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ABSTRACT

In this dissertation we explore a central theme of the theory of computing


the study of the inherent complexity of computational tasks via combinatorial models

such as Boolean circuits� span programs� branching programs�

In the �rst part of the thesis we study fault tolerance of Boolean circuits�

First we study the model of independent random faults� introduced by von

Neumann� In this model the gates of the circuit may fail with a probability bounded

by some small constant� and the failures occur independently� A circuit is reliable� if

it produces the correct result with high probability on any input� We give a general

lower bound for the size needed for the reliable computation of Boolean functions

in this model� In some cases this matches the known upper bounds� We prove that

the reliable computation of any Boolean function with sensitivity s requires ��s log s�

gates if the gates of the circuit fail independently with a �xed positive probability�

This theorem was stated by Dobrushin and Ortyukov in ����� but their proof was

not complete as pointed out by Pippenger� Stamoulis and Tsitsiklis in ����� We use

the general approach of Dobrushin and Ortyukov together with a new probabilistic

argument� The ��s log s� bound holds even if s is the block sensitivity instead of the

sensitivity of the Boolean function�

Next we introduce a model for adversarial faults� We consider synchronized

circuits and we allow an adversary to choose a small constant fraction of the gates

at each level of the circuit to be faulty� We require that even in the presence of

such faults the circuit compute a �loose version� of the given function� We present

an e�cient construction for computing arbitrary symmetric functions in this model�

We also show a perhaps unexpected relation between this model and probabilistically

checkable proofs�

The second part of the thesis gives two lower bounds for computing Boolean

functions� The �rst result provides lower bounds for monotone span programs� a

v



model introduced in ���
 by Karchmer and Wigderson� The second result exhibits

an AC��computable function that requires exponential size read�once branching pro�

grams� Both lower bounds are based on combinatorial properties of the families of

minterms of the functions computed�

In the third part of the thesis we study the relation of Boolean and arithmetic

circuits� We prove that polynomial size semi�unbounded fan�in Boolean circuits of

depth d with n inputs can be simulated by polynomial size semi�unbounded fan�in

arithmetic circuits of depth O�d�log n�� where the arithmetic operations �� �� � are

performed in an arbitrary �nite �eld� The proof is based on a randomized reduction

using the Isolation Lemma of Mulmuley� Vazirani and Vazirani�
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CHAPTER �

INTRODUCTION

���� Complexity of Boolean functions

A central problem of the theory of computing is to understand the inherent

complexity of computational tasks in terms of various resources required�

We will study combinatorial models of computation for computing Boolean

functions�

������ The basic model� Boolean circuits

Suppose we want to compute the value of a Boolean function f 
 f�� �gn �
f�� �g� using a certain set of operations� and we want to �nd out what is the minimum
number of operations we have to perform for computing the function� The set of

available operations is called the basis of the computation� A basis � is called complete

if any Boolean function can be computed using only operations from ��

A Boolean circuit is a directed acyclic graph composed of input nodes of

indegree �� labeled by variables from the set fx�� � � � � xng� and nodes of indegree � �

labeled by Boolean operations from a given basis� The nodes of the circuit are called

gates� The indegree of a node corresponds to the number of variables of the associated

operation and it is called the fan�in of the gate�

The size of a circuit is the number of its gates� The depth of a circuit is the

length of the longest directed path from an input to the output of the circuit�

A Boolean circuit computes the Boolean function f 
 f�� �gn � f�� �g if the
value computed by the output gate of the circuit equals to the value of the function

f�x�� � � � � xn� on each input�

�
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The circuit complexity over the basis � of a Boolean function f 
 f�� �gn �
f�� �g is the minimumnumber of gates in a Boolean circuit over the basis � computing

f �

We note that changing from one �nite and complete basis to another may

in	uence the size and depth of optimal circuits for a given Boolean function by at

most constant factors �����

We will consider for example the standard Boolean basis f�����g� with
fan�in two �� � gates� This is a complete basis� i�e� any Boolean function can be

computed using only these operations� If the basis is not mentioned� we will have the

standard Boolean basis in mind�

Lupanov ���� proved that any Boolean function of n variables can be com�

puted by circuits over f�����g of size �n�n�o��n�n�� Shannon�s counting argument

���� shows that size ���n�n� is necessary for computing almost all Boolean func�

tions of n variables� Thus the circuit complexity over f�����g of almost all Boolean
functions of n variables is �n�n � o��n�n�� However the largest known lower bounds

for the circuit complexity of explicit Boolean functions of n variables are linear in n

���� ��� ��� ����� and we do not know an explicit function that requires superlogarith�

mic circuit depth�

The circuit complexity of a Boolean function is related to the complexity

of computing the function in many other important models of computation� For

example� if a function can be computed by Turing machines in time T �n� then it has

Boolean circuits of size O�T �n� log T �n�� �����

������ The complexity classes NC and AC

A family of functions F is a sequence f�� f�� � � � �� where fn is a Boolean

function of n variables�

The class NC i is de�ned as the class of Boolean function families that can

be computed by uniform sequences of constant fan�in circuits in polynomial size and






depth O��log n�i� ���� ���� We have NC � ��i��NC i� The class NC can be described

as the class of problems that are e�ciently computable in parallel�

Similarly� the class AC i is de�ned as the class of Boolean function families

that can be computed by uniform sequences of unbounded fan�in Boolean circuits in

polynomial size and depth O��log n�i�� We have AC � ��i��AC i� It is well known

that ACk 	 NCk�� 	 ACk�� for every k� and NC � AC�

By uniform sequences we mean that each circuit in the sequence can be

constructed by the same procedure �as a function of the length of the input� and this

procedure is e�cient in some sense� for example performed by a logspace bounded

Turing machine �����

Sometimes the above classes are de�ned without the uniformity condition�

We note that these classes are often referred to as language classes� Com�

puting a Boolean function f corresponds to recognizing whether or not a given input

x belongs to the language L � fxjf�x� � �g�

������ Boolean formulas

A Boolean formula is a Boolean circuit where each gate has outdegree at

most ��

The logarithm of the size of an optimal formula computing a Boolean func�

tion f is within a constant factor of the circuit depth required for computing f ���� ����

The class of Boolean function families computable by polynomial size for�

mulas is the same as the class NC��

���� Fault tolerance of Boolean circuits

It is important to have constructions that reliably perform a given computa�

tion task even in the presence of errors� without increasing the size of the computation

by too much�
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We consider Boolean circuits with gates that may malfunction� and we study

if it is still possible to reliably compute a function�

������ Independent random faults

Much of the work in this area uses the model of independent random faults�

originally introduced by von Neumann ����� The assumption is that the gates of the

circuit may fail with probability bounded by some small constant� and the failures

occur independently� The circuit should produce the correct result with high prob�

ability on any input� In this model it is known ���� ��� ��� that any function can

be reliably computed by L log L size circuits� where L is the size needed to compute

the function without faults� Pippenger ���� proved that almost all functions can be

computed with only constant redundancy� By redundancy we mean the fraction of the

size needed for computation with faults and the size needed to compute the function

without faults� These results hold if the probability of a gate being faulty is bounded

by some constant � ����

We prove that the logarithmic increase in size is necessary for the reli�

able computation of certain functions� This theorem was stated by Dobrushin and

Ortyukov in ����� but the proof they gave in ���� was found to include questionable

arguments by Pippenger� Stamoulis and Tsitsiklis ��
�� We use the general approach

of Dobrushin and Ortyukov� together with some new probabilistic lemmas� This re�

sult appears in �
�� 
��� An independent proof of this result was given by G�acs �
�� 
��

and by Reischuk and Schmeltz �����

������ Adversarial faults

The problem of building reliable circuits with small redundancy becomes

more di�cult if the faults are not random� If an adversary chooses to destroy critical

parts of the circuit� for example the output gate� then the circuit cannot give the

correct result� Yet in many cases we would like to deal with worst case behavior�
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Previous attempts to build reliable circuits in the case when the faults are not random

allowed using a certain number of absolutely reliable gates� The practical justi�cation

for introducing absolutely reliable elements is that circuits can be built using more

expensive hardware for certain gates� that will be more reliable than the rest of the

circuit� Reliable circuits with small redundancy were obtained but they could tolerate

only a negligible �exponentially small� fraction of the gates being faulty ���� �
� ����

Moreover these constructions have exponential size� thus they give small redundancy

only for functions that require exponential size circuits even without faults�

In a recent paper ���� Kleitman� Leighton and Ma investigate the short�

circuit model of gate failure for Boolean circuits in which a faulty gate is restricted to

output one of its input values� They show that in this model it is possible to tolerate

worst case faults without introducing absolutely reliable gates�

To our knowledge� there are no previous results achieving small redundancy

tolerating a constant fraction of gates being faulty in the case when the faults are not

random� For a survey of related results see �����

We propose a new model of fault tolerance for Boolean circuits� We consider

synchronized �leveled� circuits and let the adversary choose a certain fraction of the

gates at each level to be faulty� Our model could be thought of as using a constant

number of absolutely reliable gates for the last few levels of the circuit� Thus� for

practical purposes it can be justi�ed similarly to the previous approaches to handle

non�random faults�

Instead of trying to correctly compute the function on every input we de�ne

the loose computation of a function� For the loose computation of a function f we

require the output to be � whenever f�x� � �� but the output has to be � only on

inputs that have a large enough neighborhood where f is identically ��

We prove that every symmetric function has a synchronized circuit of size

O�n� and depth O�log n� that performs the loose computation of the function even if a

constant fraction of the gates at each level is chosen to be faulty by an adversary� This

bound is within a constant factor of the complexity of arbitrary symmetric functions

�that depend on all n inputs� in the fault free case �����
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There is a connection between our model and recently discovered construc�

tions for proof encodings ���� ��� �also see ��
� for a survey�� We show that from

certain constructions of fault tolerant circuits the theorem of Arora and Safra �����

NP � PCP �log n� log n� follows� Our results verify the existence of such fault toler�

ant circuits� However� combining these results we do not get a simpler proof to the

characterization of NP in ����
 our construction uses an even harder result stating

that NP � PCP �log n� �� ����� The above results appear in �����

���� Lower bounds for Boolean complexity

While proving superlinear lower bounds for general Boolean circuits remains

a very hard open problem� there has been much success in proving lower bounds for

restricted versions of the Boolean circuit model�

Amonotone circuit is a Boolean circuit using only monotone gates� i�e� gates

from the basis f���g�
Razborov ���� introduced a method of proving superpolynomial lower bounds

for computing explicit functions by monotone circuits� He proved n��logn� lower

bounds for the monotone circuit complexity of the clique and perfect matching func�

tions on n�node graphs� Based on Razborov�s method exponential lower bounds were

obtained for the monotone circuit complexity of several functions from NP ��� ���

The above results can be used to derive lower bounds for the depth of mono�

tone circuits� but the depth lower bounds obtained this way will be logarithmic in

the size bound�

Karchmer and Wigderson ���� introduced a technique for proving lower

bounds on the depth of monotone circuits that are super�logarithmic in the size of

optimal circuits for the function considered� They proved ���log n��� lower bounds

for the depth of monotone circuits computing the st�connectivity function� i�e� decid�

ing whether an undirected graph on n nodes contains a path between the nodes s and

t� Based on the method of ���� ��n�� and ��n� lower bounds were obtained by ��
�
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and ���� for the depth of monotone circuits computing explicit functions on n�node

graphs�

Another area where proving lower bounds has been successful is considering

bounded depth circuits� Improving the lower bounds of ��� 
�� ���� Hastad ���� proved

exponential lower bounds for computing the parity function by bounded depth circuits

with unbounded fan�in gates over the basis f�����g� Razborov ���� proved that

computing the majority function by bounded depth circuits requires exponential size

even allowing the use of parity gates� Smolensky ���� extended the above results�

proving exponential lower bounds for computing the MODr function by bounded

depth circuits over f������MODpg� if p is a prime and r is not a power of p�

A very exciting area of research is trying to �nd new techniques that might

lead to superlinear lower bounds for general Boolean circuits ���� ��� ��� �����

������ Span programs

Karchmer and Wigderson ���� introduced span programs as a linear algebraic

model of computation� A span program for a Boolean function is presented as a

matrix over some �eld with rows labeled by literals of the variables� and the size of

the program is the number of rows� The span program accepts an assignment if and

only if the all�ones row is a linear combination of the rows whose labels are consistent

with the assignment�

Lower bounds for the size of span programs imply lower bounds in several

other models� for example for formula size�

Monotone span programs have only positive literals �non�negated variables�

as labels of the rows� They compute only monotone functions� even though the

computation uses non�monotone linear algebraic operations� It is known that every

function with a polynomial size span program is in NC �this follows from ���� ��� ���

����� but no monotone analog of this result is known�

In this model� it is not known how to prove large lower bounds for explicit

functions even in the monotone case� The ��m�� logm� lower bound implied by ����
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for monotone span program size is the strongest previously known lower bound for

an explicit function on m variables� ���� introduced a method that yields quadratic

lower bounds for explicit functions� improving on the bound by ����� The methods

presented in ���� and ���� cannot give lower bounds larger than ��m���

We present a new technique for proving lower bounds for monotone span

programs� which is a generalization of the method in ����� The new method could

possibly yield even exponential lower bounds� So far� our largest lower bound for an

explicit function on m variables is ��m��	�� We obtain this bound for the function

that is de�ned to have the value � if and only if the input graph contains a ��clique�

These results appear in ����

Another motivation for studying monotone span programs is their connec�

tion to secret�sharing schemes� A secret�sharing scheme is a cryptographic tool in

which a dealer shares a secret� taken from a �nite set of possible secrets� among a set

of parties such that only some pre�de�ned authorized sets of parties can reconstruct

the secret� To achieve this goal the dealer distributes private shares to the parties

such that any authorized subset of parties can reconstruct the secret from its shares

and any non�authorized subset cannot gain even partial information about the secret�

The authorized sets correspond to a Boolean function f 
 f�� �gm � f�� �g� where
m is the number of parties� such that the authorized sets are the sets with their

characteristic vectors in f������

A secret�sharing scheme can only exist for authorized sets speci�ed by mono�

tone functions
 if a subset B can reconstruct the secret then every superset of B can

also reconstruct the secret�

A secret�sharing scheme is considered e�cient� if the length of the shares is

not too large �say polynomial� relative to the number of parties�

The question of whether there exist Boolean functions with no e�cient

scheme is open� The best lower bound was proved by Csirmaz ����� His proof gives�

for every m� a Boolean function with m variables for which the sum of the lengths

of the shares in every secret�sharing scheme is ��m�� logm� times the length of the

secret �for every �nite set of possible secrets��
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Karchmer and Wigderson ���� proved that if there is a monotone span pro�

gram of size s for some function then there exists a scheme for the corresponding

secret�sharing problem in which the sum of the lengths of the shares of all the par�

ties is s� Therefore� every lower bound on the total size of shares in a secret�sharing

scheme is also a lower bound on the size of monotone span programs for the same

function� On the other hand� lower bounds for monotone span programs imply lower

bounds for linear secret�sharing schemes ���� ��� ����

������ Branching programs

A branching program is a directed acyclic graph with a source node called

START� and two sinks called ACCEPT and REJECT� Every vertex that is not a sink

has outdegree �� and the two edges leaving a given vertex are labeled by complemen�

tary literals xi� �xi for some variable xi �� 
 i 
 n�� For every input string �x�� � � � � xn��

xi � f�� �g the label of each edge evaluates to � or � depending on the value of the

corresponding variable� A given input string is accepted by the program if and only

if there is a directed path from START to ACCEPT along which all edge�labels take

value � under this input� The branching program is said to compute the Boolean

function f 
 f�� �gn � f�� �g which takes the value � precisely on the strings accepted
by the branching program� The size of a branching program is the number of the

nodes� A branching program is read�once if every variable occurs at most once along

each source�sink path�

A number of papers have presented lower bounds for read�once branching

programs� Exponential lower bounds are given for explicit functions in ��� ��� 
��

��� ��� ��� ��� ��� ��� ��� ��
�� Results for the more general case of read�k�times

branching programs appear in ��
� ��� ����

We list some functions which have previously been shown to require expo�

nential size read�once branching programs� �This is not intended to be a complete

list�� �
�� considers the Hamiltonian�Circuit and the Perfect�Matching problems� ����

proves an exponential lower bound for the function taking value � if and only if the



��

input graph on m vertices is m���regular� ���� presents an exponential lower bound

for integer multiplication� The Clique�Only function is de�ned as having value � if the

input represents the edges of a graph on m vertices which is an m�� size clique� The

Clique�Only function can be computed by polynomial size read�twice branching pro�

grams ���� and by NC� circuits ����� �polynomial size logarithmic depth constant fan�

in circuits�� but requires exponential size read�once branching programs ���� ��� ��
��

In the above examples� the exponential lower bounds are of the form ���
p
n�� where n

is the number of variables� A lower bound of ���n� for an n�variable function is given

in ��� ��� for the Triangle�Parity problem� i�e� for the function taking the value � if

and only if the input graph contains an odd number of triangles�

As a consequence of ��� 
��� none of the above families of functions belongs

to AC� �see ���� ���� for stronger results��

Jukna ���� and Krause et al� ���� exhibit a function which isAC� computable

and at the same time it requires exponential size read�once branching programs� They

consider the Exact�Perfect�Matching function taking the value � if and only if the

input graph consists of a perfect matching� They prove that this function requires

���
p
n� size read�once branching programs� where n is the number of variables�

We show that there exist families of functions even in depth�� monotone

AC� that require exponential size read�once branching programs� This result appears

in �����

���� Boolean vs� arithmetic circuits

There are several approaches to compare the power of Boolean and arith�

metic computational models� One possibble approach is to compare complete prob�

lems for analogous complexity classes de�ned by the corresponding models� Valiant

and Vazirani ���� gave a randomized reduction from the satis�ability problem to

unique satis�ability� and proved that NP�poly 	 �P�poly� Avi Wigderson �����

proved that NL�poly 	 �L�poly� by giving a randomized reduction from s� t con�

nectivity to unique s� t connectivity for directed graphs�



��

Our work complements the above results� We study similar questions for

complexity classes de�ned by limited depth circuits� We consider semi�unbounded

fan�in Boolean and arithmetic circuits allowing the � and � gates to have unbounded

fan�in while requiring the fan�in of the � and � gates to remain bounded� We prove

that polynomial size semi�unbounded fan�in Boolean circuits of depth d with n inputs

can be simulated by polynomial size semi�unbounded fan�in arithmetic circuits of

depth O�d � log n�� where the arithmetic operations �� �� � are performed in an

arbitrary �nite �eld�

Observe that this problem is only interesting for semi�unbounded fan�in

circuits� because a single � of m inputs can be expressed as a polynomial of degree

m over any �eld� Thus it is easy to simulate unbounded fan�in polynomial size�

depth d Boolean circuits by unbounded fan�in polynomial size� depth O�d� arithmetic

circuits simply by replacing each � gate by � and simulating each � gate by such

a polynomial� Similarly� bounded fan�in Boolean circuits are easy to simulate by

bounded fan�in depth O�d� arithmetic circuits�

For semi�unbounded fan�in circuits� replacing each � gate by the correspond�

ing polynomial we obtain ��d log n� depth arithmetic circuits� Razborov ���� showed

that an m�input � can be well approximated by degree logm polynomials over ��

nite �elds� By a result of Borodin ���� using these polynomials and amplifying the

approximation it is possible to get O�d log log n � log n� depth and polynomial size

semi�unbounded arithmetic circuits that simulate semi�unbounded �and even com�

pletely unbounded fan�in� depth d Boolean circuits� Note however that we cannot

hope for further improvement if we try to simulate each � gate separately� Our

�global� reduction gives depth O�d� log n� simulation� The proof is based on a ran�

domized reduction using the Isolation Lemma of Mulmuley� Vazirani and Vazirani

����� These results appear in �
�� ����



CHAPTER �

FAULT TOLERANCE OF BOOLEAN CIRCUITS

���� A lower bound in the model of independent

random faults

������ De�nitions and previous work

We prove lower bounds on the number of gates needed to compute Boolean

functions by circuits with noisy gates� We say that a gate fails if its output is incorrect�

A noisy gate fails with a probability bounded by some constant � � ��� ����� and the

gates in the circuit fail independently� A computation is reliable if the value computed

by the circuit on any given input is correct with high probability�

For reliable computations the size of circuits with noisy gates has to be

larger than the size needed for computations using only correct gates� By the noisy

complexity of a function we mean the minimumnumber of gates needed for the reliable

computation of the function� It depends of course on the error probabilities of the

gates� and also on how reliable the circuit has to be� Note that in this model the

circuit cannot be more reliable than its last gate� For a given function� the ratio of

its noisy and noiseless complexities is called the redundancy of the noisy computation

of the function�

The following upper bounds are known for the noisy computation of Boolean

functions� The results of von Neumann ����� Dobrushin and Ortyukov ���� and Pip�

penger ���� prove that if a function can be computed by a noiseless circuit of size L�

then O�L log L� noisy gates are su�cient for the reliable computation of the function�

Pippenger ���� proved� that any function depending on n variables can be computed

by O��n�n� noisy gates� Since the noiseless computation of almost all Boolean func�

tions requires ���n�n� gates �Shannon ����� Muller ������ this means that for almost

all functions the redundancy of their noisy computation is just a constant� Pippenger

��



�


���� also exhibited speci�c functions with constant redundancy� For the noisy compu�

tation of any function of n variables over a complete basis �� Uhlig ��
� proved upper

bounds arbitrarily close to �����n�n as � � �� where ���� is a constant depending

on �� and �����n�n is the asymptotic bound for the noiseless complexity of almost

all Boolean functions of n variables �Lupanov ������

These are rather surprising results� It is natural to ask whether there exist

functions with nonconstant redundancy or whether the O�L log L� upper bound of

���� ��� ��� is tight for some functions� and if so� exhibit such functions�

Dobrushin and Ortyukov in their ���� paper ���� stated the following theo�

rem providing answers to this important problem
 The computation of any function

with sensitivity s requires ��s log s� gates if the gates of the circuit fail independently

with a �xed probability � � ��� ����� but the value computed by the circuit on any

input is incorrect with probability not greater than p � ��� ��
�� Thus� in particular�

the reliable computation of the parity or the �or� functions of n variables requires

��n log n� noisy gates�

Unfortunately� as noticed by Pippenger� Stamoulis and Tsitsiklis ��
�� the

proof in ���� is incorrect� Pippenger� Stamoulis and Tsitsiklis ��
� pointed out the

two questionable arguments in the proof� and suggested that part of the strategy

seemed hopelessly 	awed� They gave in ��
� an ��n log n� lower bound for the parity

function� keeping part of the approach of Dobrushin and Ortyukov� but replacing a

signi�cant part of their proof with entirely new arguments using speci�c properties

of the parity function� The more general statement about any function with given

sensitivity remained unproven�

We prove that functions with sensitivity s do indeed require ��s log s� noisy

gates for their reliable computation� We can prove the stronger ��b log b� lower bound�

where b is block sensitivity rather than sensitivity� The results hold for circuits with

arbitrary constant fan�in gates� Thus� they also hold for circuits over an incomplete

basis� for example monotone circuits� The proof uses the original Dobrushin�Ortyukov

strategy� proving the correct probabilistic lemmas to carry it out�
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We note that these are the only known lower bounds proving nonconstant

redundancy for functions other than the parity function� and they allow to prove

maximal ��log L� redundancy of noisy computation over arbitrary constant fan�in

basis for a large class of functions� including all symmetric functions�

A di erent proof of Theorem ����� by P�eter G�acs� which works for any

p � ��� ���� is presented in �
��� The paper of Reischuk and Schmeltz ���� gives

an independent proof of the ��s log s� lower bound� The dependence on the failure

probabilities of the gates was later improved by Evans and Schulman �
�� 

�� The

e ect of errors on the depth of the computation has been studied in �
�� 
�� 

��

������ The lower bound

Let f be a Boolean function of n variables� Let x � �x�� � � � � xn� be any

input string� Denote by x� the input string which di ers from x only in the ��th bit�

i�e� x�i � xi for each i 
� � and x�� � �x��

De�nition ����� The function f is sensitive to the ��th bit on x if f�x� 
� f�x���

The sensitivity of f on x is the number of bits to which f is sensitive on x� The

sensitivity of f is the maximum over all x of the sensitivity of f on x�

We consider Boolean circuits with gates having constant fan�in and comput�

ing functions from a �nite set �� A complete basis is a set of functions such that any

Boolean function can be represented by their composition� � may or may not be a

complete basis� We assume only that any circuit C computing a particular function

f uses constant fan�in gates computing functions from a �nite set �C � such that f

can be represented by the composition of functions from �C �

Let n��C� be the maximum fan�in of the gates computing functions from

the set �C � Let ng denote the fan�in of gate g�

De�nition ����� Let z � f�� �gng � Denote by g�z� the value of the function that the
gate g has to compute� on input z� We say that the gate g fails� if receiving input z

it outputs a value di erent from g�z��
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Theorem ����� gives the lower bound for the case that the gates fail indepen�

dently with a �xed probability � � ��� ����� It has been argued �Pippenger ����� that

for proving lower bounds this is the best model to consider� as opposed to proving up�

per bounds� where the assumption that the gates fail independently with probability

at most � � ��� ���� is more appropriate�

De�nition ����� Denote by C�x� the value computed by the circuit C on input x�

We say that a circuit computes f with error probability at most p if the probability

that C�x� 
� f�x� is at most p for any input x�

The main lower bound theorem is stated below


Theorem ����� Let � and p be any constants so that � � ��� ����� p � ��� �����

Let f be any Boolean function with sensitivity s� Suppose a circuit whose gates fail

independently with �xed probability � computes f with error probability at most p �

