THE UNIVERSITY OF CHICAGO

COMBINATORIAL METHODS IN BOOLEAN FUNCTION COMPLEXITY

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

ANNA CAL

CHICAGO, ILLINOIS

AUGUST 1995

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Janos Simon. His continued
support and attention has been very beneficial for my work and I learned a lot from
him. I would like to thank Laszlé Babai for his guidance and for all his generous help
that greatly influenced this work and my education.

The regular meetings for the last few years with Gyuri Turan, Farrokh Vatan
and Satya V. Lokam have been very motivating and helped to build my understanding
of complexity theory.

[am grateful to Avi Wigderson for his kind invitation to Hebrew University.
I have been very fortunate to have the opportunity to work with him and enjoy the
hospitality and excellent research environment of the Computer Science Department
at Hebrew University. The problems considered in Section 3.1 and in Chapter 4 have
been suggested by him, and he introduced me into these areas.

[have learned a lot from working with Mario Szegedy. The results in Section
2.2 are joint work with him.

[thank Mike Paterson and Amos Beimel for their enthusiastic collaboration
which led to the results in Section 3.1.

Finally, I would like to thank the Department of Computer Science of the

University of Chicago for a friendly and productive environment.

i

TABLE OF CONTENTS

ACKNOWLEDGEMENTS o o

ABSTRACT

Chapter

1.

INTRODUCTION oo e

1.1.

1.2.

1.3.

Complexity of Boolean functions
1.1.1. The basic model: Boolean circuits.
1.1.2. The complexity classes NC and AC"
1.1.3. Boolean formulas
Fault tolerance of Boolean circuits
1.2.1. Independent random faults
1.2.2. Adversarial faults 0L
Lower bounds for Boolean complexity.
1.3.1. Span programs
1.3.2. Branching programs

1.4. Boolean vs. arithmetic circuits

FAULT TOLERANCE OF BOOLEAN CIRCUITS

2.1. A lower bound in the model of independent random faults

2.2,

2.2.4.

2.1.1. Definitions and previous work
2.1.2. The lower bound L.
2.1.3. Noisy wireso
2.1.4. Probabilistic lemmas 0000
2.1.5. Proof of the lower bound
2.1.6. Block sensitivity 0oL
2.1.7. Open problems oL
A model for tolerating adversarial faults
2.2.1. Description of the model
2.2.2. Halvers
2.2.3. Symmetric functions oL
Fault tolerant circuits and probabilistically checkable proofs
2.2.5. Open problems L.

i1

i

33
37

3. LOWER BOUNDS FOR BOOLEAN COMPLEXITY
3.1. Lower bounds for monotone span programs
3.1.1. Description of the model,

3.1.2. A linear upper boundo

3.1.3. The Method for Proving Lower Bounds

3.1.4. Lower bounds for clique functions

3.1.5. Dual span programs L.

3.1.6. Open problems

3.2. A lower bound for read-once branching programs
3.2.1. Relating branching program size to the number of subfunc-

PIOTIS © . o o o o

3.2.2. An ACP°-computable function with exponential read-once

branching program complexity

3.2.3. Open problems L.

4. BOOLEAN V5. ARITHMETIC CIRCUITS

4.1. The Isolation Lemma

4.2. Semi-unbounded fan-in circuits

4.2.1. Definitions and the main results
4.2.2. Certificates
4.2.3. The randomized reduction
4.2.4. The simulation

4.2.5. Open problems oL

REFERENCES

v

ABSTRACT

In this dissertation we explore a central theme of the theory of computing:
the study of the inherent complexity of computational tasks via combinatorial models
such as Boolean circuits, span programs, branching programs.

In the first part of the thesis we study fault tolerance of Boolean circuits.

First we study the model of independent random faults, introduced by von
Neumann. In this model the gates of the circuit may fail with a probability bounded
by some small constant, and the failures occur independently. A circuit is reliable, if
it produces the correct result with high probability on any input. We give a general
lower bound for the size needed for the reliable computation of Boolean functions
in this model. In some cases this matches the known upper bounds. We prove that
the reliable computation of any Boolean function with sensitivity s requires Q(slog s)
gates if the gates of the circuit fail independently with a fixed positive probability.
This theorem was stated by Dobrushin and Ortyukov in 1977, but their proof was
not complete as pointed out by Pippenger, Stamoulis and Tsitsiklis in 1991. We use
the general approach of Dobrushin and Ortyukov together with a new probabilistic
argument. The Q(slog s) bound holds even if s is the block sensitivity instead of the
sensitivity of the Boolean function.

Next we introduce a model for adversarial faults. We consider synchronized
circuits and we allow an adversary to choose a small constant fraction of the gates
at each level of the circuit to be faulty. We require that even in the presence of
such faults the circuit compute a “loose version” of the given function. We present
an efficient construction for computing arbitrary symmetric functions in this model.
We also show a perhaps unexpected relation between this model and probabilistically
checkable proofs.

The second part of the thesis gives two lower bounds for computing Boolean

functions. The first result provides lower bounds for monotone span programs, a

model introduced in 1993 by Karchmer and Wigderson. The second result exhibits
an AC%-computable function that requires exponential size read-once branching pro-
grams. Both lower bounds are based on combinatorial properties of the families of
minterms of the functions computed.

In the third part of the thesis we study the relation of Boolean and arithmetic
circuits. We prove that polynomial size semi-unbounded fan-in Boolean circuits of
depth d with n inputs can be simulated by polynomial size semi-unbounded fan-in
arithmetic circuits of depth O(d+log n), where the arithmetic operations +, —, x are
performed in an arbitrary finite field. The proof is based on a randomized reduction

using the Isolation Lemma of Mulmuley, Vazirani and Vazirani.

vi

CHAPTER 1
INTRODUCTION

1.1. Complexity of Boolean functions

A central problem of the theory of computing is to understand the inherent
complexity of computational tasks in terms of various resources required.
We will study combinatorial models of computation for computing Boolean

functions.

1.1.1. The basic model: Boolean circuits

Suppose we want to compute the value of a Boolean function f: {0,1}" —
{0, 1}, using a certain set of operations, and we want to find out what is the minimum
number of operations we have to perform for computing the function. The set of
available operations is called the basis of the computation. A basis ® is called complete
if any Boolean function can be computed using only operations from ®.

A Boolean circuit is a directed acyclic graph composed of input nodes of
indegree 0, labeled by variables from the set {z1,...,2,}, and nodes of indegree > 1
labeled by Boolean operations from a given basis. The nodes of the circuit are called
gates. The indegree of a node corresponds to the number of variables of the associated
operation and it is called the fan-in of the gate.

The size of a circuit is the number of its gates. The depth of a circuit is the
length of the longest directed path from an input to the output of the circuit.

A Boolean circuit computes the Boolean function f: {0,1}" — {0,1} if the
value computed by the output gate of the circuit equals to the value of the function

flx1,...,2,) on each input.

The circuit complexity over the basis ® of a Boolean function f: {0,1}" —
{0,1} is the minimum number of gates in a Boolean circuit over the basis ® computing
f.

We note that changing from one finite and complete basis to another may
influence the size and depth of optimal circuits for a given Boolean function by at
most constant factors [62].

We will consider for example the standard Boolean basis {A,V,—}, with
fan-in two A, V gates. This is a complete basis, i.e. any Boolean function can be
computed using only these operations. If the basis is not mentioned, we will have the
standard Boolean basis in mind.

Lupanov [59] proved that any Boolean function of n variables can be com-
puted by circuits over {A,V, =} of size 2" /n+0(2" /n). Shannon’s counting argument
[85] shows that size ©(2"/n) is necessary for computing almost all Boolean func-
tions of n variables. Thus the circuit complexity over {A,V, =} of almost all Boolean
functions of n variables is 2" /n 4 o(2"/n). However the largest known lower bounds
for the circuit complexity of explicit Boolean functions of n variables are linear in n
[20, 67, 90, 104], and we do not know an explicit function that requires superlogarith-
mic circuit depth.

The circuit complexity of a Boolean function is related to the complexity
of computing the function in many other important models of computation. For

example, if a function can be computed by Turing machines in time T'(n) then it has

Boolean circuits of size O(T'(n)logT(n)) [72].

1.1.2. The complexity classes NC' and AC

A family of functions F is a sequence fi, fo,...,, where f, is a Boolean
function of n variables.
The class NC' is defined as the class of Boolean function families that can

be computed by uniform sequences of constant fan-in circuits in polynomial size and

depth O((logn)*) [68, 25]. We have NC = U2, NC*. The class NC' can be described
as the class of problems that are efficiently computable in parallel.

Similarly, the class AC" is defined as the class of Boolean function families
that can be computed by uniform sequences of unbounded fan-in Boolean circuits in
polynomial size and depth O((logn)’). We have AC = U2, AC". Tt is well known
that AC* C NCk1 C AC*! for every k, and NC' = AC.

By uniform sequences we mean that each circuit in the sequence can be
constructed by the same procedure (as a function of the length of the input) and this
procedure is efficient in some sense, for example performed by a logspace bounded
Turing machine [84].

Sometimes the above classes are defined without the uniformity condition.

We note that these classes are often referred to as language classes. Com-
puting a Boolean function f corresponds to recognizing whether or not a given input

x belongs to the language L = {z|f(x) = 1}.

1.1.3. Boolean formulas

A Boolean formula is a Boolean circuit where each gate has outdegree at
most 1.

The logarithm of the size of an optimal formula computing a Boolean func-
tion fis within a constant factor of the circuit depth required for computing f [89, 98].

The class of Boolean function families computable by polynomial size for-

mulas is the same as the class NC.

1.2. Fault tolerance of Boolean circuits

It is important to have constructions that reliably perform a given computa-
tion task even in the presence of errors, without increasing the size of the computation

by too much.

We consider Boolean circuits with gates that may malfunction, and we study

if it is still possible to reliably compute a function.

1.2.1. Independent random faults

Much of the work in this area uses the model of independent random faults,
originally introduced by von Neumann [64]. The assumption is that the gates of the
circuit may fail with probability bounded by some small constant, and the failures
occur independently. The circuit should produce the correct result with high prob-
ability on any input. In this model it is known [64, 29, 70] that any function can
be reliably computed by Llog L size circuits, where L is the size needed to compute
the function without faults. Pippenger [70] proved that almost all functions can be
computed with only constant redundancy. By redundancy we mean the fraction of the
size needed for computation with faults and the size needed to compute the function
without faults. These results hold if the probability of a gate being faulty is bounded
by some constant < 1/2.

We prove that the logarithmic increase in size is necessary for the reli-
able computation of certain functions. This theorem was stated by Dobrushin and
Ortyukov in 1977, but the proof they gave in [28] was found to include questionable
arguments by Pippenger, Stamoulis and Tsitsiklis [73]. We use the general approach
of Dobrushin and Ortyukov, together with some new probabilistic lemmas. This re-
sult appears in [38, 37]. An independent proof of this result was given by Gécs [36, 37]
and by Reischuk and Schmeltz [81].

1.2.2. Adversarial faults

The problem of building reliable circuits with small redundancy becomes
more difficult if the faults are not random. If an adversary chooses to destroy critical
parts of the circuit, for example the output gate, then the circuit cannot give the

correct result. Yet in many cases we would like to deal with worst case behavior.

Previous attempts to build reliable circuits in the case when the faults are not random
allowed using a certain number of absolutely reliable gates. The practical justification
for introducing absolutely reliable elements is that circuits can be built using more
expensive hardware for certain gates, that will be more reliable than the rest of the
circuit. Reliable circuits with small redundancy were obtained but they could tolerate
only a negligible (exponentially small) fraction of the gates being faulty [52, 53, 94].
Moreover these constructions have exponential size, thus they give small redundancy
only for functions that require exponential size circuits even without faults.

In a recent paper [54] Kleitman, Leighton and Ma investigate the short-
circuit model of gate failure for Boolean circuits in which a faulty gate is restricted to
output one of its input values. They show that in this model it is possible to tolerate
worst case faults without introducing absolutely reliable gates.

To our knowledge, there are no previous results achieving small redundancy
tolerating a constant fraction of gates being faulty in the case when the faults are not
random. For a survey of related results see [71].

We propose a new model of fault tolerance for Boolean circuits. We consider
synchronized (leveled) circuits and let the adversary choose a certain fraction of the
gates at each level to be faulty. Our model could be thought of as using a constant
number of absolutely reliable gates for the last few levels of the circuit. Thus, for
practical purposes it can be justified similarly to the previous approaches to handle
non-random faults.

Instead of trying to correctly compute the function on every input we define
the loose computation of a function. For the loose computation of a function f we
require the output to be 1 whenever f(z) = 1, but the output has to be 0 only on
inputs that have a large enough neighborhood where f is identically 0.

We prove that every symmetric function has a synchronized circuit of size
O(n) and depth O(log n) that performs the loose computation of the function even if a
constant fraction of the gates at each level is chosen to be faulty by an adversary. This
bound is within a constant factor of the complexity of arbitrary symmetric functions

(that depend on all n inputs) in the fault free case [98].

There is a connection between our model and recently discovered construc-
tions for proof encodings [10, 11] (also see [13] for a survey). We show that from
certain constructions of fault tolerant circuits the theorem of Arora and Safra [10],
NP = PCP(logn,logn) follows. Our results verify the existence of such fault toler-
ant circuits. However, combining these results we do not get a simpler proof to the
characterization of NP in [10]: our construction uses an even harder result stating

that NP = PCP(logn,1) [11]. The above results appear in [41].

1.3. Lower bounds for Boolean complexity

While proving superlinear lower bounds for general Boolean circuits remains
a very hard open problem, there has been much success in proving lower bounds for
restricted versions of the Boolean circuit model.

A monotone circuit is a Boolean circuit using only monotone gates, i.e. gates
from the basis {A, V}.

Razborov [76] introduced a method of proving superpolynomial lower bounds
for computing explicit functions by monotone circuits. He proved n*1°8™ Jower
bounds for the monotone circuit complexity of the clique and perfect matching funec-
tions on n-node graphs. Based on Razborov’s method exponential lower bounds were
obtained for the monotone circuit complexity of several functions from NP [8, 7].

The above results can be used to derive lower bounds for the depth of mono-
tone circuits, but the depth lower bounds obtained this way will be logarithmic in
the size bound.

Karchmer and Wigderson [49] introduced a technique for proving lower
bounds on the depth of monotone circuits that are super-logarithmic in the size of
optimal circuits for the function considered. They proved Q((logn)?*) lower bounds
for the depth of monotone circuits computing the st-connectivity function, i.e. decid-

ing whether an undirected graph on n nodes contains a path between the nodes s and

t. Based on the method of [49] Q(n¢) and Q(n) lower bounds were obtained by [43]

and [80] for the depth of monotone circuits computing explicit functions on n-node
graphs.

Another area where proving lower bounds has been successful is considering
bounded depth circuits. Improving the lower bounds of [1, 35, 102] Hastad [44] proved
exponential lower bounds for computing the parity function by bounded depth circuits
with unbounded fan-in gates over the basis {A,V,—}. Razborov [77] proved that
computing the majority function by bounded depth circuits requires exponential size
even allowing the use of parity gates. Smolensky [88] extended the above results,
proving exponential lower bounds for computing the MOD, function by bounded
depth circuits over {A,V,=, MOD,}, if p is a prime and r is not a power of p.

A very exciting area of research is trying to find new techniques that might

lead to superlinear lower bounds for general Boolean circuits [78, 48, 51, 100].

1.3.1. Span programs

Karchmer and Wigderson [50] introduced span programs as a linear algebraic
model of computation. A span program for a Boolean function is presented as a
matrix over some field with rows labeled by literals of the variables, and the size of
the program is the number of rows. The span program accepts an assignment if and
only if the all-ones row is a linear combination of the rows whose labels are consistent
with the assignment.

