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Chapter 1

Introduction

Complexity theory studies the inherent computational complexity (difficulty) of problems.
By problem we usually mean decision problems, the question of whether a given object
belongs to a certain set (in other words, has a certain property) or not. But how do
we measure difficulty? Quite naturally, the time needed to come up with a solution is a
reasonable and often used measure. More precisely, the time measure of a problem A is
a function ¢ satisfying that for each input z the answer to the question “z € A 77 can
be found in at most ¢(|z|) time units, where |z| is the length of the representation for z.
In complexity theory time is measured in terms of steps needed by a Turing machine to
solve the problem. Turing machines, first defined by Turing [Tur36] and Post [Pos36], are
a computational model that is simple yet powerful enough to capture the very notion of
computability. The time measure allows to classify problems. Those being computable by
a deterministic Turing machine with a time function that is bounded by a polynomial form
the class P [Edm65]. The class P is a theoretical concept intended to capture the spirit of
feasible computation. The word “feasible” should be viewed in a rather theoretical context.
Clearly, problems having a time function that is a polynomial of high degree, say n?3, are
certainly not considered to be efficiently solvable. However, polynomials do not grow too
fast and possess a number of nice properties, for instance they are closed under composition.
Furthermore, the class P is a very robust notion not depending on the definitional variations
of the underlying computational model. In contrast, problems having a time function that
is bounded by 2", where ¢ is some constant and n the length of the input, are (until one
shows a better time bound) not considered to be feasibly computable. The class E is the
collection of all those problems.

It is known that there are problems in E that are not in P [HS66]. Examples of problems
in P are addition of natural numbers and sorting natural numbers. The EULER TOUR
problem emerging from Eulers famous Konigsberger Briicken-Problem [Eul36], that given
a graph asks whether it is possible to walk through the graph along its edges in such a way
that every edge is touched exactly once, is another prominent member of the class P.

A seemingly slight but crucial, as we will see in a moment, variation of this problem
leads to the so-called HAMILTON CIRCUIT problem (HC). Given a graph one is asked



Introduction

Figure 1.1: The left graph contains both, an Euler tour and a Hamilton Circuit, whereas
the right graph contains neither an Euler tour nor a Hamilton circuit.

to find a way of moving through the graph along its edges such that starting from some
vertex one returns to it while visiting every other werter exactly once. The best known
algorithms for HC need exponential time, HC € E, and consist essentially in testing for all
permutations of the vertices of the input graph whether the vertices can be visited in the
order given by the permutation.

It is not known whether HC € P and people have tried to understand why this ques-
tion has resisted all solution efforts. It turned out that a variant of deterministic Turing
machines, so-called nondeterministic Turing machines can solve HC in polynomial time,
the amount of nondeterminism needed is growing exponentially with the size of the input
graph. This gives rise to a new class of problems between P and E, namely, NP, the class
of problems that can be solved by some nondeterministic polynomial-time Turing machine.
It is known that HC is among the hardest problems in NP in the sense that HC € P would

immediately imply P = NP. In fact, the question P Z NP is the most famous open question
in complexity theory having reformulations in many of its areas. While being concerned

with resolving the P Z NP question researchers quickly found out that there is a much
richer structure of complexity classes between P and E. Variations to the acceptance mech-
anism of nondeterministic Turing machines and the notion of oracle Turing machines are a
few examples for other computing paradigms that allow to exactly pinpoint many naturally
arising computation problems. For instance, oracle Turing machines are Turing machines
that have access to external information sources; the oracle machines make so called oracle
queries and receive—quite in contrast to the Greek mythology—always a clear answer “yes”
or “no” in unit time.

The observation that seemingly no nondeterministic polynomial-time Turing machine
can solve the MINIMAL EQUIVALENT EXPRESSION problem (MEE) [MS72, Sto77,
GJ79] (see also [HW9T7a] for latest results on the complexity of MEE), which, informally, is
the question of whether a given boolean formula has a shorter representation, together with
the fact that a nondeterministic oracle Turing machine equipped with an oracle from NP can
well solve MEE in polynomial time led to the definition of the polynomial hierarchy [MS72,



Sto77]. The polynomial hierarchy is inductively defined via the concept of deterministic
and nondeterministic polynomial-time oracle Turing machines. P, NP, and the complement
class coNP form its first level. Much has been learned about the structure of the polynomial
hierarchy and a number of very elegant techniques have been developed while studying its
properties. The literature on the polynomial hierarchy, in particular, on complete sets,
the existence of tally and sparse complete sets, relativizations, characterizations, collapse
properties, refinements, and much more is immense (for references see [BDG88, BDGY0),
WW86, Pap94]). Over the years the conviction has grown that the polynomial hierarchy is
infinite, though a rigorous proof has yet to be found. Part of its importance today stems
from the fact that it still serves as the main yardstick for classifying other complexity classes.
Relatedly, it is so widely accepted that the polynomial hierarchy is strict and infinite that
an implied collapse of it often serves as a strong sign that other events are quite unlikely to
happen.

Though the polynomial hierarchy allows to classify many of the arising computation
problems, it often seemed to be to rough to exactly classify all of it. Many naturally arising
computation problems are contained in A} (a class from the second level of the polynomial
hierarchy), though one easily verifies that they do not require the full computational power
of AY. Recall that HC belongs to the class NP. For the weighted version of HC, often called
TRAVELING SALESPERSON problem (TSP), each edge in the input graph is assigned
a positive integer weight (length) and one is asked to decide whether there is a Hamilton
circuit of length less then or equal to a given integer k (the length of a circuit is simply the
sum of the length of the edges on this circuit). It is known that TSP can be solved with a
nondeterministic Turing machine in polynomial time, TSP € NP. Yet EXACT TSP, that
asks whether the shortest Hamilton circuit in the input graph has length ezactly k is not
known to be in NP. Though EXACT TSP is contained in the second level of the polynomial
hierarchy, AY, not all of this levels power is needed to solve it. Essentially, every instance of
EXACT TSP can be easily reduced to two TSP problems, the first one accounting for the
fact that there is a Hamilton circuit of length at most k£ in the graph and the second one
testing that no Hamilton circuit of length k —1 exists. This computing paradigm is reflected
by the class DP [PY84], DP = {L; N Ly| L1, Ly € NP}. Its generalization, for instance as
nested differences or alternating sums of NP sets, leads to the concept of the boolean
hierarchy. In fact, DP is exactly its second level. The boolean hierarchy was introduced
almost simultaneously by several groups of authors with a variety of definitions ranging from
acceptance types [Wec85], boolean hardware over NP [CH86], and symmetric differences of
NP sets [KSW8T], but can in concept already be found in the work of Hausdorff [Haul4].
Though it is known that NP is closed under union and intersection, it is not known to
be closed under complementation. The boolean hierarchy provides a rich structure inside
the closure of NP under the boolean operations union, intersection, and complementation.
Being sandwiched between the polynomial hierarchies’ first and second levels the boolean
hierarchy forms a refinement of the polynomial hierarchy. As it is the case for the polynomial
hierarchy, complete sets, relativized separation, and collapse results have been studied for
the boolean hierarchy as well in detail [CGH"88, CGH™89].
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1.1 The Boolean and Polynomial Hierarchies Connection

Whenever a hierarchy is defined, one of the first questions going to be asked is whether the
hierarchy is infinite or not. For quite a number of hierarchies in computational complexity
the answer to this question has been found. For instance, Hemaspaandra showed that the
strong exponential hierarchy is a finite hierarchy [Hem89], a number of authors proved
that the logarithmic space and linear space hierarchies are finite structures [SW88, Tod87,
LJK89], and Immerman and Szelepcsényi independently obtained the breakthrough result
that the nondeterministic space classes are closed under complementation implying that the
nondeterministic logarithmic and linear space hierarchies collapse to its first levels [Imm88,
Sze88.

However, for the polynomial and the boolean hierarchies we do not know whether they
are infinite or not. For both hierarchies relativized worlds have been constructed in which
they are infinite or finite [Yao85, Ko88, CGH™88], respectively. Hence, non relativizable
proof techniques are required for ultimately determining the dimensions of those hierar-
chies. Though most researchers believe that both hierarchies are infinite, the hope for a
proof of that conviction has somewhat diminished over the years. Unfortunately, proving
strict inclusions is in general extremely difficult, especially for classes within the polynomial
hierarchy. In fact, though it is known that P C E [HS66], it is not even known whether

p< PSPACE, not to speak of the famous P Z NP question.

A number of techniques have been developed to overcome this situation by at least
giving evidence that certain inclusions are strict. Linking the collapse of complexity classes
to a collapse of other complexity classes is a technique being used since the early years of
complexity theory. It unifies the issues of the relative strength of different computation

models. FEarliest examples were found while studying the famous P Z NP question, for
instance, “If P = NP then NP = coNP.” Today this technique is also often used to add
more weight to the already existing evidence that two complexity classes are not equal by
showing that their equality would immediately provide a very unlikely collapse of other
complexity classes, for instance a collapse of the polynomial hierarchy. This technique has
also been used to link the collapse of various function classes to collapses of complexity
classes [Val76, Sel94b, VW93, HW9T7c].

Since the boolean hierarchy does form a refinement between the first and the second
levels of the polynomial hierarchy, as it is sandwiched between P and AL, does a collapse
of the boolean hierarchy imply a collapse of the polynomial hierarchy? In the trivial case,
the boolean hierarchy collapsing at its first level which happens to be also the first level
of the polynomial hierarchy, the answer is yes. A yes answer in the general case would
immediately yield that infinity of the polynomial hierarchy (a belief shared by almost all
complexity theorists) implies infinity of the boolean hierarchy.

A first successful step into that direction has been made by Kadin [Kad88] in proving
that a collapse of the boolean hierarchy implies a collapse of the polynomial hierarchy to X¥.
This first result is significant in two ways. First, the structures of the polynomial and the
boolean hierarchies are tied together. Second, the underlying proof technique, the so-called
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easy-hard technique, was introduced into complexity theory. The easy-hard technique has
much influenced research in computational complexity not only in the attempts of linking
boolean and polynomial hierarchy collapses even closer together but also, for instance, in
the recent interest in downward translation of equality, a line of research we will in detail
consider in Chapter 4.

Modifications to the easy-hard technique together with a more sophisticated use of
it allowed Wagner [Wag87, Wag89], Chang and Kadin [CK96], and Beigel, Chang, and
Ogihara [BCO93] to subsequently improve Kadin’s original result. The best known result
today has been obtained by Beigel, Chang, and Ogihara [BCO93] and shows that a collapse
of the boolean hierarchy at level m implies a collapse of the polynomial hierarchy to a level
within the mth level of the boolean hierarchy over 5.

In Chapter 3 we will take a close look at the series of papers which led to this result.
After stating the key results of those five papers, [Kad88, Wag87, Wag89, CK96, BCO93], we
analyze the development of the easy-hard technique and its use in (conditionally) collapsing
the polynomial hierarchy in Section 3.2. The refined structure of complexity classes inside
the mth level of the boolean hierarchy over XY, which was first defined and studied by
Selivanov [Sel94a, Sel95], allows to pinpoint the induced collapse of the polynomial hierarchy
at an even deeper level than being observed in [BCO93]. In Section 3.3 we prove our new
result which based on a careful analysis of the proof given in [BCO93] and double application
of one of its key ideas yields that a collapse of the boolean hierarchy at level m, m > 2,
implies a collapse of the polynomial hierarchy to BH,,, ADIFF,, 1(3}).

This result adds much insight to the connection between the boolean hierarchy and
the boolean hierarchy over ¥}. Chang and Kadin [CK96] in proving BH,, = coBH,, —>
DIFF,,(3Y) = coDIFF,,(35) = PH argued that some underlying connection between the
boolean hierarchy and the boolean hierarchy over XY is responsible for this result. In
particular, they asked whether there is some straightforward argument showing that BH,,, =
coBH,, = DIFF,,(}) = coDIFF,,(XY) which could be used to prove the collapse of
the polynomial hierarchy. Though the result of Beigel, Chang, and Ogihara [BCO93] made
this question disappear from the list of open problems, our result sheds new light on this
connection. It is quite easy to verify that BH,, = coBH,, implies BH,, ADIFF;(X}) =
co(BH,,, ADIFF;(X})) for all j > 1, especially for j = m — 1. Unfortunately this result
says nothing about the collapse of the polynomial hierarchy. In fact, the main difficulty to
overcome in our proof is to show that X} C BH,, ADIFF,,_;(Z}).

1.2 Downward Collapse

The collapse of hierarchies has been a central topic in complexity theory from the beginning.
Relatedly, does the relative strength of more powerful computing paradigms depend on the
relative strength of less powerful ones, or vice versa? Results with this general flavor are
refered to as upward and downward collapse, respectively. The very nature of upward and
downward collapse can be observed, for example, at the architectural feature of the Roman
semicircular arch (see Figure 1.2). On one hand, the Roman arch collapses when removing
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Figure 1.2: The Roman Semicircular Arch Displays Upward and Downward Collapse

one of the building blocks at its foundation. A collapse at lower levels causes dramatic
collapses at higher levels, the collapse translates upwards. On the other hand, the arch
also collapses when removing its keystone and so displays downward collapse. The keystone
though located at the very top of the arch provides stability and strength to the entire
construction.

Formally, for complexity classes C1, Ca, D1, and Dy such that C; UCy C Dy N Dy (ideally
the inclusion is strict or at least strongly believed to be strict), upward collapse would
be “If C; = Cy then Dy = Dy.” Similarly, a result “If D; = Dy then C; = Cy” is called
downward collapse. Roughly speaking, the equality D; = Dy has the same effect on the
lower complexity classes C; and Cy as a removal of the keystone of the arch had on its lower
building blocks, they collapse.

Upward collapse is frequently observed in computational complexity theory. Most hier-
archies due to their inductive definition display upward collapse properties, especially the
polynomial and the boolean hierarchies. For instance, ¥} =1} = PH=... =%} | =
Z}: [Sto77] and BH,, = coBH,, = BH = ... = BH,,,;1 = BH,,, [CGH'88]. The results
regarding the collapse of the polynomial hierarchy induced by a collapse of the boolean
hierarchy we review and prove in Chapter 3 are all upward collapse results.

Downward collapse is a rather rare event in structural complexity theory. Perhaps
the most well known result having the flavor of downward collapse though containing an
unspecified parameter is “If PH = PSPACE then (3k)[X} = II} = PH]” [Wra77]. Examples
of downward collapse though not all satisfy our formal description above are “If NP C
BPP then NP = R” [Ko82], “If EH = E then P = BPP” [BFNA93], and “If PNPIl =
EXP then NP = EXP” [HKR93]. There are also examples involving degenerate certificate
schemes [HRW97] and circuit-related classes [All86, HY84]. Cases in which the collapse of
larger classes implies that smaller classes collapse on sets of small density can for instance
be found in [Boo74, HIS85, RRW94] (in contrast see [HJ95]).

The first downward collapse result linking classes of the bounded-query hierarchies and
classes of the polynomial hierarchy has been obtained by Hemaspaandra, Hemaspaandra,
and Hempel [HHH96a]. They showed that for all k > 2, P*illl = P2l — ¥P = T’ Note
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that this result contains no unspecified parameter, it is not restricted to sets of small density,
and the inclusion X} UTIY C PZi N PP does hold and is strongly believed to be strict.
The result follows from an innovative application of the easy-hard technique, a technique
developed by Kadin [Kad88] in order to link boolean and polynomial hierarchy collapses.
This result has been generalized into two directions. Buhrman and Fortnow [BF98] showed
that the analogue for k = 2 does also hold and furthermore constructed a relativized world
in which the & = 1 analogue fails. Hemaspaandra, Hemaspaandra, and Hempel [HHH99]
generalized from one versus two queries to m versus m + 1 queries obtaining for & > 2
and m > 1, POk, = Poh . => DIFF,(S}) = coDIFF,,(SP). This latter result
displays crisply the strong connection between the levels of boolean and the bounded-truth-
table hierarchy over Eg, k > 2. In a very recent paper by Hemaspaandra, Hemaspaandra,
and Hempel [HHH97Db] the key ideas from [BF98] and [HHH99] have been combined with
new methods to prove a very general downward collapse result; for m > 1 and £ > 1,
Pok. =Pk . = DIFF,,(XP) = coDIFF,, ().

We will in Chapter 4 review the history and the proof techniques of this recent out-
burst of downward collapse results and show a new downward collapse result that strength-
ens a theorem from [HHH97b]. Since the easy-hard technique plays a major role also
in this chapter’s proofs, we will very much alike the approach in Chapter 3 first study
in detail its development in the downward collapse setting. This is done in Section 4.2.
In Section 4.3 we prove our new result. We show that for all s, > 1 and all 0 <
i < k — 1, DIFF4(Z?)ADIFF,,(2P) = co(DIFF4(XP)ADIFF,,(3P)) = DIFF,,(3P) =
coDIFFm(EE). The proof of this result in some sense merges proof ideas from Chapter 3 and
Section 4.2. In particular, the proof contains two applications of the easy-hard technique.
First, we make use of the easy-hard technique to provide the general framework for proving
the downward collapse as it was done in [HHH99, BF98, HHH97b]. And second, inside
one of the resulting cases the easy-hard technique is being used in the spirit of Chapter 3
though in a more technical form. Chapter 4 closes with some remarks and applications of
the obtained results.

1.3 Query Order

The importance of order in everyday-life is beyond any doubt. So is the order in which we
access information sources, databases for instance.

In complexity theory, information sources are modeled by oracles. A natural arising
question thus is, does the order in which a deterministic oracle Turing machine accesses
oracles from different complexity classes make a difference in the resulting computational
power? In Chapter 5 we study query order in computational complexity theory. In Sec-
tion 5.2 we pursue this question in the context of the boolean hierarchy and provide the first
query order result in complexity theory. In particular, we study the computational power of
PBH;:BHE " the class of languages that are accepted by deterministic polynomial-time Turing
machines that on every input make at most one query to a BH; oracle followed by at most
one query to a BHj oracle. Does PBHi:BHr equal PBH#:BH;  op are they incomparable, or
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does one strictly contain the other? We show that, unless the polynomial hierarchy col-
lapses, the order of oracle access is crucial for the relative power of the complexity class.
In particular, assuming that the polynomial hierarchy does not collapse, we have that if
1 < j <k then PBHiBHr and PBHBH; differ unless (j = k) V (5 is even Ak = j + 1). This
result is based on a characterization of query order classes in terms of reducibility closures
of NP. We show that for j, & > 1,

pBH;:BH, _ R op—_1.4:(NP) if j is even and k is odd,
- R?—i—?k—tt (NP) otherwise.

Two interesting features of this characterization should be emphasized. First, informally
put, the second query counts more towards the power of the class than the first query does.
This follows from the fact that in the context of the boolean hierarchy the two different
second queries which, depending on the answer to the first query, can be potentially asked
crucially affect the resulting computational power. In sharp contrast, the fact that two
different second queries can be potentially asked is irrelevant for query order classes in
the polynomial hierarchy, where it has been shown that P = P for all j #
k [HHH98b]. Second, there is a loss of one level when j is even and & is odd. In some sense,
j + 2k NP questions underpin this class. However, by arguing that a certain underlying
graph must contain an odd cycle, we show that 7+ 2k —1 queries suffice. The main theorem
of Section 5.2 is generalized to apply also to classes with tree-like query structure.

In Section 5.3 we study query order in the polynomial hierarchy. Query order in the
polynomial hierarchy is a topic being studied after the results of Section 5.2 first appeared
in [HHW95]. The first result on query order in the polynomial hierarchy has been obtained
by Hemaspaandra, Hemaspaandra, and Hempel [HHH98b]. They show that in sharp con-
trast to the boolean hierarchy query order never matters in the polynomial hierarchy. This
result has been generalized by Beigel and Chang [BC] and Wagner [Wag98] to cases of more
than two query rounds and more than one query in each round. We give a short overview
over these previous results. However, no paper studying general query order classes in the
polynomial hierarchy considers query order classes where two (or more) consecutive rounds
of parallel queries are made such that though all queries are made to the same oracle the
number of parallel queries made in each round differs. In order to close that gap we study
query order classes of the form Pﬁif, the class of languages that are accepted by some de-
terministic polynomial-time Turing machine making one round of at most j parallel queries
to a X} oracle followed by one round of at most k parallel queries to a XY oracle. We

show that for all 4,j,k > 1, P73 = RP,_ . (SP). This result is interesting in two
ways. First, query order in the polynomial hierarchy does not matter also in this case. This
can be easily derived from the above result due to its symmetry. Second, though we have
PNP. = PBHnll (see Lemma 5.2.1) an analogues statement for query order classes does not
hold in general unless the polynomial hierarchy collapses. In light of Theorem 5.2.6 and
the above characterization, we have PBHi:BHr £ PNP:NP yyplegs 7 = 1 or the polynomial

jok-tt
hierarchy collapses.
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In Section 5.4 we mention a number of results that are closely related to query order.
A general result regarding query order with respect to base classes other than P has been
obtained by Hemaspaandra, Hemaspaandra, Hempel [HHH98b]. Since the notion of query
order has been first investigated in [HHW95] a number of results either growing out of the
study of query order or involving the notion of query order have been obtained in various
areas of computational complexity. Those results include the first downward collapse result
completely within the polynomial hierarchy obtained by Hemaspaandra, Hemaspaandra,
and Hempel [HHH99] (see also Chapter 4), the study of self-specifying machines by Hemas-
paandra, Hempel and Wechsung [HHW95, HHW97], and results on robust completeness by
Hemaspaandra, Hemaspaandra, and Hempel [HHH98c].






Chapter 2

Preliminaries

In this chapter we define basic concepts of computational complexity that are used through-
out this thesis. With slight variations, everything in this chapter might also be found in any
standard book on computational complexity theory, for instance [WW86, BDG88, Pap94].
We assume that the reader is familiar with the meaning and notation of the basic set
theoretic and logical concepts.

