit into a small SYM+ circuit, where the
“small” refers to the coefficients and the degree. The strength of ACC° is in its
unbounded fan-in. Without the unobounded fan-in it would not have been surprising
that we could express low fan-in circuits with a low degree polynomial (maybe with
some weak function in the end to eliminate the MOD gates). The SYM+ circuit’s
strength is in its symmetric function.

In the proof we will first show how to reduce the fan-in by embedding the “hard” part
of the computation inside a symmetric function. After that we will modify an ACC°
circuit with small fan-in into a low degree polynomial with a symmetric function on
top.

Theorem 10.1. [A.Yao [1990]; Beigel and Tarui [1994]] There exists a function ¢
and an algorithm A that given an ACC® circuit C on n variables, of depth d and size
s, runs in time 90(10g”) s) , and outputs a SYM+ circuit (P, ©) of a poly-logarithmic
degree O (log“p(d) 3) and pseudo-polynomial size 900087V s) uch that O(P(z)) =

C (z) for every x € {0,1}".

Proof. Step 0: Tidying up the circuit. We can assume w.l.o.g that C has the
following three properties, as it can be modified to satisfy them at a polynomial
cost in size and a constant cost in the depth. Modifying C' to satisfy all of these

properties takes O(s%*2) time which is small compared to the 90(10g?(* 5) operations
we are willing to make in the entire algorithm. Hence, we can use these modifications

whenever we need.

10-1

1. Cis a formula. A formula F' is a circuit with a “tree structure” - every inner
gate has fan-out 1, every input gate has fan-out at least 1, and every output
gate has fan-out (. The following claim argues that every constant-depth circuit
can be translated into a formula without paying any cost in the circuit depth,
and paying only a polynomial cost in size:

Claim 2. For every circuit C' of depth d and size s there exists an equivalent
formula F of depth d and size at most s®T'. Moreover, the formula can be
computed in time O(s%2).

Proof. For every gate g, we denote its level by the longest (directed) path from
an input node to g (gates at level i depend only on gates at level at most i — 1,
considering the input gates at level 0). The construction of F' is done inductively
on the gates levels, bottom-up. Assume all gates up to level i — 1 € [d] have
fan-out 1 (i.e., levels 1,2,...,7 — 1 consist of the formulas F}, ..., F}) and let
g; be the root of F}; with fan-out d;. Then in the next step of the construction
each formula Fj is replicated d; times and each copy is connected to a different
parent out of the d; parents of g;.

d—1i

9k

Figure 1: The construction after i — 1 steps. All inner nodes in Fy, ..., F}
have fan-out 1. In the i*" step every formula is replicated so that the roots will
have fan-out 1 as well.

9j

Figure 2: The formula F} is rooted at g; and is connected to d; = 4 parents
from level ¢ + 1. At step ¢, F} is replicated 4 times so that every copy of g;
(and its sub-tree) has fan-out 1.

10-2

The result of the aforementioned construction is a formula F' = C of depth
d. As for the formula’s size, denote by s (i) the size of the new circuit after
iterations. Since s upper bounds the amount of gates at each untouched level
then s(i+1) < s(i) - s. Since size(F) = s(d), and s(0) = s, the size of F

+1

is upper bounded by s?!. The running time of the construction is the time

required to write down the circuits at all levels. Since at time 7 the circuit’s size
d

is upper bounded by s?, the total running time is O (Z s’) =0 (s7). O
i=0

2. C has no AND gates and no NOT gates. This can be done by replacing every
AND gate by a De-Morgen gadget of OR and NOT gates, and then replacing
every NOT gate with a single MOD, gate with fan-in 2 and a constant 1 hard-
wired to one of the inputs. This transformation increases both the size and the
depth of the circuit by a factor at most 3. Moreover, it keeps the circuit an
ACCS? circuit even after introducing the MODs.

3. C is layered. We can assume that every level in C' consists of a single type
of gate, by inserting fan-in 1 (and fan-out 1) OR,MOD,,,...,MOD,, gates as
dummy gates that just propagate the input bit up (assuming the circuit family
C € ACCO [py,...,pi]).

As mentioned, in the following steps we apply the above transformations whenever
one of the assumptions is violated. The amount of steps will depend only on the
circuit depth (the constant d) and on the amount of types of MOD gates (constant
with respect to the family) and thus the asymptotic of the above construction stays
the same.

Step 1: Reducing the fan-in of the OR gates. As seen later, the (possibly)
large fan-in of the OR gates is a bottle-neck for the proof to work. In the next step
of the construction we reduce the fan-in of all OR gates, which is currently bounded

2 .
o log?s) -size formula

only by the current formula size s®(?. The process results in a 20(
(with a majority gate at its top), in which every OR gate has fan-in at most O (log s).
The proof put in use the e-biased sets, introduced in Lecture 5 (see Section 5.5), and
it slightly deviates from the original proof of the theorem (which uses hash functions).
We find it a bit simpler and it slightly improves the parameters (in the original proof,

the fan-in of the OR gates is O(log® s) while in this proof it is only O(log s)).

We first recall Definition 5.9 for readability:

Definition 10.3 (Naor and Naor [1990]). A set S C {0,1}" is called e-biased, if
Vo € {0,1}" such that z # 0, |E,s [(—1)<x’y>” <e.

10-3

In Theorem 5.11 we saw that an e-biased set can be constructed efficiently (given
n and) and has size O <(§)2> Given an efficiently constructable i-biased set

S c{o,1}°
at least 0.4:

O(d) s0(d)

, we know that for any non-zero vector a € {0,1}°) (a,y) = 1 w.p.

E,s [(_1)<a,y>” <02 = |> Pr[y =y [(_1><a,y>]

yeSs
[Pr((a,y) = 0] (~1)° + Pr[(a,y) = 1] (~1)'] < 0.2
[Pr{{e,y) = 0] = Pr{{e,y) = 1][< 0.2

|1 —2Pr [(a,y) = 1]| < 0.2
2-1

(=2)

We first show how to generate a distribution of circuits, such that each circuit in the

<0.2

L

Prf{a,y) = 1] >

distribution has O(log s) fan-in OR gates. The probability to sample a circuit from
this distribution which answers correctly on any input is greater than 0.9.

Claim 4. There exists a randomized efficient algorithm A which works as follows.
Given an ACC® formula C on n inputs, with depth O (d) and size s' = 59D the
algorithm outputs an ACC® formula C' on n inputs, with depth O (d) and size s°¥.
FEvery OR gate in C' has fan-in at most O (logs) and w.p. 0.9, C(x) = C' (z) for

every x € {0,1}".

Proof. Let S C {0, 1}5/ be a $-biased set. Fix an input z € {0,1}" and an OR gate
g in C. We denote the input gates of g by ¢;1,..., 9, € {¢1,...,9s}, and define a
vector v, € {0, 1}* such that vgli] =1iff i € {41,...,9x} and g; = 1 (in the calcula-
tion C' (x). We note that g outputs 1 iff v, is not the zero vector. Thus, if g outputs
0, for any randomly sampled element y € S we get (v,,y) =0 w.p. 1. On the other
hand, if g should output 1, a random element y € S yields (vy,y) = 1 w.p. at least 0.4.

Let y € S be some arbitrary chosen element. Calculating the inner product (vg,y)

can be implemented using a circuit, by hard wiring into a MODy gate all the input
gates of g for which the corresponding bit in y equals 1.

104

o
= (g, y)
(99 () (99 - (99 [Lolos) o7

Figure 3: On the left an OR gate g with input gates ¢1,...,gr. On the right a
circuit implementation of the inner product (v,,y) where the only input gates of g,
whose corresponding bit in y is 1, are ¢s, g3, g7.

Repeating the above construction for ¢ samples yy,...,y; € S chosen independently

and taking the disjunction of all the inner products (using an OR gate) we get a

circuit which answers like g w.p. 1—0.6". Solving for 0.6 = 77 = 105—}3(@ we get that

t, the fan-in of the OR gate, is O (log s).

(" is constructed by randomly choosing ¥, ...,%; and replacing each OR gate of C
by the afformentioned gadget. Let A, be the event that the output of the OR gate g
is wrongly calculated by its replacement gadget in C”. Using the union bound we can

bound the probability that any OR gate is wrongly predicted, which is a satisfying
condition for an accurate calculation of the entire circuit on every input:

1
10s’ 10°

Pr[C" # C] < Pr[30R gate g s.t Ay < ZPr [4,] <

geC

Corollary 10.5. There exists an algorithm A that given an ACC® formula C on n
inputs, with depth O (d) and size s°9 outputs an equivalant ACC°® formula C' with

a MAJORITY gate on top. C" has depth O (d), size 90 (1og® 5), and every OR gate in
it has fan-in at most O (logs). The running time of A is upper bounded by 90 (1ogs)

Proof. The previous claim yields a circuit equivalent to C' with probability strictly
greater than 0.5. Derandomizing the process by taking the majority of every possible

10-5

t tuple of samples vy, ...,y; € S yields a circuit of size 20(1°8”s) \which answers like C
on every input. A needs to construct an 0.2-biased set which takes poly(s) time and

then write the new circuit C’ which takes 20(1°g2) time. O]

In the three following steps (steps 2-4) we want to turn the ACC® formula (including
the majority gate) into a SYM+ circuit (a polynomial and a symmetric function). A
polynomial can be viewed as an algebraic circuit with only SUM and PROD gates.
The canonical representation of the polynomial is such that all the PROD gates are
at the bottom, and they represent the monomials participating in the polynomial. In
this representation, the degree of the polynomial is the largest fan-in of any PROD
gate. The largest coefficient is smaller than the sum of coefficients which is the SYM—+
circuit size. Since our goal is to create a polynomial with low degree and small coef-
ficients, it is reflected by a SUM and PROD circuit with a small fan-in to the PROD
gates and a small size.