Lower bounds for the size of span programs imply lower bounds in several
other models, for example for formula size.

Monotone span programs have only positive literals (non-negated variables)
as labels of the rows. They compute only monotone functions, even though the
computation uses non-monotone linear algebraic operations. It is known that every
function with a polynomial size span program is in NC' (this follows from [19, 24, 50,
60]), but no monotone analog of this result is known.

In this model, it is not known how to prove large lower bounds for explicit

functions even in the monotone case. The Q(m?/logm) lower bound implied by [26]

for monotone span program size is the strongest previously known lower bound for
an explicit function on m variables. [17] introduced a method that yields quadratic
lower bounds for explicit functions, improving on the bound by [26]. The methods
presented in [17] and [26] cannot give lower bounds larger than Q(m?).

We present a new technique for proving lower bounds for monotone span
programs, which is a generalization of the method in [17]. The new method could
possibly yield even exponential lower bounds. So far, our largest lower bound for an
explicit function on m variables is (m*?). We obtain this bound for the function
that is defined to have the value 1 if and only if the input graph contains a 6-clique.
These results appear in [18]

Another motivation for studying monotone span programs is their connec-
tion to secret-sharing schemes. A secret-sharing scheme is a cryptographic tool in
which a dealer shares a secret, taken from a finite set of possible secrets, among a set
of parties such that only some pre-defined authorized sets of parties can reconstruct
the secret. To achieve this goal the dealer distributes private shares to the parties
such that any authorized subset of parties can reconstruct the secret from its shares
and any non-authorized subset cannot gain even partial information about the secret.
The authorized sets correspond to a Boolean function f : {0,1}™ — {0,1}, where
m is the number of parties, such that the authorized sets are the sets with their
characteristic vectors in f~*(1).

A secret-sharing scheme can only exist for authorized sets specified by mono-
tone functions: if a subset B can reconstruct the secret then every superset of B can
also reconstruct the secret.

A secret-sharing scheme is considered efficient, if the length of the shares is
not too large (say polynomial) relative to the number of parties.

The question of whether there exist Boolean functions with no efficient
scheme is open. The best lower bound was proved by Csirmaz [26]. His proof gives,
for every m, a Boolean function with m variables for which the sum of the lengths
of the shares in every secret-sharing scheme is Q(m?/logm) times the length of the

secret (for every finite set of possible secrets).

Karchmer and Wigderson [50] proved that if there is a monotone span pro-
gram of size s for some function then there exists a scheme for the corresponding
secret-sharing problem in which the sum of the lengths of the shares of all the par-
ties is s. Therefore, every lower bound on the total size of shares in a secret-sharing
scheme is also a lower bound on the size of monotone span programs for the same
function. On the other hand, lower bounds for monotone span programs imply lower

bounds for linear secret-sharing schemes [15, 16, 27].

1.3.2. DBranching programs

A branching program is a directed acyclic graph with a source node called
START, and two sinks called ACCEPT and REJECT. Every vertex that is not a sink
has outdegree 2, and the two edges leaving a given vertex are labeled by complemen-
tary literals a;, Z; for some variable z; (1 < ¢ < n). For every input string (z1,...,2,),
x; € {0,1} the label of each edge evaluates to 0 or 1 depending on the value of the
corresponding variable. A given input string is accepted by the program if and only
if there is a directed path from START to ACCEPT along which all edge-labels take
value 1 under this input. The branching program is said to compute the Boolean
function f : {0,1}" — {0,1} which takes the value 1 precisely on the strings accepted
by the branching program. The size of a branching program is the number of the
nodes. A branching program is read-once if every variable occurs at most once along
each source-sink path.

A number of papers have presented lower bounds for read-once branching
programs. Exponential lower bounds are given for explicit functions in [2, 14, 30,
46, 56, 57, 74, 75, 86, 99, 103]. Results for the more general case of read-k-times
branching programs appear in [23, 47, 79].

We list some functions which have previously been shown to require expo-
nential size read-once branching programs. (This is not intended to be a complete
list.) [30] considers the Hamiltonian-Circuit and the Perfect-Matching problems. [86]

proves an exponential lower bound for the function taking value 1 if and only if the

10

input graph on m vertices is m/2-regular. [74] presents an exponential lower bound
for integer multiplication. The Clique-Only function is defined as having value 1 if the
input represents the edges of a graph on m vertices which is an m/2 size clique. The
Cligue-Only function can be computed by polynomial size read-twice branching pro-
grams [99] and by NC* circuits [98], (polynomial size logarithmic depth constant fan-
in circuits), but requires exponential size read-once branching programs [75, 99, 103].
In the above examples, the exponential lower bounds are of the form 2%0vV?) where n
is the number of variables. A lower bound of 20" for an n-variable function is given
in [2, 14] for the Triangle-Parity problem, i.e. for the function taking the value 1 if
and only if the input graph contains an odd number of triangles.

As a consequence of [1, 35], none of the above families of functions belongs
to ACY (see [44, 102] for stronger results).

Jukna [46] and Krause et al. [57] exhibit a function which is AC? computable
and at the same time it requires exponential size read-once branching programs. They
consider the Eract-Perfect-Matching function taking the value 1 if and only if the
input graph consists of a perfect matching. They prove that this function requires
297 size read-once branching programs, where n is the number of variables.

We show that there exist families of functions even in depth-2 monotone
AC? that require exponential size read-once branching programs. This result appears

in [40].

1.4. Boolean vs. arithmetic circuits

There are several approaches to compare the power of Boolean and arith-
metic computational models. One possibble approach is to compare complete prob-
lems for analogous complexity classes defined by the corresponding models. Valiant
and Vazirani [97] gave a randomized reduction from the satisfiability problem to
unique satisfiability, and proved that NP/poly C ®P/poly. Avi Wigderson [101]
proved that NL/poly C @ L/poly, by giving a randomized reduction from s — ¢ con-

nectivity to unique s — ¢ connectivity for directed graphs.

11

Our work complements the above results. We study similar questions for
complexity classes defined by limited depth circuits. We consider semi-unbounded
fan-in Boolean and arithmetic circuits allowing the V and + gates to have unbounded
fan-in while requiring the fan-in of the A and x gates to remain bounded. We prove
that polynomial size semi-unbounded fan-in Boolean circuits of depth d with n inputs
can be simulated by polynomial size semi-unbounded fan-in arithmetic circuits of
depth O(d 4 logn), where the arithmetic operations +, —, x are performed in an
arbitrary finite field.

Observe that this problem is only interesting for semi-unbounded fan-in
circuits, because a single V of m inputs can be expressed as a polynomial of degree
m over any field. Thus it is easy to simulate unbounded fan-in polynomial size,
depth d Boolean circuits by unbounded fan-in polynomial size, depth O(d) arithmetic
circuits simply by replacing each A gate by x and simulating each V gate by such
a polynomial. Similarly, bounded fan-in Boolean circuits are easy to simulate by
bounded fan-in depth O(d) arithmetic circuits.

For semi-unbounded fan-in circuits, replacing each V gate by the correspond-
ing polynomial we obtain (dlogn) depth arithmetic circuits. Razborov [77] showed
that an m-input V can be well approximated by degree logm polynomials over fi-
nite fields. By a result of Borodin [21] using these polynomials and amplifying the
approximation it is possible to get O(dloglogn + logn) depth and polynomial size
semi-unbounded arithmetic circuits that simulate semi-unbounded (and even com-
pletely unbounded fan-in) depth d Boolean circuits. Note however that we cannot
hope for further improvement if we try to simulate each V gate separately. Our
“global” reduction gives depth O(d + logn) simulation. The proof is based on a ran-
domized reduction using the Isolation Lemma of Mulmuley, Vazirani and Vazirani

[61]. These results appear in [39, 42].

CHAPTER 2
FAULT TOLERANCE OF BOOLEAN CIRCUITS

2.1. A lower bound in the model of independent
random faults

2.1.1. Definttrons and previous work

We prove lower bounds on the number of gates needed to compute Boolean
functions by circuits with noisy gates. We say that a gate fails if its output is incorrect.
A noisy gate fails with a probability bounded by some constant ¢ € (0,1/2), and the
gates in the circuit fail independently. A computation is reliable if the value computed
by the circuit on any given input is correct with high probability.

For reliable computations the size of circuits with noisy gates has to be
larger than the size needed for computations using only correct gates. By the noisy
complexity of a function we mean the minimum number of gates needed for the reliable
computation of the function. It depends of course on the error probabilities of the
gates, and also on how reliable the circuit has to be. Note that in this model the
circuit cannot be more reliable than its last gate. For a given function, the ratio of
its noisy and noiseless complexities is called the redundancy of the noisy computation
of the function.

The following upper bounds are known for the noisy computation of Boolean
functions. The results of von Neumann [64], Dobrushin and Ortyukov [29] and Pip-
penger [70] prove that if a function can be computed by a noiseless circuit of size L,
then O(Llog L) noisy gates are sufficient for the reliable computation of the function.
Pippenger [70] proved, that any function depending on n variables can be computed
by O(2"/n) noisy gates. Since the noiseless computation of almost all Boolean func-
tions requires 2(2"/n) gates (Shannon [85], Muller [62]), this means that for almost

all functions the redundancy of their noisy computation is just a constant. Pippenger

12

13

[70] also exhibited specific functions with constant redundancy. For the noisy compu-
tation of any function of n variables over a complete basis ®, Uhlig [93] proved upper
bounds arbitrarily close to p(®)2"/n as ¢ — 0, where p(®) is a constant depending
on &, and p(®)2"/n is the asymptotic bound for the noiseless complexity of almost
all Boolean functions of n variables (Lupanov [59]).

These are rather surprising results. It is natural to ask whether there exist
functions with nonconstant redundancy or whether the O(Llog L) upper bound of
[64, 29, 70] is tight for some functions, and if so, exhibit such functions.

Dobrushin and Ortyukov in their 1977 paper [28] stated the following theo-
rem providing answers to this important problem: The computation of any function
with sensitivity s requires Q(slog s) gates if the gates of the circuit fail independently
with a fixed probability ¢ € (0,1/2), but the value computed by the circuit on any
input is incorrect with probability not greater than p € (0,1/3). Thus, in particular,
the reliable computation of the parity or the “or” functions of n variables requires
Q(nlogn) noisy gates.

Unfortunately, as noticed by Pippenger, Stamoulis and Tsitsiklis [73], the
proof in [28] is incorrect. Pippenger, Stamoulis and Tsitsiklis [73] pointed out the
two questionable arguments in the proof, and suggested that part of the strategy
seemed hopelessly flawed. They gave in [73] an Q(nlogn) lower bound for the parity
function, keeping part of the approach of Dobrushin and Ortyukov, but replacing a
significant part of their proof with entirely new arguments using specific properties
of the parity function. The more general statement about any function with given
sensitivity remained unproven.

We prove that functions with sensitivity s do indeed require Q(slog s) noisy
gates for their reliable computation. We can prove the stronger (blog b) lower bound,
where b is block sensitivity rather than sensitivity. The results hold for circuits with
arbitrary constant fan-in gates. Thus, they also hold for circuits over an incomplete
basis, for example monotone circuits. The proof uses the original Dobrushin-Ortyukov

strategy, proving the correct probabilistic lemmas to carry it out.

14

We note that these are the only known lower bounds proving nonconstant
redundancy for functions other than the parity function, and they allow to prove
maximal Q(log L) redundancy of noisy computation over arbitrary constant fan-in
basis for a large class of functions, including all symmetric functions.

A different proof of Theorem 2.1.4 by Péter Gacs, which works for any
p € (0,1/2) is presented in [37]. The paper of Reischuk and Schmeltz [81] gives
an independent proof of the Q(slogs) lower bound. The dependence on the failure
probabilities of the gates was later improved by Evans and Schulman [31, 33]. The
effect of errors on the depth of the computation has been studied in [32, 31, 33].

2.1.2. The lower bound

Let f be a Boolean function of n variables. Let @ = (x4,...,2,) be any
input string. Denote by z' the input string which differs from « only in the (-th bit,

i.e. 2t = x; for each i # (and 2} = —a,.

Definition 2.1.1 The function f is sensitive to the (-th bit on z if f(x) # f(z*).
The sensitivity of f on x is the number of bits to which f is sensitive on x. The

sensitivity of f is the maximum over all x of the sensitivity of f on .

We consider Boolean circuits with gates having constant fan-in and comput-
ing functions from a finite set ®. A complete basis is a set of functions such that any
Boolean function can be represented by their composition. ® may or may not be a
complete basis. We assume only that any circuit C' computing a particular function
f uses constant fan-in gates computing functions from a finite set ®¢, such that f
can be represented by the composition of functions from ®.

Let n(®c) be the maximum fan-in of the gates computing functions from

the set ®¢. Let n, denote the fan-in of gate ¢.

Definition 2.1.2 Let z € {0,1}". Denote by ¢(z) the value of the function that the
gate g has to compute, on input z. We say that the gate ¢ fails, if receiving input z

it outputs a value different from g(z).

15

Theorem 2.1.4 gives the lower bound for the case that the gates fail indepen-
dently with a fixed probability ¢ € (0,1/2). It has been argued (Pippenger [70]) that
for proving lower bounds this is the best model to consider, as opposed to proving up-
per bounds, where the assumption that the gates fail independently with probability
at most ¢ € (0,1/2) is more appropriate.

Definition 2.1.3 Denote by C(z) the value computed by the circuit C' on input z.
We say that a circuit computes f with error probability at most p if the probability
that C'(x) # f(x) is at most p for any input x.

The main lower bound theorem is stated below:

Theorem 2.1.4 Let ¢ and p be any constants so that ¢ € (0,1/2), p € (0,1/4).
Let f be any Boolean function with sensitivity s. Suppose a circuit whose gates fail
independently with fired probability ¢ computes [with error probability at most p .
Then the number of gates of the circuit is at least Q(slog s).

Corollary 2.1.5 The redundancy of the noisy computation by Boolean circuits of

any function of n wvariables with O(n) noiseless complexity and Q(n) sensitivity is

Qlogn).

Corollary 2.1.5 applies to a large class of functions. In particular the follow-

ing statement holds:

Corollary 2.1.6 The redundancy of the noisy computation by Boolean circuits of

any nonconstant symmetric function of n variables is Q(logn).

We note that there is a difference between the redundancy of noisy com-
putation by circuits and by decision trees. A similar model of noisy computation is
considered by Feige et al. [34] for Boolean decision trees. The nodes of the tree are
allowed to be independently faulty with some probability, and the result of the com-
putation has to be correct with at least a fixed probability for every input. Feige et

16

al. [34] give bounds for the depth of noisy decision trees computing symmetric func-
tions. These bounds show that some nonconstant symmetric functions have constant

redundancy of noisy computation by decision trees.

Corollary 2.1.7 There exist Boolean functions of n variables with constant redun-
dancy of noisy computation by decision trees and Q(logn) redundancy of noisy com-

putation by circuits.

2.1.3. Noisy wires

Following Dobrushin and Ortyukov, for the proof of Theorem 2.1.4 we con-
sider an equivalent problem.

Let C' be a circuit satisfying the condition that if its gates fail independently
with probability ¢ then the circuit computes f with error probability at most p.

As suggested in [28], consider the case when not only the gates but the wires
of ' may fail as well. We say that a wire fails when it transmits an incorrect value.

Let 6 € [0,e/n(®¢)] and suppose that the wires of C fail independently,
each with probability . This means that the input y € {0,1}"s received by gate ¢
may be different from the input ¢ € {0,1}" that the gate should have received.