2.1 Strings, Languages, and Operators

Let N denote the set of natural numbers. Let Pol denote the set of all polynomials in one
variable over N.

Complexity theory studies the complexity of sets of strings over a finite alphabet. Let
Y = {0,1} be our alphabet. Let # be a symbol not in X, # ¢ X, and let € denote the
empty string. The concatenation of strings u and v is denoted by wv. For letters a € X3,
let a® = € and a"*! = aa” for all n € N. Define X0 = {¢} and X! = {uv|u € T Av € ¥}
for all i € N. So ¥ is the set of all strings of length i over ¥. By ¥* we denote the set of
all finite strings over ¥, more formally, ¥* = |J X*. The length of a string x, the unique 4

1€N
such that € X%, is denoted by |z|.

Let <je, denote the standard (quasi-) lexicographical ordering on ¥*, in particular for
strings u,v € £*, u <j, v if and only if |u| < |v|, or u = v, or |u| = |v| and there exist some
w,u' ;v € ¥* such that v = wOu’ and v = wlv'.

We consider subsets (often called languages) of £*. For a set A C ¥*, AS" denotes the
set of all strings from A of length at most n, AS" = AN ( |J ¥!). Similarly A" = AN %",

i<n
For a finite set A, ||A|| denotes the cardinality of the set A. A language A is called sparse,
if and only if there exists a polynomial p such that for all n € N, ||AS"|| < p(n). The

characteristic function of a set A, x4, is defined as

(z) = 1 ifx €A,
XATI=Y 0  ifrgA
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The complement of a set A in ¥*, denoted by A, is the set of all strings from ¥* not being
in A, A =%*— A. For languages A and B let AAB = {z|z € (A— B)U (B — A)} denote
the symmetric difference of A and B. Define AAB = {(z,y) |z € A < y & B}.

It is often needed to map finite sequences of strings to strings. Let (.) be a bijective
function mapping from 3>* x ¥* to 3* being computable and invertible in polynomial time.
Such pairing functions exist. A pairing function for finite sequences of strings can be
obtained from (.) in an obvious way and is also denoted by (.). In places we will for
simplicity use (.) also to denote a pairing function that maps sequences of strings from
Y*U{#} to £*, where # ¢ 3. Without loss of generality we require these pairing functions
for finite sequences of strings to have two additional properties. First, we require that the
length of the encoded sequence can be easily obtained. And second, we assume that for
every fixed constant k, there exists a polynomial s; such that for all £ < k and all sequences
of strings x1, xa, ..., Zy,

|<(II1,(II2, s axl>| < sk(max{|x1|, |ZE2|, sy |ZE4|})

In structural complexity theory sets of languages (also called complexity classes) are
studied. A variety of quite useful operators that map complexity classes to complexity
classes has been defined. Some of them will be of interest in this thesis and are defined
below. For a set of languages C, coC = {C'| C € C}. For a complexity class C, 3-C is
defined to be the set of all languages L such that there exist a set C' € C and a polynomial
p satisfying for all z € ¥*,

1€ L« (y:lyl < p(la])liz,y) € C).

Quite similarly, V - C is defined to be the set of all languages L such that there exist a set
C € C and a polynomial p satisfying for all z € 3%,

z €L < (Vy:lyl <p(=])[(z,y) € C].
For complexity classes C and D let
C-D={C—-D|CeCADeD},

and
CAD={CAD|CeCAD €D}

Throughout this thesis we will try to provide figures that illustrate the inclusion struc-
ture of the studied complexity classes. Since C is a partial order on the set of all subsets
of 3* we will use Hasse diagrams. In particular, in every figure a class C is contained in a
class D if there is a strictly upward directed path of bold or dotted lines leading from C to
D.



2.2 Turing Machines and Reductions

13

2.2 Turing Machines and Reductions

Our computational model is that of a k-tape multi-head Turing machine, for a more formal
definition see [HU79, WW86]. Every Turing machine can potentially be equipped with
oracles. Polynomial-time Turing machines are Turing machines that for a fixed polynomial
p make on every input x at most p(|z|) computation steps before reaching a final state.
We consider nondeterministic and deterministic polynomial-time (oracle) Turing machines,
DPTM and NPTM, respectively.

Without loss of generality let the Turing machines be clocked with clocks that are
independent of the oracle. M# denotes the DPTM (or NPTM) M with oracle A. By
M*(x) we denote the computation of the DPTM (or NPTM) M with oracle A on input
z. In places where we write M(z) though M was previously said to be an oracle machine
we refer to that part of the computation on input z that is independent of the oracle. A
DPTM M# accepts a language L if and only if on every input z € ¥, M4(x) halts in
an accepting configuration (equivalently, M accepts the input z) if and only if z € L.
An NPTM N4 accepts a language L if and only if on every input € *, there ezists an
accepting computation branch of N4 (z) if and only if z € L. L(M) denotes the language
accepted by some DPTM or NPTM M.

Reductions are a standard method to compare languages with respect to their complex-
ity. Informally, a problem A reduces to a problem B if solutions for A can efficiently be
computed with the help of one or several solutions for B. Many-one reductions [Kar72] (also
known as Karp reductions), truth-table reductions [LLS75], and Turing-reductions [Coo71]
(also called Cook reductions) are the types of reductions we are going to be concerned with.

Definition 2.2.1 Let A and B be two languages.

1. A is said to be many-one reducible to B (A<} B) if and only if there exists a
polynomial-time computable function f such that for all € 3*,

r€A <~ f(z)€B.

2. A is said to be truth-table reducible to B (A<} B) if and only if there exists a
polynomial-time computable function f such that for all z € X*, f(z) computes a
number of strings y1,ys,...,yn and an m-ary boolean function « such that

r €A = alxs(y),xs¥2),. -, xB(ym)) = 1.

3. A is said to be Turing-reducible to B (A <}. B) if and only if there exists a DPTM M
such that for all z € 3%,

z €A < MP(z) accepts.
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Bounding the number of strings computed by the function f in part 2 or the number of
oracle queries allowed to be made by the DPTM M in part 3 by a fixed constant & leads to
the notions of k-truth-table ( <}, ) and k-Turing ( <} ) reducibility [LLS75], respectively,
in the obvious way.

For any reduction <!, defined above and any complexity class C, a set A is called <}-
complete for C if and only if A € C and for all C € C, C <!, A. RE(C) = {L|(3C € O)[L <},
C]} denotes the reducibility closure (hull) of C with respect to <. A complexity class C is
said to be closed under <}, if and only if R} (C) = C.

2.3 Central Complexity Classes and Hierarchies

Very informally, a complexity class is a set of languages that have the same complexity
with respect to some resource of a Turing machine. The complexity class P is the set of all
languages L € ¥* that are accepted by some DPTM. FP denotes the set of all functions
that are computable by some DPTM. Similarly, NP is the set of all languages L € ¥* that
are accepted by some NPTM. NP is closed under many-one reductions. SATISFIABILITY
(SAT), the set of all satisfiable boolean formulas, is a many-one complete language for NP.
Observe that for every boolean formula F' it holds that F' € SAT <= Fy € SATV F| €
SAT, where Fj and F} are obtained from F' by assigning 0 and 1, respectively, to one fixed
variable. This property is called the self-reduction of SAT.
For a complexity class C, P¢ (FP€) and NPC denote the set of languages (functions)
that are accepted (computed) by some DPTM or NPTM, respectively, with some oracle
from C.

2.3.1 The Polynomial Hierarchy

The polynomial hierarchy was introduced by Meyer and Stockmeyer [MS72, Sto77] as a
tool for classifying computational problems. Its importance in complexity theory has grown
since. The polynomial hierarchy, PH, is built inductively on P.

Definition 2.3.1 [MS72, Sto77]
1. AP =%P =) = P.
2. For k> 1, AP = P¥i-1, ¥P = NP¥-1, and II? = coxl.

3. The polynomial hierarchy PH is defined by

PH= [ =,
keN

while its kth level consists of the classes AE, E}z, and HE.
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The Boolean Hierarch;

coNP NP

-
P

Figure 2.1: The Polynomial Hierarchy and its Levels
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So for instance, AY = P, =¥ = NP, A} = PP and I} = coNPN'. As it is standard,
the term polynomial hierarchy will be used simultaneously for the complexity class PH and
the hierarchy formed by the classes X}, I}, and A}, k > 1.

The Eg and H}z classes of the polynomial hierarchy can be characterized in terms of k
alternating operators 3 and V [MS73].

22: 3.v.-3...Q P,
N————

k alternating operators

where Q@ = 3 if k£ is odd and Q =V if k is even. Similarly,

HEZ V.3.¥...Q P,
N———

k alternating operators

where Q@ =V if k£ is odd and @ = 3 if £ is even.
The classes of the polynomial hierarchy are all closed under many-one reductions and
contain many-one complete sets. If ng and ng_l, k > 1, are complete languages for ZZ

and 25,1, respectively, one can without loss of generality assume that

Ly = {2 Gy : Iyl < p(le])(2,9) & Lyp }

1
for some polynomial p. One can even assume that p(n) = n for all n € N.

Though the question of whether the polynomial hierarchy collapses or not is still open
many conditions are known under which the polynomial hierarchy does collapse. In partic-
ular, the polynomial hierarchy is known to possess the upward collapse property [Sto77].
For every k > 1,

1. P =T’ — PH =%},

2. XP =%Pb

b, = PH=XP

3. Ab=35P — PH=3P.

It follows immediately from the definition of many-one reductions that L € X} for some II}
complete language L implies P = H}z and thus PH = ZE. This fact will be exploited in
Chapters 3 and 4.

The extent of the collapse of the polynomial hierarchy has been studied intensely for
the case that the boolean hierarchy collapses (see Chapter 3).

Much more can be said about the polynomial hierarchy. The rather sparse selection of
results presented above has been made with respect to the topics covered in this thesis. For

more results and references we refer the reader to any text book on complexity theory, for
instance, [BDG88, BDG90, WW86, Pap94].
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2.3.2 The Boolean Hierarchy

The structure of complexity classes inside Ab has received much attention. Three hierarchies
inside AY are of particular interest for our work, the boolean (or difference) hierarchy, the
bounded-query hierarchy, and the bounded-truth-table hierarchy.

The notion of the boolean hierarchy over some class C being closed under union and in-
tersection in concept can be found in the work of Hausdorff [Haul4]. It has been introduced
into complexity theory via the boolean hierarchy over NP independently by a number of
authors with a variety of definitions [Wec85, CH86, KSW87, CGH88, CGH*89]. We use
the definition based on nested differences of sets. Though for an arbitrary complexity class
C the notions of the difference hierarchy and the boolean hierarchy over C are not equivalent
(for instance, see [HR97]), for C = X, k > 1, they are [KSW87, CGH*88].

Definition 2.3.2 For all £ > 1,
1. DIFF,(2}) = X}.
2. For m > 1, DIFF,,, (X)) = P -DIFF,,(2}).

3. The boolean or difference hierarchy over 22 is defined as

BH(X}) = | DIFF,(Z}).

m>1
DIFF,,(X}) and coDIFF,, (X)) form its mth level.

We will refer to the boolean hierarchy over NP as the boolean hierarchy and use the
classical notation for it, that is BH(NP) = BH and DIFF,,(NP) = BH,,. So for instance,
BH, is exactly the class DP [PY84].

The boolean hierarchy (over NP) is a well studied object, a few papers shall be men-
tioned, [Wec85, CH86, KSW87, CGH*88, CGH"89, Wag90, Bei91]. Many results of the
boolean hierarchy immediately carry over to the boolean hierarchy over Eg, k>1. Itis
known that the levels of the boolean hierarchy over some ZZ are closed under many-one
reductions and contain many-one complete sets. Furthermore, for a set L, L € DIFFm(EE)
if and only if there exist sets Ly, Lo, ..., L, € ZE such that L = L1 — (Lo — (- - — (Lyp—1 —
L) -++)). One can without loss of generality even assume L D Ly D --- D L, [CGH'88].

The inclusion structure of the boolean hierarchy and the relationships between the
boolean hierarchy and the bounded-truth-table hierarchy are illustrated in Figure 2.2.

A number of techniques have been developed while studying boolean hierarchies. Two
of them will be heavily exploited in this thesis. The mind change technique, developed
by Wagner [Wag79] and later applied to complexity theory [Wec85, Wag90, Bei9l], is a
tool particularly well suited to study inclusion relations with respect to boolean hierar-
chies. The mind change technique (for an example see Chapter 5) will have applications in
Chapter 3 when linking boolean and polynomial hierarchy collapses as well as in Chapter 5
while characterizing query order classes. The easy-hard technique has been developed by
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BH = QH = QH,
P
COBH4 BH4

coNP NP

Figure 2.2: The Boolean, Bounded-Query, and Bounded-Truth-Table Hierarchies

Kadin [Kad88] to prove a collapse of the polynomial hierarchy from the assumption that the
boolean hierarchy collapses. The easy-hard technique has turned into a key tool for prov-
ing collapses of complexity classes induced by a collapse of boolean or generalized boolean
hierarchies [Wag87, Wag89, CK96, BCO93, HHH99, BF98, HHH97b]. This interesting de-

velopment will in detail be discussed in Chapters 3 and 4.

We mention that it is well known that the boolean hierarchy over Eg, k > 1, possesses

the upward collapse property. In particular, for all m,k > 1,
1. DIFF,,(X}) = coDIFF,,,(£}) = BH(XZ}) = DIFF,,(}).
2. DIFF,,(2}) = DIFF,, (X)) = BH(Z}) = DIFF,,(Z}).

Boolean hierarchies over other classes than X} have also been investigated [GNW90,

BJY90, BCO93, HR97, HW97b).
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2.3.3 The Bounded-Truth-Table and the Bounded-Query Hierarchies

Starting from the definition of A}: 1= P} itself researchers have studied limitations placed
on the way an oracle can be accessed. Limitations being used are bounding the total number
of queries or requiring all queries being made at once without knowing the answer to any
query. First results in that direction have been obtained in [Bei91, Wag90] and much more

has been learned since.

Definition 2.3.3 1. PCU denotes the set of all languages accepted by some DPTM
making on every input at most j queries to an oracle from C.

2. The bounded-query hierarchy over C, QH(C) = | pell,
Jj>1

3. P]C._tt denotes the set of all languages accepted by some DPTM making on every input
at most j parallel queries (all queries have to be generated before asking one of them
to the oracle) to an oracle from C.

4. The bounded-truth-table hierarchy over C, QH(C) = | P]C-_tt.
j21

Since the the bounded-query hierarchy and the bounded-truth-table hierarchy over NP
where the first those hierarchies studied we will henceforth refer to them simply as the
bounded-query hierarchy and the bounded-truth-table hierarchy.

For every k > 1, the levels of the bounded-query hierarchy over ZZ and the levels of the
bounded-truth-table hierarchy over 2}2 are exactly the bounded-Turing and bounded-truth-
table reducibility closures of EZ, respectively. More precisely, for all m, k > 1,

1. PP = RP (2.

2. PoF, —RP

m-tt 'm-tt

(Z%)-

The levels of the boolean hierarchy, the bounded-query hierarchy, and the bounded-
truth-table hierarchy over Zg, k > 1, intertwine. The following relations are known [KSW87,
Wag90, Bei91] (see also Figure 2.2). For all m,k > 1,

1. DIFF,,(2P) U coDIFF,, (SP) C PoF,, C DIFF,, 1 (SP) N coDIFF, 41 (S7).
9. PYRIml = PJE

3. BH(Z)) = QH(Z}) = QH| (D).

The above properties ensure that the collapse of one of the three hierarchies implies also
a collapse of the other two.
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coNP ADIFF5 (57 NPADIFF,(5F)
prk, — PADIFF, ()
/ \
coDIFF,(XF) DIFF,(X})
- J——
APAY?

pZill Zpaxy

—_

Figure 2.3: The Boolean Hierarchy over ¥}, k > 1, and its Refined Levels
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2.3.4 A Refinement of the Boolean Hierarchy over X}, k > 1

The operator A allows to refine the levels of the boolean hierarchy over Zg, E > 1 (see
Figure 2.3).

In particular, we have for every m > 1 and every pair of complexity classes C and D
such that PCC C D C X},

P
N8
m-tt

DIFF,,(3}) C P, %, C CADIFF,,(£P) C DADIFF,,(£P) C DIFF,,(3P).

This refinement, in a more general form, has first been studied by Selivanov [Sel94a, Sel95].
Selivanov extended the concept of the boolean hierarchy away from being based on one
single complexity class to being based on a family of complexity classes. It was observed by
Selivanov [Sel94a] and Wagner [Wag98] that the refinement of the boolean hierarchy over
ZZ, in particular the inclusion structure of the classes shown in Figure 2.3, is strict unless
the polynomial hierarchy collapses.

2.4 Query Order

In Chapter 5 we study query order in computational complexity. Since query order has never
been studied before we have to define the basic concepts and fix appropriate notations.

Definition 2.4.1 Let C and D be complexity classes.

1. PP denotes the set of languages that are accepted by some DPTM making on every
input at most one query to some oracle from C followed by at most one query to some
oracle from D.

2. P(CD) denotes the set of languages that are accepted by some DPTM making on every
input at most two parallel queries, at most one query to some oracle from C and at
most one query to some oracle from D.

The above defined classes are the basic and most natural query order classes, at most
one query to each of the two different oracles. We denote the machines that accept the
languages of the above defined query order classes in total analogy to the definition of the
classes itself, for instance, M B denotes a DPTM that on every input makes at most one
query to oracle A followed by at most one query to oracle B.

In Section 5.2 we study query order classes of the form PBHi:BHx
query order classes P/ are stated in Section 5.3.

Two already existing notions are somewhat related to these basic query order classes.
First, note that CAD C P(©:P) In particular, Z?AZE’, J # k, is a class almost as powerful as

peHh) being able to handle 15 of the 16 possible two-ary boolean functions (truth-tables).
But an equality E?AEE — PO g very unlikely since it would imply a collapse of the
polynomial hierarchy [Sel94a] (see also [Wag98]). The connection between the “A classes”
which in a more general form appeared already in the work of Selivanov [Sel94a, Sel95] and

Some results regarding



22

Preliminaries

the query order classes is in detail studied in [Wag98]. The second notion related to query
order is based on a generalization of the “advice classes” notion of Karp and Lipton [KL80].
For any function class F and any complexity class D define D//F = {L| (3D € D)(3f €
F)Vz € %)z € L < (=, f(x)) € D]} [KT94]. If F is the set of characteristic functions
from all languages of a complexity class C, then D//F = PP+ where PP* denotes the
set of all languages accepted by some DPTM making on every input one query to an oracle
from C followed by one query to an oracle from D and having the additional property that
it accepts if and only if the D oracle query receives the answer “yes.” Classes of the form
PBH;:BHi+ have been studied in [ABT96]. There is a nontrivial relationship between the
classes PBHiBHet and our query order classes PBHiBHr (see Section 5.2).

The following more general query order classes have also been studied [HHW99, BC,
Wag98].

Definition 2.4.2 Let C, D, and £ be complexity classes.

1. P¢P€ denotes the class of languages accepted by deterministic polynomial-time ma-
chines making one query to a C oracle followed, in case of a no answer to this first
query, by one query to an oracle from D and, in case of a yes answer to the first query,
by one query to an oracle from &.

2. By P¢P€ we denote the set of all languages accepted by some DPTM making on
every input at most one query to a C oracle followed by at most one query to an
oracle from D followed by at most one query to an oracle from £.

3. P]c-:,f . denotes the set of languages that are accepted by some DPTM making on every
input one round of at most j parallel queries to some oracle from C followed by one
round of at most k parallel queries to some oracle from D.

4. chk,_lzt) denotes the set of languages that are accepted by some DPTM making on every

input at most j + k parallel queries, at most j of those 5 + k queries to some oracle
from C and at most &k of those j + k queries to some oracle from D.

Classpes IDof the form PBHi:BH&BH 16 gtudied in Section 5.2. Results on classes of the

b3 5! . .
form P; it can be found in Section 5.3.

2.5 Miscellaneous

For every k > 1, the k-dimensional hypercube is defined to be the graph with vertex
set {(a1,a2,...,a)| (Vi : 1 < i < k)a; € {0,1}]} such that two vertices are adjacent
(connected by an edge) if and only if they differ in exactly one position. As is standard in
graph theory [BMT76], a path in the hypercube is a sequence of distinct vertices such that
every pair of consecutive vertices is joined by an edge. For the k-dimensional hypercube,
the ith unit vector is the k& tuple (0,...,0,1,0,...,0). Vectors, especially unit vectors, are
k—i i—1
added by position wise addition.



Chapter 3

The Boolean and Polynomaial
Hierarchies Connection

3.1 Introduction

Does the polynomial hierarchy collapse if the boolean hierarchy collapses? This question
arises naturally when studying the boolean hierarchy. Recall that the boolean hierarchy is a
refinement of the polynomial hierarchy between the classes P and AY. An affirmative answer
to the above question would provide yet another strong hint (aside from relativized sepa-
ration) that the boolean hierarchy is infinite since it is widely believed that the polynomial
hierarchy does not collapse. Furthermore, an exact analysis to what level the polynomial
hierarchy collapses if the boolean hierarchy collapses at its mth level will certainly shed
light on the relationship between those two hierarchies.

The first result linking a collapse of the boolean hierarchy to a collapse of the polynomial
hierarchy has been obtained by Kadin [Kad88] about 10 years ago. Kadin showed that a
collapse of the boolean hierarchy at level m implies a collapse of the polynomial hierarchy to
Eg. People have tried since to improve the induced collapse of the polynomial hierarchy. In
fact, up to now Kadin’s result has been improved four times, by Wagner [Wag87, Wag89],
Chang and Kadin [CK96], and Beigel, Chang, and Ogihara [BCO93]. The best known
result today allows to conclude a collapse of the polynomial hierarchy to a level just inside
DIFF,, (=) [BCOY3.