Then the number of gates of the circuit is at least ��s log s��

Corollary ����� The redundancy of the noisy computation by Boolean circuits of

any function of n variables with O�n� noiseless complexity and ��n� sensitivity is

��log n��

Corollary ����� applies to a large class of functions� In particular the follow�

ing statement holds


Corollary ����	 The redundancy of the noisy computation by Boolean circuits of

any nonconstant symmetric function of n variables is ��log n��

We note that there is a di erence between the redundancy of noisy com�

putation by circuits and by decision trees� A similar model of noisy computation is

considered by Feige et al� �
�� for Boolean decision trees� The nodes of the tree are

allowed to be independently faulty with some probability� and the result of the com�

putation has to be correct with at least a �xed probability for every input� Feige et
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al� �
�� give bounds for the depth of noisy decision trees computing symmetric func�

tions� These bounds show that some nonconstant symmetric functions have constant

redundancy of noisy computation by decision trees�

Corollary ����
 There exist Boolean functions of n variables with constant redun�

dancy of noisy computation by decision trees and ��log n� redundancy of noisy com�

putation by circuits�

������ Noisy wires

Following Dobrushin and Ortyukov� for the proof of Theorem ����� we con�

sider an equivalent problem�

Let C be a circuit satisfying the condition that if its gates fail independently

with probability � then the circuit computes f with error probability at most p�

As suggested in ����� consider the case when not only the gates but the wires

of C may fail as well� We say that a wire fails when it transmits an incorrect value�

Let 	 � ��� ��n��C�� and suppose that the wires of C fail independently�

each with probability 	� This means that the input y � f�� �gng received by gate g

may be di erent from the input t � f�� �gng that the gate should have received�

The following statement is proved as Lemma 
�� in ����
 Let � � ��� �����

	 � ��� ��n��C��� Then for any gate g of the circuit C there exist unique values


g�y� 	� � ��� ��� so that if the wires of C fail independently with probability 	 and

the gate g fails with probability 
g�y� 	� when receiving input y� then the probability

that the output of g is di erent from g�t� �where t is the input entering the input

wires of the gate� is equal to ��

Consider now the behavior of circuit C in two di erent failure modes� In

the �rst mode the wires of the circuit are correct and the gates fail independently

with probability � � ��� ����� In the second mode each wire fails independently with

�xed probability 	 � ��� ��n��C�� and each gate fails independently with probability


g�y� 	� when receiving y� Lemma 
�� of ���� shows that these two failure modes are

equivalent in the sense that the circuit C computes f with the same error probability
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for any input x and any gate g the output of g di ers from the output computed by

the same gate in an error free computation of C on input x with the same probability

in both modes� Thus to prove Theorem ����� it su�ces to prove a lower bound for

the size of C computing f with error probability at most p with errors occurring at

both the wires and the gates� More precisely� we shall prove the following

Theorem ����� Let 	 and p be any constants so that 	 � ��� ����� p � ��� ����� Let

f be any function with sensitivity s� Let C be a circuit such that its wires fail inde�

pendently with �xed probability 	 and each gate g fails independently with probability


g�y� 	� when receiving y� Suppose C computes f with error probability at most p�

Then the number of gates of C is at least ��s log s��

������ Probabilistic lemmas

In this section we prove a few statements which we will need for the proof

of Theorem ������

Lemma ����� Let ��� � � � � �n be independent events� � � ��� �� and Pr�
Sn
i�� �i� 
 ��

Then

Pr�
n�
i��

�i� � ��� ��
nX
i��

Pr��i� �

Proof


Pr�
n�
i��

�i� �
nX
i��

Pr��i � �� �
j ��i

n
j���j��

�
nX
i��

Pr��i� ��� Pr�
n�

j��

�j��

� ��� ��
nX
i��

Pr��i� �

Lemma �����
 Let E be an event� p and c constants from ��� ��� Let � and 
 be

independent events such that Pr�
� � c and Pr�E j �� � � � p� Then

Pr�E j � � 
� � � � p

c
�



��

Proof


Pr�E j � � 
� � � � Pr��E j � � 
� �

P r��E j � � 
� �
Pr��E � � � 
�

Pr�� � 
� 
 Pr��E � ��
Pr�� � 
�

�
Pr��E j ��Pr���

Pr���Pr�
�

 p

c
�

Lemma ������ Let E be an event and p � ��� �� a constant� Let ��� � � � � �n be

independent events such that Pr�E j �i� � �� p for �i� Then

Pr�E j
n�
i��

�i� � �� �pp�� �

Proof


We prove that if the conditions of the lemma hold then for any c � ��� ��

Pr�E j
n�
i��

�i� � �� � p

c
���� c� � �����

Taking c �
p
p we get the statement of the lemma�

Let us use the notation 
i � ���� � � � � � �i�� Then the events ��� �� � 
��
� � � � �k�� � 
k do not intersect and

n�
i��

�i � �� !���� � 
�� !���
 � 
�� !� � � � !���n � 
n��� �

P r�
�� � Pr�
�� � � � � � Pr�
n��� � �����

Fix any constant c � ��� ��� Suppose Pr�
k� � c for some k� Then since

���� and 
� are independent events� by Lemma ������ and ����� the following holds

for each � 
 � 
 k


Pr�E j ���� � 
�� � �� p

c
�

Since
Sk��
i�� �i � �� !���� � 
�� !� � � � !���k�� � 
k� we get that

if Pr�
k� � c then Pr�E j
k���
i��

�i� � � � p

c
� ���
�
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This proves ����� if Pr�
n��� � c�

If Pr�
n��� � c and Pr�
�� � c then consider the largest index k such that

Pr�
k� � c� Thus � 
 k � n� � and

Pr�
k� � c but Pr�
k��� � c �

By ���
� Pr�E j Sk��i�� �i� � � � �p�c�� and

Pr�
k���
i��

�i� � �� c since
k���
i��

�i � �
k�� �

We get

Pr�E j
n�
i��

�i� � Pr�E j
k���
i��

�i�Pr�
k���
i��

�i�

� ��� p

c
���� c� �

If Pr�
�� � c then Pr���� � � � c and

Pr�E j
n�
i��

�i� � Pr�E j ���Pr����

� �� � p��� � c�

� �� � p

c
���� c�

which concludes the proof of Lemma �������

������ Proof of the lower bound

We prove the �noisy wires� version �Theorem �������

Let z be an input such that f has maximum sensitivity on z� Let S �
f�� � � � � ng be the set of indices so that � � S if and only if f is sensitive to the ��th

bit on input z� Then jSj � s� where s is the sensitivity of f �

For each � � S denote by B� the set of all wires originating from the ��th

input of the circuit� Let m� � jB�j�
For any set � � B�� let ���� be the event that the wires belonging to � fail

and the other wires of B� are correct�
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Denote by �� the subset of B� where

max
��B�

Pr�C�z�� � f�z�� j �����

is obtained� Note that �� may or may not be the empty set�

By the conditions of the theorem� C computes f with error probability at

most p� which means that Pr�C�z�� � f�z��� � � � p� Thus�

Pr�C�z�� � f�z�� j ������ � � � p � �����

Denote by �� the event that the wires of B� not belonging to �� fail and the

wires of �� are correct� In other words
 �� � ��B� n ����
Since f is sensitive to the ��th bit on z

Pr�C�z� 
� f�z� j ��� � Pr�C�z�� � f�z�� j ������ �

By ����� this means that for each � � S

Pr�C�z� 
� f�z� j ��� � �� p �

�� are independent events since the wires fail independently� Thus we can apply

Lemma ������ and get

Pr�C�z� 
� f�z� j �
��S

��� � �� �pp���

Using this inequality� from

p � Pr�C�z� 
� f�z��

� Pr�C�z� 
� f�z� j �
��S

���Pr�
�
��S

���

we conclude that

Pr�
�
��S

��� 
 p

�� �pp�� � �����

p��� �pp�� � ��� �� since p � ��� ����� Applying Lemma ����� we get

Pr�
�
��S

��� � ��� p

���pp�� �
X
��S

Pr���� � �����
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Using

Pr���� � �� � 	�j��j	m��j��j � 	m�

where 	 is the failure probability of the wires� from ����� and ����� follows

p

�� �
p
p
�X

��S
	m� �

Then
p

�� �
p
p
� s�

Y
��S

	m����s

by the inequality between the arithmetic and geometric means� Taking the logarithm

we conclude
X
��S

m� � s

log���	�
log� s

�� �
p
p

p
� � �����

Since the maximum fan�in of the gates of the circuit n��C� is constant� �����

means that the number of gates in the circuit is ��s log s�� and this completes the

proof of the theorem�

����	� Block sensitivity

Let f be a Boolean function of n variables� x � �x�� � � � � xn� any input and

S any subset of indices� S � f�� � � � � ng� Denote by xS the input obtained from x by

complementing all bits with indices from S and keeping the other bits of x unchanged�

De�nition ������ The function f is sensitive to S on input x if f�x� 
� f�xS�� The

block sensitivity of f on x is the largest number b such that there exist b disjoint sets

S�� � � � � Sb such that for all � 
 i 
 b� f is sensitive to Si on x� The block sensitivity

of f is the maximum over all x of the block sensitivity of f on x�

This measure of complexity was introduced by Nisan in ����� Clearly for any

function

block sensitivity � sensitivity �

It is shown in ���� that for all monotone functions the sensitivity equals the block

sensitivity� but for non�monotone functions the inequality may be strict� A function
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with quadratic gap between sensitivity and block sensitivity is exhibited by Rubinstein

�����

Theorem ������ Let � and p be any constants so that � � ��� ����� p � ��� �����

Let f be any Boolean function with block sensitivity b� If a circuit whose gates fail

independently with �xed probability � computes f with error probability at most p�

then the number of gates of the circuit is at least ��b log b��

Proof


Let the block sensitivity of f be maximum on input z� and let S�� � � � � Sb be

disjoint sets so that for all � 
 i 
 b� f is sensitive to Si on z� We can apply the

proof of Theorem ����� by de�ning Bi for � 
 i 
 b as the set of all wires originating

from the inputs with indices from Si�

Corollary ������ The redundancy of the noisy computation by Boolean circuits of

any function of n variables with O�n� noiseless complexity and ��n� block sensitivity

is ��log n��

����
� Open problems

Note that the O�L log L� upper bound construction ���� ��� ��� works for

monotone circuits as well� since it can be realized using only gates computing the

majority function in addition to the gates of the original noiseless circuit� Let Lm�f�

be the noiseless complexity of computing the monotone function f by monotone

circuits� Theorem ����� shows that for some functions f � ��Lm�f� log Lm�f�� noisy

gates are necessary for the reliable computation of f by monotone circuits� Is it still

true that the redundancy of the noisy computation of almost all monotone functions

by monotone circuits with noisy gates is constant" Andreev ��� showed that this is true

for a di erent failure model� where the gates of the circuit do not fail independently�

but the number of faulty gates is at most �o�n��

Considering arbitrary circuits� prove lower bounds stronger than ��n log n�

for the size of reliable circuits with noisy gates computing explicit functions of n



�


variables� This might be a very di�cult problem
 if such a lower bound holds for the

computation of a function f by unrestricted circuits with gates from a �nite complete

basis� then the noiseless complexity of that function must be superlinear �in n�� Thus

exhibiting such a function would solve another fundamental open problem�

But this question is open even for restricted models
 prove nonconstant

redundancy of noisy computation for an explicit function known to have ��n log n�

noiseless complexity of computation by circuits with gates computing functions from

some �incomplete� �nite set �� for example by monotone circuits�

���� A model for tolerating adversarial faults

������ Description of the model

All the circuits considered here will be synchronized� This means that the

gates are classi�ed according to their levels numbered from � to D�C�� where D�C�

denotes the depth of the circuit� Wires go only between consecutive levels �a gate

on the ith level is fed from gates on the �i � ��th level for i � �� � � � �D�C��� We

would like to build synchronized fault tolerant circuits that give the correct output

even if at each level a small� but maliciously chosen constant fraction of the gates are

malfunctioning�

Instead of trying to correctly compute the function on every input we de�ne

the loose computation

De�nition ����� For any computational device M we say that M 	�loosely computes

f if

�� whenever f�x� � � then M�x� � ��

�� If f�z� � � for every z with d�x� z� 
 	n� then M�x� � ��

Here d�x� z� denotes the Hamming distance between words x and z� We remark that

M can output an arbitrary value or no value at all if input x does not belong to the

above two categories�
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At the �rst sight it may appear that computational devices that loosely

compute a function f can be far weaker than those that are able to get the value of f

everywhere� For instance it is well known �
� that there is an AC� circuit that loosely

computes the majority function� whereas majority itself cannot be computed in AC��

One may speculate similarly that every function in NP might be loosely computed

in P � Proposition ����
 together with Remark ����� shows that this is not the case

�unless P � NP ��

De�nition ����� For an error correcting code En with codewords of length qn and

for a function f 
 f�� �gn � f�� �g we de�ne the function f � En 
 f�� �gqn � f�� �g
as follows�

� �f � En��z� � � for all z where z is not a codeword of the code En�

� If z � En�x� then �f � En��z� � f�x��

Proposition ����� If the Hamming distance of any two codewords in En is at least

	qn� and M is a computational device that computes f �En in a 	�loose manner� then

M�En�x�� � f�x� on any input x�

Remark ����� It is known from coding theory that there exist linear binary codes En

with the following properties�

�� The matrix of En can be polynomially computed in n� �This also means that the

length of the codeword� qn� is polynomial in n��

�� The Hamming distance of any two codewords in En is at least 	qn� for some

small constant 	�

There are two ways to interpret the assumption of our model about allowing

at most a small constant fraction of the gates to be faulty at each level of the circuit�

We may or may not allow the adversary to bias gates at the input level� The following

proposition shows that we cannot expect to �nd a simple transformation that turns
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an arbitrary circuit into a fault tolerant circuit in our model in the harder case� when

faults are allowed at the input level� We note that such a transformation exists in

the model of independent random faults �����

Proposition ����� Assume that there is a polynomial time transformation that would

turn any circuit C computing a function f into a circuit C � of size polynomial in the

size of C such that C � loosely computes f � even if an adversary biases a small constant

fraction of the gates at every level of C � including the input level� Then P	NP�

Proof� We show that the hypothesis implies that the satis�ability of a 
CNF formula

could be decided in polynomial time� Let � be a 
CNF formula of n variables�

Let us introduce n� new variables y�� � � � � yn� � Let C be the circuit that computes

f � y�� � � ��yn� ��� Let C � be the fault tolerant circuit that computes f in a 	�loose

manner� By our assumption we can build C � from C in polynomial time� Let z be the

input � � � � �� We claim that C ��z��� �without faults� if and only if � is satis�able�

Indeed� if � is not satis�able then f is identically � and hence C ��z� � �� On the

other hand if there is an assignment a such that ��a� � � then by changing only at

most n 
 	n� digits of z we can turn z into a z� such that f�z�� � �� Observe that

loose computation preserves the � values� But then by the fault tolerant property

of C �� C ��z� � � holds� Thus building C � as above would allow us to di erentiate

between satis�able and non satis�able instances�

An observation of G�abor Tardos ���� shows that a similar statement also

holds if we do not allow faults at the input level�

������ Halvers

Our construction for symmetric functions is based on the ��halvers of Ajtai�

Koml�os and Szemer�edi ���� An ��halver is a bounded depth comparator network with

the property that for any set of the l smallest �largest� inputs� where l 
 n��� at most

�l elements will be among the last ��rst� n�� outputs� In other words� an ��halver is



��

a halver �a network that separates the n�� largest and the n�� smallest inputs into

two disjoint sets� that can misplace at most an � fraction of the elements�

Constant depth linear size ��halvers were constructed in ���� More e�cient

��halvers �with smaller constants� based on units called k�comparators were proven

to exist in ���� but no explicit construction has been given� A k�comparator is a unit

that sorts its k inputs�

All our constructions work using either ��halver� If the more e�cient ��

halvers are used� we assume that each k�comparator is realized by depth k ��comparator

networks� We note that the depth of the realization of such ��halvers by ��comparator

networks will be �k� since the ��halvers of ��� are depth � k�comparator networks� In

what follows by the depth of an ��halver we always mean the depth of the realization

by ��comparator networks�

For ��� inputs ��halvers can be realized by monotone Boolean circuits� Each

comparator will be realized by an AND � OR gate pair� The AND gate computes the

minimum� the OR gate computes the maximum of the two common input bits� The

resulting circuit will have the same depth as the original ��halver� In what follows by

��halvers we usually mean the Boolean circuits of the above mentioned form realizing

the original ��halvers�

For our purposes we have to consider ��halvers with faulty gates�

De�nition ����	 Denote by g�y�� y�� the function that the gate g is supposed to com�

pute on input y�� y�� A gate g is faulty if its output is di
erent from g�y�� y���

De�nition ����
 Let C be a circuit with no faulty gates� and let #C be a copy of the

same circuit with possibly faulty gates� The output of a gate of #C is incorrect if it is

di
erent from the value computed by the same gate in C� Note that the output of a

gate may be incorrect because the gate is faulty� or because the inputs of the gate are

incorrect�

The following lemma says that in ��halvers the incorrect outputs cannot

cause too much damage on subsequent levels�
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Lemma ����� At level d of an ��halver the number of incorrect outputs is at most

the number of incorrect outputs at level d� � plus the number of faulty gates at level

d�

Proof� Recall that a comparator in our ��halvers is an AND � OR gate pair with

common inputs� Level d of the ��halver consists of disjoint comparators� Thus to

prove the lemma it is enough to prove that the number of incorrect output bits of a

comparator is at most the number of its incorrect input bits plus the number of its

faulty gates� �Thus we only have to deal with a single comparator with two inputs

and two outputs at a time�� Let us consider the case when there are no faulty gates

and exactly one of the two input bits is incorrect� Notice that since the comparator

only permutes the two input bits we can have only one incorrect bit in the output in

this case� In all other cases the statement for a single comparator is trivially true�

De�nition ����� We say that a circuit is ��faulty if at most � fraction of the gates

on each level is faulty�

When talking about ��faulty circuits we do not consider the inputs to be

gates� but just values fed into the circuit� The reason for this is that our constructions

will involve ��faulty circuits connected to one another such that the outputs of one

of them provide the inputs to others� Once we receive a set of values as output of a

previous circuit it will be fed to the next circuit without further damage� �Another

way of making this clear is noting that the wires of our circuits work correctly no

matter what the adversary does�� However we will have to take into account that the

adversary may destroy some of the real input gates of the whole construction�

For an ��halver denote by L� �L�� the number of ��s ���s� in the lower part

of the output� and by U� �U�� the number of ��s ���s� in the upper part of the output�

We shall need the observations below in the next section�

Lemma �����
 Consider a ��faulty ��halver of depth c with m inputs� Let the num�

ber of ��s in the input be a� If a � m�� then

L� 
 ��m� a� � c�m
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and

�a�m���� c�m 
 U� 
 �a�m��� � �m�� � c�m �

If a 
 m�� then

U� 
 �a� c�m

and

�m�� � a�� c�m 
 L� 
 �m�� � a� � �m�� � c�m �

Proof� We �rst estimate what would be the value of L� and U� in a correct ��halver�

Lemma ����� guarantees that the number of incorrect outputs in the last level of a

��faulty ��halver of depth c is at most c�m�

We summerize what we have learned in the following lemma


Lemma ������ Consider a ��� string of length m� such that there are z ��s followed

by m � z ��s� Denote by zL �zU� the number of ��s in the lower �upper� part of this

ordered string�

Consider a ��faulty ��halver of depth c with m inputs� Let the number of ��s

in the input be a� such that j a� z j
 r� Then

j U� � zU j
 r � ��� �c��m��

and

j L� � zL j
 r � ��� �c��m�� �

Note that a similar statement holds for the number of ��s in the output�
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������ Symmetric functions

In this section we construct fault tolerant circuits for any symmetric func�

tion�

First we show that ��faulty circuits can compute overwhelming majority

functions correctly on all inputs where they are de�ned�

The overwhelming majority function Majnk has value � or �� respectively� if

the number of ��s or the number of ��s in the input is at least k� and it is unde�ned

otherwise�

Lemma ������ Let k � 
��n� Then for some � � �� there is a ��faulty circuit of

size O�n� and depth O�log n� computing Majnk correctly on every input belonging to

its domain�

Proof� The building blocks of our construction are triplets of ��halvers with a ma�

jority preserving property� A similar component with this property was introduced

by Assaf and Upfal in ���� for building fault tolerant sorting networks in the case of

random faults� They call a comparator network with m inputs and m�� outputs a

majority preserver if it guarantees that if at least a given �� ���� constant fraction

of the m inputs have the same value� then this value appears in at least the same

given constant fraction of the m�� outputs� We construct a majority preserver that

tolerates a small constant fraction of worst case errors at each of its levels as follows�

First we apply an m�input ��halver to the m inputs� Let us call itM �halver�

Then we apply two m���input ��halvers� one to the lower part the other to the upper

part of the output of the M �halver� We refer to these two ��halvers as L�halver and

U �halver respectively� The output of the majority preserver will consist of the upper

part of the output of the L�halver and of the lower part of the output of the U �halver�

We use a family of ��halvers of depth c with the same parameters � and c

for all input lengths� For appropriate constants � and c such family exists�

Let a be the number of ��s in the input of the majority preserver� Suppose

a � �
�� � c��m � �����
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Denote by L��M� �U��M�� the number of ��s in the lower �upper� part of the output

of the M �halver� We use similar notation for the L�halver and U �halver� By Lemma

������ and the inequality �����

L��M� � m�� � ��� �c��m��

and

U��M� � m�� �

Applying Lemma ������ to both the L�halver and the U �halver� we get

U��L� � L��U� � �� � ���� �c���m�� � �����

We have proved that if the number of ��s in the input of a majority preserver is at

least �
�� � c�� fraction of the input then at least a �� � ��� � �c��� fraction of its

output is also �� A similar statement holds about the number of ��s�

We choose � small enough to have k � 
�� � c� and such that the following

inequality holds


�� ���� �c�� � 
�� � c� � ������

Combining j majority preservers by feeding the outputs of one as inputs

to the next we compute a set of size n��j with the property that its overwhelming

majority is the same as the overwhelming majority of the input� For n��j � ��� we

can �nish the computation with a small circuit that has fewer than ��� gates at each

of its levels� thus the adversary cannot destroy any of its gates� This circuit has to

compute only the usual majority of its inputs� and that gives us the correct result�

Next we give a construction for any threshold function� The threshold func�

tion Thnk has value � if and only if at least k of the n input bits have value ��

Theorem ������ For any 	 � � there is a � � � such that for any threshold function

Thnk there is a synchronized circuit such that

�� If an adversary destroys a � fraction of the gates on every level �including the

input level�� the circuit still computes Thnk in a 	�loose manner�
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�� The size of the circuit is O�n��


� The depth of the circuit is O�log n��

Proof� According to the de�nition of loose computation we have to build a circuit

that outputs

� � if the number of ��s is 
 n � k

� � if the number of ��s is � n � k � 	n

� an arbitrary value otherwise�

Let us consider the correctly ordered input and consider the set of elements at posi�

tions n � k � �� � � � � n � k � 	n� Notice that whenever our circuit must output � all

these elements are �� and whenever the circuit must output � all these elements are

��

Choose t and l such that ln��t � n � k and �l � ��n��t 
 n � k � 	n�

�We note that the value of t depends only on n and 	� but not on k� This will be

important for the proof of Theorem �������� Denote by T the set of elements at

positions ln��t � �� � � � � �l � ��n��t of the correctly ordered input� Denote by zT the

number of ��s in the set T �

Our construction will consist of two parts� The �rst part denoted by C� will

have n inputs and n��t outputs� For any permutation of the input the number v of

��s in the output will satisfy

j v � zT j
 ��� �c� � ��n �

� and c are parameters of the ��halvers we use� The second part will be the construc�

tion from Lemma ������ computing the overwhelming majorityMajms of the outputs

of C� where m � n��t and s � ��� �t��� �c� � ���m�

For applying Lemma ������ we need

�� �t��� �c� � �� � 
�� � c�
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to hold� which is satis�ed if 	��� � �� 
c�� This inequality determines our possible

choices of the parameters � and �� c will be determined by � and the kind of ��halvers

we use� Note that the increase in size and depth relative to the simplest nonfaulty

circuits will be decided by c�

The circuit C� will be a comparator network consisting of t ��faulty ��halvers

each of depth c� The i�th ��halver will have n��i�� inputs and n��i outputs� Let l� � � � lt
be the binary representation of l� If li � � then the input to the i� ��st ��halver will

be the lower part of the output of the i�th ��halver� If li � � we take the upper part

as input to the next ��halver�

Let a� be the number of ��s in the correct input� Since the input of C� is

provided by the input gates of the whole circuit� in our model the adversary is free to

destroy a ��fraction of the inputs of C� as well� Let a denote the number of ��valued

input gates� We have a� � �n 
 a 
 a� � �n� We can apply Lemma ������ to the

�rst ��halver with r � �n� Repeatedly applying Lemma ������ we get

j v � zT j
 �n�
tX

i��

��� �c��n��i 
 ��� �c� � ��n

which concludes the proof of the theorem�

Theorem ������ For any 	 � � there is a � � � such that for any symmetric

function f there is a synchronized circuit with the following properties�

�� If an adversary destroys a � fraction of the gates on every level �including the

input level�� the circuit still computes f in a 	�loose manner�

�� The size of the circuit is O�n��


� The depth of the circuit is O�log n��

Proof� Any symmetric function can be represented by a ��� string of length n � ��

where the i�th element of the string is � if and only if f � � on inputs containing

exactly i ��s�







If every set of consecutive ��s in this string has length � 	n� then the 	�

loose computation of f becomes trivial� �Giving the output � for every input is

appropriate��

Suppose the string representing f contains h � � sets of consecutive ��s

each of length � 	n� Let the i�th set be �li� ui�� For the 	�loose computation of

f it is enough to 	�loosely compute each �Thnli and each Thnui� We compute these

�h functions in parallel� We use the construction from Theorem �����
 for 	�loosely

computing threshold functions� The negation of a threshold function can be 	�loosely

computed in an analogous way� We choose � � #���h� and we choose #� as required for

the 	�loose computation of threshold functions in Theorem �����
� We note that we

choose the parameters 	� �� c and #� to have the same value for each of the �h circuits�

This guarantees that the number of gates at corresponding levels of the �h circuits

is exactly the same� Thus by destroying 
 � fraction of the gates at a given level� it

is not possible to destroy more than a #� fraction of the gates of a level in any one of

the �h circuits� Since h � ��	 � ���� after computing the �h values in parallel we

can combine them without any more faulty gates�

������ Fault tolerant circuits and probabilistically checkable

proofs

Recently� the language class NP received a new characterization in terms

of probabilistically checkable proofs� This characterization made it possible to show

for the �rst time that to approximate the largest clique size of any graph within a

constant factor is NP hard� In ���� it is shown that NP � PCP �log n� log n�� The

class PCP �f�n�� g�n�� is de�ned as the set of those languages L for which there is a

randomized� polynomial time oracle machineMy�x� r� with oracle y� input x of length

n and a random string r� such that


�� jrj � O�f�n���

�� For every �xed x and r� M reads only O�g�n�� bits of y�
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� If x � L then there is an oracle y such that My�x� r� � � with probability one

over all r�s�

�� If x 
� L then for every oracle y the probability over all r�s that My�x� r� � � is

at least 
$��

The result of Arora and Safra ���� was improved by Arora et al� ���� to

show that NP � PCP �log n� ��� Both proofs rely on relatively di�cult techniques

from classical algebra� coding theory and combinatorics� In what follows� we give a

theorem about fault tolerant circuits in our model that imply the result in ����� As

appealing as it may sound� we do not get a simpler proof to the characterization of

NP by Arora and Safra� Our construction uses the even harder result of �����

Theorem ������ Let C be a Boolean circuit and let f 
 f�� �gn � f�� �g be the

Boolean function computed by C� There exist a code E � EC and a circuit C � such

that C � computes f � E in a 	�loose manner for every 	 � �� even if an adversary

destroys ��	� � � fraction of the gates on every level �including the input level��

Moreover E and C � have the following properties�

�� jE�x�j 
 q�jxj� for some polynomial q independent of C�

�� The Hamming distance between any two codewords of E is at least 	�jEj for
some � � 	� � � independent of C� �	� is a function of 	��


� D�C �� 
 O�log S�C��� �This implies that S�C �� is polynomial in S�C���

�� C � can be computed from C in polynomial time and E�x� can be computed from

C and x in polynomial time�

Sketch of the proof� The proof is based on using the results of Arora et al� ����

and Theorem �����
�

Let C� be the subset of f�� �gn for which C evaluates to � and C� be the set

for which C evaluates to �� In ���� an algorithm is described for turning a circuit C

into a family fCigi�I of constant size circuits with input �G�x�� Y �� where G�x� is an
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appropriate error correcting encoding of the input x to C and Y is an advise string

�both have length polynomial in S�C��� This family has the property that

�� For every x � C� there is a Y such that for all i � I we have Ci�G�x�� Y � � ��

�� For every x � C� and for every Y we have that

Probi�I�Ci�G�x�� Y � � �� � 
�� �

A modi�cation by Lund and Spielmann ���� of the construction in ���� en�

sures that for every x � C� the corresponding Y in condition � is unique� More

precisely conditions � and � can be replaced by



� For every x � C� there is a unique Yx such that for all i � I we have

Ci�G�x�� Yx� � �� Also� for every 	 � � there exist � � � such that Probi�I�Ci�H�Y � �

�� 
 � implies that dist��H�Y �� �G�x�� Yx�� 
 	j�H�Y �j for some x � C��

We would like to build circuit C � such that it contains all members of the

family fCigi�I� Because of technical reasons we want the members of the above family

to have disjoint inputs� To achieve this we form G��x� and Y �
x by repeating the bits of

G�x� and Yx as many times as the number of times for which they appear as input for

some fCig �i � I�� We note that this way each bit of G�x� �and Y � respectively� will

be repeated for the same number of times because of the symmetry of the construction

in �����

The code E is de�ned as follows� For x � C� we de�ne E�x� � �G��x�� Y �
x��

For x � C� we de�ne E�x� � �G��x�� � � � ����

We build C � as follows
 We turn the family fCigi�I into a family of synchro�
nized circuits such that its members have all disjoint inputs and all outputs are at the

same level� We include additional tests for checking that the groups of repeated bits

indeed consist of identical bits� This is done by building a bounded degree expander

over each group of input bits that must be identical and checking equality for every

edge of these expanders� We denote this additional family of constant size circuits by

fDjgj�J � We synchronize these circuits with the members of the family fCigi�I such
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that all outputs are at the same level� It will be also important for us that the size

of I and J are the same within a constant factor �jJ j � ��jIj���
Observe that �i�ICi�H�Y � � �j�JDj�H�Y � � f � E�H�Y �� Using the con�

struction described in Theorem �����
 we build a fault tolerant circuit that computes

the AND of the output bits of the circuits Ci for i � I and Dj for j � J �

By condition 
� and by Theorem �����
 this circuit will compute f � E in

a 	�loose manner even if � fraction of the gates is faulty at each level� including the

input level� for appropriately chosen � � ��	��

Remark �����	 The additional tests fDjgj�J are only necessary to tolerate faults

that may occur at the input level� If we exclude the possibility of faults occurring at

the input level� the additional tests may be left out from the construction�

Theorem �����
 From Theorem ������ the theorem NP � PCP �log n� log n� ������

follows�

Proof� It is easy to see that PCP �log n� log n� 	 NP � What we need to show is

that NP 	 PCP �log n� log n� using Theorem ������� For this it is enough to show

that 
SAT is in PCP �log n� log n�� Let � be a 
SAT instance of n variables and C�

be a circuit that computes �� Clearly C� has size polynomial in n� We use Theorem

������ to turn C� into a fault tolerant circuit C �
� with depth O�log n� that computes

� � E for some code E� Observe that C �
� outputs � on some input if and only if �

is satis�able� We describe a checking procedure with a �prover� and a �veri�er� as

follows� �The veri�er can be looked at as a polynomial time random oracle machine

My�x� r�� The prover is the one to provide the veri�er with advice y��

We denote the ith gate on the jth level by g�i� j�� Let kj denote the number

of the gates on the jth level� The prover�s intention is to show that C �
� outputs � on

some input� He presents the veri�er with the evaluation of all gates of C �
� for an input

that he claims is a satisfying assignment for C �
� �i�e� C

�
� outputs � on this input��

The veri�er chooses a random number r from � to maxj kj and checks the

value of the gates fg�r mod kj � j�gj����D�C�
�
� and the value of the gates that are inputs
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to these gates �two for each gate�� The number of checkbits is at most 
D�C �
�� �

O�log n�� The veri�er accepts if the output bit has value � and if none of the gates

in the set fg�r mod kj � j�gj����D�C�
�
� makes an error in the computation� Clearly� the

true prover passes the test of the veri�er with probability ��

What is the probability that the cheating prover is caught" If at each level

at most � percent of the gates is faulty� then by the fault tolerant property of C �
�

the output is zero� thus the veri�er rejects with probability one� Otherwise there is a

level on which � fraction of the gates is faulty� This will be revealed with probability

at least ��� �we may loose a factor of at most � because kl may not divide maxj kj��

With a constant number of independent repetitions this probability can be brought

above 
$��

Remark ������ We note that the proof of Theorem ������ does not require the full

strength of Theorem ������� It would be enough to have a circuit C � that 	�loosely

computes f � E for just some 	 � � in the presence of faults� We could have also

relaxed the fault tolerant property of C � on the input level when proving Theorem

������� However� the fact that C � can be computed from C in polynomial time is

crucial�

������ Open problems

Theorem ������ �together with Proposition ����
� shows that if we allow the

input to be given in certain encoded form� we can obtain for any Boolean function f

circuits with small redundancy computing f exactly and tolerating worst case faults

in our model� However the encoding used in Theorem ������ depends on the function

f � thus it does more than just encoding the input� it also encodes information about

the value of the function� It would be interesting to achieve an analogous result using

a code that does not depend on the function�

It is an interesting question whether a di erent construction could be used in

the proof of Theorem ������� If there was a simpler encoding� that could be produced




�

by an e�cient fault tolerant computation� Theorem ������ could provide direct fault

tolerant constructions for arbitrary functions�

On the other hand according to Theorem ������� a di erent proof of Theorem

������� that does not rely on constructions of probabilistically checkable proofs would

provide an alternative technique for the area of probabilistically checkable proofs�

Finally� without giving constructions for arbitrary functions� it would be

interesting to �nd direct fault tolerant constructions for other than symmetric func�

tions�



CHAPTER �

LOWER BOUNDS FOR BOOLEAN

COMPLEXITY

���� Lower bounds for monotone span programs

������ Description of the model

The model of span programs was introduced by Karchmer and Wigderson

in �����

Let F be a �eld� and fx�� � � � � xmg be a set of variables� A span program

over F is a labeled matrix %M�M��� where M is a matrix over F � and � is a labeling

of the rows of M by literals from fx�� � � � � xm� �x�� � � � � �xmg �every row is labeled by

one literal�� The size of %M is the number of rows in M �

A span program accepts or rejects an input by the following criteria� For

every input sequence 	 � f�� �gm de�ne the submatrix M� of M consisting of those

rows whose labels are set to � by the input 	� i�e�� either rows labeled by some xi such

that 	i � � or rows labeled by some �xi such that 	i � �� The span program %M accepts

	 if and only if � � span�M��� i�e�� some linear combination of the rows of M� gives

the vector �� �The row vector � has the value � in each coordinate�� A span program

computes a Boolean function f if it accepts exactly those inputs 	 where f�	� � ��

A span program is called monotone if the labels of the rows are only the

positive literals fx�� � � � � xmg� We denote by SPF�f� �resp� mSPF�f�� the size of the

smallest span program �resp� monotone span program� over F that computes f �

The number of columns does not e ect the size of the span program� How�

ever� we observe that it is always possible to use no more columns than the size of the

program �since we may restrict the matrix to a set of linearly independent columns

without changing the function that is computed��


�



��

������ A linear upper bound

We present a monotone span program of linear size �exactlym� for a function

on m variables� that is known to have ��m
����logm�
� monotone circuit complexity�

We consider the function Non�Bipartiten� whose input is an undirected graph on n

vertices� represented by m �
�
n
�

�
variables� one for each possible edge� The value of

the function is � if and only if the graph is not bipartite�

Theorem ����� mSPGF����Non�Bipartiten� � m� where m �
�
n
�

�
�

Proof� We construct a monotone span program accepting exactly the non�bipartite

graphs as follows� There will be m rows� each labeled by a variable� There is a

column for each possible complete bipartite graph on n vertices� The column for a

given complete bipartite graph contains the value � in each row that corresponds to

an edge of the given graph and contains � in every other row�

This program rejects every bipartite graph G� This is because G is contained

in some complete bipartite graph� and so there will be a column that contains only

��s in the rows labeled by the edges of G� Therefore the vector � is not a linear

combination of these rows�

Next we show that the program accepts every non�bipartite graph� Since

the span program is monotone� it is su�cient to show that it accepts every minimal

non�bipartite graph� i�e�� every odd cycle� Let C be an arbitrary odd cycle� The

intersection of any odd cycle with any complete bipartite graph has an even number

of edges� so C has an odd number of edges which are not in any given complete

bipartite graph� Hence the sum of the row vectors corresponding to all the edges in

C is odd in each column� i�e�� gives the vector � over GF���� and so C is accepted by

the span program�

We note that the lower bound by Razborov�s method �see ���� �� ���� for tri�

angles also applies to the function that accepts exactly the non�bipartite graphs� thus

the monotone circuit complexity of the function Non�Bipartiten is ���n� log n�
� �

��m
����logm�
��



��

������ The Method for Proving Lower Bounds

A minterm of a monotone function is a minimal set of its variables with

the property that the value of the function is � on any input that assigns � to each

variable in the set� no matter what the values of the other variables�

The idea of our technique is to show that if the size of a span program

�i�e�� the number of rows in the matrix� is too small� and the program accepts all the

minterms of the function f then it must also accept an input that does not contain a

minterm of f � which means that the program does not compute f �

We introduce the de�nition of a critical family of minterms of a monotone

Boolean function� We prove that the cardinality of a critical family for a function f

is a lower bound on the size of monotone span programs computing f �

De�nition ����� Let f be a monotone Boolean function andMf be the family of all

of its minterms� Let H 	 Mf be a subfamily of the minterms of f � We say that a

subfamily H 	Mf is a critical family for f � if every H � H contains a set TH 	 H�

jTHj � �� such that the following two conditions are satis�ed�

C�� The set TH uniquely determines H in the family� That is� no other set in

the family H contains TH�

C�� For any subset Y 	 TH � the set SY �
S
G�H	G�Y ���G n Y does not contain

any member of Mf �

Note that Condition C� requires that SY does not contain any minterm of

f and not just a minterm from H�

Observation ����� If H is a critical family and jTHj � t for each H � H� then

jHj 

�
m
t

�
�

Theorem ����� Let f be a monotone Boolean function� and let H be a critical sub�

family of minterms for f � Then for every �eld F �

mSPF �f� � jHj �



��

Proof� Let M be the matrix of a monotone span program computing f � and let r

be the number of rows of M � Any minterm of H is accepted by the program� By

de�nition� this means that� for every H � H� there is some vector cH � F r such that

cH �M � �� and where cH has nonzero coordinates only at rows labeled by variables

from H� For any given H there may be several such vectors� we pick one of them and

denote it by cH�

Since cH is taken fromF r� the number of linearly independent vectors among

the vectors cH for H � H is a lower bound for r� i�e�� for the size of the span

program computing f � We show that all the vectors cH for H � H must be linearly

independent�

Suppose� that this is not the case� i�e�� for some H � H

cH �
X
A�A

�AcA � �
���

where �A � F and A � H n fHg�
Let us consider the set TH 	 H from De�nition 
�����

Lemma ����� If �
��� holds� then for any nonempty subset Y 	 TH the following

must hold�
X

A�A	A�Y ���
�A � � �

Proof� Suppose that for some Y 	 TH �
P

A�A	A�Y ��� �A � � 
� � �

Let us consider the vector

c �
X

A�A	A�Y ���
�AcA � cH �

We have c �M � �� � ���� thus ���� � ��c �M � �� and the program accepts the set

of variables that label the rows corresponding to nonzero coordinates of c�

Recall that each cA has nonzero coordinates only at rows labeled by variables

fromA� Thus for A�Y � � the coordinates of cA are zero at rows labeled by variables

from Y � By �
����

c � 
� X
A�A	A�Y��

�AcA �



�


Therefore� the vector c has zero coordinates at all rows labeled by variables from Y �

On the other hand� all the nonzero coordinates of c are at rows labeled by

variables that appear in some sets G such that G � Y 
� �� Therefore� the program
accepts SY �

S
G�H	G�Y ���G n Y � that �by De�nition 
����� does not contain any

minterm of f � This proves the lemma�

From Lemma 
����� we get a system of linear equations in the unknowns �A�

We prove that this system of equations has no solution� contradicting �
���� Suppose

that jTHj � t� Let us consider the following ��t������t��� �&� matrix Q� The rows

and columns of Q are indexed by the nonempty subsets of TH� For � 
� Y�Z 	 TH�

Q�Y�Z� � � if and only if Y � Z 
� ��

Observation ����� The matrix Q has full rank over any �eld F �

�This can be shown by a simple transformation of Q to a triangular matrix��

We will show� that if �
��� holds� then taking �Z �
P

A�A	A�TH�Z �A as a

coe�cient for the column Z 
� TH� we get the column indexed by TH as a linear combi�

nation of the other columns of Q� Notice that the column of Q indexed by TH consists

of all ��s� We show that for any Y � � 
� Y 	 TH� we have
P
���Z�TH �ZQ�Y�Z� � ��

By Condition C� of De�nition 
����� for A � A we have A � TH 
� TH� If

Y 	 TH then A � Y � A � TH � Y � By Lemma 
����� if �
��� holds we have

� �
X

A�A	A�Y ���
�A �

X
���Z�TH

�
� X
A�A	A�TH�Z	Z�Y ���

�A

�
A �

X
���Z�TH

�ZQ�Y�Z� �

and the column TH is a linear combination of the other columns of Q� Since Q has

full rank this is not possible� and so �
��� cannot hold� i�e�� all the vectors cH for

H � H are linearly independent� This concludes the proof of the theorem�



��

������ Lower bounds for clique functions

We consider the function Cliquek	n� whose input is an undirected graph on

n vertices� represented by m �
�
n
�

�
variables� one for each possible edge� The value

of the function is � if and only if the graph contains a clique of size k�

It is known ���� ���� that the monotone circuit complexity of Cliquek	n is

���
p
k� for k � O��n� log n���
�� and for �xed k it is ���n� log n�k�� However� the

strongest known lower bound for the monotone span program complexity of the

Cliquek	n function is our ��n	� � ��m��	� lower bound that holds for k � �� For

k 
 �� we obtain lower bounds that are tight up to a constant factor�

First we present a few simple but important observations that are helpful in

�nding critical families for clique functions�

For given k� we partition the set of n vertices into k classes Ci� i � �� � � � � k�

of approximately equal size� Given a �xed partition of the n vertices into k classes

we say that a k�clique is multicolored if each of its k vertices belong to a di erent

class� Thus a multicolored clique will never contain an edge between two vertices in

the same class�

Let M be an arbitrary family of multicolored k�cliques� Let TK be some

subset of the edges of the cliqueK � M� Let us denote the vertices ofK by v�� � � � � vk�

and consider for Y 	 TK the set SY � �G�M	G�Y ���G n Y � Suppose SY contains a

k�clique Z with vertices z�� � � � � zk�

Claim ����	 The vertices of Z all belong to di
erent classes� say zi � Ci� for i �

�� � � � � k�

Proof� SY only contains edges that appear in k�cliques that belong to the familyM�

and so only edges between vertices from di erent classes�

Claim ����
 For each edge �vi� vj� � Y at least one of zi 
� vi or zj 
� vj must hold�

Proof� If Z contained both vi and vj for �vi� vj� � Y then Z could not be a k�clique

contained in SY since SY does not contain an edge between vi and vj�
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Lemma ����� Given any partition of the n vertices into three classes� the family M
of multicolored 
�cliques is critical for Clique
	n�

Proof� Let H be an arbitrary multicolored 
�clique �triangle�� and let TH be the

set of two of its edges� for example �v�� v�� and �v�� v
�� There is only one triangle

containing TH� thus Condition C� is satis�ed� To see that Condition C� holds� let us

consider for Y 	 TH the set SY � �G�M	G�Y ���G n Y � and suppose that it contains a

triangle Z with vertices z�� z�� z
�

If Y � TH� then z� � v� must hold� since there are no edges in SY incident

to any other vertex from C�� By Claim 
���� we have z� 
� v� and z
 
� v
� Therefore�

the edge �z�� z
� cannot be present in SY � since all the edges of SY are contributed by

triangles that contain at least one of v� or v
�

If Y 
� TH� then it consists of a single edge� �v�� v�� say� Then SY does

not contain any edge between the classes C� and C�� and so� by Claim 
����� cannot

contain a triangle�

Lemma ����� Given any partition of the n vertices into four classes� the family of

multicolored ��cliques is critical for Clique�	n�

Proof� Let H be an arbitrary multicolored ��clique� and let TH be the set of two

of its nonadjacent edges� for example �v�� v�� and �v
� v��� Condition C� is satis�ed�

since two nonadjacent edges uniquely determine a ��clique� To see that Condition C�

holds� as in the previous lemma� let us consider SY for Y 	 TK and suppose that it

contains a ��clique Z with vertices z�� z�� z
� z��

If Y � TH then� by Claim 
����� without loss of generality we have z� 
� v��

Any edges incident to z� could only be contributed to SY by cliques that contain

�v
� v��� Thus� a clique containing z� would also have to contain both v
 and v��

which is not possible by Claim 
�����

As in the previous lemma� if Y 
� TH then it consists of a single edge and

SY does not contain a ��clique�



��

We note that for k � � the family of multicolored k�cliques is not critical for

Cliquek	n� The critical families we use for proving lower bounds for �� and ��cliques

will be appropriately chosen subfamilies of multicolored cliques�

Theorem ����� For every �eld F �

mSPF �Clique�	n� � ��m��	� �

Proof� We show that the family of minterms of the Clique�	n function contains a

large critical subfamily�

We de�ne the subfamily K of ��cliques as follows� We partition the set of n

vertices into six approximately equal size classes� Let us assume that n � �q� and each

class contains q vertices� K will be a subfamily of the multicolored ��cliques� under

this partition� Between the classes C� and C
� and similarly between the classes C�

and C�� we only allow certain pairs of vertices to be connected by an edge in members

of K� These legal pairs will be speci�ed by a q � q Boolean matrix N � Between all

other pairs of classes we allow arbitrary edges� The edge �a� b� with a � C� and

b � C
 �a � C� and b � C�� respectively�� is allowed in a member of K if and only

if N�a� b� � �� We choose N such that it does not contain any complete �all ones�

� � � submatrices� For example the incidence matrix of a projective plane has this

property� and its number of ��s is '�q
���� with '�q���� ��s in each row and column�

The constructions in ���� �
� ��� can also be used� �It is described in ���� how to

construct matrices with similar properties for arbitrary q��

The family K consists of all the ��cliques that have one vertex from each

class� and satisfy the restriction on the edges between classes C� and C
� and C� and

C�� The number of such ��cliques is '�q	�� thus we have jKj � '�q	� � '�m��	��

Next we show that K is critical for Clique�	n� Let us consider any �xed

member K � K of the family� and denote its vertices by v�� � � � � v�� where vi � Ci�

for i � �� � � � � �� The set TK we choose will consist of the four edges �v�� v��� �v�� v
��

�v�� v	�� �v	� v��� Obviously� Condition C� is satis�ed�

We now prove that Condition C� holds� For Y 	 TK� suppose the set

SY � �G�K	G�Y ���G n Y contains a ��clique Z with vertices z�� � � � � z��
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Case �� Let Y � TK� Notice that if both z� 
� v� and z	 
� v	� then SY does

not contain an edge between z� and z	� thus we have z� � v� or z	 � v	�

Suppose that only one of these equalities holds� for example z� � v� but

z	 
� v	� Then� by Claim 
����� z� 
� v� and z
 
� v
 must hold� The edge �z�� z	� can

only be contributed to SY by a clique that contains the edge �v�� v
�� and similarly

the edge �z
� z	� can only be contributed to STK by a clique that contains the edge

�v�� v��� This means that the edges �z�� v
�� �v�� z
� as well as the edges �v�� v
� and

�z�� z
� appear in some member of the family K� However� this is not possible by our
restriction on the legal edges between C� and C
�

Suppose now that both z� � v� and z	 � v	 holds� Then by Claim 
���� we

have z� 
� v�� z
 
� v
� z� 
� v� and z� 
� v�� The edge �z�� z�� can only be contributed

by a clique that contains �v�� v
� or �v	� v��� This means that at least one of the edges

�z�� v�� or �z�� v
� is legal� Similarly� from the presence in Z of the edges �z�� z���

�z
� z�� and �z
� z��� respectively� we know that at least one each of �v�� z�� or �z�� v
��

�z�� v�� or �v�� z
�� and �v�� z�� or �v�� z
�� respectively� are legal edges� This means

that either both �z�� v�� and �v�� z�� or both �z�� v
� and �v�� z
� are legal� and since

�vi� vj� and �zi� zj� must be all legal� we get a contradiction with our restriction on

the possible edges of members from K�
Case �� Let Y 
� TK� In this case the edges in Y cover t vertices� � 
 t 
 ��

We show that SY does not even contain a t�clique on the t classes involved� For t 
 �

this directly follows from Lemma 
���� and Lemma 
���
�

We still have to deal with the case when t � �� which can only happen if

Y consists of three edges� Suppose �without loss of generality� that the three edges

of Y are �v�� v��� �v�� v
� and �v�� v	�� If z� 
� v�� then all the edges incident to z�

could only be contributed to SY by cliques that contain �v�� v	�� That would mean

that the only vertex in C� and C	� respectively� connected to z� in SY is v� and v	�

respectively� Thus we could not get a ��clique in SY that contains z�� Therefore�

z� � v� must hold� Then we have by Claim 
���� that z� 
� v�� z
 
� v
 and� without

loss of generality� z	 
� v	� We get a contradiction with the restriction on the edges

between C� and C
 as in Case ��
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We have proved that Condition C� is also satis�ed� and K is a critical family

for f � The lower bound follows from Theorem 
�����

Theorem ����� For every �eld F �

mSPF �Clique		n� � ��m���	� �

mSPF �Clique�	n� � 
�n���� �O�n�� � ��m�� �

mSPF�Clique
	n� � ��n�
�
 �O�n� � ��m
�

� � �

The proof of this theorem is basically included in the proof of the lower

bound for ��cliques and in Lemmas 
���� and 
���
� The bounds for Clique�	n and

Clique
	n are slightly stronger �by constant factors� than the bound directly implied

by Theorem 
����� We omit the details from this version of the paper� Our lower

bounds for Clique
	n and Clique�	n are tight up to constant factors�

Let us de�ne Clique	�	n to be the monotone Boolean function whose set of

minterms is the set of multicolored ��cliques de�ned for a �xed partition of the vertices

into four approximately equal classes� We observe that the above lower bound applies

to this function as well� and is asymptotically tight in this case�

Corollary �����
 Let n � �q� Then� for every �eld F �


q� 
 mSPF�Clique	�	n� 
 
q� � 
q
 �

������ Dual span programs

We presented our lower bounds using certain combinatorial properties of the

family of minterms of the function� We observe that the corresponding properties of

the family of maxterms of the function imply the same lower bounds� This will follow

from the theorem below�

A maxterm of a monotone function is a minimal set of its variables with

the property that the value of the function is � on any input that assigns � to each

variable in the set� no matter what the values of the other variables�
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We say that a given input contains a set of variables� if each variable be�

longing to the set is evaluated to � by the given input�

Let f be a monotone Boolean function� Let f	�x�� � � � � xm� � �f� �x�� � � � � �xm��
It is not hard to see that the minterms of f	 are exactly the maxterms of f � �For

example� if f accepts the graphs that contain a clique of size k� then f	 accepts the

graphs whose complement does not contain any clique of size k��

The following fact is well known� For completeness we give a proof�

Theorem ������ For every �eld F � mSPF �f� � mSPF�f	��

Proof� Let M be a monotone span program computing f � Any minterm A of f is

accepted by M � By de�nition� this means that � � span�MA�� i�e� cA �M � � for

some vector cA� where cA has nonzero coordinates only at rows labeled by variables

from A�

We constructM	 computing f	 as follows� We use the same number of rows

and the same labeling of the rows as M � The number of columns of M	 will be equal

to the number of minterms of f � The columns of M	 will simply be the vectors cA

for each minterm A of f �

Claim ������ M	 rejects every input that does not contain a maxterm of f �

Proof� M	 rejects the complement of any minterm of f since the columns consists

of only ��s on the complements of minterms of f � If a given input does not contain

a maxterm of f then its complement contains a minterm of f and it will be rejected

by M	�

Claim ������ M	 accepts every input that contains a maxterm of f �

Proof� Let us suppose that � is an input that contains a maxterm� and it is rejected

by M	� As observed in ����� by duality an input � is rejected if and only if there is

an a�ne combination of the columns of M	 that gives � on each row that is labeled

by a variable that is set to � by �� Let us denote the column vector that we get as a

result of this a�ne combination by a� We have a �
P
�AcA where

P
�A � ��
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Consider the input �	 that assigns � to a given variable if and only if the

above a�ne combination gives a nonzero value on at least one row labeled by the

given variable� Then f��	� � � since all the variables of some maxterm of f are set

to � in �	�

For any given column cA of M	 we have cAM � �� It follows that aM � ��

This shows that there is a linear combination of the rows of M labeled by variables

that are set to � by �	 that gives the vector �� Thus M must accept �	 and we get a

contradiction� proving the claim�

The proof of the theorem follows from the above two claims�

����	� Open problems

The ��m��	� lower bound presented here for the ��clique function is the

largest known lower bound on the size of monotone span programs for an explicit

function ofm variables� In particular it is not known whether the k�clique function for

larger values of k and the perfect matching function can be computed by polynomial

size monotone span programs� Recall that every function that can be computed

by polynomial size span programs belongs to NC� �this follows from ���� ��� ���

����� Thus it is unlikely that the k�clique function could be computed by polynomial

size monotone span programs� but this would be plausible for the perfect matching

function�

���� A lower bound for read�once branching

programs

We present a Boolean function in n variables that is computable in depth �

monotone AC� but requires �
p
n size read�once branching programs�
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������ Relating branching program size to the number of

subfunctions

Let f be a Boolean function on the set of variables X� Consider a partition

of X into two parts Y and B � X n Y � For every �xed assignment � of truth values

to the variables in Y we get a subfunction f
 on the remaining variables� Let N�f� Y �

denote the number of di erent subfunctions we obtain under all possible assignments

to Y � Note that both �jY j and ��
jBj

are upper bounds for N�f� Y ��

Some variant of the following observation has been used in most papers on

this subject� It is a special case of general results in ���� ��� ��� and is in fact implicit

already in the method of Wegener ���� and Dunne �
���

Lemma ����� ����� 
�� ��� ��� ���� Let f be a Boolean function of n variables�

Assume that m is an integer� � 
 m 
 n� such that for any m�element subset Y of

the variables N�f� Y � � �m holds� Then the size of any read�once branching program

computing f is at least �m � ��

For completeness we include a proof�

Proof� Let Z be an arbitrary set of at most m � � variables� and let � be a truth

assignment to the variables in Z� Then the subfunction f
 must depend on each of

the remaining n � jZj variables� since otherwise Z could be extended to a set Y of

m variables with N�f� Y � � �m� This also means that any path leading to a sink

�ACCEPT or REJECT� in a branching program computing f must have length at

least m�

Let v be an arbitrary node of a read�once branching program computing f �

Suppose that there is a path P of length at most m � � leading from START to v�

Let YP be the set of variables queried along the path P � We show that for any other

path P � leading to v� YP � � YP must hold� First we observe that the subprogram

starting at v must depend on all the variables outside YP � This means that YP � 	 YP

since the branching program is read�once� But then we have jYP �j 
 m� �� and by

the same reasoning it follows that YP 	 YP � � We have shown that if a path leading to



��

a vertex v queries at most m� � variables� then any other path leading to the same

vertex must query the exact same set of at most m� � variables�

Let Z be an arbitrary set of at most m�� variables� Suppose that there is a

variable z � Z such that two di erent paths leading to the same vertex and querying

exactly the variables in Z evaluate z di erently� Then we could �nd an assignment �

to the variables in Z n fzg such that the subfunction f
 does not depend on z� which

is not possible�

From the above argument� it follows that the �rst m� � levels of any read�

once branching program computing f must form a complete binary tree�

������ An AC��computable function with exponential

read�once branching program complexity

We use �nite projective planes to exhibit an AC��computable function that

requires exponential size read�once branching programs�

Let ( � �P�L� be a projective plane of order q� �P is the set of points and

L is the set of lines� viewed as subsets of P �� Let n � q� � q � � and m � q � �� So

jP j � jLj � n and each line has m points�

We assign a variable xi to each point i � P � and de�ne the following Boolean

function�

De�nition �����

f
�x�� � � � � xn� �
�
��L

	
i��

xi �

Theorem ����� The size of any read�once branching program computing f
 is at

least �
p
n�

The proof is based on the following combinatorial property of projective

planes�

Proposition ����� Let J � fp�� � � � � pmg be a set of m distinct points of (� Then

there exist distinct lines 
�� � � � � 
m such that for � 
 i� j 
 m we have pi � 
j if and

only if i � j�



�


Proof� Recall that there are exactly m lines that contain any given point� Let us

consider an arbitrary point pi � J � and the m lines that contain it� Since any two

lines intersect in at most one point� each of the other m�� points of the set J belong

to at most one of these lines� Thus at least one of the m lines containing pi will

contain no other point from the set J �

Proof of Theorem ������ We show that for every q�element subset A of the vari�

ables� N�f
� A� � �q holds� i�e� each truth assignment to the variables in A yields a

di erent subfunction on the remaining variables� Since each line 
 de�nes a clause
W
i�� xi of the function f
� it follows from Proposition 
���
 that for an arbitrary q�

element subset A of the variables there exist q clauses such that each variable from

A appears in exactly one of them� and each variable appears in a di erent clause�

Assume w�l�o�g� that A � fx�� � � � � xqg� and the corresponding clauses are 
�� � � � � 
q�

Let �� and �� be di erent truth assignements to the variables in A� Suppose

they di er in the value of xi� i�e�� xi � � in �� and xi � � in ��� Let us consider

the assignment � to the variables outside A that sets each variable in the clause 
i

containing xi to � and sets all other variables outside A to �� Since any other clause


j has only one variable in common with the clause 
i and there are at most q � �

variables in A that do not appear in 
i� 
j must contain at least one point which is

neither in A nor in the clause 
i thus it is set to � by �� Then we have f
���� � � and

f
���� � �� This shows that di erent truth assignments to the variables in A yield

di erent subfunctions of f
�

The bound then follows from Lemma 
�����

������ Open problems

It remains an open problem to �nd AC� computable function families that

require ���n� read�once branching program size�



CHAPTER �

BOOLEAN VS� ARITHMETIC CIRCUITS

Valiant and Vazirani ���� give a randomized reduction from SAT to USAT

�unique satis�ability�� Given any Boolean formula F � their probabilistic construction

yields another formula F �� such that if F is not satis�able then F � is not satis�able�

while if F is satis�able then with reasonable �� n�c� probability F � has a unique

satisfying assignment� From this reduction� it follows that NP�poly 	 �P�poly�
Avi Wigderson ����� proves that NL�poly 	 �L�poly� The proof is based

on a randomized reduction from s � t connectivity to unique s � t connectivity for

directed graphs�

We prove that polynomial size semi�unbounded fan�in Boolean circuits of

depth d with n inputs can be simulated by polynomial size semi�unbounded fan�in

arithmetic circuits of depth O�d � log n�� where the arithmetic operations �� �� �
are performed in an arbitrary �nite �eld�

We achieve the depth O�d� log n� simulation by a randomized reduction to

�unique witnesses� using a slight modi�cation of the Isolation Lemma of Mulmuley�

Vazirani and Vazirani ����� We note that the proof of ����� is based on using the

Isolation Lemma� and that ���� showed that the Isolation Lemma can be used to

prove the Valiant�Vazirani ���� result for the clique function�

���� The Isolation Lemma

We state the Isolation Lemma of Mulmuley� Vazirani and Vazirani ����� Let

us consider the set system �V�F� where V � fv�� � � � � vng is a �nite set� and F is a

family of distinct subsets of V � i�e� F � fF�� � � � � Fkg� Fj 	 V for � 
 j 
 k� Given

weights wi to each element vi � V � we de�ne the weight of the set Fj to be
P

vi�Fj wi�

��



��

Isolation Lemma ���� If we choose integer weights uniformly and independently from

��� �n� then with probability � ��� there is a unique minimum weight set in F �
In this work we need a version of the Isolation Lemma that holds for multisets

as well� i�e� for sets possibly containing some elements with multiplicities� The support

of a multiset F is the set of elements occurring in F �

For multisets the Isolation Lemma does not hold in its original form� How�

ever the proof of the Isolation Lemma in ���� yields the following�

Lemma ����� ���� Let �V�F� be a multiset�system� where F is a family of multisets

of the elements of V � Let us assign integer weights to the elements of V uniformly

and independently from ��� �jV j�� Then with probability � ���� all minimum weight

sets in F have the same support�

We note that Nisan ���� proved that the Isolation Lemma holds for multisets

as well if we allow larger weights depending on the maximum multiplicity�

���� Semi�unbounded fan�in circuits

������ De�nitions and the main results

We consider Boolean circuits with gates from the standard Boolean basis

f�����g� and arithmetic circuits with gates from the basis f�����g over a �nite

�eld F � Semi�unbounded fan�in circuits have constant fan�in � �resp� �� gates and
unbounded fan�in � �resp� �� gates� For semi�unbounded fan�in Boolean circuits we

allow negations only at the input level�

Complexity classes de�ned by semi�unbounded fan�in Boolean circuits have

been characterized in terms of several other models� and they correspond to some

well known language classes� SACk denotes the class of languages accepted by poly�

nomial size� O��log n�k� depth semi�unbounded fan�in Boolean circuits� The uniform

version of SAC� is the same as the class LOGCFL of languages logspace reducible to

context�free languages ����� ����� Properties and characterizations of LOGCFL are

studied in ����� ����� Semi�unbounded fan�in circuits of larger depths correspond to



��

extensions of context�free languages� For d � ��log n� the class of languages accepted

by polynomial size� depth O�d� semi�unbounded fan�in circuits is identical to the class

of languages accepted by nondeterministic auxiliary pushdown automata of O�log n�

space and �O�d� time ����� ����� There are other characterizations of these language

classes in terms of alternating Turing machines and �rst order formulae ����� ��
��

����� These equivalences hold for both the uniform and the nonuniform versions of

the models� For a survey see �����

An interesting property of classes de�ned by semi�unbounded fan�in circuits�

proved by Borodin et al� ����� is that they are closed under complementation for all

depths that are ��log n��

We consider the arithmetic analogs of the above complexity classes� de�ned

by semi�unbounded fan�in arithmetic circuits� These classes have been studied for

example in ����

�SACk denotes the class of polynomials over GF ��� computed by polyno�

mial size� depth O��log n�k� semi�unbounded fan�in arithmetic circuits over GF ����

We denote by %d�f� �resp� %dF �f�� the smallest depth of polynomial size

semi�unbounded fan�in Boolean �resp� arithmetic� circuits for computing f �

We prove the following results�

Theorem ����� For every Boolean function f on n variables and every �nite �eld

F � %dF �f� � O� %d�f� � log n�

Corollary ����� SACk 	 �SACk

Theorem ����� Every Boolean function f on n variables can be approximated� i�e�

computed on � ��� ��k� fraction of the inputs� by semi�unbounded fan�in arithmetic

circuits over any �xed �nite �eld in polynomial size and depth O� %d�f� � log k�� for

arbitrary k � ��



��

������ Certi�cates

Let us consider an arbitrary Boolean circuit with �� � gates� provided with

the �n input literals x�� � � � � xn� �x�� � � � � �xn� Fixing a ��� assignment to the variables

x�� � � � � xn determines the values computed by each gate of the circuit� We refer to

the wires of the circuit as edges� The edges are oriented from the inputs of a gate g

to g� For a �xed input assignment we label each edge of the circuit with the value

computed by the gate at the starting node of the edge� For each gate that outputs

�� there is a set of edges all labelled � that forces the given gate to output �� We

call the graphs formed by these edges certi�cates� A certi�cate depends on the gate

it belongs to and on the particular assignment to the input variables� There may be

several certi�cates for the same gate on the same input� Gates that output � on a

given input do not have certi�cates on that input�

Let us now give a formal de�nition of certi�cates� We denote the set of gates

that are inputs to a given gate g by I�g��

De�nition ����� The circuit Z is called a partial circuit of C if it satis�es the fol�

lowing conditions�

� the set of gates of Z is a subset of the set of gates of C

� the output gate of Z is the output gate of C�

� for every � gate g of Z� IZ�g� � I�g��

� for every � gate g of Z� � 
� IZ�g� 	 I�g��

where IZ�g� stands for the set of input gates to g in the circuit Z�

De�nition ����� A partial circuit Z is minimal� if for every � gate g of Z� jIZ�g�j �
��

Let � be a �xed assignment to the input variables� Let � � f�� �g� We say

that g��� � � if the gate g outputs the value � on the input assignment �� We say

that C��� � � if the circuit C outputs the value � on the input assignment ��



��

Observation ����	 If Z is a partial circuit of C then given any input assignment ��

Z��� 
 C����

De�nition ����
 A certi�cate for C��� � � is a partial circuit Z of C that satis�es

the condition that all the gates of Z output � on the assignment ��

We note that an equivalent de�nition is to require that all the literals par�

ticipating in Z are set to � by the assignment ��

De�nition ����� For a given gate g of a circuit C the subcircuit Cg is de�ned as

follows�

� the set of gates of Cg is a subset of the set of gates of C�

� the output gate of Cg is the gate g�

� for every gate h of Cg� ICg�h� � I�h��

De�nition ����� A certi�cate for Cg��� � � is called a certi�cate for g��� � ��

We note that a certi�cate for g��� � � exists if and only if g��� � ��

De�nition �����
 A certi�cate is minimal if the corresponding partial circuit is min�

imal�

Observation ������ If there is a unique certi�cate for g��� � �� it has to be a

minimal certi�cate�

Let G be a partial circuit of the circuit C� and suppose that the edges of C

have been assigned weights� Let E be the set of edges of G� For a given partial circuit

G with edges E we de�ne a multiset #E�G� with support E as follows� We expand G

into a tree #G by taking the output of G to be the root and by splitting the nodes of

G that have outdegree � � into several copies� We de�ne #E�G� to be the multiset of

edges of G� taking each edge with multiplicity according to #G� We assign the weight

of each edge of G to all of its copies in #E�G��



��

De�nition ������ We de�ne the weight of a partial circuit G to be the weight of the

multiset #E�G��

We de�ne the weight of a certi�cate to be the weight of the corresponding

partial circuit�

Lemma ������ Let us assign integer weights to the edges of the circuit C uniformly

and independently from ��� �m�� where m is the number of edges of C� Then for every

�xed input assignment � such that C��� � �� with probability � ���� there is a unique

minimum weight certi�cate for C��� � ��

Proof The statement of the lemma follows from Lemma ������ since multisets with

the same support belong to the same certi�cate�

������ The randomized reduction

Lemma ������ Let C be a polynomial size� depth d � O�log n� circuit with un�

bounded fan�in � gates and bounded fan�in � gates� Let m be the number of edges of

C� and let c be the maximum fan�in of the � gates� One can construct a polynomial

size� depth 
 �d circuit C � with unbounded fan�in � gates and bounded fan�in � gates�

such that

� if C��� � � then C ���� � �

� if C��� � � then with probability � ��cd�m� there is a unique certi�cate for

C ���� � ��

Proof For simplicity� we present the construction for circuits with � gates of fan�in

�� It can be generalized easily to any fan�in c� The size remains polynomial if c is

constant�

We assume that both C and C � are provided with the values of the �n input

literals x�� � � � � xn� �x�� � � � � �xn�

Let C be a Boolean circuit with � gates of unbounded fan�in and � gates

of fan�in �� that has polynomial size and depth d � O�log n�� Let m be the number
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of edges in the circuit� We assign a weight to each edge of the circuit by chosing a

random integer uniformly and independently from ��� �m��

Next we choose a random integer L uniformly from ��� �d�m�� ��d�m is the

maximum possible weight of a minimal certi�cate��

Let us denote by )�C� the set of gates of the circuit C�

)�C �� will consist of two disjoint classes of gates
 principal gates and auxil�

iary gates� We denote the set of principal gates by � and the set of auxiliary gates

by �aux� Thus )�C �� � � !��aux� All principal gates �except the ones for the literals�

will be � gates and all auxiliary gates will be � gates�

� will be a subset of )�C� � f�� � � � � Lg� For a �xed g � )�C� the set

H�g� 	 fgg � f�� � � � � Lg will denote the set of all principal gates of the form �g� i��

and � � !�g���C�H�g��

If g is an � gate of C then the gate �g� i� � H�g� will be associated with a

set A�g� i� 	 �aux of auxiliary gates where � 
 jA�g� i�j 
 L��

We refer to the gates in the sets H�g� and A�g� i� as copies of g�

We construct the circuit C � inductively� We say that a gate g � )�C� has

been processed if we have created all its copies in C ��

We start by processing the literals� For each literal x�i we create a gate

labelled �x�i� ��� This gate will output the value of the corresponding literal x
�
i� Each

literal will have only one copy�

Let g � )�C� be an � gate that has all its input gates processed� Let wh

denote the weight of the edge from h � I�g� to g� For each gate h � I�g� we consider

the set H�h�� For each �h� i� � H�h� we create an � gate �g� i � wh� if i � wh 
 L

and if �g� i� wh� has not been created yet� The input gates to the � gate �g� j� are

the gates �h� i� with h � I�g� satisfying i� wh � j�

Let g � )�C� be an � gate with input gates h�� h� such that h� and h� have

been processed� Let w� and w� denote the weights of the corresponding edges from

h� and h�� resp�� to g� For each pair of gates �h�� i� � H�h��� �h�� j� � H�h�� such

that i � j � w� � w� 
 L we create an � gate in A�g� i � j � w� � w�� with input
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gates �h�� i�� �h�� j�� For each k � f�� � � � � Lg such that A�g� k� 
� � we create an �
gate �g� k� with input set I��g� k�� � A�g� k��

Let gout be the output gate of the circuit C� The output gate of the circuit

C � will be the gate �gout� L� if it exists� If we did not create such a gate� we make the

output of C � to be constant ��

The circuit C � we constructed has the following properties�

Observation ������ Let g be any gate of C� Then �g�w� � )�C �� if and only if the

circuit Cg has a minimal partial circuit with weight w�

Observation �����	 Let � be a �xed assignment to the input variables and �g�w� �
)�C ��� Then �g�w���� � � if and only if there is a minimal certi�cate for g��� � �

with weight w�

We note that these properties would not hold if we de�ned the weight of

partial circuits and certi�cates as the weight of their set of edges instead of using

De�nition ������� and that these properties are crucial for proving Lemma �������

Next we show that the circuit C � constructed this way satis�es the require�

ments of Lemma �������

The depth of C � is 
 �d and the size of C � is 
 �L
S � nO���� where S is

the size of C�

For any gate g of C and all gates �g� i� of C � we have �g� i���� 
 g��� on

any assignment �� Thus if C��� � � then C ���� � ��

To prove that the last requirement of Lemma ������ is satis�ed� we need the

following lemma�

Let � be a �xed input assignment such that C��� � �� Let F� 
� � be the
family of all certi�cates for C��� � �� Let W denote a �xed assignment of weights to

the edges of C� Let ��W��� denote the weight of the minimum weight certi�cate in

F��

Lemma �����
 Suppose there is a unique minimum weight certi�cate in F� and

suppose that L � ��W��� � Then there is a unique certi�cate for C ���� � ��
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Proof From the conditions of the lemma it follows that there is a minimal certi�cate

of weight L for C��� � �� By Observations ������ and ������ this means that in

the circuit C � there is a gate �gout� L� �where gout is the output gate of C�� and that

C ���� � �gout� L���� � ��

Thus� there is a certi�cate for C ���� � �� If it is not unique� then there

is more than one minimal certi�cate for C��� � � with weight L� and we get a

contradiction� This proves Lemma �������

The probability that there is a unique minimumweight certi�cate in F� and

L � ��W��� is at least ��� �����d�m� �by Lemma �����
 and by choosing L uniformly

from ��� �d�m��� Thus� we proved that if C��� � � then with probability � ���d�m

there is a unique certi�cate for C ���� � �� This concludes the proof of Lemma �������

������ The simulation

Proof of Theorem ����� Let us �rst consider the case of depth d � O�log n�

circuits� By a standard probabilistic argument it follows from Lemma ������ that

there exist T � cd�nm � nO��� circuits C�� � � � � CT such that the following is true for

every input assignment �

� if C��� � � then �i � f�� � � � � Tg� C i��� � ��

� if C��� � � then �j � f�� � � � � Tg such that there is a unique certi�cate for

Cj��� � ��

Now we are ready to construct the simulating arithmetic circuit� In each

circuit C i we replace each � gate by a � gate and each � gate by a � gate� We

denote the new circuit by �C i� We let the circuits �C�� � � � ��CT compute in parallel

over a common input x�� � � � � xn� � � x�� � � � � � � xn� To their outputs we apply a

transformation that turns any value that is di erent from � into �� and keeps the

values that are equal to � unchanged� Over a given �nite �eld this takes a constant

number of gates for each �C i� To compute the � of these values� recall that the � of



�


T variables can be represented by a polynomial of degree T over the given �eld� We

compute this polynomial by a log T depth semi�unbounded fan�in circuit with � and

� gates� Let us denote the circuit obtained this way by �C�
The circuits �C�� � � � ��CT have the following property


� if C��� � � then �i � f�� � � � � Tg� �C i��� � � �

� if C��� � � then �j � f�� � � � � Tg such that �Cj��� � ��

This follows from the corresponding properties of the circuits C�� � � � � CT and from

the fact that if there is a unique certi�cate for Cj��� � � then �Cj��� � ��

We conclude that on any input assignment �� C��� � �C���� This proves
the theorem if d � O�log n��

For larger d we divide the circuit C into r � log n depth parts and perform

the above simulation on each part� The total depth of the simulating circuit will be


 �d�r� � ��r�O�log n�� � O�d� log n�� which concludes the proof of Theorem ������

For proving Theorem ����
 we construct the circuits �C�� � � � ��CT and

transform their outputs to Boolean values as above� To achieve the O�d � log k�

depth for approximate simulations over a �xed �nite �eld we use polynomials of

degree k that approximate the � of these values� By ���� �cf� ����� Lemma �� given

any probability distribution on the �T inputs there exist polynomials of degree k that

compute the � of T variables with probability � �����k� over the input distribution�

This proves Theorem ����
�

������ Open problems

It is an interesting open question whether analogous relations hold for uni�

form circuit classes� Similarly� it is not known whether one can remove the nonuni�

formity from the Valiant and Vazirani ���� or the Wigderson ����� results� We note

that a result in this direction has appeared in ����� proving that SL 	 �L� where SL
stands for symmetric logspace�
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