Step 2: Replacing the OR and MOD gates with arithmetic gates. Our
next goal is to transform the formula into an almost algebraic circuit contaning SUM,
PROD and temporary eg, gates (along with the symmetric majority gate at the root).

1. Eliminating the OR gates. Recall that \/f:1 gi=1— Hle (1 — g;), thus any
OR gate can be replaced by a triplet of SUM-PROD-SUM gates which maintains

the layered structure of the formula. Due to step 1 the fan-in of the new
introduced PROD gate is O (log s).

2. Eliminating the MOD,, gates. For every prime p, we introduce a new gate
eq, that gets as an input an integer n and returns n mod p. Fermat’s little
theorem tells us that 0P~ = 0 mod p, while 2P~' =1 mod p for every x € /e
Thus, we can replace every MOD,, gate on inputs ¢, ..., gx by egq, ((Z gi)p_l).
The latter is implemented by a series of p —2 PROD gates followed by the new
eq, and thus increase the MOD,, layer by a factor of p. Since ACC® = | J AC°[m]
then the original circuit family uses counters of at most m (constant with respect
to the input size and s). Since p < m the above procedure increase the circuit
depth by a factor at most m.

We stress that due to Fermat’s little theorem all eq, gates always output 0 or 1
(even though we relate to them as modulo p gates over the integers). Also note
that these gates have fan-in 1 compared to the unbounded fan in of the original

MOD,, gates.

Step 3: Pushing the multiplication gates down. Recall that our goal is to
represent a polynomial using circuit with canonical form in which all multiplication

10-6

gates are at the bottom level (i.e., representing the polynomial as a sum of monomials).
In this step we inductively push the PROD gates from the top-most level towards the
bottom-most layer (which gets only inputs).

The induction step is done by switching between PROD and some other layer without
affecting the size of the circuit by much.

1. PROD gate on top of a PROD gate: Assume a PROD layer that precedes a
PROD layer, we will unite them into one product.

Since every PROD gate in the circuit has fan-in at most O (log s) (from step 2)
uniting two layers of PROD gates results in a PROD gate with fan-in at most
O (log2 s). In the worst case all O (d) layers consists of PROD gates, so by the
end of the induction we could end up with a logo(d) s fan-in PROD gate . The
size of the circuit may only shrink.

2. PROD gate on top of a SUM gate: Let g be a PROD gate and let gy, ..., g, be
its input gates. Denote by y!, ... ,y,ii the inputs of the i» SUM gate g;. Having
this notations, the calculation made by g is given by

(yi'_i_._'_yl]%l) (y%_i_._‘_y]%z)..(yi_i_.._i_y;ﬂ)

Switching between the two layers can be simply done by opening all brackets.

We first note that in the resulting circuit the fan-in of the new PROD gates
remains the same as we take one element from each bracket. The circuit size
though, may increase from 90(10g” s) up to 210e”™s Denote by k = max {k;} the
largest fan-in, the number of introduced PROD gates is bounded by k'. Using the

fact that the induction is up to bottom we have that k£ < 20(1°g2) and thus the
O(d)(s)

log
circuit size is increased by factor of at most k! < (20<1°g2 S)> = 9log” s

3. PROD gate on top of a eg, gate: In this case the product PROD gate g out-
puts (z; mod p) (2o mod p)--- (2 mod p) (as the circuit is layered). By step
2 we know the eg, gates output only 0 and 1 so we can apply the equality
(21 mod p) (22 mod p) ... (2 mod p) = z129...2; mod p by switching between
the two layers

10-7

Note that generally it is not true that (z; mod p) (22 mod p)... (2 mod p) =
z129...2;;, mod p because the outer product in the left hand side is not done
modulo p and we can get a result which is bigger than p. This transformation
does not change the circuit size, nor change its depth.

We conclude that after this step we have an equivalent circuit with the following
properties:

1. All the PROD gates are located at the bottom-most level and have fan-in at
most log®@ (s) = polylog (s).

2. The size of the circuit is primarily determined by the number of times we used
the PROD after SUM manipulation, but the size is increased by the power of
1og?@ (s) at most d times, so the size is at most 210g(s),

Step 4 removing the eg, to get a SYM+ circuit: By now we are left with a

circuit with the following criteria: All of the PROD gates or located at its bottom

layer, SUM and eq, gates or located in the mid-layers, and a symmetric majority gate
stands at its top layer. In this last step we use the fact that a SYM+ circuit consists
of an easy to calculate polynomial on which a hard symmetric function is composed.

In this last step we consider the top symmetric gate as 6 (initialized as the majority

function), and our goal is to get rid of the eq,. Since our calculation is € (p (z)) we

have the obligation to leave the harder calculations to the function 6.

In order to get a polynomial in the canonical form we want to take the SUM gates

down and embed the modulus calculation inside the 6 function. For the substitution

between layers of eq, and layers of SUM we will use a set of polynomials called Modulus
amplifying polynomials. These polynomials have a parameter r that represents the
new modulus we amplify to. The properties we want from these polynomials:

e If (z mod p) =0 then P, (x) mod p" =0
o If (+ mod p) =1 then P, (x) mod p" =1

With these two properties we can conclude that for r large enough:
> (s modp) =Y (P(=) modp)= (Y Pr(x)) mody

10-8

The first equality holds due the modulus amplification while the last equality holds
because if p” is larger than the size s’ of the circuit, then > (P (2;) mod p") is
actually a sum of at most s’ 0’s and 1’s and therefor the sum doesn’t reach the
modulo. Hence, > z; mod p= (> P, (2;)) mod p".

We will first present the polynomials and then discuss how to use them and how it
affects the polynomial coefficients and degree.

Claim 6. [Beigel and Tarui [199]]; Gopalan et al. [2008]] For every p and r there
exist a polynomial P, of degree 2r — 1 such that:

o [f(x mod p) =0 then P, (z) modp" =0
e [f(x mod p) =1 then P, (z) mod p" =1

Proof. To find the polynomial we will use an algebraic trick:

1= <x+<1—x>>2’"—1=2§(27“.‘1)1-2'@_@%—1—1'

; i
=0
r 2r—1
r 2r—1Y\ r—1—i 2r—1\ ,_ 2r—1—i
— 1 — (] — T =T (] —
(@2(2)%() +x§<z)x()
The last term can be separated into 2 polynomials: 1 = (z —1)" r (z) + 2"u (z). We
define P, (x) = 2"u (z).
o If x = 0(mod p) then we can write x = kp for some integer k and P, (z) =

P, (kp) = p"k"u (x) which is divisible by p”". Therefore P, () =0(mod p").

e If x = 1(mod p) then we can write z = kp+ 1 for some integer k and P, (z) =
1—(1—2a) r(x)=1—(=kp)" r(z). Since (—kp)" r (x) is divisible by p" we get
that P, () =1(mod p").

These polynomials also have low degree (2r — 1) and the maximal coefficient is
bounded by 22" = 4", O

10-9

We will use these polynomials each time we want to transform) z; mod p into

(>_ P (2:)) mod p" wherer = [log, (s")]. Note that this operation essentially switches
between a SUM layer and an eg, layer. This can happen at most O (d) times because

at the start we have at most O (d) layers of eg, gates and after every switch we embed

one layer of eg, gates from the circuit into 6.

After we plug P, in the circuit and switch between the layers we have again PROD

gates in the mid-layers so we need to apply step 3 again. Since P, has maximal

coefficient 4" = 221°6% and degree 2r = O (log(s)) it can multiply the maximal co-

efficient of the circuit by 22'°¢¢ and increase its degree by 2r. Therefore the de-

gree is at most log?? s 4+ O (dlog s)=0 (log¢(d) (s)) and the maximal coefficient

2log’ Vs | (221°gs)d = 216" (s) for some function ¢. At the end the 6 function will be
composed by the majority operation along with O (d) mod p” operations.
m

10.2 Non Trivial Satisfiability Algorithm for ACC"

Our goal now is to solve the circuit satisfiability problem for ACC? circuits. Given
an ACC? circuit find whether there exists an input on which the circuit outputs 1
(in such case we say that the circuit has a satisfying assignment, even though circuits
have no assignments). Naively, we can check satisfiability of any circuit of size s on
n inputs by going over all inputs and simulating the circuit. This procedure runs in
time O(s - 27). In particular, if the size is s = 2" then the running time is O(2"").
We will show an algorithm that runs in time O(2""") which is fast enough for our
missing part from Williams’ proof.

This proof relies heavily on the aforementioned structural result for ACC? circuits.
This result shows that it is possible to translate an ACCP? circuit into a small SYM+
circuit. That translation is important because we know of a fast way to check whether
a SYM+ is satisfiable using the SYM+ evaluation lemma presented in the previous
lecture.

Proof of Theorem 9.2. The algorithm works in three steps:

1. Efficiently constructing an ACC? circuit on less inputs but with bigger size,
which is satisfiable if and only if C' is satisfiable.