In this section we will pursue the question of to what level the polynomial hierarchy
collapses if the boolean hierarchy collapses at level m. The goal of this section being closely
reflected by its structure is twofold. On one hand we will review the work, results and proof
techniques of the above mentioned five papers [Kad88, Wag87, Wag89, CK96, BCO93] in
the overview-like Section 3.2. We provide a compact historic outline of this interesting line
of research together with a detailed analysis of the evolution of the easy-hard technique
which, introduced by Kadin [Kad88], has led to increasingly stronger results in the before
mentioned papers. The second goal of this chapter is to prove a deeper collapse of the
polynomial hierarchy which is done in Section 3.3. The proof of the main theorem of
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this chapter, Theorem 3.3.1, is based on a careful analysis of a proof given in [BCO93]
together with a double application of one of its key ideas. We show that for all m > 2,
if BH,, = coBH,, then the polynomial hierarchy collapses to BH,, ADIFF,, ;(X5). If
DIFF,,(2}) = coDIFF,,(2}), k > 1, analogous claims do also hold. Theorem 3.3.1 sheds
new light on a question asked by Chang and Kadin [CK96]. Together with the downward
collapse results from Chapter 4, this allows to conclude a deeper collapse of the polynomial
hierarchy from the assumption that the bounded-truth-table hierarchy over Z],‘z, k> 1,
collapses.

All theorems of this section are examples of upward collapse results, a collapse of the
boolean hierarchy (sandwiched between P and AY) implies a collapse of the polynomial
hierarchy to a level above ¥5. Recently, the easy-hard technique (modified as needed) has
also been crucial in proving downward collapse results [HHH99, BF98, HHH97b]. For an
overview and detailed analysis of this line of research see Chapter 4.

3.2 A Review

Kadin [Kad88] showed that a collapse of the boolean hierarchy implies a collapse of the
polynomial hierarchy. He invented the easy-hard technique, a key ingredient in his proof
and all those that are built upon it and establish stronger results. Since this chapter studies
the collapse of the polynomial hierarchy induced by a collapse of the boolean hierarchy the
first section consists of an overview-like analysis of the relevant previous work. In particular,
we study in detail the results and proof techniques of the following five papers:

1. J. Kadin. The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Col-
lapses. SIAM Journal on Computing, 17(6):1263-1282, 1988. Erratum appears in the
same journal, 20(2):404.

2. K. Wagner. Number-of-Query Hierarchies. Technical Report 158, Institut fiir Math-
ematik, Universitit Augsburg, Augsburg, Germany, October 1987.

3. K. Wagner. Number-of-Query Hierarchies. Technical Report 4, Institut fiir Infor-
matik, Universitat Wiirzburg, Wiirzburg, Germany, February 1989.

4. R. Chang and J. Kadin. The Boolean Hierarchy and the Polynomial Hierarchy: A
Closer Connection. SIAM Journal on Computing, 25(2):340-354, 1996.

5. R. Beigel, R. Chang, and M. Ogiwara. A Relationship Between Difference Hierarchies
and Relativized Polynomial Hierarchies. Mathematical Systems Theory, 26(3):293-
310, 1993.

We will concentrate on the improvements and the technical contributions each paper
made with respect to previous work in this line of research. After a short overview over
the main results obtained and an informal discussion of the technical advances made we
rigorously prove a special case of each of the main theorems in its original version.
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3.2.1 Previous Results

In the following we list the main results obtained together with pointers to the earliest and
most recent versions of the five above mentioned papers.

Recall that due to BH; = NP and the upward collapse property of the polynomial
hierarchy we have that BH; = coBH; = PH = NP.

Kadin 1987 [Kad87, Kad88] Kadin started a line of research that studies the ques-
tion of to what level the polynomial hierarchy collapses if the boolean hierarchy collapses.
He showed that a collapse of the boolean hierarchy at level m implies a collapse of the
polynomial hierarchy to its third level, Zg.

Theorem 3.2.1 [Kad87, Kad88] For all m > 2,

BH,, = coBH,, —> PH = .

Wagner 1987 [Wag87] Wagner not just extended the result of Kadin to the unbounded
boolean hierarchy, but also improved it significantly for the boolean hierarchy itself. Kadin’s
technique together with oracle replacement enabled Wagner to show that a collapse of the
boolean hierarchy over NP at level m implies a collapse of the polynomial hierarchy to A%.

Theorem 3.2.2 [Wag87| For all m > 2,

BH,, = coBH,, —> PH = A},

Wagner 1989 [Wag89] Wagner observed that a modified definition of hard strings yields
an even stronger collapse of the polynomial hierarchy. In particular, he showed that a
collapse of the boolean hierarchy at level m implies a collapse of the polynomial hierarchy
to a level within AY, namely, the boolean closure of X5, BH(X5).

Theorem 3.2.3 [Wag89] For all m > 2,

BH,, = coBH,, = PH = BH(X)).

Chang and Kadin 1989 [CK89, CK96] Chang and Kadin refined the method origi-
nally used by Kadin to further tighten the connection between the boolean hierarchy and the
polynomial hierarchy. Unaware of Wagner’s work they improved his results. They showed
that a collapse of the boolean hierarchy at level m implies a collapse of the polynomial
hierarchy to a level within the boolean closure of X5, namely, the mth level of the boolean
hierarchy over 5.

Theorem 3.2.4 [CK89, CK96] For all m > 2,

BH,, = coBH,, => PH = DIFF,,(3}).



26

The Boolean and Polynomial Hierarchies Connection

Beigel, Chang, and Ogihara 1991 [BCO91, BCO93] Beigel, Chang, and Ogihara,
while picking up ideas developed by Wagner, were able to draw an even stronger conclusion.
In particular, they showed that a collapse of the boolean hierarchy at level m implies a
collapse of the polynomial hierarchy to a level within the mth level of the boolean hierarchy
over X5, namely, to (P%ﬁl_tt)NP, the class of languages accepted by some deterministic
polynomial-time machine making at most m — 1 parallel queries to an NPNF = ¥P oracle

and an unlimited number of queries to an NP oracle.

Theorem 3.2.5 [BCO91, BCO93] For all m > 2,

BH,, = coBH,, = PH= (PX? )"

3.2.2 The Development of the Easy-Hard Technique

As already mentioned, the easy-hard technique plays a crucial role in each of the above
mentioned theorem’s proofs. The term easy-hard originates from Kadin’s observation that
in case the boolean hierarchy collapses at level m the strings of any particular length n in
a coNP complete language L divide into easy and hard strings. Hard strings are strings
that allow to translate a collapse of the boolean hierarchy from level m to level m — 1
in a restricted sense. Several hard strings eventually allow to reduce the coNP complete
language L to an NP language. In contrast, if no hard strings at length n exist then all
strings in L of length n are easy and this allows to directly reduce L to an NP language.
Consequently, if we know whether there exist hard strings or not, and if, in case they exist,
we are able to efficiently compute them, we can with their help reduce the coNP complete
language L to an NP language and eventually collapse the polynomial hierarchy. This
approach is central in each of the five papers studied in this section. The major difference
among the five papers and the main reason for the difference in their results is the way in
which the needed information about the hard strings (their existence and the strings itself)
is obtained, and in which way this information is then exploited to collapse the polynomial
hierarchy.

Kadin [Kad88] constructed a sparse set S such that S contains information about the
existence of hard strings for any length and in case there exist hard strings for some length
then a lexicographically extreme hard string for that length can be efficiently extracted
from S. It is shown that coNP C NP®, which by a result of Yap [Yap83] implies PH C L.

Wagner used a quite different approach in his two papers, [Wag87, Wag89]. In both
papers the polynomial hierarchy is collapsed directly (without constructing a sparse oracle)
using oracle replacement and hard strings in form of advice. The main reason for the
stronger result in his second paper is a modified definition of easy and hard strings. Thus,
instead of hard strings giving a reduction for only the strings of one particular length
(implying that one hard string for each length is needed when collapsing the polynomial
hierarchy), Wagner’s new definition yields that hard strings can give a reduction for all
strings having a length below a particular threshold.
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12 SP _ [Kads8]
: A3 — [Wag87]
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Figure 3.1: Results overview—a collapse BH,, = coBH,,,, m > 2, implies a collapse of the
polynomial hierarchy to the classes at the horizontal lines (as proven in the appropriate

papers).
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Chang and Kadin [CK96], independent of Wagner’s work, also used the stronger notion
of hardness. The observation that hard strings of larger length allow to efficiently gain
information about the existence of hard strings at lower length together with an elegant
application of the nested difference structure underlying the levels of the boolean hierarchy
over X, leads to their final result.

Beigel, Chang, and Ogihara [BCO93] further improved the results of Chang and Kadin.
[BCO93] follows the approach of Wagner, but with two major innovations. First, complete
languages for the levels of the boolean hierarchy are used that do not force to distinguish
between odd and even levels. Second, their proof exploits the mind change technique
to efficiently check the existence of hard strings and their effect on the outcome of the
reduction using those hard strings. The second innovation goes hand in hand with a modified
argumentation for (conditionally) collapsing the polynomial hierarchy.

3.2.3 A Close Look at the Proofs

In the following we will prove for each of the Theorems 3.2.1, 3.2.2, 3.2.3, 3.2.4, and 3.2.5
a special case to illustrate the underlying proof technique and the innovations made with
respect to previous work. We will start from the assumption DP = coDP-a collapse of the
boolean hierarchy at its second level-and prove the collapse of the polynomial hierarchy
obtained by the corresponding theorem as it was done in the original version.

For clarity of presentation we would like to make the following rather technical assump-
tions. Let s be a polynomial such that for all z,y,z € £* U{#}, [(z,y)| < s(max{|z|, |y|})
and |(z,y,z)| < s(max{|z|, |y|,|z|}). Furthermore, let us agree on the following convention.
Whenever we talk about polynomials in the remainder of this chapter let us assume that
those polynomials are of the form n® + b for some integers a,b > 0. Since the polynomials
involved in the upcoming proofs always play the role of a function bounding the running
time of some Turing machine or the length of some variable and all complexity classes un-
der consideration have certain required properties we can make this assumption without
loss of generality. This convention has the advantage that a polynomial p now satisfies
p(n+1) > p(n) > n for all n, a condition we will need throughout this section’s proofs.

Kadin 1987 [Kad87, Kadsg]
Theorem 3.2.6 If DP = coDP then PH = X}.

Proof: Recall that DP [PY84] is defined as DP = {L; — Lo | L, Ly € NP}.

A Suppose DP = coDP. Let Lyp be a many-one complete language for NP. It is not
hard to verify that Lpp = {(z,y) |z € Lxp Ay € Lnp} is a many-one complete
language for DP. According to our assumption, DP = coDP, there is a polynomial-
time computable function h reducing Lpp to Lpp, i.e., for all z1,z9 € L%,

<(II1,£E2> € Lpp — h(<x1,$2>) € Lpp.
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Let ' and A" be the polynomial-time computable functions such that for all zq,z9 €
2*, h({z1, 32)) = (W' ({21, 22)), B ((z1, 22))). Hence,

1 € Lnp Ao & Lyp <= h,(<(II1,(II2>) ¢ Lnp V h"((xl,m)) € Lyp.

The easy-hard method is based on the fact that h is a many-one reduction from a
conjunction to a disjunction.

B The string z2 is said to be easy if and only if (321 : |z1| = |z2|)[h" ((x1,22)) € Lxp].
Clearly, if z9 is easy then zo &€ Lyp. But note that checking whether a particular
string is easy can be done with an NP algorithm.

x9 is said to be hard if and only if 25 & Lxp and (V1 : |z1| = |z2|)[h ((x1, 22)) & Lnp].
Hence, if z2 is a hard string we have for all z1, |z1| = |z2],
T] € Lnp <— h,(<:L‘1,:L‘2>) Q Lyp.

Note that the strings in Lnyp divide into easy and hard strings.

C Define the set S" = {w|w is the lexicographically smallest hard string of length |w|} and
the set S of marked prefixes of S', S = {y#!*l | yv € §'}. Note that S is sparse.

D Claim D: coNP C (NP)%,

We will prove the above claim by giving an (NP)® algorithm for Lyp:

1. On input z, |x| = n, check whether S=" is empty or not. This can be done by
querying 04"~ ! and 1#"~!. Obviously, =" = () if and only if both queries are
answered no.

2. If S=™ = () then there exists no hard string of length n. Hence, x € Lyp if and
only if z is easy. Thus, guess z1, |z1| = n, compute h”({z1,z)), and accept if
and only if h”((z1,z)) € Lxp.

3. If S=™ # () then there exists a hard string of length n. Retrieve the only string
not containing # (recall that this is the lexicographically smallest hard string of
length n) from S=", call it w, with adaptive queries to S=". Compute h'({z,w))
and accept if and only if A'({(z,w)) € Lxp.

According to B, this algorithm is correct.

E Bya resultpof Yap [Yap83], coNP C (NP)* for a sparse set S implies 5 = I} and hence
PH = 52,
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Wagner 1987 [Wag87]
Theorem 3.2.7 If DP = coDP then PH = P>%.
Proof: A and B As in the proof of Theorem 3.2.6 (Kadin 1987).

C Let Lyp, ng, and ng be many-one complete languages for NP, $5, and Eg, respectively,
and po, p3 be polynomials such that

Lyp ={z | (Jy : [yl < p2(|2]))[(z, y) & Lxp]}

and
Ly = {=| Gy : Iyl < ps(la) [z, ) & Lgl}.

D For all z € X* let

f(z) = 1 if there exists a hard string of length ||,
~ | 0 if there exists no hard string of length |z|.

It is not hard to see that f € FPzgm, where FP2U] is defined similar to P51 with
the modification that the base P machine computes a function instead of accepting a
language. Note that f(z) = f(y) if |z| = |y|.

We call (1, #) a hard pair if and only if f(1') = 0. (1},y), y € ¥*, is called a hard
pair if and only if y is a hard string of length [.

E One hard pair suffices to provide a reduction from Lyp to an NP language.

Claim E: There exists a set A € NP such that for all z € X*, if (11|, w) is a hard pair
then
¢ Lyp <= (z,w) € A.

Let z € ©*. Let (11%1, w) be a hard pair, note that this implies w € £*U{#}. Suppose
f(11?ly = 0. Hence w = # and for every string y such that |y| = |z|, y & Lxp if and
only if y is easy. This holds, in particular, for x itself. According to B we thus have

r & Lyp < (31 : |z1] = |2|) [0 ((z1,2)) € Lnp).

Now suppose that f(11?l) = 1. Hence w is a hard string of length |z|. According to B
we obtain

T Q Lyp — h'((x,w)) € Lyp.
We define A = {{(z,w)| (w = # A (Fz1 : |z1| = |2|)["({(z1,2)) € Lnp]) V (w €

Y* AR ({z,w)) € Lyp)}. It is not hard to verify that A € NP and that A satisfies
Claim E.

F Applying Claim E, a series of hard pairs of growing length gives a reduction from LEQP
to an NP language.



3.2 A Review

31

Claim F: There exist a set B € NP and a polynomial q such that for oll x € X%, if for
all 0 < i < q(|z]), (1*,w;) is a hard pair then

HARS ng — (I,w(),u)l,...,wq“m”) € B.
Let x € ¥*. By definition of Lyp we have
z € Lyy <= (Fy: |yl <p2(2]))[(z,y) & Lnp].

According to Claim E there exists a set A € NP such that for all y € 3*, if <1\($,y>\’w>
is a hard pair then
(z,y) & Lnp = ((z,y),w) € A.

Hence, if (1°,w;) (w; € X* U {#}) is a hard pair for all 0 < i < s(p2(|=|)) (recall that
s is a polynomial bounding the size of (.)) then

z € Lyp <= (Fy: lyl < p2(l2)[{{z,9), wi(zy)) € Al
Let ¢ be a polynomial such that ¢(n) > s(p2(n)) for all n. Define
B = {(z,wo, w1, ..., we(a) | Ty = [yl < pa(l2])) [z, 1), wiz ) € Al}
and note that B € NP. This proves Claim F.

G Taking the result of Claim F one step further, hard pairs of growing length provide a
reduction from ng to a XY language.

Claim G: There exist a set D € ¥5 and a polynomial p such that for all z € X*, if for
all 0 < i < p(|z|), (1°,w;) is a hard pair then

T e ng <~ (x,wo,wl, ce ,wp(‘x‘» €D.
The proof is similar to the proof of Claim F. Let z € ¥*. We have
z € Lyp < (Fy: |yl < ps(lz)))[(z,y) & Lsp]-

According to Claim F there exist a set B € NP and a polynomial ¢ such that for all
y, ly| < p3(|z]), if (1*,w;) is a hard pair for all 0 <4 < q(s(p3(|z|))) then

<5L',y> € LEg — ((x,y),wo,w1, s awq(\(x,yﬂ)) € Ba
and hence
z € Lyp <= (Fy: lyl < ps(|z))[{{z,9), w0, w1, .., wg((a)))) € Bl-
Let p be a polynomial such that p(n) > q(s(ps(n))) for all n. Define
D = {{z,wo,w1,...,wyap) | Ty : [yl < pa(|z]))[{(z, ), wo, wi, - . -, We(i(,9)))) & Bl}-
Clearly, D € ¥5.



32 The Boolean and Polynomial Hierarchies Connection

H Since the hard pairs needed in Claim G can be computed with queries to a ¥} oracle we
finally obtain

Claim H: Lyp € P2,

Let D € ¥} and p be a polynomial, both as defined in G. We have the following P
algorithm for Lyp:

1. On input z, compute f(1°), f(11), f(12), ..., f(1PU=D). This can be done with
p(|]z|) parallel queries to a 5 oracle since f € Fpsll,

2. Query (z, f(1°), (1Y), £(12),..., f(1PU=D)). The ¥ oracle queried in this part
of the P¥2 algorithm is described by the following algorithm:

(a) On input (x,yo,y1,...,yx) verify that k = p(|z]).

(b) For all 0 <7 < p(|z|) such that y; = 0 set w; = #.

(c) For all 0 < ¢ < p(|z|) such that y; = 1 guess w;, |w;| = ¢, and verify that
w; is a hard string. Recall that this verification can be done with a coNP
algorithm. Continue if this verification succeeds, otherwise reject.

(d) Accept if and only if (z,wp, w1, ..., wy(e|) € D-
3. Accept (the input z) if and only if the query from part 2 returns yes.

It is not hard to verify that the above algorithm, in light of Claim G, proves Claim H
Note that the oracles queried in parts 1 and 2 differ. Since X} is closed under disjoint
union this can easily be avoided by using the disjoint union of the oracles and mod-
ifying the oracle queries in such a way that they are made to the correct part of the
disjoint union.

I Since Lyy is complete for X5 we conclude X = P>2 and thus PH = P2,

Wagner 1989 [Wag89]
Theorem 3.2.8 If DP = coDP then PH = PZ3[3I,

Proof: The major difference to the proof of Theorem 3.2.7 lies in B of the upcoming
proof, a modified definition of easy and hard strings. Note that a straightforward adaption
of the proof of Theorem 3.2.7 to this new definition would suffice to prove Theorem 3.2.8.
However, Wagner used a slightly different approach and obtained stronger intermediate
results than in [Wag87]. Though those stronger intermediate results do not lead to a better
overall result here, they appear in the papers of Chang and Kadin [CK89, CK96] and Beigel,
Chang, and Ogihara [BCO91, BCO93] again and play an important role there.

A As in the proof of Theorem 3.2.6 (Kadin 1987).
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B Let [ be an integer. The string x5 is said to be easy for length [ if and only if |z9| <[ and
(31 2 |z1| < O[W' ({21, 22)) € Lnp]. Clearly, if x5 is easy for length [ then zo & Lyp.

z9 is said to be hard for length | if and only if |zo| <, x2 & Lxp, and (Vi : |z1] <
D[R ({(x1,z2)) & Lxp]. Hence, if 25 is a hard string for length | we have for all z,
|(II1| < la

T1 € Lyp <— h,(<(II1,(II2>) Q Lyp.

Note that the strings in (LNP)Sl divide into easy and hard strings for length /.
C As in the proof of Theorem 3.2.7 (Wagner 1987).
D For all z € £* let

f(z) = 1 if there exists a hard string for length |z|,
10 if there exists no hard string for length |z|.

Note, f € FP™W and f(z) = f(y) if |z| = |y|.
We call (1, #) a hard pair if and only if f(1') = 0. (1},y), y € ¥*, is called a hard
pair if and only if y is a hard string for length [.

E Similar to E in the proof of Theorem 3.2.7 (Wagner 1987) (with the obvious adaptions
due to the changed definition of easy and hard strings) one hard pair gives a reduction
from Lyp to an NP language.

Claim E: There exists a set A € NP such that for all z € ¥* and all | > |z|, if (1',w) is
a hard pair then
z ¢ Lyp <= (2,1, w) € A.

Let € ©* and [ > |z|. Suppose that (1!,w) is a hard pair, hence w € * U {#}.

If f(1') = 0 then w = # and for every string y, |y| < I, y € Lyp if and only if y is
easy for length [. This holds, in particular, for z itself. According to B we thus have

x Q Lnp — (3:51 : |£E1| < l)[hll(<$1,x>) € LNP]-
If f(1') = 1 then w is a hard string for length I. According to B we obtain
o ¢ Lxp <= I'({z,w)) € Lxp.

We define A = {(z,1L,w)| (w = # A 3z : |z1| < DA ((z1,2)) € Lyp]) V (w €
Y* AW ((z,w)) € Lyp)}. It is not hard to verify that A € NP. This completes the
proof of Claim E.