The following statement is proved as Lemma 3.1 in [28]: Let ¢ € (0,1/2),
6 € [0,e/n(Pc)]. Then for any gate g of the circuit C there exist unique values
ny(y,0) € [0,1], so that if the wires of C fail independently with probability ¢ and
the gate ¢ fails with probability n,(y, 6) when receiving input y, then the probability
that the output of ¢ is different from ¢(¢) (where ¢ is the input entering the input
wires of the gate) is equal to e.

Consider now the behavior of circuit €' in two different failure modes. In
the first mode the wires of the circuit are correct and the gates fail independently
with probability € € (0,1/2). In the second mode each wire fails independently with
fixed probability ¢ € [0,e/n(®¢)] and each gate fails independently with probability
ny(y,0) when receiving y. Lemma 3.2 of [28] shows that these two failure modes are

equivalent in the sense that the circuit C' computes f with the same error probability:

17

for any input = and any gate g the output of ¢g differs from the output computed by
the same gate in an error free computation of C' on input x with the same probability
in both modes. Thus to prove Theorem 2.1.4 it suffices to prove a lower bound for
the size of ' computing f with error probability at most p with errors occurring at

both the wires and the gates. More precisely, we shall prove the following

Theorem 2.1.8 Let é and p be any constants so that 6 € (0,1/2), p € (0,1/4). Let
f be any function with sensitivity s. Let C' be a circuit such that its wires fail inde-
pendently with fized probability 6 and each gate g fails independently with probability
ny(y,0) when receiving y. Suppose C computes f with error probability at most p.
Then the number of gates of C' is at least Q(slog s).

2.1.4. Probabilistic lemmas

In this section we prove a few statements which we will need for the proof

of Theorem 2.1.4.

Lemma 2.1.9 Let aq,...,a, be independent events, v € (0,1) and Pr{U; oi] <.
Then

Pr[@ a;] > (1—7) iPr[O‘i] :
Proof:
PT[Q] > iPr[ai N (= 9}?:1%)]
> iPr[ai] (1— PT[Q a;])

> (1-7) Y Priad.

Lemma 2.1.10 Let E be an event, p and ¢ constants from (0,1). Let o and X be
independent events such that Pr[A] > ¢ and Pr[E |a] > 1 —p. Then

PrlE|ani>1-2.
C

18
Proof:

PriE|an)=1-=Pr[-E|an)}].

Pr-F A Pr-F
PrioB | an) = rlmENan]< rl=E Nal

Prlan}] = Prianl}]
_ Pr[=E | o]Pr|a] oy
Pria]Pr[\] — ¢’

Lemma 2.1.11 Let E be an event and p € (0,1) a constant. Let aq,...,a, be
independent events such that Pr[E | a;] > 1 —p for Vi. Then

PriE | Jad = (1 - vp)*.
Proof:

We prove that if the conditions of the lemma hold then for any ¢ € (0,1)

n

Prig|Jad > (1 —}g)(l—c). (2.1)

Taking ¢ = ,/p we get the statement of the lemma.

Let us use the notation A; = =(ay U...U ;). Then the events aq, as N Aq,

.oy aky1 N Ag do not intersect and

U o, = 0610(062 N)\1)0(0[3 N)\Q)U PN U(Oén N)\n—l) 5

=1

Pri\] > Pridg] > ..o > Prid]. (2.2)

Fix any constant ¢ € (0,1). Suppose Pr{A;] > ¢ for some k. Then since

ayy1 and Ay are independent events, by Lemma 2.1.10 and (2.2) the following holds
for each 1 < /¢ < k:

PriE | amni]>1-2.
C

Since Uit oy = arU(az N AU ... U(aggr N Ag) we get that

k1
if PriA\;]>c then PriE|] o] >1— b
¢

=1

(2.3)

19

This proves (2.1) if Pr[A,—1] > c.
If PriA.-1] < ¢ and Pr[A1] > c then consider the largest index k such that
Prixg] > e Thus 1 <k <n—1and

PriA] > ¢ but Pridgq] < c.

By (2.3) PriE |UZ ai] = 1 (p/c), and

k+1 k+1
PT[U a;] > 1 —c¢ since U a; = T Apy -
=1 =1
We get
n k+1 k+1
PriFE | U a;] > PrlE| U oq]Pr[U a;]
=1 =1 =1

> (1_]5)1—@.

If PriX\] < e then Prlioq] > 1 — ¢ and

n

PriFE | U a;]

=1

Y

PrlE | ai]Praq]

> (1=p)(1—¢)
> (1-%)(1—@

which concludes the proof of Lemma 2.1.11.

2.1.5. Proof of the lower bound

We prove the “noisy wires” version (Theorem 2.1.8).

Let z be an input such that f has maximum sensitivity on z. Let S C
{1,...,n} be the set of indices so that ¢ € S if and only if f is sensitive to the (-th
bit on input z. Then |S| = s, where s is the sensitivity of f.

For each ¢ € S denote by B, the set of all wires originating from the /-th
input of the circuit. Let m, = | By|.

For any set # C By, let w(f3) be the event that the wires belonging to /3 fail

and the other wires of B, are correct.

20

Denote by (3, the subset of B, where

maXPr[C(Zg) = f(Zg) | w(B)]

BCBy

is obtained. Note that 8, may or may not be the empty set.
By the conditions of the theorem, C' computes f with error probability at
most p, which means that Pr[C(z) = f(z")] > 1 — p. Thus,

PriC(z") = f(=") [w(B)] = 1= p. (2.4)

Denote by ay the event that the wires of B, not belonging to 3, fail and the
wires of 3y are correct. In other words: ay = w(B, \).

Since f is sensitive to the (-th bit on
PriC(z) # f(z) | ar] = PrlC(z") = f(z) | w(B0)] .
By (2.4) this means that for each { € S
PriC(z) # f(z) lau] = 1= p.

ay are independent events since the wires fail independently. Thus we can apply
Lemma 2.1.11 and get
Pr(C(z) # f(2) | U ad = (1 =)™
lesS

Using this inequality, from

p = PrlC(z) # f(2)]
> Pr[C(z) # f(z) |£USOM]PT[£USOM]
we conclude that
PriJad < —2— . (2.5)

Les (1 - \/}_7)2

p/(1 —/p)* € (0,1) since p € (0,1/4). Applying Lemma 2.1.9 we get

p
Pr[}gsozg] > (1 - m);Pr[w] : (2.6)

21

Using
Prla)] = (1 — 5)|ﬁz|5mz—|ﬁz| > §me
where ¢ is the failure probability of the wires, from (2.5) and (2.6) follows
P
SR i
L=2p Les
Then

p me\1/s
o 218
L=2Vp s

by the inequality between the arithmetic and geometric means. Taking the logarithm

we conclude

;mg - 10g(81/5) g _;\/ﬁ)' (2.7)

Since the maximum fan-in of the gates of the circuit n(®¢) is constant, (2.7)
means that the number of gates in the circuit is Q(slogs), and this completes the

proof of the theorem.

2.1.6. Block sensitinty

Let f be a Boolean function of n variables, * = (#1,...,2,) any input and
S any subset of indices, S C {1,...,n}. Denote by z° the input obtained from = by

complementing all bits with indices from S and keeping the other bits of + unchanged.

Definition 2.1.12 The function f is sensitive to S on input z if f(z) # f(2°). The
block sensitivity of f on x is the largest number b such that there exist b disjoint sets
St,...,5 such that for all 1 < < b, f is sensitive to S; on x. The block sensitivity

of f is the maximum over all # of the block sensitivity of f on x.

This measure of complexity was introduced by Nisan in [65]. Clearly for any
function

block sensitivity > sensitivity .

It is shown in [65] that for all monotone functions the sensitivity equals the block

sensitivity, but for non-monotone functions the inequality may be strict. A function

22

with quadratic gap between sensitivity and block sensitivity is exhibited by Rubinstein
[82].

Theorem 2.1.13 Let ¢ and p be any constants so that ¢ € (0,1/2), p € (0,1/4).
Let f be any Boolean function with block sensitivity b. If a circuit whose gates fail
independently with fixed probability ¢ computes f with error probability at most p,
then the number of gates of the circuit is at least Q(blogb).

Proof:

Let the block sensitivity of f be maximum on input z, and let Sy, ...,.5 be
disjoint sets so that for all 1 < ¢ < b, f is sensitive to S; on z. We can apply the
proof of Theorem 2.1.4 by defining B; for 1 <7 < b as the set of all wires originating

from the inputs with indices from 5;.

Corollary 2.1.14 The redundancy of the noisy computation by Boolean circuits of
any function of n variables with O(n) noiseless complexity and Q(n) block sensitivity

is Qlogn).

2.1.7. Open problems

Note that the O(Llog L) upper bound construction [64, 29, 70] works for
monotone circuits as well, since it can be realized using only gates computing the
majority function in addition to the gates of the original noiseless circuit. Let L™ (f)
be the noiseless complexity of computing the monotone function f by monotone
circuits. Theorem 2.1.4 shows that for some functions f, Q(L™(f)log L™(f)) noisy
gates are necessary for the reliable computation of f by monotone circuits. Is it still
true that the redundancy of the noisy computation of almost all monotone functions
by monotone circuits with noisy gates is constant? Andreev [9] showed that this is true
for a different failure model, where the gates of the circuit do not fail independently,
but the number of faulty gates is at most 2°0%).

Considering arbitrary circuits, prove lower bounds stronger than Q(nlogn)

for the size of reliable circuits with noisy gates computing explicit functions of n

23

variables. This might be a very difficult problem: if such a lower bound holds for the
computation of a function f by unrestricted circuits with gates from a finite complete
basis, then the noiseless complexity of that function must be superlinear (in n). Thus
exhibiting such a function would solve another fundamental open problem.

But this question is open even for restricted models: prove nonconstant
redundancy of noisy computation for an explicit function known to have Q(nlogn)
noiseless complexity of computation by circuits with gates computing functions from

some (incomplete) finite set @, for example by monotone circuits.

2.2. A model for tolerating adversarial faults

2.2.1. Description of the model

All the circuits considered here will be synchronized. This means that the
gates are classified according to their levels numbered from 0 to D(C'), where D(C')
denotes the depth of the circuit. Wires go only between consecutive levels (a gate
on the " level is fed from gates on the (i — 1) level for i = 1,...,D(C)). We
would like to build synchronized fault tolerant circuits that give the correct output
even if at each level a small, but maliciously chosen constant fraction of the gates are
malfunctioning.

Instead of trying to correctly compute the function on every input we define

the loose computation

Definition 2.2.1 For any computational device M we say that M 6-loosely computes
i
1. whenever f(x) =1 then M(x) = 1.

2. If f(z) =0 for every z with d(x,z) < én, then M(x) = 0.

Here d(x,z) denotes the Hamming distance between words x and z. We remark that
M can output an arbitrary value or no value at all if input x does not belong to the

above two categories.

24

At the first sight it may appear that computational devices that loosely
compute a function f can be far weaker than those that are able to get the value of f
everywhere. For instance it is well known [3] that there is an ACj circuit that loosely
computes the majority function, whereas majority itself cannot be computed in AC).
One may speculate similarly that every function in NP might be loosely computed
in P. Proposition 2.2.3 together with Remark 2.2.4 shows that this is not the case
(unless P = NP).

Definition 2.2.2 For an error correcting code E, with codewords of length ¢, and
for a function f:{0,1}" — {0,1} we define the function < E, : {0,1}% — {0,1}

as follows.
o (foFE,)(2)=0 for all z where z is not a codeword of the code F,,.
o [fz=FE,(x) then (foF,)(z) = f(x).

Proposition 2.2.3 If the Hamming distance of any two codewords in F, is at least

0qn, and M is a computational device that computes f o E, in a é-loose manner, then

M(E,(z)) = f(x) on any input x.

Remark 2.2.4 [t is known from coding theory that there exist linear binary codes E,
with the following properties.

1. The matrix of E,, can be polynomially computed in n. (This also means that the
length of the codeword, ¢y, is polynomial in n.)

2. The Hamming distance of any two codewords in F, is at least dq,, for some

small constant 6.

There are two ways to interpret the assumption of our model about allowing
at most a small constant fraction of the gates to be faulty at each level of the circuit.
We may or may not allow the adversary to bias gates at the input level. The following

proposition shows that we cannot expect to find a simple transformation that turns

25

an arbitrary circuit into a fault tolerant circuit in our model in the harder case, when
faults are allowed at the input level. We note that such a transformation exists in

the model of independent random faults [70].

Proposition 2.2.5 Assume that there is a polynomial time transformation that would
turn any circuit C' computing a function f into a circuit C' of size polynomial in the
size of C such that C" loosely computes f, even if an adversary biases a small constant

fraction of the gates at every level of C' including the input level. Then P=NP.

Proof: We show that the hypothesis implies that the satisfiability of a 3CNF formula
could be decided in polynomial time. Let ¢ be a 3CNF formula of n variables.

Let us introduce n?

new variables yy,...,y,2. Let C be the circuit that computes
f=viN... Ay Aog. Let C' be the fault tolerant circuit that computes f in a é-loose
manner. By our assumption we can build €’ from C' in polynomial time. Let z be the
input 1...1. We claim that C'(z)=1 (without faults) if and only if ¢ is satisfiable.
Indeed, if ¢ is not satisfiable then f is identically 0 and hence C’(z) = 0. On the
other hand if there is an assignment « such that ¢(a) = 1 then by changing only at
most n < én? digits of z we can turn z into a z’ such that f(z’) = 1. Observe that
loose computation preserves the 1 values. But then by the fault tolerant property
of ', C'(z) = 1 holds. Thus building C" as above would allow us to differentiate
between satisfiable and non satisfiable instances.

An observation of Gabor Tardos [92] shows that a similar statement also

holds if we do not allow faults at the input level.

2.2.2. Halvers

Our construction for symmetric functions is based on the e-halvers of Ajtai,
Komlés and Szemerédi [4]. An e-halver is a bounded depth comparator network with
the property that for any set of the [smallest (largest) inputs, where [< n/2, at most

el elements will be among the last (first) n/2 outputs. In other words, an e-halver is

26

a halver (a network that separates the n/2 largest and the n/2 smallest inputs into
two disjoint sets) that can misplace at most an e fraction of the elements.

Constant depth linear size e-halvers were constructed in [4]. More efficient
e-halvers (with smaller constants) based on units called k-comparators were proven
to exist in [5], but no explicit construction has been given. A k-comparator is a unit
that sorts its &k inputs.

All our constructions work using either e-halver. If the more efficient e-
halvers are used, we assume that each k-comparator is realized by depth & 2-comparator
networks. We note that the depth of the realization of such e-halvers by 2-comparator
networks will be 2k, since the e-halvers of [5] are depth 2 k-comparator networks. In
what follows by the depth of an e¢-halver we always mean the depth of the realization
by 2-comparator networks.

For 0—1 inputs e-halvers can be realized by monotone Boolean circuits. Fach
comparator will be realized by an AND - OR gate pair. The AND gate computes the
minimum, the OR gate computes the maximum of the two common input bits. The
resulting circuit will have the same depth as the original e-halver. In what follows by
e-halvers we usually mean the Boolean circuits of the above mentioned form realizing
the original e-halvers.

For our purposes we have to consider e-halvers with faulty gates.

Definition 2.2.6 Denote by g(y1,y2) the function that the gate g is supposed to com-
pute on input y1,y2. A gate g is faulty if its output is different from g(y1,yz2).

Definition 2.2.7 Let C' be a circuit with no faulty gates, and let C be a copy of the
same circuit with possibly faulty gates. The output of a gate of C is incorrect if it is
different from the value computed by the same gate in C. Note that the output of a
gate may be incorrect because the gate is faulty, or because the inputs of the gate are

incorrect.

The following lemma says that in e-halvers the incorrect outputs cannot

cause too much damage on subsequent levels.

27

Lemma 2.2.8 At level d of an c-halver the number of incorrect outputs is at most

the number of incorrect outputs at level d — 1 plus the number of faulty gates at level

d.