2. Use the new circuit to create another equivalent SYM+ circuit whose maximal
coefficient is not to large.

3. Use the evaluation lemma presented in Lecture 9 (Claim 8) to try to find a
satisfying assignment for the SYM+ circuit.

10-10

Let § = 0 (d) > 0 to be defined later. Let C' be an ACC?® circuit C' on n inputs with
depth d and size s < 2"°. We construct a new ACC? circuit ¢’ on n’ = n — 2n°

inputs with the following properties:
1. O has size s’ = 22n°g < 23n°,
2. C" has depth d' =d + 1.

3. C is satisfiable if and only if C” is satisfiable.

C" computes the following function on an input ' = (z1,...,2,)

C' (') = \/ C Ty, Ty Ty 1y e e Ty)

:En/Jrl,...,a:nE{O,l}

and is obtained by producing 92n° copies of the circuit C, each wired with a different
assignment of the last 2n° bits of the input = (z1,...,,), and taking the OR of
all these circuits’ outputs. An illustration of the construction of C’ is given in the
following figure:

d+1

x 00..0 T 11..1

Clearly C" is a (d + 1)-depth (22"63 - 1) —size ACC? circuit. Also, C’ is satisfiable
if and only if at least one of the copies of C' is satisfiable which then again happens
if and only if C' is satisfiable. We stress that this transformation can be done in
O(23°) = 0(2"") time since there are 22" circuits and writing each down takes
time s < on’

Now, using Yao-Beigel-Tarui structural result (Theorem 10.1) we can calculate in time
log? (1) 5”5 SYM- circuit (P, ©), equivalent to C’, of size at most Plog? () < 9(@n?)#l")

and of degree log#?) s’ < (3n9)#(@) Setting § = 0 (d) = W we get

10-11

deg (P,0) < 3P @) pdeld) — geld+l) /p — O(v/n)

time (structural result) < 937 Dnel!) _ 3oy _ 90(vi) — 0(2”’"6)

Using the evaluation lemma presented in Lecture 9 (Claim 8), (P, ©) can be evaluated
on all 2" possible inputs in time

2" poly (n' log (size (P, ©))) = 2727 holy ((n—2n°) v/n) < onn’

The output is in the form of an O (s’ nd/) =0 (2\/ﬁnd) sized vector V' holding the
possible values of ©. Hence the satisfiability of (P,©) (and equivalently C" and C)
can be determined in 27" queries to V. The proof follows. O

10-12

LECTURE 11
NATURAL PROOFS

LECTURER: Gil Cohen ScRIBE: Ron D. Rothblum

Beautiful results discovered in the 80’s and early 90’s, such as Theorem 4.3, showed
dramatic lower bounds on the power of Boolean circuits. Initially, following the
discovery of these results there was high hope that this line of research would lead
us to proving that NP ¢ P/poly and as a consequence, to separate P from NP.
Unfortunately, this line of research gradually halted and in fact, the state of the art
results (e.g., NEXP ¢ ACC?) are far weaker than what we actually believe to be
true (e.g., that NP ¢ P/poly).

Given this unfortunate state of affairs, researchers tried to pinpoint what exactly is the
reason for our lack of success. One direction that has proved very fruitful and is the
focus of this write-up, is to show that certain, very natural proof techniques cannot
be used to prove circuit lower bounds. Such results are sometimes called barriers.
Recall that already in Lecture 1 we encountered the first barrier for separating P
from NP and the optimistic way around it was to study circuits. Now we have a
barrier for circuit lower bounds.

Before proceeding, we point out that while the initial interpretation of such barriers is
quite negative and in particular, that the quest for proving lower bounds is somewhat
hopeless. A different, more useful interpretation is that such barriers give us a deep
insight that may serve as a guide toward finding a novel proof technique. We suggest
Barak’s employment of non-blackbox techniques in cryptography to avoid blackbox
impossibility results (which were thought to be an unsurmountable barrier at the
time) as evidence for the more positive interpretation.

We now turn to present the natural proof barrier, discovered by Razborov and Rudich
[1997] and for which Razborov and Rudich shared the 2007 Godel prize. Our presen-
tation loosely follows that of Arora and Barak [2009], Chapter 23.

Consider the following natural approach to proving that NP ¢ P/poly. As a first
step we identify a particular property that is shared by most functions and in partic-
ular by all functions that are in NP. Our interpretation is that this property points
to some high degree of complexity (in some undefined sense). Then, we show that a
particular function in P /poly does not share this property. Hence, we can conclude
that NP ¢ P/poly.

Now let us consider this property in slightly more detail. Since, we as human beings,
are (in a sense) computationally limited, it seems reasonable that this property will

11-1

not be overly complicated. Razborov and Rudich suggested to consider properties
for which, given as input a truth table of a function (of size 2"), it is possible to
determine whether the function has the property or not in polynomial-time (i.e.,
in time poly(2")). Loosely speaking, the natural proofs barrier shows that such
a property cannot exist, unless some widely believed cryptographic conjectures are
false.

More formally, a property is a subset of all Boolean functions. A “natural property”
is defined by Razborov and Rudich as follows.

Definition 11.1. A property II is a natural property useful against P /poly if it
satisfies the following three conditions:

e Usefulness: for every f € P/poly it holds that f ¢ II.

e Constructivity: membership in Il is computable in polynomial-time. That is,
there exists an algorithm A that given as input the 2"-bit long truth table of a
function f: {0,1}" — {0, 1}, runs in time poly(2") and outputs 1 if f € IT and
0 otherwise.

e Largeness: for every n € N, at least a 1/2" fraction of all n-bit functions have
property II.

The main result of Razborov and Rudich [1997] is that if a particular cryptographic
object exists, then natural properties that are useful against P/poly cannot exist.
The specific cryptographic object that Razborov and Rudich [1997] use is a sub-
exponentially hard pseudo-random function, an object first defined and constructed
by Goldreich et al. [1986].

Definition 11.2. A sub-ezponentially hard pseudo-random function family (PRF)
is an efficiently computable ensemble of functions F = {f : {0,1}"° x {0,1}" —
{0,1} }hen, where ¢ > 2 is a fixed constant, such that for every algorithm A that
given as input a truth table of a function f : {0,1}" — {0,1} runs in time 2°™ it
holds that

Pr [A(f(k,)] = Pr [A(R)]| <27 (13)

kegr{0,1}s he€rRn

where f(k,...) denotes the truth table of the function fy : {0,1}" — {0,1}, defined
as fy(z) = f(k,z), and R, denotes the set of all functions from {0,1}" to {0,1}.

We remark that the definition above is stronger than that given by Goldreich et al.
[1986] in a fundamental way (which is crucial for the proof of Razborov and Rudich

11-2

[1997]). Specifically, in Goldreich et al. [1986] the pseudorandomness condition of the
PRF is defined with respect to a polynomial-time adversary that only has black-box
access to the function. In other words, the adversary can only view the value of the
function at some polynomial number of points, rather than seeing the whole truth
table (of exponential size) as above. Nevertheless, PRFs as above exist based on
widely believed cryptographic conjectures.

Theorem 11.3 (Razborov and Rudich [1997]). If there exist a sub-exponentially hard
PRF then there is no natural proof useful against P /poly.

Proof. Let F be a PRF and suppose that there exists a property II that is a natu-
ral proof useful against P/poly. Indeed, since F can be computed by a family of
polynomial-size circuits, by the usefulness of II, for every k& € {0,1}" it holds that
f(k,-) ¢ II. On the other hand, by the largeness condition, Prjc g, [A(h) € TI] > 27"
Let A be the algorithm guaranteed by the constructivity condition. Then,

P h)]— P A(f(k,-)] >2™" 14
Prcm] - _Pr [Af(k)] 2 (14
in contradiction to the subexponential hardness of the PRF. O

11.1 More on the Largeness Condition

One of the requirements in a natural property useful against P/poly is that the
property hold for a non-negligible fraction of all functions. This requirement seems
sensible since if we think of the property IT as measuring the hardness of functions (in
some sense), then we would definitely want such hardness to capture most functions
(since, as we saw in the course, most functions are very hard to compute). Still it
remains a viable possibility that the hardness of NP will be demonstrated via some
combinatorial property of a specific problem.

Additional insight in favor of the largeness condition is given by the following ar-
gument. We show that a particular class of very natural properties is quite large.
Specifically we refer to properties that can be described as formal complezity mea-
sures.

Recall that a formal complexity measure is a function p that maps every Boolean
function on {0, 1}" to an non-negative integer, such that:

1. For the (trivial) dictator and anti-dictator functions u(x;), u(1 — ;) < 1.

2. For every two functions f, g it holds that u(f A g), u(fV g) < u(f) + p(g).

11-3

Claim 4. Let i be a formal complexity measure and suppose that there exists a func-
tion f such that u(f) > m. Then, for at least 1/4 of the function g : {0,1}" — {0, 1}
it holds that u(g) > c/4.

Proof. Suppose toward a contradiction that for less than 1/4 of the functions g it
holds that u(g) > ¢/4.

For every function g : {0,1}" — {0,1}, let A, : {0,1}* — {0,1} be the function
defined as h, = gXORf. Hence f = gXORh, = (g A =hy) V (4 A —hy), and therefore
u(f) < plg) + n(=g) + p(hy) + p(=hy).