F In contrast to F in the proof of Theorem 3.2.7 (Wagner 1987), the new definition of
easy and hard strings yields that one hard pair for sufficiently large length suffices to
reduce ng to an NP language.
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Claim F: There exist a set B € NP and a polynomial q such that for oll x € ¥* and all
1> q(|z|), if (1',w) is a hard pair then

z € Lyp = (=, 1Y, w) € B.
Let # € X*. By definition of Lyp we have
z € Lyp <= (Fy: [yl < p2(|z)))[(z,y) € Lnp].

According to Claim E there exists a set A € NP such that if (1},w), I > s(pa(|z])), is
a hard pair then for all y, |y| < pa2(|z|),

<$7y> g LNP — <<$7y>71l7w> € A7

and hence
z € Lyp <= (Fy: |yl < pa(l2)))[((z,9),1',w) € A].

Let ¢ be a polynomial such that g(n) > s(p2(n)) for all n. Define
B = {{(z,1,w)| 3y : Iy < pa(j2]))[{(z,y), 1", w) € AT}
and note that B € NP. This proves Claim F.

G Applying Claim F twice provides a reduction from ng to an NP language requiring two
hard pairs.

Claim G: There exist a set C € NP and polynomials q1 and qo such that for all x € ¥*,
if (19020 w1) and (192020 w,) are hard pairs then

z € Lyp < (z,w1,w) € C.
Let 2 € ¥*. We have
z€ Ly <= (y: Iyl <psllaD)liz 1) & Ly

According to Claim F there exist a set B € NP and a polynomial ¢ such that if
(1Y, w1), 1 > q(s(p3(]z]))), is a hard pair then

z € Lyp <= (3y: |yl < ps(|2)[((z,9), 1, w1) & B].

Let ¢ be a polynomial such that ¢;(n) > q(s(p3(n))) for all n. Define

D = {(z,1" 1) | By : |yl < ps(|z))[((z,9),1", 1) & BI}.

Note that D € ¥Y and let g be a many-one reduction from D to LES. Let g be a
polynomial such that for all z € ¥*, |g(z)| < §(|z|). Hence we have, if (19102 ) is
a hard pair then

z € Lyp g({z, 102D 1)) e Lysp.
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Applying Claim F again we obtain that if (1¢,ws), I > ¢(q(s(q1(|z])))), is a hard pair
and |wi| < q1(]=]),

g((@, 170D, w)) € Lyp <= (g((z, 170D, w1)), 1, wy) € B.
Altogether, if (171(02D o), and (14, ws), I > q(G(s(q1(]z])))), are hard pairs then
v € Lyp <= (g((w, 1900, wy)), 1", w) € B.

Let g2 be a polynomial such that ga2(n) > ¢(q(s(qi(n)))) for all n. Define C =
{(z, w1, wa) [(g((z, 190020 1)), 19202D 0 € B}. This completes the proof of Claim G.
Observe that, in light of the algorithm given in H below, a reduction of ng to the ¥5
language (as it was done in the proof of Theorem 3.2.7 (Wagner 1987)) would suffice.
This is implicitly done by the set D in the above proof of Claim G. Since this would
clearly require only one hard pair one could similarly to H derive even LEP € p¥:02,

However, the possibility of reducing Ly to an NP language first appeared in [Wag89]
and was crucially used in [CK89, CK963] and [BCO91, BCOY3].

H In contrast to H of the proof of Theorem 3.2.7 (Wagner 1987), in light of Claim G, only
two values of f have to be computed.

Claim H: Lgp € P¥0L.

Let C' € NP and ¢; and g9 be polynomials, all three as defined in G. We give a p=203]
algorithm for Lxg.

1. On input z compute f(19:020) and f(12(2D)). This amounts for two P queries.

2. Query (z, f(19:(2D), £(192(2D)), The 55 oracle queried in this part of the P¥5[]
algorithm implicitly does the following:

(a) On input (z,y1,y2) compute ¢i(|z|) and go(|z]).

(b) If y1 = 0 set w1 = #. If y; = 1 guess w1, |wi| < qi(|z]), and verify that
wy is a hard string for length ¢ (|]z|). Continue if this verification succeeds,
otherwise reject.

(c) If y2 = 0 set wy = #. If yo = 1 guess wy, |wa| < g2(]z|), and verify that
wa is a hard string for length ¢2(]z|). Continue if this verification succeeds,
otherwise reject.

(d) Accept if and only if (z,wy,wq) € C.

3. Accept (the input z) if and only if the query from part 2 returns yes.

The correctness of this algorithm is obvious. In particular, recall from H of the proof
of Theorem 3.2.7 (Wagner 1987) that the use of different $5 oracles does no harm to
the algorithm.

I Since Lyy is complete for X§ we have Xf = P>213] and hence PH = P¥203,
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Chang and Kadin 1989 [CK89, CK96]
Theorem 3.2.9 If DP = coDP then PH = DIFF,(%5).

Proof: A As in the proof of Theorem 3.2.6 (Kadin 1987).

B,C,D,E,F, and G As in the proof of Theorem 3.2.8 (Wagner 1989).

H In contrast to G one hard pair suffices to reduce a ¥ complete language to a 5
language.

Claim H: There exist a set D1 € ¥5 and a polynomial py such that for all z € ¥* and
all 1 > p1(|z]), if (1Y, w) is a hard pair then

z € Lyp (z,1',w) € D;.

Claim H is the analogue of G in the proof of Theorem 3.2.7 (Wagner 1987) with
the modifications induced by the different hard strings definition and is implicitly
contained in G of the proof of Theorem 3.2.8 (Wagner 1989). In particular, setting
p1 = q1 and Dy = D, where ¢; and D are as defined in G of the proof of Theorem 3.2.8
(Wagner 1989) proves the claim.

I Define S = {1!| f(1') = 1}. Though f € FP:1| testing whether f(1Y =1 can be done
with a $5 algorithm, as it is just testing whether there exists a hard string for length
l. So S exb.

Claim I: There exist a set T € NP and a polynomial p; such that for all Il € N and all
I'>p(l), if (1", w) is a hard pair then

lles = (11" w) e .
The claim follows immediately from F.

J The above Claim I turns into the key tool to reduce a II} complete language to a X
language with the help of just one hard pair.

Claim J: There ezist a set Dy € 35 and a polynomial py such that for all z € ¥* and all
1> po(|z)), if (1%, w) is a hard pair then

z & Lyp (z,1',w) € Dy.

It will soon be clear that Claim J is the key trick in the current proof. Let p;, ¢1, and
g2 be polynomials and C € NP, all four as defined in G and I. Let p3 be a polynomial
such that pa(n) > pi(g2(n)) for all n. Dy is defined by the following ¥ algorithm.

1. On input (z, 1%, w), compute ¢;(|z|) and g2(|z]).
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2. Assuming that (1/,w) is a hard pair and [ > py(q1(|z|)) we determine f(19:(12D)
by applying Claim I. This is done as follows: Test using an NP oracle query
whether (1‘11("”'), 15, w) € T. Set j; = 1 if this is the case, otherwise j; = 0.

3. Assuming that (1',w) is a hard pair and [ > py(ga(|z|)) we determine f(192(2D)
by applying Claim I. This is done similar to step 2: Test using an NP oracle
query whether (1‘12('“"'), 1',w) € T. Set jo = 1 if this is the case, otherwise jo = 0.

4. If j; = 1 guess a string wy, |w1| < ¢1(]z|), verify that w; is hard for length g1 (|z]),
continue if this is the case, and reject otherwise. If j1 = 0 set wi = #.

5. If jo = 1 guess a string wa, |wa| < g2(|z]), verify that wy is hard for length g (|z]),
continue if this is the case, and reject otherwise. If jo = 0 set wy = #.

6. Assuming that (190D ;) and (192(7D) wy) are hard pairs we determine whether
x & Lsp using Claim G. In other words, accept if and only if (x,w;,ws) & C.

Observe that if (1',w) is a hard pair and I > p;(q1(|z|)), step 2 indeed yields j; =
f(121(2Dy according to I. Similarly, if (1!, w) is a hard pair and [ > p;(q2(|z])), step 3
yields jo = f(192(2D) according to I. Furthermore, if (19:(2D w;) and (122(2D w,) are
hard pairs then we accept in step 6 if and only if z ¢ ng. But, if steps 2 and 3 yield
1= f(1q1(|‘”|)) and jo = f(142(|‘”|)), respectively, the algorithm indeed determines hard
pairs in steps 4 and 5 and hence the algorithm correctly accepts in step 6.

Overall, the correctness of the above algorithm stands and falls with the correctness
of steps 2 and 3. Hence setting pa(n) > pi(g2(n)) for all n proves the claim (note that,
in light of our convention about polynomials, gz(n) > ¢1(n) for all n).

K Combining the results of Claims H and J while exploiting the difference structure of
DIFF5(2Y) yields

Claim K: Lyp € DIFF,(S5).

Let the sets Dy, Dy € ¥5 and the polynomials p; and py be as defined in H and J.
Let p be a polynomial such that p(n) > max{pi(n),p2(n)} for all n. Define

By = {z| (z,17"), %) € Dy},
E; = {z| (3w € ¥*)[w is a hard string for length p(|z|) and (z, 17D, w) € D},
E3 = {z| (3w € ©*)[w is a hard string for length p(|z|) and (z, 17D ) € Dy},

Clearly, E1, By, F5 € Y. Since ¥ is closed under union we also have By U Ey € 5.
Hence (E; U Ey) — E3 € DIFF,(XY). We show Lygp = (E1 U Ez) — E3. To see this
consider the following case distinction. Let z € »*.

Case 1 f(17(=D)) = 0.
Hence x € FEs and z ¢ F3. Furthermore, (1”“"""),#) is a hard pair and hence
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according to Claim H,

T € ng — (z, 1D, #) € Dy
— zx€Fk
<~ LEE(ElUEg)—Eg.

Case 2 f(17(D)) =1,
Hence there exist hard strings for length p(|z|). If € Lyp then we clearly have

both, (z,17(?D,w) € D; and (z,17(7D ) & Dy for all hard strings w for length
p(|z|), according to Claims H and J. Hence z € (Ey U Ey) — E3. If o & Lyp then

(z,1702) ) & Dy and (z,1P(#1), w) € Dy for all hard strings w for length p(|z|),
according to Claims H and J. Independent of whether x € E; or x ¢ E; we have
T Q (E1 UEQ) — FEj.

L We have shown Lyp € DIFF,(X5) and thus X} = DIFF,(Z8) which immediately implies
PH = DIFF,(0).

Beigel, Chang, and Ogihara 1991 [BCO91, BCO93]
Theorem 3.2.10 If DP = coDP then PH = (P}, )NP

Proof: Recall that (Pll\l_a)NP is the class of languages accepted by some DPTM making

at most one query to an NPNF = ¥P oracle and polynomially many queries to an oracle
from NP.

A As in the proof of Theorem 3.2.6 (Kadin 1987).
B,C,D,E,F, and G As in the proof of Theorem 3.2.8 (Wagner 1989).

H Quite similar to H of the proof of Theorem 3.2.9 (Chang and Kadin 1989) one hard pair
suffices to reduce a P> language to a PNP language.

Claim H: Let L € P¥>. There exist a set D € PNY and a polynomial p such that for all
z € X%, if (1702, w) is a hard pair then

z €L < (z,w) €D.

L

The proof is a straightforward application of F. Let L € P¥2, hence L = L(N, Elg) for
some DPTM N; running in time p for some polynomial p. According to F there exist
a language B € NP and a polynomial ¢ such that for all z € £* and all [ > ¢(|z|), if

(1, w) is a hard pair then

z € Lyp (z,1',w) € B.
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We use this to reduce L to a PNP language with the help of one hard pair. Let p be
a polynomial such that p(n) > g(p(n)) for all n. Define the DPTM NZ£ as follows:
L
NP ((z,w)) simulates the work of N, = (z) but replaces every query v to Lyp by a
query (v, 1702 ) to B. Let D = L(N£). Clearly, D € PNP.
I Claim I: Lyp € (PY5)™"

According to Claim G there exist a language C' € NP and polynomials ¢; and g2 such
that for all z € £*, if (191070 1) and (122D w,) are hard pairs then

T € Lyp < (z,w1,wp) € C.

If no hard strings for length ¢, (|z]) and ¢z(|z|) exist then z € Lyp <= (z,#,#) € C.

But note that xc((z,#,#)) can also be used in general for determining xr,_, (z) if we
3

know whether existing hard strings w; and we for length ¢;(|z|) and g2(|z|), respec-

tively, provide XC((xa #, #>) 7& XC((xawla w2>) or XC(<xa # #>) = XC(<xawla w2>)'
This approach is also known as the mind change technique. It enables us to give a

(PZN_{;)NP algorithm for Lyp.

1. On input z, query (x,#,#) to C.
2. Query z in parallel to the two under (a) and (b) described X5 oracles.
(a) Accept the query z if and only if
i. there exists a hard string w; for length ¢ (|z|) such that xco((z, w1, #)) #
XC((xv #7 #>)7 or
ii. there exists a hard string we for length ¢a(|z|) such that xo((z, #, w2)) #
XC((xv #7 #>)7 or
iii. there exist two hard strings w; and wy for length ¢;(|z|) and go(|z|),
respectively, such that xo((z,w1,ws)) # xc({z, #, #)).

(b) Accept the query « if and only if there exist two hard strings w; and wy for
length ¢1(]z|) and g2(]z|), respectively, such that either

L. XC(<x7w17w2>) 7é XC(<$7w17#>) and XC(<$7w17#>) 75 XC((xa#a#» or
i xo((z,wi,w2)) # xo((z, #,w2)) and xo((z, #, w2)) # xc((z, #, #)).

3. Accept if and only if the three queries from parts 1, 2a, and 2b return in this
order either the answers “yes, no, no,” or “no, yes, no,” or “yes, yes, yes.”

The correctness of this algorithm follows immediately from the construction. Note
that the use of different XY oracles in part 2 does not affect the correctness of our
algorithm as already pointed out in previous proofs. Note that part 2a corresponds
to checking whether the existence of hard strings causes at least one mind change,
whereas part 2b corresponds to determining whether the existence of hard strings
causes two mind changes.
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J The (Pg{ft)NP algorithm for ng as given in I can be improved to a (PE})NF algorithm

by exploiting Claim H.
Claim J: P¥5 C (PYP)NT
Let L € P¥2. Let D € PNP and p be a polynomial, both as defined in H. We describe
a (PH})NP algorithm for L using the same trick as in I.

1. On input  determine whether (z,#) € D. This can be done with the help of
queries to an NP oracle, since D € PNP,

2. Determine whether there exists a hard string w for length p(|z|) such that
xp({z,w)) # xp({z,#)). This can be done with one query to a £5 oracle.

3. Accept if and only if the (implicit) query “(z,#) € D ?” of part 1 and the query
of part 2 return different answers.

Note that step 2 corresponds to determining whether the existence of a hard string
causes a mind change.

K Since 8 C (PYE)N (Claim 1), (PYE)™" C P, and P™ C (PY)™" (Claim J) we
have proven X} C (Pll\l_f’t)NP and thus PH = (PII\I_E)NP.

3.3 A New Result

3.3.1 A Deeper Collapse of the Polynomial Hierarchy if the Boolean Hi-
erarchy Collapses

The five papers studied in the previous section obtained deeper and deeper collapses of
the polynomial hierarchy if the boolean hierarchy over NP collapses. The strongest re-
sult previously known is due to Beigel, Chang, and Ogihara [BCO93], see Theorem 3.2.5.
Theorem 3.2.5 says that, given a collapse of the boolean hierarchy at level m, m > 2, the
polynomial hierarchy collapses to (Pg}il_tt)Np, a class contained in DIFF,,(35).

A careful analysis of the proof of Theorem 3.2.5 as given in [BCO93] in combination
with a new trick, namely, applying an idea developed in [BCO91, BCO93] twice, yields the

following theorem.
Theorem 3.3.1 For all m > 2,
BH,, = coBH,, = PH = BH,,ADIFF,,_(2}).

Note that for m = 1 the hypothesis of the above Theorem 3.3.1 implies a trivial collapse
of the polynomial hierarchy, namely, to NP itself. Theorem 3.3.1 has been independently
obtained by Reith and Wagner [RW98].
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Let us compare the results of Theorem 3.2.5 and Theorem 3.3.1. Though both theorems
collapse the polynomial hierarchy to a class containing DIFF,,_; (%) and being contained
in DIFF,,(X35), their results differ substantially. It is immediate from a recent paper of

Wagner [Wag98] that (Pgﬁl_m)NF is a strict superset of BH,, ADIFF,, 1(X}) unless the

polynomial hierarchy collapses. Furthermore, observe that (ngll_tt)Np involves m — 1

parallel queries to a X9 oracle and an unlimited number of queries to an NP oracle. So
the P base machine of (nyil_tt)NP evaluates m — 1 bits of information originating from
the parallel ) queries and polynomially many bits of information from the NP queries. In
contrast, BH,, ADIFF,, (X)) involves just two bits of information, which are evaluated via
a fixed truth-table, namely, the XOR-truth-table. One bit of information comes from the
DIFF,,_1(3%) part consisting of m — 1 underlying parallel queries to a ¥3 oracle evaluated
with one fixed truth-table. The second bit of information, the one from the BH,, part,
implicitly contains m parallel queries to an NP oracle, their answers again being evaluated
via a fixed truth-table. In a nutshell, we have improved from unlimited many queries to
NP and m — 1-truth-table queries to £5, to m-fixed-truth-table queries to NP and m — 1-
fixed-truth-table queries to 5.
Proof of Theorem 3.3.1: The proof is structured in such a way that the analogies to
the proofs of the special cases in Section 3.2 can be easily observed. Recall our conven-
tion about polynomials from the beginning of Section 3.2.3. Recall that ¥ = {0,1} and
# ¢ ¥. Let s be a polynomial such that for all 1 < j < m + 1 and all z1,z9,...,2; €
S*U{#Y, 21,22, .., 35)| < s(max{|z1], |z2], - .., |zj|}). Define s (n) =n and s?(n) =
s(s(---s(n)---)) for all n and all 7 > 1.
—

1 times

Suppose m > 2.

A Let Lyp, L22p, and ng be many-one complete languages for NP, ¥, and Eg, respec-
tively, and po, ps be polynomials such that

Ly ={z | (Jy : [yl < p2(|2]))[(z,y) & Lxp]}

and
Ly = {=| Gy : Iyl < ps(la) [z, ) & Lsgl}.

Hence, Lconp = Lnp is a complete language for coNP. Define LDIFFI(CONP) = Lconp,

and for every i > 2, Lpipp,(conp) = {(%,¥) |2 € Leone AY & Lpipr, (conp)}- It is not
hard to verify that for all i > 1, Lppy,(conp) is many-one complete for DIFF;(coNP).

Note that DIFF,,(coNP) = BH,, if m is even and DIFF,,(coNP) = coBH,, if m is
odd. So in general,

BH,, = coBH,;, <= DIFF,,(coNP) = coDIFF,,(coNP).

B Suppose BH,, = coBH,,,. Hence DIFF,,(coNP) = coDIFF,,(coNP). Thus there exists
a many-one reduction h from Lpipr,,(conp) 0 LpIFF,, (conp)- In other words, there
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exists a polynomial-time computable function A such that for all 1,z € X*,

(z1,22) € LpIFF,, (conp) <= h((z1,72)) & LDIFF,,(coNP)-

Let ' and A" be the polynomial-time computable functions such that for all zq,z9 €
¥ h({z1,m2)) = (W ((z1,22)), A" ({x1,22))). Hence, we have for all 21,22 € T*,

(*) @1 € Leone A2 & Lpier,,_; (coxp) &
W ({x1,22)) & Leonp V A" ((21,22)) € Lpipr,, ; (coNp)-

C Recall that we want to show a collapse of the polynomial hierarchy. Though we do not
claim that we can prove NP = coNP we will nevertheless show that an NP algorithm
for Leonp exists which requires certain additional input. We will extend this to also
give NP algorithms for LEIZ) and ng, both algorithms requiring additional input.

Let n be an integer. In light of the equivalence (*), we call the string x; m-easy for
length n if and only if |z1| < n and (3z2 : |z2| < s D ()M ((z1,22)) & Leoxp].
Clearly, if x1 is m-easy for length n then 1 € Leonp.

A string z; is said to be m-hard for length n if and only if |z;| < n, 21 € Leonp, and
(Vo : |zo| < 82 (n)) [ ((x1,22)) € Leoxp]. Tt is not hard to verify that the strings
in (LcoNp)S" divide into m-easy and m-hard strings for length n.

Case 1 There are no m-hard strings for length n.
Hence all strings in (LCONP)S" are m-easy for length n. Thus deciding whether
z, |z| = n, is in Leonp is equivalent to deciding whether x is m-easy for length
n. Note that the latter can be done by the following NP algorithm:

1. Guess y, |y| < s (n).

2. Compute h({z,y)).

3. Accept if and only if b'({z,y)) & Leonp-

Case 2 There exist m-hard strings for length n.

Let wy, be an m-hard string for length n, hence |wy,| < n. For every a € ¥*,
let h(,) be the function such that for every u € ¥*, h(,(u) = h"((a,u)). Note
that h(,,,)(u) is computable in time polynomial in max{n, |u|}. According to the
definition of m-hard strings and equivalence (*) we have for all u, |u| < s(™2)(n),

u € Lpipr,, (coxp) = h(w,)(w) & Lpier,,  (coNp)-

Thus we have a situation similar to the one in B but m replaced by m — 1 and
also the equivalence holds only for an initial segment. In analogy to the definition
of b’ and A" let for every a € X*, h’(a) and h’(’a ) be the functions such that for all

1, %9 € 5%, hig) (21, 72)) = (b, (21, 72)), by ({21, 22)))-
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Let u = (u1,us). Hence for all uj, |ui| < n, and all ug, Jug| < s(™=3)(n),

u1 € Leone A U2 & LpIFp,,_s(coNP) <
W) (U1, u2)) & Leonp V by, ((u1,u2)) € Lpipg,, _,(coXp)-

We call the string u; m — 1-easy for length n if and only if |u;| < n and (Jug :
ug| < s(m=3) (n))[hl(wm)(<U1,U2>) & Leonp]. If uy is m — 1-easy for length n then
u1 € Leonp.