Proof: Recall that a comparator in our e-halvers is an AND - OR gate pair with
common inputs. Level d of the ¢-halver consists of disjoint comparators. Thus to
prove the lemma it is enough to prove that the number of incorrect output bits of a
comparator is at most the number of its incorrect input bits plus the number of its
faulty gates. (Thus we only have to deal with a single comparator with two inputs
and two outputs at a time.) Let us consider the case when there are no faulty gates
and exactly one of the two input bits is incorrect. Notice that since the comparator
only permutes the two input bits we can have only one incorrect bit in the output in

this case. In all other cases the statement for a single comparator is trivially true.

Definition 2.2.9 We say that a circuit is y-faulty if at most v fraction of the gates

on each level is faulty.

When talking about 7-faulty circuits we do not consider the inputs to be
gates, but just values fed into the circuit. The reason for this is that our constructions
will involve y-faulty circuits connected to one another such that the outputs of one
of them provide the inputs to others. Once we receive a set of values as output of a
previous circuit it will be fed to the next circuit without further damage. (Another
way of making this clear is noting that the wires of our circuits work correctly no
matter what the adversary does.) However we will have to take into account that the
adversary may destroy some of the real input gates of the whole construction.

For an e-halver denote by L; (Lo) the number of 1’s (0's) in the lower part
of the output, and by Uy (Up) the number of 1’s (0’s) in the upper part of the output.

We shall need the observations below in the next section.

Lemma 2.2.10 Consider a v-faulty e-halver of depth ¢ with m inputs. Let the num-
ber of 0’s in the input be a. If a > m/2 then

Ly <e(m—a)+ eym

28

and

(a —m/2) —cym < Uy < (a—m/2)+em/24 cym.

If a <m/2 then
Uy < ea+cym

and

(m/2—a)—cym < Ly <(m/2 —a)+em/24 cym.

Proof: We first estimate what would be the value of L; and Uy in a correct e-halver.
Lemma 2.2.8 guarantees that the number of incorrect outputs in the last level of a
~-taulty e-halver of depth ¢ is at most eym.

We summerize what we have learned in the following lemma:

Lemma 2.2.11 Consider a 0-1 string of length m, such that there are z (s followed
by m — z 1’s. Denote by zp, (zu) the number of 0’s in the lower (upper) part of this
ordered string.

Consider a vy-faulty e-halver of depth ¢ with m inputs. Let the number of 0’s
in the input be a, such that | a — z |<r. Then

| Up — zv | r+ (6 4 2¢y)m /2

and

| Lo — 2z, |< r + (e 4+ 2¢y)m/2 .

Note that a similar statement holds for the number of 1’s in the output.

29

2.2.3. Symmetric functions

In this section we construct fault tolerant circuits for any symmetric func-
tion.

First we show that ~-faulty circuits can compute overwhelming majority
functions correctly on all inputs where they are defined.

The overwhelming majority function Maj; has value 1 or 0, respectively, if
the number of 1’s or the number of 0’s in the input is at least &k, and it is undefined

otherwise.

Lemma 2.2.12 Let k > 3/4n. Then for some v > 0, there is a v-faulty circuil of
size O(n) and depth O(logn) computing Maj]' correctly on every input belonging to

its domain.

Proof: The building blocks of our construction are triplets of e-halvers with a ma-
jority preserving property. A similar component with this property was introduced
by Assaf and Upfal in [12] for building fault tolerant sorting networks in the case of
random faults. They call a comparator network with m inputs and m/2 outputs a
majority preserver if it guarantees that if at least a given (> 1/2) constant fraction
of the m inputs have the same value, then this value appears in at least the same
given constant fraction of the m/2 outputs. We construct a majority preserver that
tolerates a small constant fraction of worst case errors at each of its levels as follows.

First we apply an m-input e-halver to the m inputs. Let us call it M-halver.
Then we apply two m/2-input e-halvers, one to the lower part the other to the upper
part of the output of the M-halver. We refer to these two e-halvers as L-halver and
U-halver respectively. The output of the majority preserver will consist of the upper
part of the output of the L-halver and of the lower part of the output of the U-halver.

We use a family of e-halvers of depth ¢ with the same parameters € and ¢
for all input lengths. For appropriate constants € and ¢ such family exists.

Let @ be the number of 0’s in the input of the majority preserver. Suppose

a> (3/44cy)m. (2.8)

30

Denote by Lo(M) (Up(M)) the number of 0’s in the lower (upper) part of the output
of the M-halver. We use similar notation for the L-halver and U-halver. By Lemma
2.2.10 and the inequality (2.8)

Lo(M) > m/2 — (e+ 2¢y)m/2

and

Ug(M) > m/4.

Applying Lemma 2.2.10 to both the L-halver and the U-halver, we get
Ug(L) + Lo(U) > (1 — 2(e + 2¢v))m/2. (2.9)

We have proved that if the number of 0’s in the input of a majority preserver is at
least (3/4 + ¢v) fraction of the input then at least a (1 — 2(e + 2¢v)) fraction of its
output is also 0. A similar statement holds about the number of 1’s.
We choose v small enough to have k& > 3/4 + ¢y and such that the following
inequality holds:
1 —2(e+2¢y) >3/4+ ¢y (2.10)

Combining 7 majority preservers by feeding the outputs of one as inputs
to the next we compute a set of size n/2/ with the property that its overwhelming
majority is the same as the overwhelming majority of the input. For n/2/ < 1/v we
can finish the computation with a small circuit that has fewer than 1/ gates at each
of its levels, thus the adversary cannot destroy any of its gates. This circuit has to
compute only the usual majority of its inputs, and that gives us the correct result.

Next we give a construction for any threshold function. The threshold func-

tion Th} has value 1 if and only if at least £ of the n input bits have value 1.

Theorem 2.2.13 For any 6 > 0 there is a~ > 0 such that for any threshold function

Thy there is a synchronized circuit such that

1. If an adversary destroys a v fraction of the gates on every level (including the

input level), the circuit still computes Th} in a 6-loose manner.

31

2. The size of the circuit is O(n).

3. The depth of the circuit is O(logn).

Proof: According to the definition of loose computation we have to build a circuit

that outputs
e | if the number of 0’s 1s < n — &
e 0 if the numberof 0’sis > n — &k + én
e an arbitrary value otherwise.

Let us consider the correctly ordered input and consider the set of elements at posi-
tions n — k4 1,---,n — k + én. Notice that whenever our circuit must output 1 all
these elements are 1, and whenever the circuit must output 0 all these elements are
0.

Choose t and [such that In/2" > n — k and (I 4+ 1)n/2" < n — k + én.
(We note that the value of ¢ depends only on n and 6, but not on k. This will be
important for the proof of Theorem 2.2.14.) Denote by T the set of elements at
positions n/2" 4+ 1,--- (I + 1)n/2" of the correctly ordered input. Denote by zr the
number of 0’s in the set T'.

Our construction will consist of two parts. The first part denoted by C; will
have n inputs and n/2" outputs. For any permutation of the input the number v of

0’s in the output will satisfy
|v—zr |< (e+ 2y +9)n.

¢ and ¢ are parameters of the e-halvers we use. The second part will be the construc-
tion from Lemma 2.2.12 computing the overwhelming majority Maj." of the outputs
of €1 where m = n/2" and s = (1 — 2'(¢ + 2¢y 4 7))m.

For applying Lemma 2.2.12 we need

1—2t(e—l—207—|—’y)23/4—|—0’y

32

to hold, which is satisfied if /16 > ¢ + 3¢y. This inequality determines our possible
choices of the parameters € and 7. ¢ will be determined by € and the kind of e-halvers
we use. Note that the increase in size and depth relative to the simplest nonfaulty
circuits will be decided by e.

The circuit 'y will be a comparator network consisting of ¢ y-faulty e-halvers
each of depth ¢. The i-th e-halver will have n /2"~ inputs and n/2° outputs. Let [y ---1;
be the binary representation of . If /; = 0 then the input to the ¢ + 1-st e-halver will
be the lower part of the output of the ¢-th e-halver. If [; = 1 we take the upper part
as input to the next e-halver.

Let ag be the number of 0’s in the correct input. Since the input of (7} is
provided by the input gates of the whole circuit, in our model the adversary is free to
destroy a vy-fraction of the inputs of C as well. Let a denote the number of 0-valued
input gates. We have ap — yn < a < ag + yn. We can apply Lemma 2.2.11 to the
first e-halver with r = yn. Repeatedly applying Lemma 2.2.11 we get

¢
|v—zp |< ’yn—l—Z(e—l—ZC’y)n/Zl <(e+2cy+v)n

=1

which concludes the proof of the theorem.

Theorem 2.2.14 For any 6 > 0 there is a v > 0 such that for any symmetric

function f there is a synchronized circuit with the following properties.

1. If an adversary destroys a v fraction of the gates on every level (including the

input level), the circuit still computes [in a d-loose manner.
2. The size of the circuit is O(n).

3. The depth of the circuit is O(logn).

Proof: Any symmetric function can be represented by a 0-1 string of length n + 1,
where the -th element of the string is 1 if and only if f = 1 on inputs containing

exactly ¢ 17s.

33

If every set of consecutive 0’s in this string has length < én, then the ¢-
loose computation of f becomes trivial. (Giving the output 1 for every input is
appropriate.)

Suppose the string representing f contains A > 1 sets of consecutive 0’s
each of length > én. Let the i-th set be (/;,u;). For the é-loose computation of
J it is enough to d-loosely compute each =T'hj and each T'h; . We compute these
2h functions in parallel. We use the construction from Theorem 2.2.13 for é-loosely
computing threshold functions. The negation of a threshold function can be é-loosely
computed in an analogous way. We choose v = 4/2h, and we choose ¥ as required for
the 0-loose computation of threshold functions in Theorem 2.2.13. We note that we
choose the parameters 6, €, ¢ and 7 to have the same value for each of the 2h circuits.
This guarantees that the number of gates at corresponding levels of the 2k circuits
is exactly the same. Thus by destroying < + fraction of the gates at a given level, it
is not possible to destroy more than a 4 fraction of the gates of a level in any one of
the 2h circuits. Since h < 1/6 < 1/2~ after computing the 2h values in parallel we

can combine them without any more faulty gates.

2.2.4. Fault tolerant circuits and probabilistically checkable
proofs

Recently, the language class NP received a new characterization in terms
of probabilistically checkable proofs. This characterization made it possible to show
for the first time that to approximate the largest clique size of any graph within a
constant factor is NP hard. In [10] it is shown that NP = PCP(logn,logn). The
class PCP(f(n),g(n)) is defined as the set of those languages L for which there is a
randomized, polynomial time oracle machine MY(x,r) with oracle y, input x of length

n and a random string r, such that:

2. For every fixed x and r, M reads only O(g(n)) bits of y.

34

3. If # € L then there is an oracle y such that MY(x,r) = 1 with probability one

over all r’s.

4. If & € L then for every oracle y the probability over all r’s that MY(x,r) =0 is
at least 3/4.

The result of Arora and Safra [10] was improved by Arora et al. [11] to
show that NP = PCP(logn,1). Both proofs rely on relatively difficult techniques
from classical algebra, coding theory and combinatorics. In what follows, we give a
theorem about fault tolerant circuits in our model that imply the result in [10]. As
appealing as it may sound, we do not get a simpler proof to the characterization of

NP by Arora and Safra. Our construction uses the even harder result of [11].

Theorem 2.2.15 Let C' be a Boolean circuit and let f : {0,1}" — {0,1} be the
Boolean function computed by C. There exist a code F = F¢ and a circuit C" such
that C" computes [o E in a 6-loose manner for every 6 > 0, even if an adversary
destroys v(8) > 0 fraction of the gates on every level (including the input level).
Moreover E and C" have the following properties:

1. |E(2)] < q(|x|) for some polynomial q independent of C'.

2. The Hamming distance between any two codewords of E is at least éo|E| for
some 0 < 6y < 1 independent of C. (bo is a function of é.)

3. D(C") < O(log S(C)). (This implies that S(C') is polynomial in S(C).)

4. C" can be computed from C in polynomial time and FE(x) can be computed from

C and x in polynomial time.

Sketch of the proof: The proof is based on using the results of Arora et al. [11]
and Theorem 2.2.13.

Let C! be the subset of {0,1}" for which ' evaluates to 1 and C° be the set
for which C evaluates to 0. In [11] an algorithm is described for turning a circuit C

into a family {C;};es of constant size circuits with input (G(x),Y), where G(z) is an

35

appropriate error correcting encoding of the input = to ' and Y is an advise string

(both have length polynomial in S(C')). This family has the property that

1. For every @ € C'! there is a Y such that for all ¢ € I we have C;(G(z),Y) = 1.

2. For every € C° and for every Y we have that

PI’Obie[(CZ'(G(J}),Y) == 0) Z 3/4 .

A modification by Lund and Spielmann [58] of the construction in [11] en-
sures that for every x € C' the corresponding Y in condition 1 is unique. More

precisely conditions 1 and 2 can be replaced by:

3. For every x € C! there is a unique Y, such that for all 7 € I we have
Ci(G(x),Y,) = 1. Also, for every 6 > 0 there exist € > 0 such that Prob;e;(C;(H,Y) =
0) < e implies that dist((H,Y),(G(x),Y:)) < §|(H,Y)| for some z € C*.

We would like to build circuit €’ such that it contains all members of the
family {C;};e;. Because of technical reasons we want the members of the above family
to have disjoint inputs. To achieve this we form G’(x) and Y] by repeating the bits of
G/(x) and Y, as many times as the number of times for which they appear as input for
some {C;} (1 € I). We note that this way each bit of G(2) (and Y, respectively) will
be repeated for the same number of times because of the symmetry of the construction
in [11].

The code E is defined as follows. For x € C! we define F(z) = (G'(z),Y)).
For x € C° we define E(z) = (G'(2),0...0).

We build € as follows: We turn the family {C;};c; into a family of synchro-
nized circuits such that its members have all disjoint inputs and all outputs are at the
same level. We include additional tests for checking that the groups of repeated bits
indeed consist of identical bits. This is done by building a bounded degree expander
over each group of input bits that must be identical and checking equality for every
edge of these expanders. We denote this additional family of constant size circuits by

{D;};es. We synchronize these circuits with the members of the family {C;};c; such

36

that all outputs are at the same level. It will be also important for us that the size
of I and J are the same within a constant factor (|.J| = 0(|1])).

Observe that Nie;Ci(H,Y) A NjegD;(H,Y) = fo E(H,Y). Using the con-
struction described in Theorem 2.2.13 we build a fault tolerant circuit that computes
the AND of the output bits of the circuits C; for ¢ € I and D, for 5 € J.

By condition 3. and by Theorem 2.2.13 this circuit will compute f o £ in
a 0-loose manner even if v fraction of the gates is faulty at each level, including the

input level, for appropriately chosen v = ~(6).

Remark 2.2.16 The additional tests {D;};cs are only necessary to tolerate faults
that may occur at the input level. If we exclude the possibility of faults occurring at

the input level, the additional tests may be left out from the construction.

Theorem 2.2.17 From Theorem 2.2.15 the theorem NP = PC P(logn,logn) ([10])
follows.

Proof: It is easy to see that PCP(logn,logn) € NP. What we need to show is
that NP C PCP(logn,logn) using Theorem 2.2.15. For this it is enough to show
that 3SAT is in PC P(logn,logn). Let ¢ be a 3SAT instance of n variables and Cy
be a circuit that computes ¢. Clearly Cy has size polynomial in n. We use Theorem
2.2.15 to turn Cy into a fault tolerant circuit ', with depth O(logn) that computes
¢ o E for some code I. Observe that (' outputs 1 on some input if and only if ¢
is satisfiable. We describe a checking procedure with a “prover” and a “verifier” as
follows. (The verifier can be looked at as a polynomial time random oracle machine
MY(x,r). The prover is the one to provide the verifier with advice y.)