If ¢ is chosen at random then (by our assumption), with probability at least 1/4 it
holds that u(g) > (¢ — 2)/4. Similarly, since h, is a random function (individually),
with probability less than 1/4 it holds that p(h,) > (¢ — 2)/4. Similar statements
hold for —~g and —h,. Hence, by the union bound, there exists a function g such that
1(g), (=), u(hy), p(—hy) < ¢/4 and therefore p(f) < ¢, a contradiction. O

In a recent paper Williams [2013] proves, among other things, that in some sense, the
constructiveness is unavoidable.

11-4

LECTURE 12
LINEAR-CIRCUIT LOWER BOUNDS VIA MATRIX RIGIDITY

JANUARY 24TH, 2013

LECTURER: Gil Cohen SCRIBE: Bharat Ram Rangarajan, Eylon Yogev

In this lecture and the next we discuss a classical circuit lower bound problem that
is still wide open.

12.1 Linear-Circuits

Consider an n x n matrix over a field F. Such a matrix represents a linear transfor-
mation from the vector space F™ to the vector space F". A natural question concerns
the complexity of computing this transformation.

The model of linear-circuits is a natural model for the computation of linear trans-
formations. Informally, the gates of a linear-circuit compute linear combinations of
their input nodes. Thus, they are restricted models of arithmetic circuits (arithmetic
circuits additionally have multiplication gates too, see Section 4.2).

Definition 12.1. A linear-circuit over a field F is a directed acyclic graph L in
which each directed edge is labeled by a non-zero element of F. If g is a gate with
in-coming edges labeled by Ay,..., Ay € F from gates ¢1,..., g%, then g computes
v(g) = Mv(g1) + - - - + Av(gr), where v(g;) € F is the value computed at gate g;. We
shall consider linear-circuits with fan-in 2 gates.

Suppose L has n input gates (nodes with no in-coming edges) and m output gates
(nodes with no out-going edges). If we denote by i, ...,y € F the values computed
at the output gates of L starting with the values z1,...,z, € F at the input gates,
then we will have y = Apx, where Ay, € F,,«,; in other words, the circuit L computes
the linear transformation given by the matrix Ay,.

The size of a linear-circuit L is defined to be the number of edges in L. The depth of
L is defined to be the number of gates on a longest path from an input node to an
output node in L.

When working over Iy, the gates of any linear-circuit are simply PARITY gates. From
here on, unless otherwise stated, we shall work over the field IF5. Let us consider some
examples.

Example 12.2. Consider the identity matrix [,,. In this case the circuit simply passes
all the input bits as the corresponding output bits, with no intermediate gates.

12-1

Ezxample 12.3. Consider the matrix

1 0 0

11 0--- 0
An,n = .

11 1

The following linear-circuit computes the transformation given by the matrix A, ,.
It has O(n) depth and O(n) size.

X3

X X2

A shallower circuit can be constructed by the following recursive approach (as sug-
gested to us by Ron Rothblum). Suppose we have already computed the n/2 pair

sums
T1 + T2
T1+ X+ 23+ Ty
Ty + Ty + T3+ Tyt + Tpoy + Ty,

then we can XOR them with xs, x4, g, . .., T, respectively to obtain the remaining

sums that we need. This is illustrated by the following figure.

12-2

T1+ 22+ X3+ 24

SL’1+$2 / x1+...+xn

Use recursion for § inputs

X2

T T2 X3 {7 Tn—1 Tn

The size and depth of this circuit C,,, on n inputs, is given by the following recursive
relations:

size(Cy,) = size(Cy 2) +n
depth(C,,) = depth(C,,2) + 2.

Solving these recursive relations yields size(C,,) = O(n) and depth(C,,) = O(logn).

In fact, insisting on O(logn) depth, one can compute any linear transformation from
2 to 3 by a linear-circuit of size O(n?). On the other hand, by a counting argument,
we can show that most n X n matrices over [Fy require linear-circuits of size at least
Q(l(?;n). This is because the number of n x n matrices over Fy is 2", and the number
of circuits of size s is upper bounded by (s2)*. Thus, one must require that 2" < (s?)

S

in order to have enough circuits of size s to compute all these linear transformations.

By isolating s, we get that s = Q(IO"2).
gn

Clearly, a typical circuit has size ((n) as otherwise, since the fan-in is 2, the linear
transformation computed by the linear-circuit will not depend on all inputs. It is a
major challenge in complexity theory to prove super-linear lower bounds on the size of
linear-circuits, even of logarithmic depth, for an explicit family of matrices. That is,
we would like to design an algorithm that given n, runs in time poly(n) and outputs
an n X n matrix that cannot be computed by a linear-circuit of size O(n). Currently

there is only one route for resolving this problem - Matrix Rigidity.

12-3

12.2 Matrix Rigidity

Recall that the (column) rank of a matrix A is the maximum number of linearly
independent column vectors of A. We can similarly define the row rank of A. A
fundamental result in linear algebra is that the column rank and the row rank of a
matrix are always equal, and this is referred to as the rank of the matrix. Another
equivalent definition of the rank of A is the largest positive integer r such that A has
an r X r submatrix that is invertible.

Definition 12.4. For an n x n matrix A over a field F and a positive integer r, the
rigidity of A, denoted R4(r), is the least number of entries of A that must be changed
so that the rank of the resulting matrix reduces to r or less:

R(r) = min{|C| : rank(A + C) < r}.
Here |C] denotes the number of non-zero entries of C.

Let us consider some examples.

Ezample 12.5. Consider the identity matrix [,,. It has rigidity R;(r) = n — r. Thus,
although I, has full rank, it is quite non-rigid.

Example 12.6. Again, consider the matrix

11 0--- 0
An,n: .
11 1

For reducing the rank of A from n to n/2, we can change the last 1 in every alternate
row to 0, giving n/2 total changes. This would reduce the number of linearly inde-
pendent rows of the matrix to n/2, and thus R4(n/2) < n/2. To reduce the number
of rank of A to n/4, divide the set of rows into n/4 divisions of 4 rows each, and
modify entries of A so that all rows in each division are the same, giving a total of at
most n/4 linearly independent rows. Since 4 changes are sufficient to make the rows
in a division the same, R4(n/4) < n. The same approach can be generalized in the
case of reducing the rank of A to r: Divide the set of rows into r divisions of n/r rows
each, and modify entries of A so that all rows in each division are the same. This
would involve making O(:f—;) changes within each division, giving R(r) < (”72)

We shall see an upper bound (communicated to us by Stasys Jukna) on R,(r) for
any matrix A.

12-4

Lemma 12.7. For every n X n matriz A over Fy, Ra(r) < (n —1)2.

Proof. Clearly we may assume rank(A) > r. Then it has an r x r submatrix of full
rank. Without loss of generality, let B be this matrix obtained from the first r rows

3%

and first 7 columns of A.

Note that the columns of the r x (n — r) submatrix C' are linear combinations of the
r columns of B. That is, the i*® column of C is given by Bux;, for some z; € {0,1}".
Now replace the i*" column of E by Dz;. This way, every column of the new matrix
is a linear combination of the first r columns, thus reducing the rank to r. Since

we changed only the entries of E, the number of changed entries of A is at most
(n—7) 0

Using a counting argument, we can show that most n x n matrices have close to
maximum rigidity. That is, for almost all matrices A, R4(r) = Q((n —r)?/logn).

Lemma 12.8. For most n x n matrices A over Fy, it holds that

n? — 3nr
R > —
alr) 2 2logn

Proof. The number of n x n matrices over IFy with at most ¢ nonzero entries is
c 2
n
2 (.) = O(n™).
im0 \ !

The number of n x n matrices over Fy of rank at most r is at most

(Z) g gy

Here (:) comes from choosing r rows out of n to be the linearly independent rows, 2"
is an upper bound on the choice of r linearly independent vectors for those rows, and
(2")"~" is an upper bound on the number of linear combinations of those r vectors
deciding the remaining n — r rows. This quantity is upper bounded by 23"". We shall
get a bound on ¢ using the following inequality:

- (Total number of matrices).

N | —

#(Matrices of rank r) - #(c-sparse matrices) <

12-5

Here, a c-sparse matrix is a matrix with at most ¢ non-zero entries. That is, we want
a value of ¢ so that at least half the total number of n x n matrices over Fy require
modifications in more than ¢ positions to reduce the rank to r or less. Hence,

n? — 3nr

23 p2e 9’ s o<)
2logn

]

This leads us to the problem of explicitly constructing matrices of high rigidity. We
shall now see an explicit construction of an n x n matrix A with rigidity

Ra(r) =Q ("72 log (;)) .

A first step could be to ask how many entries of an n X n matrix need to be modified
so that every r x r submatrix has been affected. Let C(n,r) denote this quantity.
Then, suppose we had started with a matrix A which has the property that every
r X r submatrix has full rank, then one would require at least C'(n,r) entries to be
changed in A so that every r x r submatrix has been modified, giving us a lower
bound of C'(n,r) on the rigidity R4(r) of this matrix.

The quantity C'(n,r) has a graph-theoretic interpretation. Given an n x n matrix A,
we can construct a bipartite graph G = (Vi, Vs, E) associated with A as follows: the
rows of the matrix A correspond to V4, and the columns of A correspond to V5. Then
the entry of the matrix in the i row and ;' column can be associated with the edge
from vertex ¢ to vertex j in the bipartite graph G. In this case, given the complete
bipartite graph K, ,, C(n,r) is the number of edges which need to be removed so
that the resulting graph has no complete bipartite subgraph K,.,. Computing the
value of C'(n,r) is known as the Zarankiewicz problem.