A string uy is said to be m—1-hard for length n if and only if |u1| < n, u; € Leonp,
and (Yuy : |up| < s(m=3) (n))[h'(wm)(<u1,u2>) € Leonp)-

It is not hard to verify that, given an m-hard string w,, for length n, the strings
in (Leoxp)=" divide into m — 1-easy and m — 1-hard strings for length n. Note
that m —1-hardness is only defined with respect to some particular m-hard string

W -

Case 2.1 There exist no m — 1-hard strings for length n.
Hence similar to Case 1, all strings in (LcoNp)S” are m — l-easy for length
n, deciding whether z, |z| = n, is in Leonp is equivalent to deciding whether
x is m — l-easy for length n which, with the help of w,,, can be done with

an NP algorithm.
Case 2.2 There exist m — 1-hard strings for length n.
Let wy,—1 be an m — 1-hard string for length n, |w,, 1| < n. For all a,b € ¥*,
let (qp) be the function such that for allv € X%, hgp) (v) = h'(’a) ({(b,v)). Note
that h(,,, w,_,)(v) is computable in time polynomial in max{n, |v[}. Hence,

for all v, [v] < s(™3)(n),

v € Lpier,,_s(coNP) = Nwmwm_1) (V) & LDIFF,,_s(coNP)-

Continuing in that manner we define for ¢ > 2, /-hard and /-easy strings
for length n. Note that these terms are defined with respect to some fixed

m-hard, m — 1-hard, ..., ¢ + 1-hard strings. In other words, a string is
only /-hard or f-easy with respect to a particular sequence of hard strings
Wi, Wm—1,---,wer1. We define that there are no 1-hard strings for length

n, and a string z is called l-easy for length n if and only if |z| < n and
h(wm,wm_l,...,WQ)(Z) Q LcoNP-

A sequence wy,,wpy_1,...,we, £ > 2, 1s called a hard sequence for length n if and only
if for all j, £ < j < m, w; is j-hard for length n with respect to wy,, w1, ... , wjy1.
We call m — £ + 1 the order of the hard sequence wy,, wm—1,--.,ws.

A sequence wy,,wpny,_1,...,wy is called a maximal hard sequence for length n if and
only if wy,, Wym—1,-..,wy is a hard sequence for length n and there are no (¢ — 1)-hard

strings (with respect to wy,, wm-1, ... , we) for length n. As a special case, # is called
a maximal hard sequence for length n if and only if there exists no m-hard string for
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length n, # is said to have order zero. Note that deciding whether, given a sequence
of strings s and an integer n, s is a hard sequence for length n can be done with a
coNP algorithm.

It is clear that for every n, a maximal hard sequence for length n always exists and
has order at most m — 1 since there are no 1-hard strings for length n.

D One maximal hard sequence is needed to reduce L¢,np to an NP language.

Claim D: There exists a set A € NP such that for all x € ¥* and all | > |z|, if
Wiy Wm—1, -+, wy 18 @ mazimal hard sequence for length [ then

[
T € Leone = (7, 1", Wi, wm—1,-..,wy) € A.

Let z € ¥* and let wy,, w1, . .. ,wp be a maximal hard sequence for length [, [ > |z|.
Note that ¢ > 2. Since wp,, Wm—1,--.,wy is maximal hard, no string of length less or
equal to [ is (¢ — 1)-hard with respect to wp,,wm—1,...,wp. Hence, for every string v,
ly| <1,y € (Leonp )= if and only if y is (£ — 1)-easy for length I. This holds especially
for z itself (recall |z| < ). But testing whether z is (¢ — 1)-easy for length [ can clearly
be done by an NP algorithm when receiving z, 1!, and wy,,wm_1,...,we as inputs.
In particular, define A = {(z,1", wn,wm_1,...,we)| (£ = 2 A P wmer yowe) (T) &
Leone) V(£>2A 3y : |yl < s DMl oo 1w (2:9)) & Leonp]}-

E One maximal hard sequence for sufficiently large length also suffices to give a reduction
from ng to an NP language.

Claim E: There exist a set B € NP and a polynomial q such that for all x € ¥* and all
1> q(|z|), if wm,wWm—1,--.,we is a mazimal hard sequence for length | then

z € Lyp (2,1, wm, wm—1, ..., wy) € B.
Recall from A that for all € 3%,
z € Lyp < (Jy: |yl < p2(]z)))[{z,y) € Leonp]-

Applying Claim D we obtain that there is a set A € NP such that for all x and all
[ > s(p2(|z]), if wm,wm—1,...,w is a maximal hard sequence for length [ then

T e LEg — (Ely |y| Sp2(|x|))[<<xay>?llawmawm—la"'awl> € A]

Note that the right-hand-side of the above equivalence clearly defines a NP language
B. Define ¢ to be a polynomial such that ¢(n) > s(p2(n)) for all n. This proves the
claim.

F In contrast to D and E, two maximal hard sequences for different length are required
when reducing ng to an NP language.
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Claim F: There exist a set C' € NP and polynomials q1, qo such that for all x € X*, if

Winy Win—1, - -+ ,We and Wy, Wy 1, ... ,wy are mazimal hard sequences for length qi(|z|)

and qo(|x|), respectively, then
z € Lyy = (7, (wm,Wm—1,--.,we), (Why Whn 15+ wp)) € C.
Recall from A that for all z € X%,

z € Lyp <= (Jy: |yl <ps(l2)))[(2,y) & Lsg)-

Applying Claim E we obtain that there is a set B € NP and a polynomial ¢ such that
for all z € ¥* and all [ > ¢(s(p3(|z|))), if Wm,wWm—1,...,wy is a maximal hard sequence
for length [ then

2 € Lyp <= (3y: |yl < ps(lz])[(z,9), 1, wmy w1, .., we) & B].

Define ¢; to be a polynomial such that ¢;(n) > q(s(p3(n))) for all n. Define L' =
{(ZB, llvwmawm—la W) | (Fy - |y| < p3(|x|))[((x,y), llawmawm—lv cwp) & B]}
Note that L' € ¥ and let g be a many-one reduction from L' to ng. Hence we
have for all z € £*, if wy, wm—1,...,wy is a maximal hard sequence for length ¢ (|z])
then

z € Lyp = g((=, 19020 o w1, .. we)) € Lysp.
Applying Claim E for the second time we obtain that for all x € X%, if wy,, wm—1, ..., wy

is a maximal hard sequence for length ¢;(|z|) and w!,, !

1>+, wp is a maximal hard

sequence for length I, 1 > q(|g((z, 1702D w, w1, .., wp))|), then

z € Lyp (9((z, 19020 w1, . ,wr)), 1l,w;n,w;n_1, ..., wp) € B.

Let ¢ be a polynomial such that |g(z)| is bounded by ¢{(|z|) for all z. Define g2 to be
a polynomial such that g2(n) > q(q(s(g1(n)))) for all n. Set

C = {(2, (Wi, Win—1 - - -y W), (Why, Wy 15+« s Wpr ) |
(g((x, 1q1(|‘”|),wm,wm_1, cewp)), 1q2(|x|),w;n,w;n_1, ..., wp) € B}

and note that clearly C' € NP. Furthermore, it is not hard to verify that C indeed
satisfies Claim F.

G Applying the mind change technique in light of Claim C, we can conclude that ng €
NPADIFFy,,_2(35).
Claim G: PH C NPADIFFy,,_»(%5).
To prove the claim it suffices to show that Lyp € NPADIFFy,,_2(%5).

A few definitions will be helpful. For sequences of strings u = (u1,us,...,u;) and
v = (v1,v9,...,v5), v is called an extension of u if and only if j < j' and for all
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1 <4 <j,u; =v;. vis called a proper extension of u if and only if v is an extension of
uw and j < j'. A similar definition is made for pairs of sequences of strings. For (u,v)
and (u',v"), where u,u’,v,v" are sequences of strings we call (u’,v') an extension of
(u,v) if and only if u' is an extension of u and v’ is an extension of v. (u',v") is called
a proper extension of (u,v) if and only if (u/,v") is an extension of (u,v), and «' or v’
is a proper extension of u or v, respectively.

Let ¢1(n),f2(n) to be the orders of the longest maximal hard sequences for lengths
q1(n) and g¢o(n), respectively, where ¢; and g2 are the polynomials spoken of in
Claim F. According to Claim F, for all z, x € Lyp if and only if there exist two
hard sequences s; and s9 for length ¢;(|z|) and q2(|$|3) of order ¢1(|z|) and ¢5(|x|), re-
spectively, such that (x,s1, s2) € C. However, in order to decide whether z € sz or
not, first computing s; and s9 and then checking whether (x, s1, s9) € C might exceed
the computational power of NPADIFF5,, 5(XY). So we use a different strategy.

On one hand, if no m-hard strings for length g1 (|z|) and gz(|z[) exist, then xr_, (z) =
xc((z,#,#)). On the other hand, if m-hard strings for length ¢;(|z|) and 3q2(|m|)
exist it might well be the case that for the maximal hard sequences s; and so,
XL (z) = xc (=, s1,82)) # xc({x,#,#)). But instead of determining xc({z, s1, s2))

we compute xc({(z,#, #)) and determine whether xc((z,#,#)) # xc({z, s1, s2)) or
not. With this knowledge it is then easy to compute xr_, (). This approach is known
3

as the mind change technique.
Define Qo = {z | (z, (#), (#)) € C}. Define for 1 < j,
Q; = {x| there exist ry, s1, ro,s2, ... ,rj, s; such that

1. for all 1 < ¢ < 7, r; and s; are hard sequences for length
q1(|z]) and ga(|z]), respectively,

2. forall 1 <i < j—1, (ri41,8+1) is a proper extension of
(Iria Si)a and

3. XC’((*’II, (#)v(#))) 7& XC((xa <T1>a<31>> and for all 1 <1 <
7 =1, xe((z, (ri), (i) # xc((, (ris1), (siv1))}-

Observe that Qp € NP and Q; € 5, j > 1. Tt follows from the definition of Q;,
j > 1 that Q1 O Q2 D ---. Since all hard sequences have order at most m — 1 (and
thus ¢1(n) < m —1 and ¢2(n) < m — 1) and part 3 of the definition of @); requires
(11, s1) # (#,#) we obtain that for all j > 2m — 2, Q; = 0.

Let z € ¥*. Let ¢ be the largest 7 such that z € @Q;. Observe that xo((x, #, #)) #
xqQ.(z) if and only if ¢ is odd. Hence,

z € Lyp < xc({x,#,#)) +c=1 (mod 2).

But note that ¢ (mod 2) =1 (mod 2) if and only if x € Q1 — (Q2 — (- - — (Q2m—3 —
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Q2m—2) - )). It follows that for all z € ¥*,

z € Lyp <= € QA(Q1 — (Q2— (- — (Q2m—3 — Q2m—2) -+ )))-
This shows Lyp € NPADIFFy,,_2(%)).

H Applying the mind change technique to the result of Claim G while exploiting Claim E
yields Lyp € BHy,,,— 1 ADIFF,, 1 (3).

Claim H: PH C BHy,,_; ADIFF,,_;(X2).

In light of Claim G and the fact that NPADIFFg,,_2(3}) C DIFFy,, 1(X}), it suffices
to show DIFFsy,_ (S8) C BHay_ ADIFF,,_; (D).

Let L € DIFFy,,_1(X5), hence there exist sets Ly, Lo, ..., Lay—1 € XY such that
L =1L —(Ly— (- — (Lam—2 — Lam—1)--+)). According to Claim E (note that
Claim E can be easily extended to hold for all ¥ languages and not just for ng)
there exist sets By, Bg,..., By, 1 € NP and polynomlals 41y Ghy- - s qhy—1 such that
forallz € ¥*and all1 <i <2m—1, ifw},,w! ,wp, 1s a maximal hard sequence
for length I;, I; > q}(|z|), then

m—1s-""

€L = (z,1%w Wi 1,...,w2i>€Bi.

Let p be a polynomial such that p(n) > ¢i(n) for all n and all 1 <7 < 2m — 1. Define
D = {{z,wm,wm—1, - we} | (7, 1PED w w1, wp) € Bi—(Ba— (- — (Bam—2—
Bypm—1)--+))}. Note that D € BHy,,,—1. We have for all z € X%, if wy,, Wm—1,...,ws
is a maximal hard sequence for length p(|z|) then

z €Ll <= (z,wn,wn-1,...,wp) €D.

Now we use a similar idea as in the proof of Claim G. In particular, recall the definitions
from the beginning of its proof. Define Py = {x | (z,#) € D}. Define for j > 1,

P; = {z| there exist s1,s9, ... ,s; such that
1. for all 1 <i <7, s; is a hard sequence for length p(|z|),
2. forall1 <3 <j—1, s;41 is a proper extension of s;, and

3. xp({z,#)) # xp({z,s1) and for all 1 < i < j — 1,
xp((z,s:)) # xp (2, si+1))}-
Note that Py € BHy;,—1 and Pj € 3P, 7 > 1. Since all hard sequences have order at
most m — 1 and part 3 of the definition of P; requires s; # # we obtain that for all
j >m—1, P; = 0. Similar to the proof of Claim G it is not hard to verify that for
all x € ¥,

reELl < «x EP[)A(Pl — (PQ— ( —(Pm,Q _mel))))
Hence L € BHy,,—1 ADIFF,,_1(25). This completes the proof of Claim H.
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I Applying the mind change technique again, this time to the result of Claim H, gives the
claim of the theorem being proven.

Claim I: PH C BH,, ADIFF,,_ (D).

Observe that BHy,,—1 ADIFF,,_;(35) C DIFF,,(25). In light of Claim H, it suffices
to show DIFF,,(25) C BH,, ADIFF,,_; (X)) which can be done quite analogous to
the proof of Claim H.

3.3.2 Concluding Remarks

At the end of this chapter we will make a few remarks on Theorem 3.3.1. Recall that Chang
and Kadin [CK96](see Theorem 3.2.4) showed that for all m > 2,

BH,, = coBH,, = DIFF,,(2%) = coDIFF,,(X8) = PH.

Chang and Kadin concluded from that result that there is a close connection between
the boolean hierarchy and the boolean hierarchy over XY. Relatedly, they asked whether
there is a straightforward argument showing that BH,, = coBH,, = DIFF,, (%) =
coDIFF,,(X5). Though the result of Chang and Kadin has later been improved by Beigel,
Chang, and Ogihara [BCO93] our Theorem 3.3.1 sheds new light on this question. Ob-
serve that it is quite obvious that BH,, = coBH,, = BH implies BHmADIFFj(Eg) =
co(BH,, ADIFF;(X})) for all > 1, in particular, for j = m — 1. However, this rather triv-
ial observation does not help in proving Theorem 3.3.1. In fact, the proof consists exactly
in showing that X5 C BH,, ADIFF,, ;(XZ}).

It is not hard to see that the proof of Theorem 3.3.1 can be easily extended to yield a
similar result for a collapse of the boolean hierarchy over some 2}2, k> 1.

Corollary 3.3.2 For allm > 2 and all £ > 1,
DIFF,,(2}) = coDIFF,,(2}) = PH = DIFFm(Eg)ADIFFm_l(EEH).

To generalize this result even further, one can of course extend this result from E}: to
arbitrary complexity classes C having certain properties, such as, for instance, being closed
under 3 and conjunctive-truth-table reductions and having many-one complete sets.

In light of the intertwined inclusion structure of the boolean hierarchy and the bounded-
truth-table hierarchy, Theorem 3.3.1 also establishes a previously unknown collapse of the
polynomial hierarchy if the bounded-truth-table hierarchy collapses.

Corollary 3.3.3 For allm > 1,

PL, =PNE . = PH=BH,, 1 ADIFF,,(Z}).

m-tt m
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Clearly, an analogous result for the bounded-truth-table hierarchy over Zg, k> 1,
does also hold. However, Hemaspaandra, Hemaspaandra, and Hempel [HHH97b| have
shown the following downward translation of equality (see Theorem 4.2.4): For all m > 1

b p
and all k > 1, Pok, = Po%, . = DIFF,,(SP) = coDIFF,,(XP). Combining this
result with Corollary 3.3.2 we obtain a improvement over a straightforward generalization
of Corollary 3.3.3 for X}, k > 1.

Theorem 3.3.4 For all m > 2 and all & > 1,

P P
Pk, =Pk, . = PH = DIFF,,(S0)ADIFF,, (XD, ,).

Observe that for m = 1 the hypothesis of the above Theorem 3.3.4 even implies PH = X7
(see Theorem 4.2.1 and Theorem 4.2.3).

To the end, we mention that there is an alternative way of proving Theorem 3.3.1.
A close inspection of the proof of Beigel, Chang, and Ogihara [BCO93] shows that what
actually being shown is the following result:

BH,, = coBH,, = PH = AJADIFF,,_;(}).
This together with a recent result of Chang [Chal, namely,
BH,, = coBH,, = AL = BH,,

proves Theorem 3.3.1. However, as our proof of Theorem 3.3.1 shows, Theorem 3.3.1 can
be proven with only the tools provided by the papers we have reviewed in Section 3.2.






Chapter 4

Downward Collapse

4.1 Introduction

Does the collapse of lower complexity classes imply a collapse of higher complexity classes?
Does the collapse of higher complexity classes cause lower complexity classes to collapse?
These question are known as upward and downward collapse, respectively. As a special
variant of linking collapses of complexity classes, proving downward and upward collapse is a
very elegant and powerful method to tie together the relative powers of various computation
models.

Usually, hierarchies in complexity theory that are inductively defined in a bottom-up
manner display upward collapse, for instance, the polynomial hierarchy. Examples for
upward collapse have long been known, one prominent example being P = NP — PH =
P [MS72]. Also, all results mentioned and proven in Chapter 3 are examples of upward
collapse, for instance, for all m > 2, if BH,, = coBH,,, then PH = BH,,, ADIFF,,,_;(%5).

In contrast, downward collapse results are rarely observed. Though one can find a
number of examples with the general flavor of downward collapse in the literature (equivalent
notions are downward translation of equality and upward separation) most of them are not
quite satisfying with respect to the term “downward.” Some results are limited to sparse sets
only [Boo74, HIS85, RRW94]|, while others contain unspecified parameters [Wra77]. Clearly,
for complexity classes Cy, Co, D1, and D5 such that C;{UCy C D1 NDs and it is not known that
C1 UCy = D1 NDy, aresult D1 = Dy = (1 = Co would describe exactly what one might
expect from the notion of downward collapse. However, it is known that many potential
downward collapse results (in the above sense) require non relativizable proof techniques and
are quite unlikely to hold. For instance, it is known that BH; = coBHy = NP = coNP
does not hold in all relativized worlds [CGH"88].

In 1996 Hemaspaandra, Hemaspaandra, and Hempel [HHH96a] obtained the first down-
ward collapse result (in the sense as formally defined above) linking classes of bounded-
query hierarchies and classes of the polynomial hierarchy and triggered a recent outburst of
downward collapse results [BF96, HHH99, HHH97b]. It was shown in [HHH96a] that if one
Turing query to a 22 oracle, k > 2, is as powerful as two Turing queries to a 22 oracle then
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Eg is closed under complementation and hence as powerful as the entire polynomial hierar-
chy. Buhrman and Fortnow [BF98] extended this result to the k = 2 case. Hemaspaandra,
Hemaspaandra, and Hempel [HHH99] showed that a m versus m + 1 queries analogue does
also hold, displaying downward collapse between the levels of the bounded-truth-table hi-
erarchy and the boolean hierarchy over 7, k > 2. In [HHH97b| the approaches of [BF98]
and [HHH99] were combined with new techniques to extend the results of both papers es-
tablishing the & = 2 analogue of the main result from [HHH99]. Though all of the followup
results are based on the proof technique used in [HHH96a], which itself is a modification
of Kadin’s easy-hard technique [Kad88] (see also Section 3.2), each new downward collapse
result added some crucial and elegant enrichment to the proof technique itself.

In this chapter we will review this interesting development and prove a new downward
collapse result. The chapter is divided into two parts. Quite similar to the structure of
Chapter 3 the first part, Section 4.2, is devoted to a detailed analysis of the previous
work. In Section 4.3 we prove the main theorem of this chapter, Theorem 4.3.3, which
strengthens a result from [HHH97b] and removes an asymmetry in that result’s hypothesis.
In particular, we show that for all s, m > 1 and all 0 < 7 < k—1, if DIFF (X} ) ADIFF,,(3})
is closed under complementation, then DIFF,,(X?) = coDIFF,,(XF). The Chapter closes
with a number of remarks and applications of Theorem 4.3.3.

4.2 A Review

After the recent flow of downward collapse results we feel that the time is right to pause
and look back; what has been achieved, what technical advances have been made? Doing
exactly that we review the following four papers in this section:

1. E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. An Upward Separation in the
Polynomial Hierarchy. Technical Report Math/Inf/96/15, Institut fir Informatik,
Friedrich-Schiller-Universitiat Jena, Jena, Germany, June 1996.

2. E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. A Downward Collapse Within
the Polynomial Hierarchy. SIAM Journal on Computing. To appear.

3. H. Buhrman and L. Fortnow. Two queries. In Proceedings of the 13th Annual IEEE
Conference on Computational Complexity. IEEE Computer Society Press, June 1998.
To appear.

4. E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. Translating Equality Down-
wards. Technical Report TR-657, Department of Computer Science, University of
Rochester, Rochester, NY, April 1997.