We denote the :'" gate on the j level by ¢(z,7). Let k; denote the number
of the gates on the j** level. The prover’s intention is to show that C, outputs 1 on
some input. He presents the verifier with the evaluation of all gates of C for an input
that he claims is a satisfying assignment for €, (i.e. C} outputs 1 on this input).

The verifier chooses a random number r from 1 to max; k; and checks the

value of the gates {g(r mod k]‘,j)}]‘zlnD(C;) and the value of the gates that are inputs

37

to these gates (two for each gate). The number of checkbits is at most 3D(C}) =
O(logn). The verifier accepts if the output bit has value 1 and if none of the gates
in the set {g(r mod k]‘,j)}]‘zlnD(C;) makes an error in the computation. Clearly, the
true prover passes the test of the verifier with probability 1.

What is the probability that the cheating prover is caught? If at each level
at most v percent of the gates is faulty, then by the fault tolerant property of (7
the output is zero, thus the verifier rejects with probability one. Otherwise there is a
level on which ~ fraction of the gates is faulty. This will be revealed with probability
at least v/2 (we may loose a factor of at most 2 because k; may not divide max; k;).
With a constant number of independent repetitions this probability can be brought
above 3/4.

Remark 2.2.18 We note that the proof of Theorem 2.2.17 does not require the full
strength of Theorem 2.2.15. It would be enough to have a circuit C' that é-loosely
computes f o F for just some 6 > 0 in the presence of faults. We could have also
relaxved the fault tolerant property of C' on the input level when proving Theorem
2.2.17. However, the fact that C' can be computed from C in polynomial time is

crucial.

2.2.5. Open problems

Theorem 2.2.15 (together with Proposition 2.2.3) shows that if we allow the
input to be given in certain encoded form, we can obtain for any Boolean function f
circuits with small redundancy computing f exactly and tolerating worst case faults
in our model. However the encoding used in Theorem 2.2.15 depends on the function
f, thus it does more than just encoding the input, it also encodes information about
the value of the function. It would be interesting to achieve an analogous result using
a code that does not depend on the function.

It is an interesting question whether a different construction could be used in

the proof of Theorem 2.2.15. If there was a simpler encoding, that could be produced

38

by an efficient fault tolerant computation, Theorem 2.2.15 could provide direct fault
tolerant constructions for arbitrary functions.
On the other hand according to Theorem 2.2.17, a different proof of Theorem
2.2.15, that does not rely on constructions of probabilistically checkable proofs would
provide an alternative technique for the area of probabilistically checkable proofs.
Finally, without giving constructions for arbitrary functions, it would be
interesting to find direct fault tolerant constructions for other than symmetric funec-

tions.

CHAPTER 3

LOWER BOUNDS FOR BOOLEAN
COMPLEXITY

3.1. Lower bounds for monotone span programs

3.1.1. Description of the model

The model of span programs was introduced by Karchmer and Wigderson
in [50].

Let F be a field, and {x1,...,2,,} be a set of variables. A span program
over F is a labeled matrix M(M, p) where M is a matrix over F, and p is a labeling
of the rows of M by literals from {xy,...,@p,%1,...,%,} (every row is labeled by
one literal). The size of M is the number of rows in M.

A span program accepts or rejects an input by the following criteria. For
every input sequence ¢ € {0,1}™ define the submatrix Mys of M consisting of those
rows whose labels are set to 1 by the input 6, i.e., either rows labeled by some a; such
that 6; = 1 or rows labeled by some z; such that §; = 0. The span program M accepls
6 if and only if 1 € span(Ms), i.e., some linear combination of the rows of M; gives
the vector 1. (The row vector 1 has the value 1 in each coordinate.) A span program
computes a Boolean function f if it accepts exactly those inputs 6 where f(8) = 1.

A span program is called monotone if the labels of the rows are only the
positive literals {x1,..., 2, }. We denote by SP£(f) (resp. mSPx(f)) the size of the
smallest span program (resp. monotone span program) over F that computes f.

The number of columns does not effect the size of the span program. How-
ever, we observe that it is always possible to use no more columns than the size of the
program (since we may restrict the matrix to a set of linearly independent columns

without changing the function that is computed).

39

40

3.1.2. A linear upper bound

We present a monotone span program of linear size (exactly m) for a function
on m variables, that is known to have Q(m?®/?/(logm)?) monotone circuit complexity.
We consider the function Non-Bipartite,, whose input is an undirected graph on n
vertices, represented by m = (;) variables, one for each possible edge. The value of

the function is 1 if and only if the graph is not bipartite.
Theorem 3.1.1 mSPgrss)(Non-Bipartite,) = m, where m = (g)

Proof: We construct a monotone span program accepting exactly the non-bipartite
graphs as follows. There will be m rows, each labeled by a variable. There is a
column for each possible complete bipartite graph on n vertices. The column for a
given complete bipartite graph contains the value 0 in each row that corresponds to
an edge of the given graph and contains 1 in every other row.

This program rejects every bipartite graph G. This is because (G is contained
in some complete bipartite graph, and so there will be a column that contains only
0’s in the rows labeled by the edges of G. Therefore the vector 1 is not a linear
combination of these rows.

Next we show that the program accepts every non-bipartite graph. Since
the span program is monotone, it is sufficient to show that it accepts every minimal
non-bipartite graph, i.e., every odd cycle. Let C' be an arbitrary odd cycle. The
intersection of any odd cycle with any complete bipartite graph has an even number
of edges, so (' has an odd number of edges which are not in any given complete
bipartite graph. Hence the sum of the row vectors corresponding to all the edges in
(' is odd in each column, i.e., gives the vector 1 over GF(2), and so C' is accepted by
the span program.

We note that the lower bound by Razborov’s method (see [76, 7, 48]) for tri-
angles also applies to the function that accepts exactly the non-bipartite graphs, thus
the monotone circuit complexity of the function Non-Bipartite, is Q((n/logn)?) =

Qm?2/(log m)?).

41

3.1.3. The Method for Proving Lower Bounds

A minterm of a monotone function is a minimal set of its variables with
the property that the value of the function is 1 on any input that assigns 1 to each
variable in the set, no matter what the values of the other variables.

The idea of our technique is to show that if the size of a span program
(i.e., the number of rows in the matrix) is too small, and the program accepts all the
minterms of the function f then it must also accept an input that does not contain a
minterm of f, which means that the program does not compute f.

We introduce the definition of a critical family of minterms of a monotone
Boolean function. We prove that the cardinality of a critical family for a function f

is a lower bound on the size of monotone span programs computing f.

Definition 3.1.2 Let f be a monotone Boolean function and My be the family of all
of its minterms. Let H C My be a subfamily of the minterms of f. We say that a
subfamily H C My s a critical family for f, if every H € 'H contains a set Ty C H,
|Ty| > 2, such that the following two conditions are satisfied.

C1. The set Ty uniquely determines H in the family. That is, no other set in
the family H contains Tyy.

C2. For any subset Y C Ty , the set Sy = Ugen.anyzo G\ Y does not conlain
any member of M.

Note that Condition C2 requires that Sy does not contain any minterm of

f and not just a minterm from H.

Observation 3.1.3 If H is a critical family and |Ty| = t for each H € H, then
H < (7).

Theorem 3.1.4 Let be a monotone Boolean function, and let H be a critical sub-

family of minterms for f. Then for every field F,

mSPr(f) = [H] .

42

Proof. Let M be the matrix of a monotone span program computing f, and let r
be the number of rows of M. Any minterm of H is accepted by the program. By
definition, this means that, for every H &€ H, there is some vector ¢y € F” such that
cy - M =1, and where ¢y has nonzero coordinates only at rows labeled by variables
from H. For any given H there may be several such vectors, we pick one of them and
denote it by cy.

Since ¢y is taken from F”, the number of linearly independent vectors among
the vectors ¢y for H € H is a lower bound for r, i.e., for the size of the span
program computing f. We show that all the vectors ¢y for H € H must be linearly
independent.

Suppose, that this is not the case, i.e., for some H € 'H

cy = Z Q4CyH , (3.1)
AcA
where oy € F and A="H\ {H}.
Let us consider the set Ty € H from Definition 3.1.2.

Lemma 3.1.1 If (3.1) holds, then for any nonempty subset Y C Ty the following
must hold.

Z O A =1.

A€A,ANY #£0
Proof: Suppose that for some Y C Ty, Y scaanyzpa =7 F# 1.
Let us consider the vector
c= > aacs —cp.
AEA,ANY £0
We have ¢- M = (v — 1)1, thus 1/(y — 1)c- M = 1, and the program accepts the set
of variables that label the rows corresponding to nonzero coordinates of c.
Recall that each ¢4 has nonzero coordinates only at rows labeled by variables

from A. Thus for ANY = () the coordinates of ¢4 are zero at rows labeled by variables

from Y. By (3.1),

43

Therefore, the vector ¢ has zero coordinates at all rows labeled by variables from Y.

On the other hand, all the nonzero coordinates of ¢ are at rows labeled by
variables that appear in some sets G such that G NY # (. Therefore, the program
accepts Sy = Ugen.gnyzo G \ Y, that (by Definition 3.1.2) does not contain any

minterm of f. This proves the lemma.

From Lemma 3.1.1, we get a system of linear equations in the unknowns a 4.
We prove that this system of equations has no solution, contradicting (3.1). Suppose
that |Ty| = t. Let us consider the following (2/ —1) x (2" —1) 0-1 matrix Q). The rows
and columns of () are indexed by the nonempty subsets of Ty. For § # Y, 7 C Ty,
QY,Z)=1ifand only if Y N Z # (.

Observation 3.1.5 The matriz () has full rank over any field F.

(This can be shown by a simple transformation of () to a triangular matrix.)

We will show, that if (3.1) holds, then taking Bz = Y 4c A anry=z 04 as a
coefficient for the column Z # Ty, we get the column indexed by Ty as a linear combi-
nation of the other columns of (). Notice that the column of () indexed by Ty consists
of all I’'s. We show that for any Y,) # Y C Ty, we have Y g zcr, S2Q(Y,Z) = 1.

By Condition C1 of Definition 3.1.2, for A € A we have ANTy # Ty. If
Y CTythen ANY =ANTyNY. By Lemma 3.1.1, if (3.1) holds we have

= Y a= Y () aA)z S BQY.Z),

ACA,ANY £D 0£2CTy \A€CAANTH=Z,Z20Y £0 0£ZCTy

and the column Ty is a linear combination of the other columns of). Since @) has
full rank this is not possible, and so (3.1) cannot hold, i.e., all the vectors ¢y for

H € 'H are linearly independent. This concludes the proof of the theorem.

44

3.1.4. Lower bounds for clique functions

We consider the function Clique, ,, whose input is an undirected graph on
n vertices, represented by m = (;) variables, one for each possible edge. The value
of the function is 1 if and only if the graph contains a clique of size k.

It is known ([7, 76]) that the monotone circuit complexity of Cliquey,, is
220V for k = O((n/logn)??), and for fixed k it is Q((n/logn)*). However, the
strongest known lower bound for the monotone span program complexity of the
Cliquey,,, function is our Q(n°) = Q(m*°) lower bound that holds for k£ > 6. For
k <4, we obtain lower bounds that are tight up to a constant factor.

First we present a few simple but important observations that are helpful in
finding critical families for clique functions.

For given k, we partition the set of n vertices into k classes C;,2 =1,...,k,
of approximately equal size. Given a fixed partition of the n vertices into k classes
we say that a k-clique is multicolored if each of its k vertices belong to a different
class. Thus a multicolored clique will never contain an edge between two vertices in
the same class.

Let M be an arbitrary family of multicolored k-cliques. Let Tk be some
subset of the edges of the clique K € M. Let us denote the vertices of K by vy,..., v,
and consider for Y C Tk the set Sy = Ugeam,anyzeG \ Y. Suppose Sy contains a

k-clique Z with vertices z1, ..., zg.

Claim 3.1.6 The vertices of Z all belong to different classes, say z; € C;, for i =
1 k.

9o ey

Proof: Sy only contains edges that appear in k-cliques that belong to the family M,

and so only edges between vertices from different classes.
Claim 3.1.7 For each edge (v;,v;) €Y at least one of z; # v; or z; # v; must hold.

Proof: If Z contained both v; and v; for (v;,v;) € Y then Z could not be a k-clique

contained in Sy since Sy does not contain an edge between v; and v;.

45

Lemma 3.1.2 Given any partition of the n vertices into three classes, the family M

of multicolored 3-cliques is critical for Clique, .

Proof: Let H be an arbitrary multicolored 3-clique (triangle), and let Ty be the
set of two of its edges, for example (v1,v3) and (vy,v3). There is only one triangle
containing Ty, thus Condition C1 is satisfied. To see that Condition C2 holds, let us
consider for Y C T the set Sy = Ugeam,any20G \ Y, and suppose that it contains a
triangle 7 with vertices zq, 23, z3.

It Y =Ty, then z; = vy must hold, since there are no edges in Sy incident
to any other vertex from C5. By Claim 3.1.7 we have z; # vy and z3 # vs. Therefore,
the edge (z1, z3) cannot be present in Sy, since all the edges of Sy are contributed by
triangles that contain at least one of vy or vs.

If Y # Ty, then it consists of a single edge, (vy,vq) say. Then Sy does
not contain any edge between the classes C; and C, and so, by Claim 3.1.6, cannot

contain a triangle.

Lemma 3.1.3 Given any partition of the n vertices into four classes, the family of

multicolored {-cliques is critical for Clique,,,.

Proof: Let H be an arbitrary multicolored 4-clique, and let Ty be the set of two
of its nonadjacent edges, for example (v1,v2) and (vs,v4). Condition C1 is satisfied,
since two nonadjacent edges uniquely determine a 4-clique. To see that Condition C2
holds, as in the previous lemma, let us consider Sy for ¥ C T% and suppose that it
contains a 4-clique Z with vertices z1, 23, 23, 24.

If Y = Ty then, by Claim 3.1.7, without loss of generality we have zy # vy.
Any edges incident to z; could only be contributed to Sy by cliques that contain
(vs,v4). Thus, a clique containing z; would also have to contain both vs and vy,
which is not possible by Claim 3.1.7.

As in the previous lemma, if Y # Ty then it consists of a single edge and

Sy does not contain a 4-clique.

46

We note that for £ > 5 the family of multicolored k-cliques is not critical for
Cliquey, ,,. The critical families we use for proving lower bounds for 5- and 6-cliques

will be appropriately chosen subfamilies of multicolored cliques.
Theorem 3.1.8 [or every field F,
mSPr(Cliqueg,,) = Q(m*°) .

Proof: We show that the family of minterms of the Cligueg, function contains a
large critical subfamily.

We define the subfamily K of 6-cliques as follows. We partition the set of n
vertices into six approximately equal size classes. Let us assume that n = 6¢, and each
class contains ¢ vertices. K will be a subfamily of the multicolored 6-cliques, under
this partition. Between the classes C; and (5, and similarly between the classes ()}
and Cg, we only allow certain pairs of vertices to be connected by an edge in members
of K. These legal pairs will be specified by a ¢ x ¢ Boolean matrix N. Between all
other pairs of classes we allow arbitrary edges. The edge (a,b) with ¢ € C; and
be Cs(a € Cyand b e Cg, respectively), is allowed in a member of K if and only
if N(a,b) = 1. We choose N such that it does not contain any complete (all ones)
2 x 2 submatrices. For example the incidence matrix of a projective plane has this
property, and its number of 1’s is ©(¢*/?), with ©(¢'/?) 1’s in each row and column.
The constructions in [55, 63, 69] can also be used. (It is described in [69] how to
construct matrices with similar properties for arbitrary ¢.)