We shall now see a lower bound on C(n,r).

C(n,r) >n(n—r+1) (1 B <r;1)1/7‘>

Proof. Consider the complete bipartite graph K,,,, = (Vi, Va2, E)). Suppose we have
removed c edges such that there is no complete bipartite subgraph K,,. We shall use

Lemma 12.9.

a counting argument to give a lower bound on c.
Note that the number of edges is now n? — c. For a vertex v € V; and a set of vertices
R € Vj, we call the pair (v, R) good if R C N(v) and |R| = r. Here N(v) denotes

12-6

the set of neighbours of vertex v. Now, since the resulting graph has no K, , as a
subgraph, for a particular R C V5 with |R| = r, we can have at most r — 1 choices of
vertices v € V; such that (v, R) is good. Thus, the number of good pairs (v, R) is at
most (r —1)(7).

Counting in another way, for a fixed vertex v € Vi, the number of good pairs (v, R) is
(d(”)) so the total number of good pairs is) . (,) Here d(v) denotes the degree

of vertex v. Thus, o
z(N<e-n(?).

Zd =n?—c

veV]

and) v (“ ”)) is a convex function of {d(v) : v € V;}. Hence Zve\/l(,) has

r

Note that

minimum value n (" n) (achieved by setting d(v) = % for all v € V4). Thus, we

have .

n—=< n

(7))
Now, .

(), (a=g-re1y

>

O = ey

Thus,

r— I\ n—¢—r+1
> —nr
n - n—r+1

From here it is easy to isolate ¢ to obtain the desired lower bound on ¢, and thus
C(n,r). O

We shall now study the asymptotic behaviour of the bound on C'(n, r) obtained above.

Lemma 12.10. Let log’n < r < n/2 and let n be sufficiently large. Then

-1 : _ 1 2
n(n—r—i—l)(l—r) zn(n T)log n :Q<n—log§)

n 2r r—1 T

Proof. As n(n —r+1) >n?/2 for r < n/2, it suffices to show that

1/r—1
r—1 1 n
1— > —1
(n) = By o1

12-7

This is equivalent to showing that

or equivalently

n

1 n r/log 25 r—1 1/log -5 1
1— —log > =,
2r r—1 n 2

Now note that for large values of n and r > log®n, the left hand side of the above
1/2

inequality converges to e~'/* which is greater than 1/2. Hence the above inequality

is true for large n. O

Thus, suppose we can explicitly construct an n xn matrix which has the property that
every r X r submatrix has full rank, then we have explicit constructions of matrices A
with rigidity Ra(r) = C(n,r) > Q("T—2 log(%)). We shall see (in Lecture 13) that such
matrices can be constructed using asymptotically good algebraic-geometric codes,
thereby giving us a construction of matrices with the above rigidity. This method
gives us the best construction of rigid matrices achieved so far.

12.3 Valiant’s Theorem

Our interest in rigid matrices stems from a result of Valiant, which states that matrices
which are rigid enough require linear-circuits of super-linear size. Unfortunately, as we
shall see, the explicit construction of rigid matrices discussed earlier is not sufficiently
strong for this purpose.

Theorem 12.11 (Valiant [1977]). For any constants €,0 > 0, if A is a matriz with
rigidity Ra(en) > n'*o, then any linear-circuit of logarithmic depth that computes the
linear transformation given by A, has size Q(n - loglogn).

Before proving Valiant’s Theorem, we will give some intuition. Suppose the transfor-
mation is computed by a circuit of size s and of depth d = clogn, where ¢ = 1/2.
Then each output gate depends on at most 2¢ = 2¢1°6™ = | /p variables, and since
the circuit is linear we can write it as a linear combination of \/n inputs. Hence, A
is a matrix with at most /n nonzero entries at each row, and thus any non-sparse
matrices cannot be computed by this circuit.

Valiant’s idea is to reduce the depth, which may be ¢ -logn for ¢ > 1 to such case
(namely, ¢ < 1) by removing not too many edges. Since a small number of edges was

12-8

removed, one can say that the linear combination they compute has small rank. For
this purpose, we will use the following combinatorial lemma.

Lemma 12.12. Let G = (V, E) be a directed acyclic graph in which all (directed)
paths are of length at most d. Then by removing at most |E|/logd edges, one can
ensure that all paths in the resulting graph have length at most d/2.

Proof. Consider the labeling of each vertex v of the graph G by the length of the
longest path that ends at the vertex v. Thus each vertex is now associated with a
binary string which is log d bits long (since any path in the graph is of length at most
d). Note that the labeling along a directed edge e = (v, w) strictly increases. That
is, the label of w is greater than the label of v.

We shall use these labels to partition the edge set E into logd sets E1, Es, ..., Floga,
where a directed edge e = (v, w) is in the set E; if i is the first position from the left
in which the labels of the vertices v and w differ.

Let E; be the set of smallest cardinality. Remove the edges contained in this set F;
from the graph to obtain a graph G’. First note that |E;| < |E|/logd.

We claim that all paths in the resulting graph G’ have length at most d/2. To see this,
consider a new labeling of the vertices of G’ obtained by disregarding the position 4
in the original labels. We claim that this new labeling too retains the property that
the labeling along any directed edge in G’ strictly increases. To see this, consider an
edge (v,w) € E; where j # i. We have two cases:

1. j > i: In this case, the i*" coordinate belonged to the common prefix of the labels
of v and w, and hence after removing it, the labels are still strictly increasing
along the edge.

2. j < i: In this case, the j coordinates of the labels of v and w in the original
labeling must be 0 and 1 respectively. Since j < i, after removing the ‘"
coordinate, the labels are still strictly increasing along the edge.

Thus, since the new labeling requires only logd — 1 bits, any path in the resulting
graph has length at most d/2. O

We shall now prove Valiant’s Theorem which states that matrices with sufficient
rigidity require super-polynomial size linear-circuits of logarithmic depth.

Proof. Suppose the transformation is computed by a circuit of size s and of depth
d = clogn where c is some constant. For simplicity, let us assume that d is a powers
of 2. Apply Lemma 12.12 to the circuit. Lemma 12.12 assures that by removing at

S

Togd edges, the depth decreases to at most g. Let t = § and apply the lemma

most

12-9

s
logd

log t times so that we have removed at most r = logt - edges, and the depth is at
most %. Since the circuit is linear, each removed edge is a linear combination of the
inputs x;. Let by, ..., b, be the corresponding linear forms of the r removed edges.

Consider the subcircuit computing the i*" output and let a;(x) be its value on input
x. Initially, a;(x) was a linear combination of at most 2¢ input bits, however, now it
is a linear combination of at most m = 2% original input bits, z;,,...,x;,, and r new

variables by, ..., b, (created by removing the r edges). Hence
U,Z(l') = Ez‘(bl, Ce 7b7") -+ E;(l‘il, N ,ZL‘im)

where ¢; and £} are linear transformations. Considering all the outputs ¢, we get that
we can write this in matrix notation. Let ¢ and ¢ be the matrix with ¢; and ¢ as
its rows respectively. Let B; be the n X r matrix representing the transformation
computed by ¢ and let By be the r x n matrix that has b; as its rows. Let C' be the
n X n matrix representing ¢’ and let B = B;B,. Then we can write

Note that rank(B) <r = %ggdt and that

clogn

4 d
O] <nm=mn-2t =n-2e5 =n.2 b =np!to

Thus, we can turn A into a rank < r matrix B by changing only |C| < n!*9 entries.
Therefore, we get RA(%

slogt
Tog > €n or

) < n*t9. However, we assumed that R4(en) > n'*® and

hence we get that

s> Lcnlog logn = Q(nloglogn)
log %

as required.

12-10

LECTURE 13

RELATIONS BETWEEN MATRIX RIGIDITY AND CODING
THEORY

JANUARY 31TH, 2013

LECTURER: Gil Cohen SCRIBE: Uri Sherman, Tal Wagner

In this lecture we explore ways to derive matrix rigidity results from coding theory.
In the first part, we use a positive result in coding theory - namely, a highly non-
trivial explicit construction of a code - in order to construct an explicit family of rigid
matrices. In the second part, we present an approach suggested by Zeev Dvir, that
turns negative coding theory results (that is, the non-existence of certain codes) into
proofs for the rigidity of certain explicit matrices (which are also derived from codes).

13.1 Basics of Error Correcting Codes

Error correcting codes have many non-trivial applications in theoretical computer
science®, but their “original purpose” is quite simple: Say we want to send a message
to another party. Sending the message as is might be problematic, since noise etc.
might corrupt part of the message, i.e. flip some 0’s to 1’s and vice versa. So, instead,
we would like to send an encoded version of our message that has the property that
the original message can be decoded even though some bits of the encoded message
got flipped.

The idea is that the codewords (the encoded version of the message) live in a larger
world (say our messages are 50 bits long, then the actual codeword sent might be
100 bits long), in a way that each two legal codewords are far from one another
(in Hamming distance). This ensures us that upon receiving a possibly corrupted
codeword - as long as not too many bits got flipped - there would be no ambiguity
as to which codeword was actually sent, since there would be a unique closest legal
codeword. Thus, the original message can be decoded with absolute certainty.