Similar to Section 3.2 we first state the main results obtained, second informally discuss
the development of the proof technique while emphasizing the new contributions made in
each of papers under investigation, and third rigorously prove a special case of each paper’s
main theorems.
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4.2.1 Previous Results

We give a short overview over the results obtained in each of the four papers we are going
to review. For completeness we added the appropriate citations of the earliest and most
recent versions.

Hemaspaandra, Hemaspaandra, and Hempel 1996 [HHH96a] Motivated by the
question of whether certain query order classes (see Chapter 5 for results in this interesting
new area in complexity theory) are distinct and whether the collapse of those query order
classes induces a collapse of the polynomial hierarchy, Hemaspaandra, Hemaspaandra, and
Hempel came up with a surprising downward collapse result. A collapse of the bounded-
query hierarchy over Eg, k > 2, at its first level implies a collapse of the polynomial hierarchy
to Ei itself; informally, the polynomial hierarchy collapses to a level that is below the level
of the bounded-query hierarchy at which the initial collapse occurred. This was the the first
downward collapse result completely within the polynomial hierarchy.

Theorem 4.2.1 [HHH96a] For £ > 2,

pEill — pZ2 — pH = s =TIY.

Hemaspaandra, Hemaspaandra, and Hempel 1996 [HHH96b, HHH99]| General-
izing the ideas developed in [HHH96a], the authors extended their results to hold in a similar
fashion also for m versus m + 1 queries. It turned out that a collapse of the bounded-truth-
table hierarchy over Eg, k > 2, implies a collapse of the boolean hierarchy over Eg one
level below the trivially implied collapse of the boolean hierarchy. More precisely, a collapse
of the bounded-truth-table hierarchy over ZZ at level m implies a collapse of the boolean
hierarchy over £} at level m.

Theorem 4.2.2 [HHH96b, HHH99] For all m > 1 and all k£ > 2,

POk =Pk . = DIFF,, (") = coDIFF,, ().

Observe that the result of Theorem 4.2.1 now appears in a different light. Theorem 4.2.1
might give the impression that the bounded-query hierarchy over Eg, k > 2, is tightly
connected to EE itself. But Theorem 4.2.2 clarifies that this is a mere coincidence since on
one hand the first level of the bounded-query hierarchy over E}: and the first level of the
bounded-truth-table hierarchy over EZ coincide, and on the other hand, the first level of
the boolean hierarchy over ZE happens to be the kth level of the polynomial hierarchy.

Theorem 4.2.2 together with the result of Theorem 3.3.1, yields also a collapse of the
polynomial hierarchy. In Theorem 3.3.4 we have stated that for all m > 2 (for the m =1
case see Theorem 4.2.1) and all k& > 2,
=y
m-tt

p
P = Pi’l’;l_tt — PH = DIFFm(Eg)ADIFFm_l(Z}:H).



54

Downward Collapse

Note that the collapse of the polynomial hierarchy occurs, roughly speaking, one level lower
in the boolean hierarchy over X} 41 than could be concluded from the same hypothesis

without Theorem 4.2.2.

Buhrman and Fortnow 1996 [BF96, BF98] Buhrman and Fortnow extended the
result of Theorem 4.2.1 to the k = 2 case; they proved that if one query to a ¥5 oracle is as
powerful as two queries to a 35 oracle then X5 is closed under complementation, establishing
a downward collapse result in the second level of the polynomial hierarchy.

Theorem 4.2.3 [BF96] If P¥3[1 = P*21?] then PH = X5 = II).

Hemaspaandra, Hemaspaandra, and Hempel 1997 [HHH97b] In an attempt to
also extend the result of Theorem 4.2.2 to the k = 2 case Hemaspaandra, Hemaspaandra,
and Hempel [HHH97b] combined the approaches of [HHH99] and [BF98] with new ideas to
obtain a result that implies Theorems 4.2.1, 4.2.2, 4.2.3, and more.

Theorem 4.2.4 [HHH97b] For all m > 1 and all £ > 1,

p p
P2k =Pk = DIFF,,(SP) = coDIFF,, ().

This is a very general downward collapse result, as the mth level of the boolean hierarchy
over ZE is contained in P?Ett. In light of Theorem 3.3.1, the above Theorem 4.2.4 also
gives a collapse of the polynomial hierarchy that was previously unknown to hold (see
Theorem 3.3.4); for all m > 2 and all k& > 1,

P P
Pk, =Pk, = PH = DIFF,,(S0)ADIFF,, (XD, ,).

For the m = 1 case see Theorems 4.2.1 and 4.2.3.

4.2.2 The Development of the Proof Method

Common in all of the above theorem’s proofs is the use of the easy-hard technique. Orig-
inally invented by Kadin [Kad88] and applied for proving a polynomial hierarchy collapse
from a collapse of the boolean hierarchy, it has been (modified as needed) crucial in proving
the downward collapse results we study.

Applications of the easy-hard technique in its original version (see Section 3.2) require
the search for hard sequences (strings). Not just the mere information about the existence
or nonexistence of hard sequences was exploited in proving (conditional) collapses of the
polynomial hierarchy but rather the hard sequences itself. The line of research that has been
reviewed in Chapter 3 has led to more and more sophisticated methods to gain information
about the hard sequences and to eventually compute them. The fact that all results of
Chapter 3 are upward collapse results is more then everything else due to the common need
of hard sequences.
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Hemaspaandra, Hemaspaandra, and Hempel [HHH96a] observed that in certain settings
every string is exactly one of the following, either hard or easy. Thus, one can completely
discard the search for hard strings. One simply looks at the input itself, determines whether
it is an easy or hard string, and completes the computation in one or the other way. This
approach led to the result

puilll = p¥ill — 5P —TIP = PH

for k > 2 [HHH96a]. In [HHH99] and [BF98] this result is extended in two different direc-
tions. The approach of [HHH96a] works only for 1-vs-2 query access to X}, k > 2, where
the easy-hard test for the input is responsible for the £ > 2 bound. Buhrman and Fort-
now [BF98] extended the result to the 1-vs-2 query case for k = 2. They did so in modifying
the test of whether the input is easy or hard to nondeterministically simply assume both
that the input is easy and that the input is hard. Since in any case one of the nondetermin-
istic computation branches starts from the wrong assumption it has to be guaranteed that
the branch starting from the wrong assumption does no harm to the overall algorithm. This
is achieved by shielding each of the nondeterministic branches against falsely accepting the
input. [HHH99], on the other hand, removes the 1-vs-2 restriction. Since languages from
DIFF,, (X)) are accepted by a collection of nondeterministic machines one has to ensure
that their computations follow a common scheme. This is achieved by implementing “0-
bit communication” between machines by having the machines independently latch onto a
certain lexicographically extreme string signaled by the input.

However, recall that the two improvements just mentioned—from k£ > 2 to k > 1
via [BF98] and from 1-vs-2 to m-vs-m + 1 via [HHH99]—are incomparable. Neither paper
allows both improvements to work simultaneously. However, this was achieved in [HHH97b],
via a new twist. [HHH97b] provides an improved way of allowing the underlying ¥} ma-
chines of DIFF(3}) languages to work together. In particular, [HHH97b] does so by exploit-
ing the so-called telescoping normal form of boolean (or difference) hierarchies [CGH'88]—a
normal form that in concept dates as far back as the work of Hausdorff [Haul4].

4.2.3 A Detailed Analysis of the Proofs

The development of the proof method underlying the Theorems 4.2.1, 4.2.2, 4.2.3, and 4.2.4
can best be seen by proving (in its original version) a special case of each of the be-
fore mentioned theorems. Starting from an assumption, pEslll — pE§[2}, psl2 — ngm,
pEall = P22p[2], or P22 = P22p[3], respectively, we will prove the downward collapse result
obtained and also state the induced collapse of the polynomial hierarchy which follows from
Theorem 3.3.1.

For simplicity of representation let s be a polynomial such that for all z,y,z € ¥*,
{z,y)| < s(max{|z|,|y|}) and [(z,y,z)| < s(max{|z]|,|y|,|z|}). Furthermore, let us renew
the convention on polynomials already stated in Section 3.2. Whenever we talk about
polynomials in the remainder of this section let us assume that those polynomials are of the
form n®+b for some integers a, b > 0. This convention can be made without loss of generality
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in our context and has the advantage that a polynomial p now satisfies p(n+1) > p(n) > n
for all n, a condition we will need throughout this section’s proofs.

Hemaspaandra, Hemaspaandra, and Hempel 1996 [HHH96a]
Theorem 4.2.5 If P¥s[ = P52 then X2 = I1} = PH.

Proof: Main Claim If P = PONPED) then B = 115,

Recall that P®=2) and POP:=3) are the classes of languages that can be accepted by
some DPTM making in parallel at most one query to a P or NP oracle, respectively, and
at most one query to a X} oracle (see Section 2.4).

Since P¥sl = p(P.X3) - p(NP,Z3) - P22l the theorem follows immediately from the
above claim. Thus, it remains to prove Main Claim.

Proof of Main Claim: A Suppose p(®¥3) = p(NP.23) | Let Lp and Lpxpep) be many-
one complete languages for PP = P and PNPI respectively. Let ng be a ¥

complete language. In order to prove Main Claim it suffices to give a X% algorithm
for ng.

B Claim B: LPAng and LPNP[l]AL2§ are many-one complete languages for P(P33) gnd

P(NP’xg), respectively.

We only show the claim for LPNp[l]Ang. Recall that for any two sets A and B,

AAB = {(z,y) |z € A < y & B}. Obviously, LpxeyALygp € PNPS5). Let L be

an arbitrary language from P(NP.Z5) . Without loss of generality let L be accepted by

a DPTM N making, on every input z, in parallel exactly one query z4 to A and one
query zp to B, where A € NP and B € ¥%. Hence L = L(NA-B)). Define

C = {z| NPB)(z) accepts if 4 is answered correctly and zp is answered no} and

D = {z| the acceptance/rejection behavior of N(*5)(z) after answering the query
z 4 correctly strictly depends on the answer to xp, and zp € B}.

Note that the set D can also be seen as the set of all  such that g € B and the

partial truth-table of N(4:B)(z) with respect to a correct answer to x4 has at least

one mind change. Clearly, C' € PNPU and D € ¥2. Furthermore, it is not hard to

verify that for all x € X%,

z €L < (z,z) € CAD.
But note that we also have for all z € %*,
(z,z) € CAD <= (f(z),g(x)) € LpneuALsy,

where f and g are polynomial-time computable functions reducing C' to Lpxppy and D
to ng, respectively. This shows that L is many-one reducible to LPNP[I]ALE§ which
completes the proof of the claim.
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C Since by assumption pP(F:23) = p(NP.23) we have a many-one reduction from LPNp[l]Ang

to LPAng. In other words, there exists a polynomial-time computable function h
such that for all z1, 2o € ¥*,

<(L‘1,:E2> € LPNP[l]Ang — h((xl,xz)) € LPAng-

Let ' and A" be the polynomial-time computable functions such that for all zq,z9 €
3, h({m1, 32)) = (W' ({21, 22)), K" ((z1, 22))) and thus
(:L‘1 € LPNP[I] <~ Iy ¢ ng) <~ (hl(<$1,$2>) € Lp — h”(<$1,$2>) ¢ LEE)'
D Let [ be an integer. The string x5 is said to be easy for length [ if and only if (3z; :
|z1] < D)[z1 € Lpnepy <= A ((z1,22)) & Lp).

z9 is said to be hard for length [ if and only if |x2| <1 and x5 is not easy for length I,
that is, if and only if (Vzy : |z1| <[)[z1 € Lpneny <= h'({(z1,22)) € Lp|.

Thus, every string is exactly one of the following, either easy or hard for length .
This observation will be used to divide the problem of giving a ¥¥ algorithm for L—zg
into two sub problems, which we are going to solve in E and F. Note that testing
whether a string z is easy for length r(|z|), where r is some polynomial, can be done
by a ¥5 algorithm.

E The upcoming Claim E solves the sub problem for the strings being hard for a certain
length.

Claim E: There exist a set A € 5 and a polynomial q such that for all x € T*, if © is
hard for length q(|x|) then
&Ly < z€A

Let p be a polynomial such that for all z € 3*,
r @ Lyp < (Yy: lyl < p(la])) 3 : |2l < p(|2]) (2, 2) € Lpxeu]
Recall, if x is a hard string for length [, where [ is some integer, then
(Vo1 : |z1] < 1)[z1 € Lpneyy < K ((z1,)) € Lp].

Let g be a polynomial such that g(n) > s(p(n)) for all n. Suppose that z is a hard
string for length ¢(|z|). Hence for all y,z € %, |y|, |2| < p(|z|),

(z,y,z) € Lpxeny <= W ({(z,y,2),z)) € Lp
and thus
z & Lyp <= (Vy: |yl <p(l)))3z : 2] < p(l2]))[W (((z,y, 2),2)) € Lp].
Note that A'({(v,z)) is computable in time polynomial in max{|v|, |z|}. Set
A=A{z] (v |yl <p(jz) Bz : 2] < p(l2))[F (2,9, 2),2)) € Lp]}.
Note that A € I} and thus A € .
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F We now solve the sub problem for the strings = being easy for length g(|z|).

Claim F: Let q be the polynomial defined in E. There exists a set B € X% such that for
all x € ¥*, if x is easy for length q(|z|) then

v ¢ Lyp < z€B.

Define B = {z| (Fz1 : |z1] < q(|z]))
[((L‘l S LPNP[I] < h’(((L‘l,(II» Q LP) /\h”(<x1’x>) € LEE]}'

Note that B € X5. In light of C and D, this proves the claim.

G Combining Claims E and F with a preliminary test whether the input z is hard or easy
for length ¢(|z|) we obtain a 3} algorithm for Lyp.

Claim G: Lgp € B5.

Let A,B € X} and ¢ be a polynomial, all three as defined in E and F. In light of
Claims E and F, the following algorithm is a ¥ algorithm for L—xg

1. On input z determine whether the input z is easy or hard for length ¢(|z|).
Recall that this can be done with one X} oracle query according to D.

2. If the input z is hard for length ¢(|x|) then accept if and only if z € A.
3. If the input z is easy for length ¢(|z|) then accept if and only if z € B.

Note that the use of different oracles in the above algorithm does not affect its correct-
ness as it can be easily be avoided by using the disjoint union of the oracles instead.

H Since Lyy is complete for IT] we have shown II5 = X3 and hence PH = Xf.

End of Proof of Main Claim |

Hemaspaandra, Hemaspaandra, and Hempel 1996 [HHH96b, HHH99]

Theorem 4.2.6 If P}, = P.3, then DIFF,(X2) = coDIFF,(S2).
Proof: Main Claim If P35 = POV then DIFF(5E) = coDIFF,(SR).

b
Recall that Pf;’_ztg’) and Pg are the classes of languages that are accepted by some

DPTM making in parallel at most one query to a P or NP oracle, respectively, and at most
- D : : x5 (P,5%) (NP,%3) 3

two queries to a 33 oracle (see Section 2.4). Since P33, = Pioi CPiog Y C Py, the

theorem follows immediately from the above claim. Thus, it suffices to show the correctness

of the main claim.

NP,%P)
2-tt
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p p
Proof of Main Claim: A Suppose Pg’_%) = Pgi’t%). Let Lp and Lpnep be many-

one complete languages for PPl = P and PNPIU respectively. Let Lpirp,(sp) be a
DIFF3(XY) complete language. We will give a DIFF4(X%) algorithm for Lpirp,(s2)-

B Claim B: LPALDIFFQ(Eg) and LPNP[l]ALDIFFZ(Eg) are many-one complete languages for
(P,2%) (NP,35) .
Pl o and Py, respectively.
The proof is similar to B in the proof of Theorem 4.2.5 (Hemaspaandra, Hemaspaan-
dra, and Hempel 1996). But now the LDIFFz(Eg) part of LPNP[l]ALDIFFz(Eg) accounts
essentially for determining if there is ezactly one mind change in the partial truth-table
with respect to a correctly answered NP query.

1% 1%
C Since by assumption Pf;’_ztf) = Pgi’tz 3) it follows that there is a many-one reduction h

from LPNP[l]ALDIFF2(Z§) to LPALDIFF2(E§)- While continuing as in C in the proof of
Theorem 4.2.5 (Hemaspaandra, Hemaspaandra, and Hempel 1996) and replacing ng
by Lpirp,sp) We obtain for all z,,zy € ¥¥,

($1 S LPNP[I] = I9 ¢ LDIFFQ(Z?)) R
(h'((z1,22)) € Lp <= B"((z1,22)) ¢ LDIFF2(2§))-

D As in the proof of Theorem 4.2.5 (Hemaspaandra, Hemaspaandra, and Hempel 1996).

E As in the proof of Theorem 4.2.5 (Hemaspaandra, Hemaspaandra, and Hempel 1996) we
solve the sub problem for the strings being hard for a certain length first.

Claim E: There exist sets Ay, Ay € Y and a polynomial q such that for all z € ¥, if x
is a hard string for length q(|z|) then

T g LDIFFQ(EE) <~ T € A1 - AQ.

A straightforward application of the key idea of E from the proof of Theorem 4.2.5
(Hemaspaandra, Hemaspaandra, and Hempel 1996) leads to a DIFFy(XY) algorithm
to test whether z € LDIFFQ(Eg) if z is a hard string. Without loss of generality let p;
and ps be two polynomials and f;, fo € FP be two functions such that for all z € X*
and all i = 1,2, |f;(x)| < pi(|z]) and

zeLi < (Fy:lyl <pi(le)(vz : [2] < pillz]))[(fi(2), y, 2) € Lpxem].

Let g be a polynomial such that g(n) > max{s(pi(n)),s(p2(n))} for all n. Let = be
hard for length ¢(|z|). Hence we have for all zy, |z1| < ¢(|z|), 1 € Lpxepy <=
h'({(z1,z)) € Lp. Thus, for all i = 1,2,

z €L < (Jy: |yl <pillz)(Vz : 2] <piljz]) W ({{fi(z),y,2),2)) € Lp].
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Define for i = 1,2, A = {z |3y : [y < pi(lz]))(V2 : [2] < pi(|z)['({{fi(2),y,2),2)) €
Lp}. Note that A}, A, € XY and that for all z € ¥*, if z is hard for length ¢(|z|) then
% € Lpmprysp) <= @ € A} — Aj. Since coDIFFy(35) C P¥P C DIFF,(55) there

exist sets Ay, Ay € Eg such that Ay — Ay = A] — A}. Hence, if z is a hard string for
length ¢(|z|) then
T g LDIFFQ(E?) <~ x € A1 — AQ.

F Now follows the solution of the sub problem for the strings z being easy for length ¢(|z|).

Claim F: Let q be the polynomial defined in E. There exist sets B1, By € X% such that
for all x € ¥*, if © is an easy string for length q(|z|) then

x g LDIFFQ(ZI:;)) <~ x € Bl — BQ.

Recall Lppp,(spy = L1 — L2, where Ly, Ly € ¥%. Define for i = 1,2,

By ={z| (=1 : |z1| < q(|2])[(z1 € Lpxeny <= B ((21,2)) & Lp) A

(Vv : v <jeg z1)[v € Lpney <= K ((v,z)) € Lp] AW ({z1,z)) € L;]}.
Obviously, By, By € £5. In light of C and the definition of By and B, it is not hard
to verify that if z is an easy string for length ¢(|z|) then

G Combining the results of E and F with a preliminary test whether the input = is hard
or easy for length ¢(|z|), we obtain a DIFF,(X%) algorithm for Lpirp,(zp)-

Let Ay, Ao, By, By € Zg and g be a polynomial, all as defined in E and F. For : = 1,2
let L; be the language accepted by the following algorithm:

1. On input x determine whether the input z is easy or hard for length ¢(|x|). This
can be done with one X} oracle query according to D.

2. If the input z is hard for length ¢(|z|) then accept if and only if z € A;.
3. If the input z is easy for length ¢(|z|) accept if and only if z € B;.

Clearly, j]\l, Ly € ¥8. Furthermore, for all z € £*, z € LDIFF2(E§) e ze€Ll - Ly
due to Claims E and F. Hence Lpypp,(sr) € DIFF,y(30).

H Since Lppy,(sp) is complete for coDIFF;(2Y) we obtain DIFF,(XZ%) = coDIFF,(Z%).
End of Proof of Main Claim |
In light of Theorem 3.3.1, we have the following collapse of the polynomial hierarchy.

Corollary 4.2.7 If P}, = P}*, then PH = DIFF,(Z5)AXY.
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Buhrman and Fortnow 1996 [BF96]
Theorem 4.2.8 If P™[1 = P2 then ¥ = IY = PH.
Proof: Main Claim If P = NPAYY then T = T15.
Recall NPAYY = {AAB| A € NP A B € 25}, Since P C NPAX) C P¥ the

theorem follows immediately from the above claim. So we will prove the theorem by proving
the main claim.

Proof of Main Claim: A Assume pE:l = NPAXY. Let Lp and ng be complete lan-

guages for P and X5, respectively. LPAng is complete for p(®¥2) = p2[1, This
can be shown quite analogous to B from the proof of Theorem 4.2.5~(Hemaspaandra,
Hemaspaandra, and Hempel 1996). Furthermore, observe that SATALES € NPAXS.

B Since P21 = NPAXY we have SATALEE e px:, Consequently, there is a many-

one reduction A from SATALES to LPALES. Continuing as in C in the proof of
Theorem 4.2.5 (Hemaspaandra, Hemaspaandra, and Hempel 1996) while replacing
Lysy by Ly and Lpxppy by SAT yields for all 21,2 € X7,

(r1 €ESAT <= 1z, ¢ ng) < (W ((z1,22)) € Lp <= h"((z1,12)) ¢ Lxg).