The family K consists of all the 6-cliques that have one vertex from each
class, and satisfy the restriction on the edges between classes (; and C3, and Cy and
Cs. The number of such 6-cliques is ©(¢°), thus we have |[K| = O(¢°) = O(m?®).

Next we show that K is critical for C'liqueg,. Let us consider any fixed
member K € K of the family, and denote its vertices by vy, ..., v, where v; € C},
for i =1,...,6. The set Tx we choose will consist of the four edges (v, vs), (va,v3),
(v4,05), (vs,v6). Obviously, Condition C1 is satisfied.

We now prove that Condition C2 holds. For Y C Ty, suppose the set

Sy = Ugex,any20G \ Y contains a 6-clique Z with vertices z1,. .., z.

47

Case 1. Let Y = Tx. Notice that if both zy # v9 and z5 # vs, then Sy does
not contain an edge between z, and zs5, thus we have z3 = vy or z5 = vs.

Suppose that only one of these equalities holds, for example zo = vy but
z5 # vs. Then, by Claim 3.1.7, z; # vy and z3 # vs must hold. The edge (z1,25) can
only be contributed to Sy by a clique that contains the edge (v2,vs), and similarly
the edge (zs3,z5) can only be contributed to Sz, by a clique that contains the edge
(v2,v1). This means that the edges (z1,v3), (v1,23) as well as the edges (vy,v3) and
(z1, z3) appear in some member of the family K. However, this is not possible by our
restriction on the legal edges between 'y and Cj.

Suppose now that both z; = vy and z5 = v5 holds. Then by Claim 3.1.7 we
have zy # v1, z3 # vs, 24 # v4 and zg # ve. The edge (21, z4) can only be contributed
by a clique that contains (vq,v3) or (vs,ve). This means that at least one of the edges
(z4,v6) or (z1,v3) is legal. Similarly, from the presence in Z of the edges (z1, z¢),
(z3,z4) and (zs, zg), respectively, we know that at least one each of (vy4, z6) or (21,v3),
(z4,v6) or (v1,23), and (v4, 26) or (v1,23), respectively, are legal edges. This means
that either both (z4,vs) and (v4, z6) or both (z1,vs3) and (vy, z3) are legal, and since
(vi,vj) and (z;, z;) must be all legal, we get a contradiction with our restriction on
the possible edges of members from K.

Case 2. Let Y # Tk. In this case the edges in Y cover t vertices, 2 <t < 5.
We show that Sy does not even contain a t-clique on the ¢ classes involved. For ¢t <4
this directly follows from Lemma 3.1.2 and Lemma 3.1.3.

We still have to deal with the case when ¢t = 5, which can only happen if
Y consists of three edges. Suppose (without loss of generality) that the three edges
of Y are (vy,v3), (vg,v3) and (vy,vs). If 22 # vy, then all the edges incident to zy
could only be contributed to Sy by cliques that contain (v4,vs). That would mean
that the only vertex in Cy and Cj, respectively, connected to z3 in Sy is vy and vs,
respectively. Thus we could not get a 6-clique in Sy that contains z,. Therefore,
z9 = vy must hold. Then we have by Claim 3.1.7 that z; # vy, z3 # v3 and, without
loss of generality, z5 # vs. We get a contradiction with the restriction on the edges

between € and C3 as in Case 1.

48

We have proved that Condition C2 is also satisfied, and K is a critical family
for f. The lower bound follows from Theorem 3.1.4.

Theorem 3.1.9 [or every field F,
mSPx(Cliques,,) = Q(m*>) |
mSPx(Clique,) > 3(n/4)* — O(n?) = Q(m?)
).

[N

mSPr(Cliques,,) > 2(n/3)> — O(n) = Q(m

The proof of this theorem is basically included in the proof of the lower
bound for 6-cliques and in Lemmas 3.1.2 and 3.1.3. The bounds for Clique,, and
Clique, ,, are slightly stronger (by constant factors) than the bound directly implied
by Theorem 3.1.4. We omit the details from this version of the paper. Our lower
bounds for Cliques ,, and Clique,,, are tight up to constant factors.

Let us define Cliquey,, to be the monotone Boolean function whose set of
mintermsis the set of multicolored 4-cliques defined for a fixed partition of the vertices
into four approximately equal classes. We observe that the above lower bound applies

to this function as well, and is asymptotically tight in this case.
Corollary 3.1.10 Let n = 4q. Then, for every field F,

3¢" < mSPx(Cliquey,) < 3¢" +3¢° .

3.1.5. Dual span programs

We presented our lower bounds using certain combinatorial properties of the
family of minterms of the function. We observe that the corresponding properties of
the family of maxterms of the function imply the same lower bounds. This will follow
from the theorem below.

A mazterm of a monotone function is a minimal set of its variables with
the property that the value of the function is 0 on any input that assigns 0 to each

variable in the set, no matter what the values of the other variables.

49

We say that a given input contains a set of variables, if each variable be-
longing to the set is evaluated to 1 by the given input.

Let f be amonotone Boolean function. Let f*(xq,...,2,) = 2 f(€1,...,%m).
It is not hard to see that the minterms of f* are exactly the maxterms of f. (For
example, if f accepts the graphs that contain a clique of size k£, then f* accepts the
graphs whose complement does not contain any clique of size k.)

The following fact is well known. For completeness we give a proof.
Theorem 3.1.11 For every field F, mSPz(f) = mSPz(f*).

Proof: Let M be a monotone span program computing f. Any minterm A of f is
accepted by M. By definition, this means that 1 € span(My), i.e. cq4- M =1 for
some vector ¢4, where ¢4 has nonzero coordinates only at rows labeled by variables
from A.

We construct M* computing f* as follows. We use the same number of rows
and the same labeling of the rows as M. The number of columns of M™ will be equal
to the number of minterms of f. The columns of M* will simply be the vectors cy

for each minterm A of f.
Claim 3.1.12 M* rejects every input that does not contain a maxterm of f.

Proof: M* rejects the complement of any minterm of f since the columns consists
of only 0’s on the complements of minterms of f. If a given input does not contain

a maxterm of f then its complement contains a minterm of f and it will be rejected

by M*.
Claim 3.1.13 M* accepts every inpul that contains a maxterm of f.

Proof: Let us suppose that o is an input that contains a maxterm, and it is rejected
by M*. As observed in [50], by duality an input o is rejected if and only if there is
an affine combination of the columns of M™ that gives 0 on each row that is labeled
by a variable that is set to 1 by o. Let us denote the column vector that we get as a

result of this affine combination by a. We have a = >~ ascy where 3" ay = 1.

30

Consider the input ¢* that assigns 1 to a given variable if and only if the
above affine combination gives a nonzero value on at least one row labeled by the
given variable. Then f(o*) = 0 since all the variables of some maxterm of f are set
to 0 in o*.

For any given column c4 of M* we have c4M = 1. It follows that aM = 1.
This shows that there is a linear combination of the rows of M labeled by variables
that are set to 1 by ¢* that gives the vector 1. Thus M must accept ¢* and we get a
contradiction, proving the claim.

The proof of the theorem follows from the above two claims.

3.1.6. Open problems

The Q(m?®) lower bound presented here for the 6-clique function is the
largest known lower bound on the size of monotone span programs for an explicit
function of m variables. In particular it is not known whether the k-clique function for
larger values of k and the perfect matching function can be computed by polynomial
size monotone span programs. Recall that every function that can be computed
by polynomial size span programs belongs to NC? (this follows from [19, 24, 50,
60]). Thus it is unlikely that the k-clique function could be computed by polynomial
size monotone span programs, but this would be plausible for the perfect matching

function.

3.2. A lower bound for read-once branching
programs

We present a Boolean function in n variables that is computable in depth 2

monotone AC® but requires 2" size read-once branching programs.

51

3.2.1. Relating branching program size to the number of
subfunctions

Let f be a Boolean function on the set of variables X. Consider a partition
of X into two parts ¥ and B = X \ Y. For every fixed assignment o of truth values
to the variables in Y we get a subfunction f, on the remaining variables. Let N(f,Y)
denote the number of different subfunctions we obtain under all possible assignments
to Y. Note that both 21 and 22 are upper bounds for N(f,Y).

Some variant of the following observation has been used in most papers on
this subject. It is a special case of general results in [46, 56, 86] and is in fact implicit

already in the method of Wegener [99] and Dunne [30].

Lemma 3.2.1 ([99, 30, 46, 56, 86]) Let f be a Boolean function of n variables.
Assume that m is an integer, 1 < m < n, such that for any m-element subset Y of
the variables N(f,Y) = 2" holds. Then the size of any read-once branching program
computing [is at least 2™ — 1.

For completeness we include a proof.

Proof: Let Z be an arbitrary set of at most m — 1 variables, and let o be a truth
assignment to the variables in Z. Then the subfunction f, must depend on each of
the remaining n — |Z| variables, since otherwise Z could be extended to a set Y of
m variables with N(f,Y) < 2™. This also means that any path leading to a sink
(ACCEPT or REJECT) in a branching program computing f must have length at
least m.

Let v be an arbitrary node of a read-once branching program computing f.
Suppose that there is a path P of length at most m — 1 leading from START to v.
Let Yp be the set of variables queried along the path P. We show that for any other
path P’ leading to v, Ypr = Yp must hold. First we observe that the subprogram
starting at v must depend on all the variables outside Yp. This means that Yp C Yp
since the branching program is read-once. But then we have |Yp.| < m — 1, and by

the same reasoning it follows that Yp C Yp/. We have shown that if a path leading to

52

a vertex v queries at most m — 1 variables, then any other path leading to the same
vertex must query the exact same set of at most m — 1 variables.

Let Z be an arbitrary set of at most m — 1 variables. Suppose that there is a
variable z € Z such that two different paths leading to the same vertex and querying
exactly the variables in Z evaluate z differently. Then we could find an assignment o
to the variables in Z \ {z} such that the subfunction f, does not depend on z, which
is not possible.

From the above argument, it follows that the first m — 1 levels of any read-

once branching program computing f must form a complete binary tree.

8.2.2. An AC°-computable function with exponential
read-once branching program complexity

We use finite projective planes to exhibit an AC®-computable function that
requires exponential size read-once branching programs.

Let IT = (P, L) be a projective plane of order ¢. (P is the set of points and
L is the set of lines, viewed as subsets of P.) Let n = ¢* + ¢+ 1 and m=¢+ 1. So
|P| = |L| = n and each line has m points.

We assign a variable x; to each point ¢ € P, and define the following Boolean

function.
Definition 3.2.1

Ju(z, ..o 2,) = /\ \/:1;2
AeL el

Theorem 3.2.2 The size of any read-once branching program computing fri is at

least 2V™.

The prootf is based on the following combinatorial property of projective

planes.

Proposition 3.2.3 Let J = {p1,...,pm} be a set of m distinct points of 1I. Then
there exist distinct lines Ay, ..., Ay, such that for 1 <u,5 < m we have p; € A; if and

only if 1 = 7.

33

Proof: Recall that there are exactly m lines that contain any given point. Let us
consider an arbitrary point p; € J, and the m lines that contain it. Since any two
lines intersect in at most one point, each of the other m — 1 points of the set J belong
to at most one of these lines. Thus at least one of the m lines containing p; will

contain no other point from the set J.

Proof of Theorem 3.2.2: We show that for every ¢-element subset A of the vari-
ables, N(fi, A) = 2% holds, i.e. each truth assignment to the variables in A yields a
different subfunction on the remaining variables. Since each line A defines a clause
Ve i of the function fy, it follows from Proposition 3.2.3 that for an arbitrary ¢-
element subset A of the variables there exist ¢ clauses such that each variable from
A appears in exactly one of them, and each variable appears in a different clause.
Assume w.l.o.g. that A = {xy,...,2,}, and the corresponding clauses are Ay,..., A,.

Let oy and o3 be different truth assignements to the variables in A. Suppose
they differ in the value of x;, i.e., x; = 0 in o7 and x; = 1 in 0,. Let us consider
the assignment ¢ to the variables outside A that sets each variable in the clause A;
containing ; to 0 and sets all other variables outside A to 1. Since any other clause
A; has only one variable in common with the clause A; and there are at most ¢ — 1
variables in A that do not appear in A;, A; must contain at least one point which is
neither in A nor in the clause A; thus it is set to 1 by £&. Then we have f,,({) = 0 and
fs,(€) = 1. This shows that different truth assignments to the variables in A yield
different subfunctions of fi.

The bound then follows from Lemma 3.2.1.

3.2.3. Open problems

It remains an open problem to find AC® computable function families that

require 2" read-once branching program size.

CHAPTER 4
BOOLEAN VS. ARITHMETIC CIRCUITS

Valiant and Vazirani [97] give a randomized reduction from SAT to USAT
(unique satisfiability). Given any Boolean formula F', their probabilistic construction
yields another formula F’, such that if I is not satisfiable then F” is not satisfiable,
while if F'is satisfiable then with reasonable (> n~°) probability F’ has a unique
satisfying assignment. From this reduction, it follows that N P/poly C & P/poly.

Avi Wigderson [101] proves that NL/poly C @& L/poly. The proof is based
on a randomized reduction from s — ¢ connectivity to unique s — ¢ connectivity for
directed graphs.

We prove that polynomial size semi-unbounded fan-in Boolean circuits of
depth d with n inputs can be simulated by polynomial size semi-unbounded fan-in
arithmetic circuits of depth O(d + logn), where the arithmetic operations +, —, x
are performed in an arbitrary finite field.

We achieve the depth O(d 4 log n) simulation by a randomized reduction to
“unique witnesses” using a slight modification of the Isolation Lemma of Mulmuley,
Vazirani and Vazirani [61]. We note that the proof of [101] is based on using the
Isolation Lemma, and that [61] showed that the Isolation Lemma can be used to

prove the Valiant-Vazirani [97] result for the clique function.

4.1. The Isolation Lemma

We state the Isolation Lemma of Mulmuley, Vazirani and Vazirani [61]. Let
us consider the set system (V. F) where V = {vq,...,v,} is a finite set, and F is a
family of distinct subsets of V, i.e. F = {Fi,..., Fi}, F; CV for 1 <j <k. Given
weights w; to each element v; € V', we define the weight of the set F; to be 3=, ¢, wi.

o4

)

Isolation Lemma [61] If we choose integer weights uniformly and independently from
[1,2n] then with probability > 1/2 there is a unique minimum weight set in F.

In this work we need a version of the Isolation Lemma that holds for multisets
as well, i.e. for sets possibly containing some elements with multiplicities. The support
of a multiset F'is the set of elements occurring in F'.

For multisets the Isolation Lemma does not hold in its original form. How-

ever the proof of the Isolation Lemma in [61] yields the following.

Lemma 4.1.1 [61] Let (V,F) be a multiset-system, where F is a family of multisets
of the elements of V. Let us assign integer weights to the elements of V uniformly
and independently from [1,2|V|]. Then with probability > 1/2, all minimum weight

sets in F have the same support.

We note that Nisan [66] proved that the Isolation Lemma holds for multisets

as well if we allow larger weights depending on the maximum multiplicity.

4.2. Semi-unbounded fan-in circuits

4.2.1. Definitions and the mawn results

We consider Boolean circuits with gates from the standard Boolean basis
{A,V, =}, and arithmetic circuits with gates from the basis {+,—, x} over a finite
field F'. Semi-unbounded fan-in circuits have constant fan-in A (resp. x) gates and
unbounded fan-in V (resp. +) gates. For semi-unbounded fan-in Boolean circuits we
allow negations only at the input level.