So, now formally: An error correcting code (ECC) is an injective map C' : X" — X™
where n < m, and ¥ is some finite set (thought of as an “alphabet”). The distance
parameter of an ECC is the minimal Hamming distance between any two codewords.
Observe that we can decode with absolute certainty as long as the number of corrupted
entries is less than half the distance (as then, there would be a unique nearest non-

*For an introductory, see the book “Essential Coding Theory” by Guruswami, Rudra and Sudan;
an online draft (currently under preparation) is available at: http://www.cse.buffalo.edu/~atri/
courses/coding-theory/book/.

13-1

http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/
http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/

corrupted codeword). The rate of an ECC is the ratio between the original message
length, and the codeword length: n/m (the rate can be thought of as the proportion of
the data sent that actually “contains data”). We will be interested in linear codes, that
is, ECCs for which the alphabet ¥ is some finite field F, and the map C : F* — F™
defining the ECC is a linear transformation. The corresponding matrix called the
generating matrix of the code.

As usual, we focus our interest on the asymptotic setting, so we consider families of
codes parameterized by the message length n. The size of the alphabet is required to
be constant. As clear from the above definitions, the asymptotically optimal possible
rate and distance are (1) and Q(n), respectively. An ECC achieving both simul-
taneously is usually called asypmtotically good, and such codes are indeed known to
exist. A fairly simple existential proof may be given based on probabilistic arguments
(see for example Spielman [2009], Section 11.5). However, as with many combina-
torial objects, for computational purposes we need explicit constructions, and these
are considerably harder to achieve. In our context of linear ECCs, explicitness means
that the generating matrix of the code can be computed efficiently - that is, in time
poly(n) on input n, the desired message length.

The following theorem, which we state here without proof, establishes the existence
of an explicit, linear, asymptotically good family of codes. It is heavily based on
Algebraic Geometry, following a line of work initiated by Goppa in Goppa [1983].
The proof is due to Tsfasman et al. [1982], and the explicitness is analyzed in Vladuts
and Manin [1985]. For a somewhat clearer reference, see Stichtenoth [2009], Section
8.4 and in particular Theorem 8.4.7 *.

Theorem 13.1. Let g = p* for any prime p, and let F, denote the finite field over q
elements. For any n, there exists an explicit linear ECC C : Fy — Fg” with distance

_ 2
d > (1—€)n, where e = 1

Observe that the code described in the theorem has rate exactly %, and distance ar-
bitrarily close to n. This is nearly tight: A simple result known as Singleton bound
states that any code must satisfy n < m — d + 1, and by plugging m = 2n and
rearranging, we see that any code with rate % may have distance at most n + 1.

We now show how to use the generating matrices of the above code to construct rigid
matrices: In Lecture 12, it was shown that given an n x n matrix A, if each r x r

*In their notation, ¢ is the relative distance - that is, the distance divided by the codeword length
- and o (9) is the rate. So plugging 6 = % — ql_l into their Theorem 8.4.7 gives the code described
in Theorem 13.1. However, their proof does not address the explicitness of this code.

13-2

submatrix of A has full rank, then A is (r,s)-rigid with s = O(%log%). We will
produce a matrix that satisfies this property but with half full rank (i.e. every r x r
submatrix will have rank > 7).

13.2 Rigid Matrices from Algebraic-Geometry Codes

Consider the transposed n x 2n matrix representation of C'. Notice that any linear
combination of the rows of this matrix is a codeword.

By Gaussian elimination (and a permutation of the coordinates), we can bring this
matrix to the form [[A}, where [is the n X n identity matrix and A is some n x n
matrix. We claim that A satisfies our property discussed above with r = 2en. Let B
be some r X r submatrix of A.

Assume by contradiction that rank(B) < £ — 1. Then any subset of § — 1 rows of
B is linearly dependent, i.e. there exists a linear combination of them that gives the
zero vector. Now consider the linear combination with the same coefficients, but with
each row of B replaced with its corresponding row in the matrix [I A} (which is an
extension of the same row vector). This is depicted in the following figure.

0 ' 0 " 4]»r.f‘2-1

n n

Let v denote the result vector of this linear combination. As mentioned above, v
is a legal codeword. Observe the following: The I-side contributes to v exactly one
non-zero entry for each of the 7 — 1 rows taken. As for the A-side, the B portion
of v vanishes (recall that this is the property by which this linear combination was
chosen), and the rest of the entries on the A-side of v (marked with “*” in the above
figure) may be non-zero, but there are no more than n — r of them. Thus, we have
that the number of non-zero entries of v is < % —14+n—r=n—en—1. Here we

have our contradiction: Since the zero vector is also a codeword, the codeword v we

13-3

have produced has distance < (1 — ¢)n — 1 from it, contradicting the distance bound
ensured by our code.

13.3 Dvir’s Approach to Matrix Rigidity

In Dvir [2011], Dvir suggests a new approach to the problem matrix rigidity, which is
essentially a reduction to a (by then unrelated) sub-domain in coding theory, which
concerns ECCs with local propetries. He shows that the non-rigidity of a certain
family of matrices implies the existence of codes which are not otherwise known to
exist, and arguably seem unlikely.

We begin with the necessary coding theory background, then proceed to proving the
main result, and conclude with a discussion of its implications.

13.3.1 Local Decodability and Local Correction

We restrict our attention to linear codes, which are sufficient for our purposes, even
though the definitions in this section may be given without the linearity requirement.

In general, decoding means recovering the original message from a possibly corrupted
codeword. In local decoding, we wish to recover only a single letter of the message,
and do so by reading only a small fraction of the codeword. A locally decodable code
(LDC) is one that allows us that. The formal definition follows.

Definition 13.2. A linear code C' : F* — F™ is a (q,0,€)-LDC, if there exists a
probabilistic algorithm D mapping F™ X [n] to F, with the following guarantee: For
every x € F" v € F™ with |v| < dm, and i € [n],

e PrD(C(x)+w,i)=ax;] >1—¢
e D reads at most ¢ letters from C(z) + v.

The guarantee in the definition should be read as follows: For every codeword cor-
rupted at no more than a J-fraction of its letters, D recovers the it letter of the
original message with high probability, while making only ¢ queries to the corrupted
codeword.

We refer the reader to Yekhanin [2012] for a survey of existing LDC constructions.
We will use the following construction, stated here without proof. For a proof sketch,

see Corollary 3.3 in Dvir [2011].

13-4

Fact 13.3. Let F be a finite field. For every ~, e > 0, there is an explicit construction
of a linear (n7, 4, €)-LDC mapping F* — F™, with 0 = d(¢) > 0 and m = O(n).

A related notion to local decoding is local correction, in which we wish to recover
a portion not of the original message, but rather of the codeword itself, from its
corrupted version. That is, given a corrupted codeword, the goal is to correct a target
letter of it while reading only a small fraction of all letters. Note that no decoding
is necessarily involved at all. A code that allows it is called a locally correctable code
(LCC), as formalized in the next definition.

Definition 13.4. A linear code C : F" — F™ is a (g, d,¢)-LCC, if there exists a
probabilistic algorithm D mapping F x [m| to F, with the following guarantee: For
every x € F" v € F™ with |v| < dm, and j € [m],

o Pr|D(C(z)+v,j) =C(z),

; >1—c¢

e D reads at most ¢ letters from C(z) + v.

We emphasize the difference from Definition 13.2: The input to D is now an index
of a codeword letter (and not of a letter from the message z), and accordingly, it
outputs a letter from C(x) (and not from x).

We remark that under the restriction to linear codes, LCCs are stronger than LDCs,
in the sense that any linear LCC implies a linear LDC with the same parameters. For
a proof, see Lemma 2.3 in Yekhanin [2012].

13.3.2 Main Theorem

Dvir’s main result, which we now state and prove, is a general way to construct linear
LCCs from linear LDCs with non-rigid generating matrices. Thereafter, by applying
it to the LDCs from Fact 13.3, we will infer that their generating matrices are rigid
unless some LCCs exist, which are possibly “too good to be true” (in particular as
they would have rate arbitrarily close to 1).

Theorem 13.5. Let C' : F" — F™ be a linear (q, 9, €)-LDC with generating matriz A.
If A is not (r, s)-rigid, then for every p > 0 there exists a linear code F¥ — F" with
k> (1—p)n—r, which is a (gs,pd/s,€)-LCC.

Proof. First note that A is an m x n matrix with entries in F. Since it’s not (r, s)-
rigid, we may write A = L + S such that L has rank at most r, and S is s-sparse
(recall it means that S has at most s non-zero entries in each row).

13-5

We call a column of S “heavy” if it has at least (sm)/(pn) non-zero entries. Since S
has at most sm non-zero entries altogether, by Markov’s inequality it has at most pn
heavy columns. We move these columns from S to L, thus rewriting A as A = L'+ 5'.
Observe:

e [/ is obtained from L by adding at most pn non-zero columns, and so its rank
can increase only by pn. Hence, rank(L’) < rank(L) + pn < r + pn.

e S’ has at most s non-zero entries in each row (a property inherited from S, left
unharmed as S’ is obtained from S by zeroing some columns), and in addition,
has at most (sm)/(pn) non-zero entries in each column.

Let k = dim(ker L’). From the above bound on rank(L'), we get & > (1 — p)n — 7.
The (unique) linear transformation mapping F* onto ker L’ defines a linear code
C': F* — F", and it remains to show that it is a (gs, &', €)-LCC, for §' = pd/s.