C As D in the proof of Theorem 4.2.5 (Hemaspaandra, Hemaspaandra, and Hempel 1996)
but replace Lpnepy by SAT.

D Observe that the proof of Theorem 4.2.5 (Hemaspaandra, Hemaspaandra, and Hempel
1996) is not valid for ¥3 instead of X}. The crucial point in the proof of Theorem 4.2.5
is the test in the final algorithm whether a string is easy or hard for a certain length
(done by a X} oracle query). Since the final algorithm of the current proof has to be
a X5 algorithm, one has to avoid the preliminary easy-hard test and thus one needs
to shield each of the sub algorithms against falsely accepting.

Claim D: There exist a set A € coNP and a polynomial q such that

1. AC L—zg and
2. for all © € ¥*, if x is hard for length q(|x|) then

¢ Lyp <= z €A
Without loss of generality let for all € 3%,
z ¢ Lyp <= (Vz:|z] <p'(|z])[{z, z) € SAT],

for some polynomial p’. Define ¢ to be a polynomial such that g(n) > s(p'(n)) for all
n. Assume that z is a hard string for length ¢(|z|). Hence,

(%) (Vz1 : |71] < q(|z|))[r1 € SAT <= h'({x1,z)) € Lp].

Consider the following coNP algorithm:
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1. On input z guess z, |z| < p'(|z]).

2. Assume (*) and use the self-reduction of SAT to find a potential witness for
(r,z) € SAT with the help of (*) in deterministic polynomial time. This is
done as follows: Let (z,z) encode the boolean formula F. We construct wpg
an assignment for F. Fix an ordering for the variables in F'. Replacing the first
variable in F' by 0 (1) leads to a boolean formula Fy (F}), let the string vy encode
Fy. Compute h({vp,z)) and test whether h'((vo,z)) € Lp. If h'((vo,z)) € Lp
then, under assumption (*), Fy € SAT. Thus, set the value for the first variable in
wr to 0 and repeat this procedure with Fj until wy assigns a value to each variable
in F. If b'((vg, z)) & Lp then, under assumption (*), Fy ¢ SAT implying that a
satisfying assignment for F', if there exists one, assigns 1 to the first variable. So
set the value for the first variable in wr to 1 and repeat this procedure with F;
until wp assigns a value to each variable in F'.

3. Accept if and only if the string constructed in step 2 is a witness for (z, z) € SAT.
In other words, accept if and only if the assignment wp constructed in step 2
satisfies F'.

Let A be the language accepted by this algorithm, A € coNP. If x is a hard string for
length ¢(]z|) then (*) in fact holds and it is not hard to verify that

&Ly < z €A

But note that even if = is not a hard string for length ¢(|z|) we have that x € A
implies x ¢ L22p. This follows from the fact that the algorithm only accepts (as it is a
coNP algorithm) if for all z, |z| < p(]z|), the string constructed in step 2 is a witness
for (z,z) € SAT.

E The sub algorithm for the strings = being easy for length ¢(|z|) given in F from the proof
of Theorem 4.2.5 (Hemaspaandra, Hemaspaandra, and Hempel 1996) has already the
required shielding feature as spoken of in the beginning of D and can be easily adapted
to the current proof.

Claim E: Let q be the polynomial defined in D. There exists a set B € 35 such that

1. BC L—Eg and
2. for all x € ¥*, if x is an easy string for length q(|x|) then

z ¢ Lyp < z € B.

It is not hard to see that Claim E can be shown quite analogous to F from the
proof of Theorem 4.2.5 (Hemaspaandra, Hemaspaandra, and Hempel 1996) with re-
spect to the obvious adaptions as for instance a replacement of sz by sz and
Lpxepy by SAT. Hence, for the modified set B from F in the proof of Theorem 4.2. 5
(Hemaspaandra, Hemaspaandra, and Hempel 1996) holds, 2 € B if and only if
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(Fz1 ¢ |21 < q(|jz)))[(z1 € SAT <= W({z1,2)) € Lp) AW"((z1,7)) € Lyp]. Note
that z € B if and only if z is easy for length ¢(|z|) and = & Lyp. In particular, if 2 is
hard for length ¢(|x|) then z ¢ B.

F Running the sub algorithms from Claims D and E in parallel gives a ¥5 algorithm for

Lyp.
=5

Claim F: L—Eg exb.

Let A € coNP, B € ¥, and ¢ be a polynomial, all three as defined in D and E. We
have the following 3} algorithm for Lyp.

1. On input z guess whether the string z is hard or easy for length ¢(|z|).

2. If the algorithm has guessed that z is a hard string for length ¢(|z|) accept if
and only if z € A.

3. If “z is an easy string for length ¢(|z|)” was guessed in step 1 then accept if and
only if x € B.

Recall from D and E that the sub algorithm emerging from the wrong guess does not
accept if x & ng.

G Since Lyp is many-one complete for 15 we obtain II5 = £ and thus PH = X5.

End of Proof of Main Claim |

Hemaspaandra, Hemaspaandra, and Hempel 1997 [HHH97D]

Theorem 4.2.9 If P}, = P52, then DIFF,(X8) = coDIFF,(S3).

Proof:

Main Claim If PADIFF,y(S5) = NPADIFF,(55) then DIFFy(S5) = coDIFF,(5D).
Recall the definition of CAD = {CAD|C € C A D € D} for complexity classes C, D
p p
from Chapter 2. Since P,?, = PADIFF,(X5) C NPADIFF,(35) C P32, the theorem

follows immediately from the above claim. It remains to prove the main claim.

Proof of Main Claim: A Suppose PADIFFy(XY) = NPADIFFy(Xb). Let Lp, Lyp,
and Lppp,(sp) be complete languages for P, NP, and DIFF3(XY), respectively. Let

B Claim B: The languages LPALDIFFQ(ES) and LNPALDIFFQ(zg) are many-one complete
for PADIFF4(XY) and NPADIFFy(XY), respectively.

The proof is straightforward and thus omitted.
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C Since by assumption PADIFF5(2Y) = NPADIFFy(3h), LNPALDIFFZ(ZE) many-one re-

duces to LPALDIFF2(E§)- Continue as in C in the proof of Theorem 4.2.5 (Hemaspaan-
dra, Hemaspaandra, and Hempel 1996) but replace ng by LDIFFQ(EQ) and Lp~epy by
Lyp. Thus for all z1,z9 € X%,

(xl € LNP < 9 ¢ LDIFFQ(EIQ))) <

(W' ((z1,22)) € Lp <= h"((z1,22)) ¢ Lpier,(sp))-

D As D in the proof of Theorem 4.2.5 (Hemaspaandra, Hemaspaandra, and Hempel 1996)
but replace Lpxep) by Lnp.

E As D of the proof of Theorem 4.2.8 (Buhrman and Fortnow 1996) but replace Lgp by
L.

Claim E: There exist a set A € coNP and a polynomial q such that

1. ACL; and
2. for all x € ¥*, if x is hard for length q(|x|) then

z €L < z€A.

F The result of E can be extended to yield a ¥5 algorithm for the strings z in ng being
hard for length ¢(|z|) that is protected against accepting if the input string z in fact
is an easy string for length ¢(|z|) and = & Lyyp.

Claim F': Let q be the polynomial defined in E. There exists a set A’ € £ such that

1. A g LDIFFQ(ﬁg) and
2. for all © € ¥*, if x is a hard string for length q(|z|) then

Let Ly, Ly € X5 and A € coNP be as defined in A and E. Define A’ = AU Ly. Clearly,
A’ € 5. Note that

redA < zeAVzelL
= zel1Vz€lL
< z€L ULy
< (II¢L1—L2
=

= € Lpipr,(sp)-

Hence A’ C Lpipr,(sp)- Furthermore, in case z is hard for length ¢(|z]) the second
line in the above implication chain turns into an equivalence according to E.
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G There is also a sub algorithm for the strings = being easy for length ¢(|z|). Observe that
a straightforward adaption of F from the proof of Theorem 4.2.5 (Hemaspaandra,
Hemaspaandra, and Hempel 1996) does not work here, since the sets B; constructed
there would (even with the adaption to the current situation) remain Zg sets, but one
needs X sets here.

Claim G: Let q be the polynomial defined in E. There exist sets By, By € ¥5 such that,

1. B1 - B2 g LDIFF2(2§) and
2. for all x € ¥*, if x is an easy string for length q(|x|) then

x g LDIFFQ(EIQ)) <~ x € Bl — BQ.

Recall that Lpippyspy = L1 — Lo where L1, Ly € 5. Without loss of generality let
Ly D Ly [CGH™88]. Define for i = 1,2,

By ={z| (3z1 : [z1] < q(|z]))[(z1 € Lnp <= W' ((z1,2)) & Lp) A" ({z1,2)) € L]}
Note that By, By € ZS and B; D By. We will prove the claim by showing that for all
z € ¥*, x € By — By if and only if z is easy for length ¢(|z|) and = & L1 — Lo.

Let z € ¥*. Observe that for all = 1,2, x € B; — By implies that z is easy for length
q(|z|). So it suffices to show that if z is easy for length ¢(|z[) then z ¢ Lppp, sp) <
x € B; — Bs.

Let x be easy for length ¢(|z|). Let ¢ = max({0} U {7 € {1,2} |z € B;}). Let z3 be a
string such that

(Fz1 2 |21 | < g(|2)) [22 = 1" ({21, 2)) A
(:El € Lyp <— h,(<$1,$>) QLP)/\
(t>0 = 2z € Ly)].

Such a string zo exists since z is easy for length ¢(|z|). Note that z & L1 — Ly <
2o € L1 — Lo. This follows from the definition of zo and the fact the equivalence
(z1 € Lnp <= 7 ¢ Lppp,sp)) <
(W' ((z1,2)) € Lp <= B"((z1,7)) ¢ Lpirr,(sp))
does hold for all z; € ¥* according to C. Furthermore, x € By — B» if and only if
z9 € L1 — Lo due to the definition of zy, By, B2, and t. Thus,
© € Lpppy,spy <= 2z & Li— Ly
<— 2€L1— Ly
< x € By — Bs.
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H Combining Claims F and G while exploiting the structure of DIFFy (X)) shows

Claim H: Lpr,(sp) € DIFF,(35).

Let the sets A’, By, By € XY be as defined in F and G. We show the above claim by

Suppose x € Lpypp,(sp)- Note that 2 is exactly one of the following, either easy or hard
for length g(|z|). If = 1s easy for that length then € By — By according to Claim G.
If z is hard for length ¢(|z|) then x € A" according to Claim F and z ¢ Bs according
to the definition of By in G. In both cases we certainly have 2 € (B; U A") — Bs.

Now suppose = € (B U A') — By. Hence © € By UA". If z € A’ then z € Lppp,(sp)

according to Claim F. If z ¢ A’ then z € By — By. But this implies = € LDIFF2(2§)
according to Claim G.

I Since Lppp,(sp) is complete for coDIFF3(3}) we obtain DIFFy () = coDIFFy(3h).
End of Proof of Main Claim |

Theorem 4.2.9 together with Theorem 3.3.1 allows to conclude a collapse of the polyno-
mial hierarchy.

Corollary 4.2.10 If P, = P>2 then PH = DIFF,(X})AXP.

4.3 A New Result

The key result of [HHH97b] is based on the following theorem.

Theorem 4.3.1 [HHHY7b] For all m > 1 and all 0 < ¢ < k — 1, if SPADIFF,,(X}) is
closed under complementation, then DIFF,,(X}) = coDIFF,,(X}).

This, clearly, is a true downward collapse result. Removing the asymmetry in its hy-
pothesis we extend this result to also hold for all levels of the boolean hierarchy over XF. In
particular, we show that for all s,m > 1 and all 0 < i < k — 1, if DIFF(Z}) ADIFF,,(=F)
is closed under complementation, then DIFF,,(X}) = coDIFF,,(£?). Our proof is based
on the approach of [HHH97b] combined with the observation that the results on the con-
nection between a collapse of the boolean hierarchy and a collapse of the polynomial hier-
archy (see Chapter 3) also apply to prefixes of ¥*. Hence our proof employs the easy-hard
technique in two directions. On one hand, we make use of the recent modifications of
the easy-hard technique that allowed to prove the downward collapse results we have re-
viewed in the previous section [HHH96a, HHH99, BF98, HHH97b]. On the other hand, we
exploit the easy-hard technique (in a more technical way) in its original version and exten-
sions [Kad88, Wag87, Wag89, CK96, BCO93| that subsequently tightened the connection
between the boolean hierarchy and the polynomial hierarchy. Our result has a number of
applications to query order classes.
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4.3.1 The Easy-Hard Technique in Double Use

In this sub section we prove the main result of this chapter, Theorem 4.3.3.
Our first lemma establishes that classes of the form CAD in some cases contain well
structured many-one complete sets.

Lemma 4.3.2 Let C and D be complexity classes. If C' is <b, -complete for C and D is
<h-complete for D, then CAD is <} -complete for CAD.

Proof: Let C' and D be many-one complete for C and D, respectively. First observe that
CAD = {(z,y) | = € C}A{(z,y) |y € D} and thus CAD € CAD. For the hardness claim,
suppose that A € CAD. Hence there exist sets A1 € C and Ay € D such that A = A1 AAs.
Let f; and fo be polynomial-time computable functions many-one reducing A; to C' and
Ao to D respectively. Thus, for all € 3%,

€A = (re€A <= z¢A)
= (filz) €C = fa(z) ¢ D)
= (fi(z), f2(z)) € CAD.

This shows that A is many-one reducible to CAD. |
We now state the main theorem of this chapter.

Theorem 4.3.3 Let s,m > 1 and 0 < ¢ < k — 1. If DIFF (Z}) ADIFF,,(£}) is closed
under complementation, then DIFF,, (X)) = coDIFF,,(3}).

In Figure 4.1 we give an overview over the previously known downward collapse results.
The figure illustrates that our new result not just strengthens a claim from [HHH97b] but
also a result from [HHH99].

Proof of Theorem 4.3.3: Since for s = 1 the claim to be proven is exactly the claim of
Theorem 4.3.1 we henceforward assume s > 2.
Let s>2, m>1,and 0 <i< k—1.

A Let fo, foﬂ, and Lﬁﬂz be <P -complete languages for Zf, Ef_i_l, and 25_1_2, respec-
tively, that satisfy!

Ly = {z| Gy: |yl = |o)l(z.5) ¢ Ls»]},

and
Lyp , ={2| Gy : lyl = e[z, y) & Lsp, 1}

Let Lyp be a <p-complete language for X} and let Lppp,, (spy be <t -complete for

!By Stockmeyer’s [Sto77] standard quantifier characterization of the polynomial hierarchy’s levels, such
sets do exist.
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Figure 4.1: Inclusion structure and results overview—a collapse of all classes in a dotted
box implies DIFF,,(X}) = coDIFF,,(Z}) (0 <i <k —1).
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{{z,y) |z € Ly Ny ¢ LDIFFj_l(H?)}. Note that Lppg, ey is many-one complete for
DIFF,(IIY) for all j > 1. Observe that DIFF;(X}) = DIFF,(II?) if j is even and
DIFF;(%}) = coDIFF;(IT}) if j is odd. Let Lppy,(sp) = Lpwyr, () if s is even and
Lppr,(sp) = Lprer, ey if s is odd. Then Lppp,(spy is <h-complete for DIFF,(XF).

B Recall that LDIFFS(ZP)ALDIFFm(Eg) is many-one complete for DIFF (X)) ADIFF,, (X))
by Lemma 4.3.2.

C Since by assumption DIFF,(X?)ADIFF,,(X}) is closed under complementation, there
exists a many-one reduction from LDIFFS(E?)ALDIFFm(Eg) to its complement. That is,
there exists a polynomial-time computable function A such that for all xq,z9 € X7,

(z1,22) € LDIFFS(Eg)ALDIFFm(Eg) & h((z1,22)) & LDIFFS(Eg)ALDIFFm(zg)-

Let A’ and h” be two polynomial-time computable functions, such that for all 1,29 €
¥, h({z1,x2)) = (W ((z1,22)), " ({x1,22))). Hence, for all z1,xs € ¥*:

(z1 € Lpipp,(sp) & 22 ¢ LDIFFm(Eg)) —
(R ((z1,22)) € Lpipp,spy < W' ((x1,22)) € LDIFFm(ZIIz))'

D We say that a string x is easy for length n if there exists a string z; such that |z1| < n
and (21 € Lppp,(spy € h'((z1,2)) € Lpipp,(sp)). Note that with a %7, algorithm
one can test whether a string x is easy for length r(|z|), where r is some polynomial.

We say that = is hard for length n if |z| < n and z is not easy for length n, i.e., if
|z| <n and, for all 1 with |21| <n, (21 € Lppg,xpy © K ((71,2)) & Lppe,sp))-

Let for all a € ¥*, h, denote the function such that for all y € X*, h,(y) = h'({y, a)).
Observe that if z is a hard string for length n, then z induces a many-one reduction

<n
from (LDIFFS (Ef))

to Lppp, (xpy, namely, hy; for all z; such that |z,] <n,

T1 € Lppp,(sp) < hy(21) € Lpipr, p)-

Note that hgz(z1) is computable in time polynomial in max{|z|,|z1|}. Since every
string z, |z| < n, is exactly one of the following, either easy or hard for length n,
we divide the problem of giving a DIFF,, (£?) algorithm for Lpipr,,(sp) into two sub
problems; one being responsible for all strings x that are easy for length ¢(|z|), and
one for all strings z that are hard for length ¢(|z|), where ¢ is a polynomial we will
specify exactly soon.

E We first give a P algorithm for all strings x in LDIFFm(Z}i’) that are hard for length

q(|z|).
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Claim E: There exist a set A € P™k-1 and a polynomial q satisfying (Vm > 0)[g(m+1) >

q(m) > 0] such that for all x € ¥*, if x is hard for length q(|z|) then

It is known that a collapse of the boolean hierarchy over ¥ implies a collapse of
the polynomial hierarchy (see Chapter 3 for references and results). The best known
results conclude a collapse of the polynomial hierarchy to a level within the boolean
hierarchy over X} 1 Inother words, if Lpipp, (sp) many-one reduces to Lpirr,(sp) then

there is (at least) a P algorithm for szﬁ. Though a hard string for length n only
induces a many-one reduction between initial segments of Lppp, (sp) and Lppp, (sp),

we would nevertheless like to derive a P>+t algorithm for some (to be specified soon)
of L2p+2. The following lemma does exactly that.

Lemma 4.3.4 et s>2, m>1,and 0 <<k —1.
Suppose that DIFF (X)) ADIFF,,(X}) is closed under complementation. There exist

a set D € P+ and a polynomial r such that for all n, (a) r(n+1) > r(n) > 0 and
(b) for all z € X%, if z is a hard string for length (n) then for all y € (3*)<",

yE sz+2 — (z,1",y) € D.

We defer the proof of Lemma 4.3.4 and first finish the proof of Claim E and the proof
of our theorem.

If z is a hard string for length ¢(|z|) we will use the result of Lemma 4.3.4 to obtain
a PZE1 algorithm for all strings = in Lpgy,, (xr) that are hard for length q(|z|), and

hence (since PYi-1 is closed under complementation) certainly a Pk algorithm for
all strings = in Lppp,, (xp) that are hard for length q(|z]).

To be more precise, suppose that z is a hard string for length r(n). According to
<n

the above Lemma 4.3.4, x induces a P algorithm for all strings in (LEP+2)7

that runs in time polynomial in n. What we would like to conclude is a P¥i-1

=z

Ly,)---)), where L; € X} for all j. Since Lyyp is complete for ¥, there exist functions
fi,---, fm many-one reducing Ly, ..., Ly, to nga respectively. Let the output sizes of

all the f;’s be bounded by the polynomial p’, which without loss of generality satisfies
(Vm > 0)[p'(im + 1) > p’(m) > 0]. Hence an z-induced PYi1 algorithm for strings

. <p'(Jz) . 5P . . =l
in (sz) suffices to give us a P7k-1 algorithm for strings in (LDIFFm(zg))
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But Lemma 4.3.4 gives us exactly this, if k¥ = i+2 and if z is hard for length r(p'(|z])).
More formally, note that if z is a hard string for length r(p'(|x|)) we have that

2 € Lpyp,, vy <= 3 € L1 — (Ly — (- = (Lm—1 — L) ++))
= Fi(0) € L A(fa(@) € Lgp A (- A(fnla) € D))
= (2, 1", f1(2)) € D' A=(--- A ((w, 170D, [ (@) € D) o).
Set A" = {z| (z, 17" (D _f,(z)) € D' A=(--- A=((z, 170D £, (x)) € D')---)} and note
that clearly A’ € pPYi-1,

Consequently, if k = i +2 set A = A’ and let ¢ be a polynomial satisfying (Vi >
0)[g(m +1) > q(m) > 0] and for all n, ¢(n) > r(p'(n)). Note that this proves Claim E
for k =1+ 2.

For the case k > i + 2, let M be a ZZ—(H—Z)
queries to L2p+2 and running in time ¢’ for some polynomial ¢’ satisfying (Vm >

machine recognizing LEE with oracle

0)[¢'(m + 1) > ¢'(m) > 0]. We can certainly replace the Lyp , queries by queries to a
P¥'t1 oracle and thus obtain a ¥}, algorithm (running in time polynomial in |z|) for
(LE;’)SPI(‘ID, if we ensure that Lemma 4.3.4 gives us an z-induced P¥ii1 algorithm
for all strings in <L2?+2 Sq’(p,(‘x‘)). Thus, if £ > 7+ 2 we need z to be hard for length
r(q (p'(|z])))-

More formally, if k > i+ 2 define D’ to be the set accepted by the following algorithm:
On input (z,y) simulate ML2$+2 (y) but replace every query z made by ML2$+2 (y) to
Lyp,, by a query (z,17(¥) 2) to D. Since M is a EZ—(H—Z) machine and D € P
we conclude that D’ € 2271. Recall from Lemma 4.3.4 that for all n, if z is a hard
string for length r(n) then for all z, |z| < n,

n
z€Lyp = (z,1",z) € D.