Complexity classes defined by semi-unbounded fan-in Boolean circuits have
been characterized in terms of several other models, and they correspond to some
well known language classes. SAC* denotes the class of languages accepted by poly-
nomial size, O((log n)¥) depth semi-unbounded fan-in Boolean circuits. The uniform
version of SAC! is the same as the class LOGC F L of languages logspace reducible to
context-free languages [91], [95]. Properties and characterizations of LOGCF L are

studied in [25], [87]. Semi-unbounded fan-in circuits of larger depths correspond to

56

extensions of context-free languages. For d = Q(log n) the class of languages accepted
by polynomial size, depth O(d) semi-unbounded fan-in circuits is identical to the class
of languages accepted by nondeterministic auxiliary pushdown automata of O(logn)
space and 29 time [25], [95]. There are other characterizations of these language
classes in terms of alternating Turing machines and first order formulae [45], [83],
[95]. These equivalences hold for both the uniform and the nonuniform versions of
the models. For a survey see [22].

An interesting property of classes defined by semi-unbounded fan-in circuits,
proved by Borodin et al. [22], is that they are closed under complementation for all
depths that are Q(logn).

We consider the arithmetic analogs of the above complexity classes, defined
by semi-unbounded fan-in arithmetic circuits. These classes have been studied for
example in [6].

®SAC* denotes the class of polynomials over GGF(2) computed by polyno-
mial size, depth O((logn)*) semi-unbounded fan-in arithmetic circuits over GF(2).

We denote by cz(f) (resp. czp(f)) the smallest depth of polynomial size
semi-unbounded fan-in Boolean (resp. arithmetic) circuits for computing f.

We prove the following results.

Theorem 4.2.1 For every Boolean function f on n variables and every finite field

F, di(f) = O(d([) + logn)
Corollary 4.2.2 SAC* C SAC*

Theorem 4.2.3 FEvery Boolean function f on n variables can be approximated, i.e.
computed on > (1 —27%) fraction of the inputs, by semi-unbounded fan-in arithmetic

circuits over any fized finite field in polynomial size and depth O(d(f) + logk), for
arbitrary k > 0.

57

4.2.2. Certificates

Let us consider an arbitrary Boolean circuit with V, A gates, provided with
the 2n input literals x4,...,2,,21,...,2,. Fixing a 0-1 assignment to the variables
x1,...,r, determines the values computed by each gate of the circuit. We refer to
the wires of the circuit as edges. The edges are oriented from the inputs of a gate ¢
to g. For a fixed input assignment we label each edge of the circuit with the value
computed by the gate at the starting node of the edge. For each gate that outputs
1, there is a set of edges all labelled 1 that forces the given gate to output 1. We
call the graphs formed by these edges certificates. A certificate depends on the gate
it belongs to and on the particular assignment to the input variables. There may be
several certificates for the same gate on the same input. Gates that output 0 on a
given input do not have certificates on that input.

Let us now give a formal definition of certificates. We denote the set of gates

that are inputs to a given gate g by I(g).

Definition 4.2.4 The circuit 7 is called a partial circuit of C if it satisfies the fol-

lowing conditions:

o the set of gates of Z is a subset of the set of gates of C
o the output gate of Z is the output gate of C,
o for every A gate g of 7, 17(g) = 1(g),

o for every V gate g of Z, O # I7(g) C I(9g),

where Iz(g) stands for the set of input gates to g in the circuit 7.

Definition 4.2.5 A partial circuit Z is minimal, if for every V gate g of 7, |17(g)| =
1.

Let « be a fixed assignment to the input variables. Let ¢ € {0,1}. We say
that g(a) = € if the gate g outputs the value € on the input assignment o. We say

that C'(«) = € if the circuit C' outputs the value € on the input assignment .

38

Observation 4.2.6 If 7 is a partial circuit of C' then given any inpul assignment

Z(a) < Cla).

Definition 4.2.7 A certificate for C(a) =1 is a partial circuit Z of C that satisfies
the condition that all the gates of Z output 1 on the assignment «.

We note that an equivalent definition is to require that all the literals par-

ticipating in Z are set to 1 by the assignment a.

Definition 4.2.8 For a given gate g of a circuit C' the subcircuit C, is defined as
follows:

o the sel of gates of Cy is a subset of the set of gates of C,
o the output gate of C; is the gale g,
o for every gate h of Cy, Ic,(h) = I(h).
Definition 4.2.9 A certificate for Cy(a) =1 is called a certificate for g(a) = 1.
We note that a certificate for g(a) = 1 exists if and only if g(a) = 1.

Definition 4.2.10 A certificate is minimal if the corresponding partial circuit is min-

imal.

Observation 4.2.11 [f there is a unique certificate for g(a) = 1, it has to be a

Y

minimal certificate.

Let GG be a partial circuit of the circuit €', and suppose that the edges of C
have been assigned weights. Let I be the set of edges of . For a given partial circuit
GG with edges F we define a multiset E(G) with support E as follows. We expand GG
into a tree G by taking the output of G to be the root and by splitting the nodes of
(¢ that have outdegree > 2 into several copies. We define E(G) to be the multiset of
edges of (i, taking each edge with multiplicity according to ;. We assign the weight
of each edge of (i to all of its copies in E(G).

39

Definition 4.2.12 We define the weight of a partial circuit G to be the weight of the
multiset E(G).
We define the weight of a certificate to be the weight of the corresponding

partial circuit.

Lemma 4.2.13 Let us assign integer weights to the edges of the circuit C uniformly
and independently from [1,2m], where m is the number of edges of C. Then for every
fized input assignment a such that C(a) = 1, with probability > 1/2, there is a unique

minimum weight certificate for C(a) = 1.

Proof The statement of the lemma follows from Lemma 4.1.1, since multisets with

the same support belong to the same certificate.

4.2.3. The randomazed reduction

Lemma 4.2.14 Let C be a polynomial size, depth d = O(logn) circuit with un-
bounded fan-in V gates and bounded fan-in A gates. Let m be the number of edges of
C, and let ¢ be the mazimum fan-in of the N\ gates. One can construct a polynomial
size, depth < 2d circuit C" with unbounded fan-in V gates and bounded fan-in A\ gates,
such that

o if C(a)=0 then C'(a) =0

o if C(a) = 1 then with probability > 1/c?4m, there is a unique certificate for
C'la) = 1.

Proof For simplicity, we present the construction for circuits with A gates of fan-in
2. It can be generalized easily to any fan-in ¢. The size remains polynomial if ¢ is
constant.

We assume that both €' and C” are provided with the values of the 2n input
literals @1,..., 2, T1,...,Tp.

Let €' be a Boolean circuit with V gates of unbounded fan-in and A gates

of fan-in 2, that has polynomial size and depth d = O(logn). Let m be the number

60

of edges in the circuit. We assign a weight to each edge of the circuit by chosing a
random integer uniformly and independently from [1, 2m].

Next we choose a random integer L uniformly from [1,2%2m]. (292m is the
maximum possible weight of a minimal certificate.)

Let us denote by I'(C') the set of gates of the circuit C.

['(C") will consist of two disjoint classes of gates: principal gates and auxil-
iary gates. We denote the set of principal gates by ® and the set of auxiliary gates
by @, Thus T(C') = ® U d,,,.. All principal gates (except the ones for the literals)
will be V gates and all auxiliary gates will be A gates.

¢ will be a subset of I'(C) x {1,...,L}. For a fixed g € I'(C) the set
H(g) € {g} x{1,..., L} will denote the set of all principal gates of the form (g,¢),
and ¢ = Ugep(c)H(g).

If g is an A gate of C then the gate (¢g,7) € H(g) will be associated with a
set A(g,1) C @, of auxiliary gates where 0 < |A(g,7)| < L.

We refer to the gates in the sets H(g) and A(g,17) as copies of g.

We construct the circuit C” inductively. We say that a gate ¢ € I'(C) has
been processed if we have created all its copies in C".

We start by processing the literals. For each literal = we create a gate
labelled (x£,0). This gate will output the value of the corresponding literal . Each
literal will have only one copy.

Let ¢ € I'(C') be an V gate that has all its input gates processed. Let wy,
denote the weight of the edge from h € I(g) to g. For each gate h € I(g) we consider
the set H(h). For each (h,i7) € H(h) we create an V gate (g, 4+ wp) if ¢ + wp, < L
and if (g,¢ + wy) has not been created yet. The input gates to the V gate (g, ;) are
the gates (h,7) with h € I(g) satisfying ¢ 4+ wy, = j.

Let g € I'(C) be an A gate with input gates hq, hy such that hy and hy have
been processed. Let w; and wy denote the weights of the corresponding edges from
hy and hy, resp., to g. For each pair of gates (hy,i) € H(h1), (h2,j) € H(hy) such
that 7 + j + wy + we < L we create an A gate in A(g,? + j + w1 + wz) with input

61

gates (hy,1), (ha,7). For each k € {1,..., L} such that A(g,k) # 0 we create an V
gate (g, k) with input set 1((g,k)) = A(g, k).

Let g,u: be the output gate of the circuit C'. The output gate of the circuit
C" will be the gate (gout, L) if it exists. If we did not create such a gate, we make the
output of €’ to be constant 0.

The circuit €' we constructed has the following properties.

Observation 4.2.15 Let g be any gate of C. Then (g,w) € I'(C’) if and only if the

circutt Cy has a minimal partial circuil with weight w.

Observation 4.2.16 Let « be a fived assignment to the input variables and (g,w) €
I'(C"). Then (g,w)(a) = 1 if and only if there is a minimal certificate for g(a) =1
with weight w.

We note that these properties would not hold if we defined the weight of
partial circuits and certificates as the weight of their set of edges instead of using
Definition 4.2.12, and that these properties are crucial for proving Lemma 4.2.14.

Next we show that the circuit C’ constructed this way satisfies the require-
ments of Lemma 4.2.14.

The depth of C”is < 2d and the size of €' is < 2L25 = n°M, where S is
the size of C.

For any gate g of C' and all gates (g,¢) of C’ we have (g¢,7)(a) < g(a) on
any assignment a. Thus if C(a) =0 then C'(a) = 0.

To prove that the last requirement of Lemma 4.2.14 is satisfied, we need the
following lemma.

Let a be a fixed input assignment such that C'(a) = 1. Let F, # 0 be the
family of all certificates for C'(a) = 1. Let W denote a fixed assignment of weights to
the edges of C. Let p(W,a) denote the weight of the minimum weight certificate in
Fa.

Lemma 4.2.17 Suppose there is a unique minimum weight certificate in F, and

suppose that L = p(W,«) . Then there is a unique certificate for C'(a) = 1.

62

Proof From the conditions of the lemma it follows that there is a minimal certificate
of weight L for C(a) = 1. By Observations 4.2.15 and 4.2.16 this means that in
the circuit C' there is a gate (gout, L) (Where g, is the output gate of C'), and that
C(0) = (goues L)) = 1.

Thus, there is a certificate for C'(a) = 1. If it is not unique, then there
is more than one minimal certificate for C(a) = 1 with weight L, and we get a

contradiction. This proves Lemma 4.2.17.

The probability that there is a unique minimum weight certificate in F, and
L = p(W,) is at least 1/2-1/(292m) (by Lemma 4.2.13 and by choosing L uniformly
from [1,292m]). Thus, we proved that if C(a) = 1 then with probability > 1/2%4m
there is a unique certificate for C'(a) = 1. This concludes the proof of Lemma 4.2.14.

4.2.4. The stmulation

Proof of Theorem 4.2.1 Let us first consider the case of depth d = O(logn)
circuits. By a standard probabilistic argument it follows from Lemma 4.2.14 that

0(1)

there exist T' = c¥8nm =n circuits C', ..., C7 such that the following is true for

every input assignment «
e if C(a)=0thenVie {1,...,T}, C'(a) =0,

o if C(a) =1 then 35 € {1,...,T} such that there is a unique certificate for
Cila) =1

Now we are ready to construct the simulating arithmetic circuit. In each
circuit C* we replace each V gate by a + gate and each A gate by a x gate. We
denote the new circuit by Ot We let the circuits $C, ..., OCT compute in parallel
over a common input x1,...,2,,1 —xq,...,1 — x,. To their outputs we apply a
transformation that turns any value that is different from 1 into 0, and keeps the
values that are equal to 1 unchanged. Over a given finite field this takes a constant

number of gates for each {C?. To compute the V of these values, recall that the V of

63

T variables can be represented by a polynomial of degree T' over the given field. We
compute this polynomial by a log T" depth semi-unbounded fan-in circuit with + and
x gates. Let us denote the circuit obtained this way by $C.

The circuits SO, ..., $OT have the following property:

o if C(a)=0thenVie {1,...,T}, $Ca) =0,
o if C(a)=1 then 35 € {1,...,T} such that $C(a) = 1.

This follows from the corresponding properties of the circuits C*,...,C7 and from
the fact that if there is a unique certificate for C’(a) =1 then $C/(a) =1

We conclude that on any input assignment «, C'(a) = {$C(«). This proves
the theorem if d = O(log n).

For larger d we divide the circuit C' into r = logn depth parts and perform
the above simulation on each part. The total depth of the simulating circuit will be

< (d/r)-(2r +O(logn)) = O(d+logn), which concludes the proof of Theorem 4.2.1.

For proving Theorem 4.2.3 we construct the circuits $CL, ..., OCT and
transform their outputs to Boolean values as above. To achieve the O(d + log k)
depth for approximate simulations over a fixed finite field we use polynomials of
degree k that approximate the V of these values. By [77] (cf. [88], Lemma 1) given
any probability distribution on the 27 inputs there exist polynomials of degree k that
compute the V of T variables with probability > (1 —27%) over the input distribution.
This proves Theorem 4.2.3.

4.2.5. Open problems

It is an interesting open question whether analogous relations hold for uni-
form circuit classes. Similarly, it is not known whether one can remove the nonuni-
formity from the Valiant and Vazirani [97] or the Wigderson [101] results. We note
that a result in this direction has appeared in [50], proving that SL C @ L, where SL

stands for symmetric logspace.

REFERENCES
[1] M. Ajtai, “>°}-formulae on finite structures”, Annals of Pure and Applied logic
24, 1983, pp. 1-48.

[2] M. Ajtai, L. Babai, P. Hajnal, J. Komlds, P. Pudlak, V. Rodl, E. Szemerédi and
G. Turan, “Two lower bounds for branching programs”, In Proceedings of the

18th ACM STOC, 1986, pp. 30-38.

[3] M. Ajtai, M. Ben-Or, “A theorem on probabilistic constant depth computations,”
In Proc. of “16-th ACM Symposium on Theory of Computing”, 1984, pp. 471-474.

[4] M. Ajtai, J. Komlés, E. Szemerédi, “An O(nlog n) sorting network,” In Proc. of
“15-th ACM Symposium on Theory of Computing”, 1983, pp. 1-9.

[5] M. Ajtai, J. Komlds, E. Szemerédi, “Halvers and expanders,” In Proc. of “33-rd
IEEFE Symposium on the Foundations of Computer Science”, 1992, pp. 686-692.

[6] E. Allender and J. Jiao, “Depth reduction for noncommutative arithmetic cir-

cuits,” In Proc. of the 25th STOC, 1993, pp. 515-522.

[7] N. Alon and R. Boppana. “The monotone circuit complexity of Boolean func-

tions”. Combinatorica, 7, 1987, pp. 1-22.

[8] A. E. Andreev: “On a method for obtaining lower bounds for the complexity of
individual monotone functions”, Sov. Math. Dokl., 31, 1985 pp. 530-534.

9] A. E. Andreev: “ Circuit synthesis in complete monotone basis”, Mat. Vopr.

Kibern. 1, 1988, pp. 114-139.

[10] S. Arora and S. Safra, “Probabilistic checking of proofs,” In Proc. of “33-rd IEEE
Symposium on the Foundations of Computer Science”, 1992, pp. 2-13.