We describe the local correction procedure: Let x € ker L' be a codeword. Let v € F”
be such that |v| < 0'n, and let i € [n] be the target index to correct. We need to
recover x; with at most gs queries to x + v, and we will do so by invoking the local
decoding algorithm D¢ of the LDC C.

Consider the vector S'v. Since v satisfies |v| < 0'n, Sv is a linear combination of
at most 0'n columns of S’. But each such column has at most (sm)/(pn) non-zero
entries, so S’v can have at most ‘;—’7’3(5’ n = dm non-zero entries. Consequently, D¢ is
guaranteed to recover x; with probability at least 1 — ¢, while querying at most ¢
letters of C'(x) + S'v.

It remains to simulate queries on C'(z) + S’v. To this end we observe:
C(z)+ Sv=Ax+ Sv=Lr+ Sz + Sv=95(x+v).

Since S’ is s-sparse, we can query an entry of S’'(z + v) by making only s queries to
x + v, as follows: Let .J, be the subset indices of non-zero entries in the t** row of 5.
Then (S'(x+v))r = >, Si;(w +v);, so it is sufficient to query the entries of (z +v)
in J;. Since |J;| < s, s queries to x + v suffice.

In conclusion, we have obtained a local correction procedure for C’ that succeeds with
probability 1 — € on inputs corrupted at a ¢’-fraction of entries, while making only
qs queries to x + v (which are used to simulate ¢ queries to C(z) + S'v). So " is a
(gs,d',€)-LCC, and the proof is complete.]

13-6

Now we can plug the LDCs from Fact 13.3 to obtain the following concrete corollary.

Corollary 13.6. Fither the generating matrices of the LDCs from Fact 13.53 form
an explicit (Q(n),nﬂ(l))—rigid family, or for every e > 0 there exists a family of
(nQ(l), 1/n°W, 6) -LCCs with rate arbitrarily close to 1.

Proof. Let ,e > 0. Fact 13.3 gives a family of (n7,J, €)-LDCs mapping F" to F™. If
for any «, 8 > 0 their generating matrices are not (om, nb)—rigid, then Theorem 13.5
gives, for every p > 0, a family of (n'”ﬂ,pé /nf ,e)—LCCs mapping F* to F", with
k > (1 — p— a)n. Their rate is k/n, which by proper choice of p and a can be made
arbitrarily close to 1. O

13.3.3 Discussion

The immediate question arising from Corollary 13.6 is whether the inferred LCCs
are likely to exist, or in other words - does Corollary 13.6 supply hard evidence
supporting the rigidity of the matrices from Fact 13.37 The answer is unclear, in
part because this range of parameters for LCCs is largely unstudied. The reason is
that in most applications, LCCs are required to handle a constant fraction of errors
(and not just 1/n°M); under this requirement, rate approaching 1 is unachievable
for any code, regardless of being LCC or not. Dvir postulates in Dvir [2011] that
the local correction property prevents codes from having such good rate, even when
required to handle only a significantly lower fraction of errors. After Dvir’s work, it
was discovered, however, that Dvir’s approach cannot yield rigid matrices enough to
deduce the desired circuit lower bounds, but it may come very close to that.

From a broader perspective, the connection of rigidity to coding theory appears valu-
able because the latter is a widespread field in many aspects of computer science,
both theoretical and practical, and is being studied by various scientific communities.
Hence, a large body of research on it is available, and progress is made constantly and
in many directions. Since Dvir’s reduction is general, it may be used in the future
to translate progress on LDCs to more promising candidates for explicit families of
rigid matrices, and progress on LCCs to more solid evidence - and possibly a proof -
for the rigidity of these families.

13-7

10

11

12

13

14

References

. L. Adleman. Two theorems on random polynomial time. In FOCS, pages 75-83. IEEE
Computer Society, 1978.

. N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wise
independent random variables. Random Structures € Algorithms, 3(3):289-304, 1992.

. S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge Uni-
versity Press Cambridge, UK, 2009.

. A.Yao. On ACC and threshold circuits. In FOCS, pages 619-627. IEEE Computer Society,
1990.

. L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational complexity, 1(1):3-40, 1991.

. L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations
unless EXPTIME has publishable proofs. Comput. Complez., 3(4):307-318, October 1993.
ISSN 1016-3328. URL http://dx.doi.org/10.1007/BF01275486.

. T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAM Journal
on Computing, 4(4):431-442, 1975.

. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages, in NC!. volume 38, pages 150-164. Elsevier, 1989.

. P. Beame, S. Cook A, and H.J. Hoover. Log depth circuits for division and related problems.
SIAM Journal on Computing, 15(4):994-1003, 1986.

. R. Beigel and J. Tarui. On ACC. Computational Complezity, 4:350-366, 1994.

. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs:
how to remove intractability assumptions. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, STOC ’88, pages 113-131, New York, NY, USA,
1988. ACM. ISBN 0-89791-264-0. URL http://doi.acm.org/10.1145/62212.62223.

. M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits. STAM J. Comput., 13(4):850-864, 1984.

. H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In Computa-
tional Complexity, 1998. Proceedings. Thirteenth Annual IEEE Conference on, pages 8—
12. IEEE, 1998.

. S.A. Cook. A hierarchy for nondeterministic time complexity. Journal of Computer and
System Sciences, 7(4):343-353, 1973.

http://dx.doi.org/10.1007/BF01275486
http://doi.acm.org/10.1145/62212.62223

15. Z. Dvir. On matrix rigidity and locally self-correctable codes. Computational Complexity,
20(2):367-388, 2011.

16. L. Fortnow and M. Sipser. Are there interactive protocols for co-NP languages? Information
Processing Letters, 28:249-251, 1988.

17. M. L. Furst, James B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13-27, 1984.

18. O. Goldreich. Computational complexity: a conceptual perspective. ACM SIGACT News,
39(3):35-39, 2008.

19. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. ACM,
33(4):792-807, 1986.

20. O. Goldreich and D. Zuckerman. Another proof that BPP C PH (and more). In FElectronic
Colloquium on Computational Complexity. Citeseer, 1997.

21. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-
systems. In Proceedings of the seventeenth annual ACM symposium on Theory of comput-
ing, STOC ’85, pages 291-304, New York, NY, USA, 1985. ACM. ISBN 0-89791-151-2.
URL http://doi.acm.org/10.1145/22145.22178.

22. P. Gopalan, V. Guruswami, and R. J. Lipton. Algorithms for modular counting of roots of
multivariate polynomials. Algorithmica, 50(4):479-496, March 2008.

23. V. D. Goppa. Algebraic-geometric codes. Mathematics of the USSR-Izvestiya, 21(1):75,
1983.

24. J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Transac-
tions of the A.M.S, 117:285-306, 1965.

25. A. Healy. Randomness-efficient sampling within NC'. Approzimation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 398409, 2006.

26. R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: Exponential
time vs. probabilistic polynomial time. In IEEE Conference on Computational Complezity,
pages 2-12, 2001.

27. R. Impagliazzo and A. Wigderson. Randomness vs. Time: De-randomization under a uni-
form assumption. In Journal of Computer and System Sciences, pages 734-743, 1998.

28. K. Iwama, O. Lachish, H. Morizumi, and R. Raz. An explicit lower bound of 5n — o(n) for
Boolean circuits. In Proc. of MFCF, pages 3563-364. Springer-Verlag, 2002.

29. S. Jukna. Boolean function complexity: advances and frontiers. volume 27. Springer, 2012.

http://doi.acm.org/10.1145/22145.22178

30. V. Kabanets. Easiness assumptions and hardness tests: Trading time for zero error. In
Computational Complexity, 2000. Proceedings. 15th Annual IEEE Conference on, pages
150-157. IEEE, 2000.

31. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Comput. Complex., 13(1/2):1-46, December 2004. ISSN 1016-3328.
URL http://dx.doi.org/10.1007/s00037-004-0182-6.

32. R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and
Control, 55(1-3):40-56, 1982.

33. R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform complexity
classes. In STOC, pages 302—-309, 1980.

34. A. Kojevnikov, A. Kulikov, and G. Yaroslavtsev. Finding efficient circuits using SAT-solvers.
Theory and Applications of Satisfiability Testing-SAT 2009, pages 32—44, 2009.

35. C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters, 17(4):
215-217, 1983.

36. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof sys-
tems. In Foundations of Computer Science, 1990. Proceedings., 31st Annual Symposium
on, pages 2—-10. IEEE, 1990.

37. O.B. Lupanov. On the synthesis of contact networks. In Dokl. Akad. Nauk SSSR, volume
119, pages 23-26, 1958.

38. A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential space. In 18th Annual Symposium on Switching and Au-
tomata Theory, pages 125-129. IEEE, 1972.

39. R. Motwani and P. Raghavan. Randomized algorithms. Cambridge university press, 1995.

40. J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications.
In STOC, pages 213-223, 1990.

41. N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149-167,
October 1994. ISSN 0022-0000. URL http://dx.doi.org/10.1016/50022-0000(05)
80043-1.