64

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[20]

[21]

65

S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, “Proof verification and
hardness of approximation problems,” In Proc. of “33-rd IEEE Symposium on
the Foundations of Computer Science”, 1992, pp. 14-23.

S. Assaf, E. Upfal, “Fault tolerant sorting network”, In Proc. of “31-st IFEFE
Symposium on the Foundations of Computer Science”, 1990, pp. 275-284.

L. Babai, “Transparent proofs and limits to approximation,” University of

Chicago Technical Report CS93-15, 1993.

L. Babai, P. Hajnal, E. Szemerédi and G. Turan, “A lower bound for read-once

branching programs”, JCSS v. 35 n.2, Oct. 1987 pp. 153-162.

A. Beimel, “Ideal Secret Sharing Schemes”, Master’s thesis, Technion - Israel

Institute of Technology, Haifa, 1992. (In Hebrew, abstract in English).

A. Beimel and B. Chor, “Universally ideal secret sharing schemes”, IEEFE Trans-
actions on Information Theory, IT-40, 3, 1994, pp. 786-794.

A. Beimel, A. Gal and M. Paterson, “Lower bounds for monotone span pro-
grams”, Technical Report BRICS-RS-94-46, BRICS, Department of Computer
Science, University of Aarhus, December 1994.

A. Beimel, A. G4l and M. Paterson. “Lower bounds for monotone span pro-

grams”, To appear in Proceedings of FOCS’95.

S. J. Berkowitz. “On computing the determinant in small parallel time using a

small number of processors”, Inform. Process. Lett., 18, 1984, pp. 147-150.

N. Blum, “A Boolean function requiring 3n network size”, Theoretical Computer

Science, 28, 1984, pp. 337-345.

A. Borodin, Personal communication.

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

30]

66

A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, M. Tompa, “Two applica-
tions of inductive counting for complementation problems,” SIAM J. Comput.,

Vol. 18, No. 3, 1989, pp. 559-578.

A. Borodin, A. Razborov and R. Smolensky, “On lower bounds for read-k-times
branching programs”, Computational Complexity, 3, 1993, pp. 1-18.

G. Buntrock, C. Damm, H. Hertrampf, and C. Meinel, “Structure and impor-
tance of the logspace-mod class”, Math. Systems Theory, 25, 1992, pp. 223-237.

S. A. Cook, “A taxonomy of problems with fast parallel algorithms”, Information
and Control, 64, 1985, pp. 2-22.

L. Csirmaz. “The dealer’s random bits in perfect secret sharing schemes”,

Preprint, 1994.

M. van Dijk, “A linear construction of perfect secret sharing schemes”, In A. De
Santis, editor, Advances in Cryptology — Furocrypt 94, pre-proceedings, 1994, pp.
23-36.

R. L. Dobrushin and S. 1. Ortyukov, “Lower bound for the redundancy of self-
correcting arrangements of unreliable functional elements,” Prob. Inf. Trans. 13,

1977, pp. 59-65.

R. L. Dobrushin and S. I. Ortyukov, “Upper bound for the redundancy of selt-
correcting arrangements of unreliable functional elements,” Prob. Inf. Trans. 13,

1977, pp. 203-218.

P. E. Dunne, “Lower bounds on the complexity of 1-time only branching pro-
grams”, in FCT 85, Lecture Notes in CS n. 199, Springer, New York, 1985, pp.
90-99.

W. Evans, “Information theory and noisy computation”, Ph. D. Thesis, Univer-

sity of California at Berkeley, ICSI Technical Report TR-94-057, 1994.

32]

33]

[34]

[35]

[36]

37]

38]

[39]

[40]

[41]

67

W. Evans, L. Schulman, “Signal propagation with application to a lower bound
on the depth of noisy formulas”, In Proc. of “34th IEEE Symposium on the
Foundations of Computer Science”, 1993, pp. 594-603.

W. Evans, L. Schulman, “Information theory and noisy computation”, abstract

for IEEE International Symposium on Information Theory, 1995.

U. Feige, D. Peleg, P. Raghavan and E. Upfal, “Computing with unreliable in-
formation”, In Proc. of “22nd ACM Symposium on the Theory of Computing”,
1990, pp. 128-137.

M. Furst, J. Saxe and M. Sipser, “Parity, circuits and the polynomial time hier-
archy”, Math. Systems Theory, 17, 1984, pp. 13-27.

P. Géacs: Unpublished letter, 1981.

P. Gacs and A. Gal, “Lower Bounds for the Complexity of Reliable Boolean
Circuits with Noisy Gates,” IEEFE Trans. Inform. Theory, Vol. 40, No. 2, 1994,
pp- H79-583.

A. Gal, “Lower Bounds for the Complexity of Reliable Boolean Circuits with
Noisy Gates,” In Proc. of “32-nd IEEFE Symposium on the Foundations of Com-
puter Science”; 1991, pp. 594-601.

A. Gal, “Semi-unbounded fan-in circuits: Boolean vs. arithmetic” In Proceedings

of the 10th Annual Structure in Complexity Theory, 1995, pp. 82-87.

A. Gal, “A simple function that requires exponential size read-once branching

programs”, University of Chicago Technical Report, TR-95-09, 1995.

A. Gal and M. Szegedy, “Fault tolerant circuits and probabilistically check-
able proofs”, In Proceedings of the 10th Annual Structure in Complexity Theory,
(1995), pp. 65-73.

[42]

[43]

[44]

[45]

[46]

[47]

[51]

[52]

63

A. Gal and A. Wigderson, “Boolean complexity classes vs. their arithmetic

analogs”, Submitted to Random Structures and Algorithms.

M. Goldman and J. Hastad, “A simple lower bound for monotone clique using a

communication game”, Information Processing Letters 41, 1992, pp. 221-226.

J. Hastad, “Almost optimal lower bounds for small depth circuits”, In, Advances
in Computing Research, 5: Randomness and Computation, Micali, S., ed. JAI
Press, 1989, pp. 143-170.

N. Immerman, “Upper and lower bounds on first order expressibility,” J. Com-

put. System Sci., 25, 1982, pp. 76-98.

S. Jukna, “Entropy of contact circuits and lower bound on their complexity”,

Theor. Comput. Sci., 47:2, 1988, pp. 113-129.

S. Jukna, “A note on read-k-times branching programs”, Technical report 448,
Universitat Dortmund, 1992, journal version: RAIRO Theoretical Informatics

and Applications, vol. 29, Nr. 1 (1995), pp. 75-83.

M. Karchmer, “On proving lower bounds for circuit size”, In Proceedings of the

Sth Annual Structure in Complexity Theory, 1993, pp. 112-118.

M. Karchmer and A. Wigderson, “Monotone circuits for connectivity require

superlogarithmic depth”, SIAM J. on Diser. Math., 3:2, 1990, pp. 255-265.

M. Karchmer and A. Wigderson, “On span programs”, In Proceedings of the 8th
Annual Structure in Complexity Theory, 1993, pp. 102-111.

M. Karchmer and A. Wigderson, “Characterizing non-deterministic circuit size”,

In Proc. of the 25th STOC, 1993, pp. 532-540.

G. . Kirienko, “On self-correcting schemes from functional elements,” Probl.

Kibern. 12, 1964, pp. 29-37.

[53]

[54]

[57]

[58]

[59]

[60]

[61]

69

G. . Kirienko, “Synthesis of self-correcting schemes from functional elements for
the case of growing number of faults in the scheme,” Diskret. Anal. 16, 1970, pp.
38-43.

D. Kleitman, T. Leighton and Y. Ma, “On the design of reliable Boolean circuits
that contain partially unreliable gates,” In Proc. of “35-th I[EEE Symposium on
the Foundations of Computer Science”, 1994, pp. 332-346.

T. Kovari, V. T. S6s and P. Turan, “On a problem of K. Zarankiewicz”, Colloq.
Math., 3, 1954, pp. 50-57.

M. Krause, “Exponential lower bounds on the complexity of real time and local

branching programs”, J. Inform. Proc. Cybern. (EIK), 24:3, 1988, pp. 99-110.

M. Krause, C. Meinel and S. Waack, “Separating the eraser Turing machine
classes L., NL., co— N L. and P.”, Theor. Comput. Sci., 86 (1991), pp. 267-275.

C. Lund, D. Spielmann, Personal communication.

O. B. Lupanov, “On a method of circuit synthesis”, [zv. VUZ Radiofizika, 1,
1958, pp. 120-140.

K. Mulmuley, “A fast parallel algorithm to compute the rank of a matrix over

an arbitrary field”, Combinatorica, 7, 1987, pp. 101-104.

K. Mulmuley, U. Vazirani and V. Vazirani, “Matching is as easy as matrix

inversion,” In Proc. of the 19th STOC, 1987, pp. 345-354.

D. E. Muller, “Complexity in electronic switching circuits”, IRE Trans. Flectr.
Comput., 5, 1956, pp. 15-19.

E. I. Neciporuk, “On a Boolean matrix”, Problemy Kibernet., 21, 1969, pp.
237-240. English translation in Systems Theory Res., 21, 1971, pp. 236-239.

[64]

[65]

[66]

[67]

[68]

[69]

70

J. von Neumann,” Probabilistic logics and the synthesis of reliable organisms
from unreliable components”, In Automata Studies, C. E. Shannon and J. Me-

Carthy Eds., Princeton University Press, Princeton, NJ, 1956, pp. 329-378.

N. Nisan, “CREW PRAMs and decision trees”, In Proc. of “21-st ACM Sympo-
stum on the Theory of Computing”, 1989, pp. 327-335.

N. Nisan, Personal communication.

W. Paul, “A 2.5n-lower bound on the combinatorial complexity of Boolean func-

tions, SIAM J. Comp., Vol.6, 1977, No. 3, pp. 427-443.

N. Pippenger, “On simultaneous resource bounds”, In Proc. of “20th I[EEE Sym-
posium on the Foundations of Computer Science”, 1979, pp. 307-311.

N. Pippenger, “On another Boolean matrix”, Theoretical Computer Science, 11,

1980, pp. 49-56.

N. Pippenger, “On networks of noisy gates”, In Proc. of “26-th I[IEEE Symposium
on the Foundations of Computer Science”, 1985, pp. 30-36.

N. Pippenger, Developments in “The Synthesis of Reliable Organisms from Un-
reliable Components”, In Proc. of “Symposia in Pure Mathematics”, Vol. 50,
1990, pp. 311-324.

N. Pippenger and M. Fischer, “Relationships among complexity measures”, IBM
Research Report RC-6569 (1977), Yorktown Heights.

N. Pippenger, G. D. Stamoulis and J. N. Tsitsiklis, “On a lower bound for the
redundancy of reliable networks with noisy gates”, IEEFE Trans. Inform. Theory,
vol. 37, no. 3, 1991, pp. 639-643.

S. Ponzio, “A lower bound for integer multiplication with read-once branching

programs”, In Proceedings of the 27th STOC; 1995, pp. 130-139.

[75]

[76]

[77]

[83]

[84]

71

P. Pudlak and S. Zak, “Space complexity of computations”, Tech. Rep. Univ.
Prague, 1983.

A. A. Razborov, “Lower bounds for the monotone complexity of some Boolean

functions”, Sov. Math. Dokl., 31, 1985, pp. 354-357.

A. A. Razborov, “Lower bounds for the size of circuits of bounded depth with
basis {A, @},” Math. notes of the Academy of Sciences of the USSR, 41(4), 1987,
pp. 333-338.

A. A. Razborov, “On the method of approximation”, In Proceedings of the 21st
ACM Symposium on Theory of Computing, 1989, pp. 167-176.

A. A. Razborov, “Lower bounds for deterministic and nondeterministic branching
programs”, In Proceedings of the §th FCT, Lecture Notes in Computer Science,
529, 1991, pp. 47-60.

R. Raz and A. Wigderson, “Monotone circuits for matching require linear depth”,

In Proc. of the 22nd STOC, 1990, pp. 287-292.

R. Reischuk, B. Schmeltz, “Reliable Computation with Noisy Circuits and De-
cision Trees — A General n log n Lower Bound,” In Proc. of “32-nd IEEFE Sym-
posium on the Foundations of Computer Science”, 1991, pp. 602-611.

D. Rubinstein, “Sensitivity vs. block sensitivity of Boolean functions,” Combi-

natorica, 15 (2), 1995, pp. 297-299.

W. L. Ruzzo, “Tree-size bounded alternation,” .J. Comput. System Sei., 21,
1980, pp. 218-235.

W. L. Ruzzo, “On uniform circuit complexity”, J. Comput. System Seci., 22,
1981, pp. 365-383.

C. E. Shannon, “The synthesis of two-terminal switching circuits”, Bell Syst.
Techn. J., 28, 1949, pp. 59-98.

[36]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

72

J. Simon and M. Szegedy, “A new lower bound theorem for read-only-once
branching programs and its applications”, In Advances in Computational Com-
plexity Theory, DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, Volume 13, 1993, pp. 183-193.

S. Skyum and L. G. Valiant, “A complexity theory based on Boolean algebra,”
In Proc. of the 22nd FOCS, 1981, pp. 244-253.

R. Smolensky, “Algebraic methods in the theory of lower bounds for Boolean
circuit complexity,” In Proc. of the 19th STOC, 1987, pp. 77-82.

P. M. Spira, “On time-hardware complexity tradeoffs for Boolean functions”, In

Proc. of the Jth Hawaii Symp. on Syst. Se., 1971, pp. 525-527.

L. Stockmeyer, “On the combinatorial complexity of certain symmetric Boolean

functions”, Mathematical Systems Theory, Vol. 10, 1977, pp. 323-336.

I. H. Sudborough, “On the tape complexity of deterministic context-free lan-

guages,” J. Assoc. Comput. Mach., 25, 1978, pp. 405-414.
G. Tardos, Personal communication.

D. Uhlig, “Reliable networks from unreliable gates with almost minimal complex-
ity”, In Proc. of “Fundamentals of Computation Theory”, Kazan, 1987, LNCS
278, Springer-Verlag, 1987, pp. 462-469.

D. Uhlig, “On the synthesis of self-correcting schemes from functional elements
with a small number of reliable elements,” Math. Notes. Acad. Sci. USSR 15,
1974, pp. H58-562.

H. Venkateswaran, “Properties that characterize LOGCFL,” In Proc. of the 19th
STOC, 1987, pp. 141-150.

H. Venkateswaran, Personal communication.

73

[97] L. G. Valiant and V.V. Vazirani, “NP is as easy as detecting unique solutions,”
Theoretical Computer Science, 47, 1986, pp. 85-93.

[98] 1. Wegener, “The Complexity of Boolean Functions”, Wiley-Teubner, 1987.

[99] 1. Wegener, “On the complexity of branching porgrams and decision trees for

clique functions”, Journal of the ACM, 35, 1988, pp. 461-471.

[100] A. Wigderson, “The fusion method for lower bounds in circuit complexity”,
In Bolyai Society Mathematical Studies, Combinatorics, Paul Erdos is Fighty,
(Volume 1), Keszthely (Hungary), 1993, pp. 453-467.

[101] A. Wigderson, “NL/poly C &L/poly,” Proc. of 9th Conf. Structure in Com-
plexity Theory, 1994, pp. 59-62.

[102] A. Yao, “Separating the polynomial hierarchy by oracles” In Proc. of “26th
IEEE Symposium on the Foundations of Computer Science”, 1985, pp. 1-10.

[103] S. Zak, “An exponential lower bound for one time only branching porgrams”,

In Proc. of MFCS’84, Springer Lect. Notes in Comp. Sci. 176, 1984, pp. 562-566.

[104] U. Zwick, “A 4n lower bound on the combinatorial complexity over Uy = By \
{®, =} of certain symmetric Boolean functions”, SIAM J. on Comput., 20, No.
3, 1991, pp. 499-505.