42. C. Papadimitriou. Computational complezity. John Wiley and Sons Ltd., 2003.

43. C. Papadimitriou and M. Yannakakis. A note on succinct representations of graphs. Infor-
mation and Control, 71(3):181-185, 1986.

http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1016/S0022-0000(05)80043-1

44. A. Razborov. Lower bounds on the dimension of schemes of bounded depth in a complete
basis containing the logical addition function. In Mat. Zametki, pages 598-607, 1986.

45. A. Razborov. Lower bounds on the size of bounded depth networks over a complete basis
with logical addition (Russian). Matematicheskie Zametki, 41(4):598-607, 1987.

46. A. Razborov and S. Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24-35, 1997.

47. R. Rubinfeld. Randomness and computation - Lecture 1, 2006. URL http://people.csail.
mit.edu/ronitt/COURSE/S06/index.html.

48. A. Russell and R. Sundaram. Symmetric alternation captures BPP. Computational Com-
plexity, 7(2):152-162, 1998.

49. C. Schnorr. Zwei lineare untere schranken fiir die komplexitét boolescher funktionen. Com-
puting, 13(2):155-171, 1974.

50. J. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701-717, 1980.

51. A. Shamir. IP = PSPACE. J. ACM, 39(4):869-877, October 1992. ISSN 0004-5411. URL
http://doi.acm.org/10.1145/146585.146609.

52. A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends® in Theoretical Computer Science, 5(3-4):207-388,
2010.

53. M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the fifteenth an-
nual ACM symposium on Theory of computing, STOC 83, pages 330-335, New York, NY,
USA, 1983. ACM. ISBN 0-89791-099-0. URL http://doi.acm.org/10.1145/800061.
808762.

54. R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complex-
ity. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
STOC ’87, pages 77-82, New York, NY, USA, 1987. ACM. ISBN 0-89791-221-7. URL
http://doi.acm.org/10.1145/28395.28404.

55. D. Spielman. Course on spectral graph theory - lecture notes, Lecture 11: Introduction
to error-correcting codes. 2009. URL http://www.cs.yale.edu/homes/spielman/561/
2009/.

56. H. Stichtenoth. More about algebraic geometry codes. In Algebraic Function Fields
and Codes, volume 254 of Graduate Texts in Mathematics, pages 289-309. Springer
Berlin Heidelberg, 2009. ISBN 978-3-540-76877-7. URL http://dx.doi.org/10.1007/
978-3-540-76878-4_8.

http://people.csail.mit.edu/ronitt/COURSE/S06/index.html
http://people.csail.mit.edu/ronitt/COURSE/S06/index.html
http://doi.acm.org/10.1145/146585.146609
http://doi.acm.org/10.1145/800061.808762
http://doi.acm.org/10.1145/800061.808762
http://doi.acm.org/10.1145/28395.28404
http://www.cs.yale.edu/homes/spielman/561/2009/
http://www.cs.yale.edu/homes/spielman/561/2009/
http://dx.doi.org/10.1007/978-3-540-76878-4_8
http://dx.doi.org/10.1007/978-3-540-76878-4_8

57. L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time. In Proceedings
of the fifth annual ACM symposium on Theory of computing, pages 1-9. ACM, 1973.

58. S. Toda. On the computational power of PP and ®P. In FOCS, pages 514-519, 1989.

59. M.A. Tsfasman, S.G. Vladuts, and Th. Zink. Modular curves, Shimura curves, and Goppa
codes, better than Varshamov-Gilbert bound. Mathematische Nachrichten, 109(1):21-28,
1982. ISSN 1522-2616. URL http://dx.doi.org/10.1002/mana.19821090103.

60. C. Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci., 67(2):
419-440, 2003.

61. C. Umans. The minimum equivalent DNF problem and shortest implicants. In Foundations
of Computer Science, 1998. Proceedings. 39th Annual Symposium on, pages 556—-563.
IEEE, 1998.

62. L. Valiant. Graph-theoretic arguments in low-level complexity. Mathematical Foundations
of Computer Science 1977, pages 162-176, 1977.

63. L. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189-201,
1979a.

64. L. Valiant. Completeness classes in algebra. In Proceedings of the eleventh annual ACM
symposium on Theory of computing, pages 249-261. ACM, 1979b.

65. E. Viola. Guest column: correlation bounds for polynomials over {0,1}. ACM SIGACT
News, 40(1):27-44, 2009.

66. S.G. Vladuts and Yu.l. Manin. Linear codes and modular curves. Journal of Soviet
Mathematics, 30:2611-2643, 1985. ISSN 0090-4104. URL http://dx.doi.org/10.1007/
BF02249124.

67. R. Williams. Topics in circuit complexity course - Lecture 1. 2011a. URL http://www.
stanford.edu/"rrwill/cs354.html.

68. R. Williams. Improving exhaustive search implies superpolynomial lower bounds. In STOC,
pages 231-240, 2010.

69. R. Williams. Non-uniform ACC circuit lower bounds. In Proceedings of the 2011 IEEE 26th
Annual Conference on Computational Complexity, CCC ’11, pages 115-125, Washington,
DC, USA, 2011b. IEEE Computer Society. ISBN 978-0-7695-4411-3. URL http://dx.
doi.org/10.1109/CCC.2011.36.

70. R. Williams. Guest column: a casual tour around a circuit complexity bound. ACM SIGACT
News, 42(3):54-76, 2011c.

http://dx.doi.org/10.1002/mana.19821090103
http://dx.doi.org/10.1007/BF02249124
http://dx.doi.org/10.1007/BF02249124
http://www.stanford.edu/~rrwill/cs354.html
http://www.stanford.edu/~rrwill/cs354.html
http://dx.doi.org/10.1109/CCC.2011.36
http://dx.doi.org/10.1109/CCC.2011.36

71. R. Williams. Natural proofs versus derandomization. In Proceedings of the 45th annual
ACM symposium on Symposium on theory of computing, pages 21-30. ACM, 2013.

72. A. Yao. Theory and applications of trapdoor functions (extended abstract). In FOCS, pages
80-91, 1982.

73. A. Yao. Separating the polynomial-time hierarchy by oracles. In Foundations of Computer
Science, 1985. Proceedings. 39th Annual Symposium on, pages 1-10. IEEE, 1985.

74. F. Yates. The Design and Analysis of Factorial Experiments. Technical communication.
Imperial Bureau of Soil Science, 1937. URL http://books.google.co.il/books?id=
YW10AAAAMAAJ.

75. S. Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical Computer
Science, 6(3):139-255, 2012.

76. R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, pages 216226,
1979.

http://books.google.co.il/books?id=YW1OAAAAMAAJ
http://books.google.co.il/books?id=YW1OAAAAMAAJ

	Title Page
	Lecture 1: The Limits of Diagonalization
	1.1 Complexity Classes
	1.2 Universal Turing Machines
	1.3 Two Time-Hierarchy Theorems
	1.4 Oracles and Relativization

	Lecture 2: The Polynomial Hierarchy; Introduction to Circuit Complexity - Part 1
	2.1 The Polynomial Hierarchy
	2.1.1 Complete Languages in the Polynomial Hierarchy

	2.2 Introduction to Circuit Complexity
	2.3 Circuit Lower Bounds and Separating ¶ from NP

	Lecture 3: Introduction to Circuit Complexity - Part 2
	3.1 Four Classical Theorems about Circuits
	3.2 Restricted Circuits
	3.3 Uniformly Generated Circuits

	Lecture 4: Razborov-Smolensky Theorem; Arithmetic Circuits
	4.1 Razborov-Smolensky Theorem
	4.2 Introduction to Arithmetic Circuits
	4.2.1 The Determinant and the Permanent
	4.2.2 Bipartite Matching and the Determinant

	Lecture 5: Randomization in Computation
	5.1 Complexity Classes for Randomized Computation
	5.2 Efficient Randomized Computation vs.Non-Determinism
	5.3 Efficient Randomized Computation vs. Non-Uniformity
	5.4 ¶ vs. BPP
	5.5 Small-Bias Sets
	5.6 Pseudorandom Generators

	Lecture 6: Derandomization and Circuit Lower Bounds; Interactive Proof Systems
	6.1 Interactive Proof Systems
	6.2 Three Corollaries of IP =PSPACE

	Lecture 7: Kabanets-Impagliazzo Theorem: Derandomization implies Circuit Lower Bounds
	Lecture 8: Impagliazzo-Kabanets-Wigderson Theorem
	8.1 Turing Machines that Take Advice
	8.2 Infinitely Often
	8.3 A Proof for the IKW Theorem

	Lecture 9: NEXPACC0 - Part 1
	9.1 A NEXP-Complete Language
	9.2 Proof of Theorem 9.1
	9.3 SYM+ Circuits and ACC0 Circuits.

	Lecture 10: NEXPACC0 - Part 2
	10.1 Yao-Beigel-Tarui Theorem
	10.2 Non Trivial Satisfiability Algorithm for ACC0

	Lecture 11: Natural Proofs
	11.1 More on the Largeness Condition

	Lecture 12: Linear-Circuit Lower Bounds via Matrix Rigidity
	12.1 Linear-Circuits
	12.2 Matrix Rigidity
	12.3 Valiant's Theorem

	Lecture 13: Relations between Matrix Rigidity and Coding Theory
	13.1 Basics of Error Correcting Codes
	13.2 Rigid Matrices from Algebraic-Geometry Codes
	13.3 Dvir's Approach to Matrix Rigidity
	13.3.1 Local Decodability and Local Correction
	13.3.2 Main Theorem
	13.3.3 Discussion

	References