L
Since for all n, M Zi+2 (v), ly| < n, can only generate queries z of length at most ¢'(n)
we have that if z is a hard string for length r(¢'(n)) then for all y, |y| < n,

y € Lyr = (z,9) eD'.

Hence, for all n, if z is hard for length r(¢’(p'(n))) then for all 1 < i < m and all y,
lyl <mn,

fily) € ng <~ (z,fi(y)) e D"

Define A' = (x| (z, f1(#)) € D' A=((z, () € D' A=+ A~((2, fm(2)) € D))}
and note that clearly A’ € P¥-1. Tt follows that if z is a hard string for length
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r(¢/(¢(|z]))) then
€Ly —(Ly— (- — (L1 — L) -++))
f1() € Ly A=(fala) € Lyp A=(-+ A=(fin(2) € D))

(z, fi(z)) € D' A=(--- A=z, fn(z)) € D))
ze A

z € Lpipp,, (sp)

1ret

So, for k > i+ 2 set A = A’ and let ¢ be a polynomial satisfying (Vm > 0)[g(m + 1) >
q(m) > 0] and for all n, ¢(n) > r(¢'(p'(n))). It is not hard to verify that this proves
Claim E if £ >4+ 2.

F We now give a DIFF,,(X7) algorithm for all strings z in Lpigr,,(sp) that are easy for
length g(|z|).

Claim F: Let q be the polynomial defined in E. There exist sets By, Ba,...,Bp, € Eg such
that for all z € ¥*, if x is easy for length q(|x|) then

€T ¢ LDIFFm(Ez) <~ T E B1 - (BQ — ( .. (Bm_l - Bm) . ))

Let ¢ be the polynomial defined in E. Clearly, we have the following algorithm to
test whether z € m in the case that (our input) z is an easy string for
length ¢(|z|). On input z, guess z; with |z;| < ¢(|z]) and accept if and only if
(z1 € Lppr,sp) < W ((z1,7)) € LDIFFS(E;’)) and h"((z1,7)) € Lprp,, (sp). This
algorithm is not necessarily a DIFF,,(2}) algorithm, but it does inspire the following
DIFF,,(2F) algorithm to test whether z € m in the case that = is an easy
string for length ¢(|x|).

Let L1, L2, -, L be languages in X} such that Lppg,, op) = L1 — (L2 — (L3 —

-+ (Lm-1—Lp)--+))and Ly D Ly D -+ D Ly, 1 O Ly, (this can be done, as it is
simply the “telescoping” normal form of the levels of the boolean hierarchy over Eg,
see [CGHT88, Haul4]). For 1 < r < m, define B, as the language accepted by the
following ©¥ machine: On input z, guess z; with |z1| < ¢(|]z|) and accept if and only
if (1 € Lpipp, sy < W ({x1,z)) € LDIFFS(E?)) and h"((x1,z)) € L.

Note that B, € 22 for each r, and that By D By D --- D Bj,_1 2 B,,. We will
show that if 2 is an casy string for length ¢(|z[), then z € Lppp,, (sp) if and only if
J?EBl—(Bg—(Bg—---(Bm,1—Bm)---)).

So suppose that z is an easy string for ¢(|z|). Define ' to be the unique integer such
that (a) 0 <1’ <m, (b) z € By for 1 < s </, and (c) z &€ By for s’ > 7. Tt is
immediate that z € By — (By — (B3 — -+ (Bm—1 — Bm) -+ )) if and only if 7/ is odd.

Let w be some string such that:

o (Jz1 :|zy| < q(|z]))
[h"({z1,2)) =w A (21 € Lppp, sy € B ({21,2)) € Lppp,(sp))]; and
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o weE Ly if ' > 0.

Note that such a w exists, since z is easy for length ¢(|z|). By the definition of
r’ (namely, since x & By for ' > '), w & Ly for all s/ > /. Tt follows that
w € LDIFFm(ﬁg) if and Only if ')’J is odd.

It is clear, keeping in mind the definition of i (and ', h"), that

z € Lpipp,,(spy <= W € Lppp,, (z7)
<~ r'isodd
— (IIEBl—(BQ—(Bg—'-'(Bm_l—Bm)---)).

This completes the proof of Claim F.
G Combining the results of Claims E and F we obtain

We prove Claim G by showing that Lpr,, zr) = I — (i; — (i; — (- (L/m: —
Ly)...))) for some sets Ly, Lo, ..., L € P

Let the sets A € Pzz—l, B,Bs,...,B,, € E}: and the polynomial ¢ be as defined in
E and F. For 1 <r < m, let L, be the set accepted by the following X} algorithm:

1. On input z determine whether the input = is an easy string for length ¢(|z|). This
can be done with a one 2}2_1 oracle query, as checking whether the input is an
easy string for length ¢(|z|) can be done by one query to EE_H, andi+1<k—1
by our ¢+ < k — 1 hypothesis.

2. If the previous step determined that the input is not an easy string, then the

input must be a hard string for length ¢(|z|). If » = 1 then accept if and only if
x € A. If r > 1 then reject.

3. If the first step determined that the input z is easy for length ¢(|z|), then accept
if and only if z € B,.

Note that the ¥} _; oracle (implicitly described) in the above algorithm is being used
for a number of different sets. However, as £} | is closed under disjoint union, this
presents no problem as we can use the disjoint union of the sets, while modifying the
queries so they address the appropriate part of the disjoint union.

It follows that, for all z € X%,

—_—

H Since Lppp,,(sp) is complete for coDIFF,,(2}), we conclude that DIFF,,(3}) is closed
under complementation, DIFF,,(£Y) = coDIFF,,(Z}). |
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We now give the proof of Lemma 4.3.4. The upcoming proof should be seen in the
context with the proof of Theorem 4.3.3 as some notations we are going to use are defined
there.

Proof of Lemma 4.3.4:  Our proof closely follows the proof of Theorem 3.3.1 in order to
emphasize the technical differences that make the current proof valid. Let ¢ be a polynomial
such that [(z1,z2,...,2;)| < t(max{|z|,|z2],...,|z;|}) for all 1 < j < 2s 4+ 2 and all
T1,T2,...,¢; € L*. Without loss of generality let ¢ be such that ¢(n + 1) > ¢(n) > 0 for all
n. Define ¢ (n) = n and tU(n) = t(t(---t(n)---)) for all n and all j > 1.
~——
j times
Recall the definitions from A of the proof of Theorem 4.3.3 regarding sza L2?+1’ LE?+2’
LDIFFS(Hf)a and LDIFFS(Ef)-
Define r to be a polynomial such that r(n+1) > r(n) > 0 and r(n) >t~V (n) for all n.
Let n be an integer. Suppose that z is a hard string for length r(n) in the sense as defined
in D of the proof of Theorem 4.3.3. Then, for all y such that |y| < r(n),

Y € Lpipr,(zp) & h.(y) & Lpipr, (spy,

or equivalently
Yy € Lprpr,mr) < he(y) & Lptrp, Py

Recall that h,(y) can be computed in time polynomial in max{|z|, |y|}. Let for all a € ¥*,
!, and h! be the functions such that for all y € X*, hy(y) = (h,(y), k) (y)). Clearly, hl.(y)
and h!(y) can be computed in time polynomial in max{|z|, |y|}. Thus, for all y;,y, € X*
such that |y1| < n and |yz| < t62)(n),

() 1 € Lyp Ay2 & Liype,_, ry <= hi((y1,92)) & Lue V by ((y1,92)) € Lpier, _, 19y

We say that y; is s-easy for length n if and only if |y1| < n and (Jy2 : |ya| <
t6=2 ()AL ((y1, y2)) & Lnf]- yp is said to be s-hard for length n if and only if |y1| < n,
y1 € Ly, and (Yyo : |ya| <t~ (n))[R. ((y1,92)) € Lyp]. Observe that the above notions
are deﬁrlled with respect to our hard string x, since h;l((yl,gn) depends on zx, yi, and ys.
Furthermore, according to (*), if y; is s-easy for length n then y; € Lyp.

Suppose there exists an s-hard string w for length n. Let for all la,b € X%, h(yp) be
the function such that for all z € ¥*, h(,4)(2) = hg((b,2)). Note that h, . y(y) can be
computed in time polynomial in max{|z|, |ws|, |y|}. In analogy to the above we define s — 1-
easy and s — 1-hard strings. If an s — 1-hard string exists we can repeat the process and
define s — 2-easy and s — 2-hard strings and so on. Note that the definition of j-easy and
j-hard strings can only be made with respect to our hard string =, some fixed s-hard string

ws, some fixed s — 1-hard string wg_1, ..., some fixed j + 1-hard string wj;q. If we have
found a sequence of strings (ws,ws—_1,...,ws) such that every w; is j-hard with respect to
(z,ws,ws—1,...,wjt1) then we have for all y, |y| < n,

(B LH? — h(m,ws,wsfl,...,wg)(y) gé LH;"
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We say that a string y is 1-easy for length n if and only if [y| <n and by w, 1.w) (Y) &
L. We define that no string is 1-hard for length n.

Z(IE) is called a hard sequence for length n. A sequence (z,ws,ws—1,...,wy) of strings is
called a hard sequence for length n if and only if w, is s-hard with respect to z and for all
J, £ < j < s—1, wjis j-hard with respect to (z,ws,ws_1,...,w;jt1). Note that given a hard
sequence (z,ws,ws_1,---,wy), the strings in (Lyp)<" divide into £ — 1-easy and £ — 1-hard
strings (with respect to (z,ws,ws—1,...,wp)) forzlength n.

(z) is called a maximal hard sequence if and only if there exists no s-hard string for length
n. A hard sequence (z,ws,ws_1,...,wy) is called a maximal hard sequence for length n if
and only if there exists no £ — 1-hard string for length n with respect to (z, ws, ws—1,...,wp).
If we in the following denote a maximal hard sequence by (z,ws,ws—_1,...,wr) we explicitly
include the case that the maximal hard sequence might be (z) or (z,ws).

Claim 1: There ezists a set A € B such that if (z,ws,ws_1,...,wy) is a mazimal hard
sequence for length n then for all y and n satisfying |y| < n it holds that:

TAS LH? R <513, 1n,w5,w5,1,. .. 7w€7y> €A

Proof of Claim 1: Let (z,ws,ws—1,...,wr) be a maximal hard sequence for length n. Note
that £ > 2 and that the strings in (Lyp) <™ are exactly the strings of length at most n that are
(£—1)-easy with respect to (x, ws, ws_zl, ...,wy). But it is immediate from the definition that
testing whether a string y is (/—1)-easy for length n with respect to (z,ws,ws_1,...,wy) can
be done by a X algorithm running in time polynomial in n: If £ > 3, check |y| < n, guess ya,
lya] < tE3)(n), compute h,(x,ws,wsfl,...,wz) and accept if and only if hl(:v,ws,wsfl,...,wz) ¢ Lyp; If
¢ =2, check |y| < n, and accept if and only if by 4, 0, 1...w0)(Y) & LH?.

Claim 2: There exist a set B € X} and a polynomial p such that (Vn > 0)[p(n + 1) >
p(n) > 0] and if (z,ws,ws—1,...,wy) is a mazimal hard sequence for length p(n) then for all
y and n satisfying |y| < n it holds that:

y€ Ly = (2,1",w5,ws-1,..., w5, Yy) € B.

Proof of Claim 2: Let A € ¥¥ as in Claim 1. Let y be a string such that |y| < n. According
to the definition of LEP+1’

y€Lsy = (z:]2 = y)l(y.2) ¢ Lyr).

Recall that Lyp = Lyp. Define p to be a polynomial such that p(n + 1) > p(n) > 0 and
p(n) > t(n) for all n. In light of Claim 1, we obtain that if (z,ws,ws_1,...,wy) is a maximal
hard sequence for length p(n) then

(BS LZ?—H — (Elz : |Z| = |y|)[<$7 ]-ﬁ(n)?wsawsfla' -y, Wy, (y,Z>> € A]

We define B = {(z, 1" wy, s 1, w5} |(32  |2] = [y} [, 170, oy 0y 1, (1, 2)) €
A]}. Clearly B € XP. This proves the claim.
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Claim 3: There ezist a set C € ¥, | and a polynomial py such that (Yn > 0)[py (n+1) >
p1(n) >0 and if (z,ws,ws—1,--.,wp) is a maximal hard sequence for length p1(n), then for
all y and n satisfying ly| < n it holds that:

Yy € L2$+2 < <513, ]-naws,wsfla- .. 7w57y> eC.

Proof of Claim 3: Let B € Ef and p be a polynomial, both as defined in Claim 2. Let y
be a string such that |y| < n. According to the definition of LEP+2’

yeLsy > (3z:12 = Dy, 2) ¢ Lnp ).

Define p; to be a polynomial such that pi(n+ 1) > p1(n) > 0 and p1(n) > p(t(n)) for all n.
In light of Claim 2, we obtain that if (z,ws,ws_1,...,wy) is a maximal hard sequence for
length p;(n) then

y € Lyp <= (3z: |z = |y, 17", wy 051, w0 (y,2)) & Bl.

Set C = {(z, 1", ws,ws_1,...,wj,y) | Tz : |2 = |y]) (=, 11 g w1, ... ,wj, (y,z)) € B]}.
Clearly C € %7, ;.
Claim 4: There exists a set D € P i+t such that for all y and n satisfying |y| < n it
holds that:
Yy E sz+2 — (z,1",y) € D.

Proof of Claim 4: Let C € E?—H and p; be a polynomial, both as defined in Claim 3. Note
that

{z, 1", ws,ws—1,...,wp) | (z,ws,ws—1,...,wp) is a hard sequence for length p;(n)}

is a IT? set. Consequently, the set of strings (z, 1", k) such that there exists a hard sequence
for length py(n) of length k is a X7 | set.

The following P¥/+1 algorithm accepts (z,1™,y) if and only if y € in;”; On input
(z,1™, y) compute the largest k such that there exists a hard sequence for length pi(n)

of length k. Then guess strings ws,ws_1,...,ws_k+2 of length at most pi(n). Verify
that (z,ws,ws—1,...,ws ki) is a hard sequence for length pj(n) and accept if and only
if (2, 1" ws,ws_1,...,wWs_k12,y) € C. |

4.3.2 Applications and Concluding Remarks

It is evident that Theorem 4.3.3 misses one interesting case, namely, the case 1 = k—1. Note
that the ¢ = k case has been considered in detail in Chapter 3. Why is our proof unable to
also establish the + = k — 1 case? First of all, we crucially rely on a preliminary easy-hard
test for every input in the final DIFF,,(X}) algorithm for Lpipr,,(sp)- As has been noted
already in Section 4.2 this test is responsible for the 7 < k — 1 constraint. But besides that,
there is a second place where we can not overcome ¢ < k — 1. Recall that Lemma 4.3.4,
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very informally put, shows that if = is a hard string for sufficiently large length there is a
P¥i algorithm for some strings in L2P+z' Observe that the proof of Lemma 4.3.4 does not
require 7+ < k—1. Though with a bit more effort one can even in the i = & — 1 case show that
there exists a DIFF(X}) ADIFF,_; (X} ;) algorithm for some of Lyp , it is not at all clear

how to combine the resulting DIFF(37) ADIFF,_;(£}) algorithm for Lpipr,,(spy with the

DIFF,,(X}) algorithm for Lpipr,, (sp) emerging from the “z is easy” case, if no preliminary
easy-hard test is made.

However, proving the i = k—1 analogue of Theorem 4.3.3 would instantaneously improve
Theorem 3.3.1. Suppose the statement of Theorem 4.3.3 could be extended to remain valid
also for 0 < 4 = k—1. Furthermore, assume that BH,, = coBH,,,, m > 2. According to The-
orem 3.3.1 we conclude BH,, ADIFF,,_;(3}) = co(BH,,ADIFF,,_(X})) = PH. By the
above mentioned hypothetic strengthened downward collapse claim this would immediately
imply DIFF,,_1(35) = coDIFF,,_1(X5) = PH, a truly surprising result.

Theorem 4.3.3 has a number of interesting applications. Query order classes of the form

P P
Pg?,;'lfi’“),pi p< k, havpe bpeen studied in [BC|] and [Wag98]. Beigel and Chang [BC] mention
that Pg,zr;'bﬁ’“) = Pgiﬁﬁf_)ﬁ implies that the polynomial hierarchy collapses.

In light of Theorem 4.3.3 and Corollary 3.3.2, we can make this claim for ¢ < £k —1 more
precise.

(=7.2})
s,m-tt

(=72

Theorem 4.3.5 For all s,m > land all0 < ¢ < k-1, if P st Lmett

PH = DIFF,,(S}) ADIFF,, (2}, ).

=P then

Proof: It is not hard to verify that for all s, > 1 and all 7,k > 0,

(=7,2%)
s,m-tt

==

p s+1,m-tt"

C DIFF,;(X?) ADIFF,, (XP) C P
In fact, one can via standard mind-change manipulations show (see also [Wag98]) that

pEDER) _ p(DIFF,(SP),DIFF,, (S2))

s,m-tt
Thus,
(=7.2}) (Z7.2R) P P P P
PL il = P TE — DIFF,4(SP) ADIFF,, (£}) = co(DIFF, 4 (SF) ADIFF,, ().

For 0 < i < k — 1 we conclude DIFF,,(2?) = coDIFF,, (=) from our Theorem 4.3.3. In
light of Corollary 3.3.2, this collapse in the boolean hierarchy over ZE implies a collapse of
the polynomial hierarchy to DIFF,, (%)) ADIFF,_i (3}, ). |






Chapter 5

Query Order

5.1 Introduction

The order in which information sources are accessed is important in every aspect of our life.
Does this observation carry over into complexity theory? In complexity theory information
sources are usually modeled by oracles. Oracles are used for a number of purposes, one of
them being relativization with full complexity classes. Relativization with full complexity
classes is routinely done in structural complexity theory. The most well known application
can be found in the definition of the polynomial hierarchy. However, until now relativiza-
tion with full complexity classes has been limited to allow just one oracle from one single
complexity class per machine. Allowing a base machine to access two different oracles from
different complexity classes naturally leads to the question of whether the order in which
the two different oracles are accessed is crucial for the computational power of the so defined
class. Query order is a task that has never before been studied in complexity theory.

In this chapter we study the importance of query order. In Section 5.2 we ask whether
the order of queries is crucial if the oracle sets are taken from different levels of the boolean
hierarchy. We show that the order of queries to levels of the boolean hierarchy is important
for the computational power of the resulting class unless the polynomial hierarchy collapses.
We achieve this by characterizing query order classes in terms of reducibility closures of NP.
In particular, we prove that for j,k > 1, PBH;BH: — R§+2k71_tt(NP) if j is even and k is
odd, and PBHi:BH: — R? okt (NP) otherwise. This result has applications for the case of
more complicated tree-like query structures, where similar characterizations are obtained.

In Section 5.3 we study query order in the polynomial hierarchy. Section 5.3 is di-
vided into two parts. The first part gives an overview over query order results in the
polynomial hierarchy that have been obtained since the results of Section 5.2 first appeared
in [HHW95]. The most interesting query order classes, one query to each of two oracles
from different levels of the polynomial have been studied by Hemaspaandra, Hemaspaan-
dra, and Hempel [HHH98b|. In a nutshell, query order does not matter in the polynomial
hierarchy. Generalizing query order classes to more than one query in each round, Beigel
and Chang [BC] have shown an analogous result when the two oracles are from different
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levels of the polynomial hierarchy. The order of (parallel) query rounds does not matter.
They left open the case that the two oracles are taken from the same level, a question we
will solve in the second part of Section 5.3. Wagner [Wag98] has proven several results
that show the close connection between query order classes in the polynomial hierarchy and
Selivanov’s generalized boolean hierarchies [Sel94a, Sel95].

In the second part of Section 5.3 we show that also in the case that two consecutive

rounds of parallel queries are made to oracles from the same level of the polynomial hier-
b.yP P.y P

archy, the order of query rounds is irrelevant, for all ¢, 7,k > 1, Pi;ﬂil = P,iljtztl . However,

in general the two rounds of queries can not be made simultaneously unless the polynomial

hierarchy collapses. Our result follows from a general characterization that we prove; for

Nij,k>1, P27 = RP P
allt, 1,k = L, Vi = j-l—jk—l—k—tt( i)
In Section 5.4 we give a short overview over results that grew out of the study of query

order classes or are related to query order.

5.2 Query Order in the Boolean Hierarchy

We ask whether the order of queries matters in the boolean hierarchy. In particular, for
classes BH; and BH, from the boolean hierarchy [CGH" 88, CGH"89], we ask whether one
question to a BH; oracle followed by one question to a BHy, oracle is more powerful than
one question to a BHj oracle followed by one question to a BH; oracle. That is, we seek
the relative powers of the classes PBHi:BHr and pBHw:BH;

All the results of Section 5.2 follow from a general characterization of classes of the form

PBH;:BHL © We prove via the mind change technique that, for j,k > 1:
pBH;:BH, _ R op—_1.4:(NP) if j is even and k is odd,
R?—i—?k—tt (NP) otherwise.
This shows that in almost all cases, PPHi:BHt ig so0 powerful that it can do anything that can

be done with j + 2k truth-table queries to NP. Since, based on the answer to the first BH;
query, there are two possible BHy queries that might follow, j + 2k is exactly the number
of queries asked in a brute force truth-table simulation of PBHi:BHk  Thus, our result shows
that (in almost all cases) the power of the class is not reduced by the nonlinear structure
of the j + 2k queries underlying PPHi:BHtthat is, the power is not reduced by the fact
that in any given run only j + k£ underlying NP queries will be even implicitly asked (via
the BH; query and the one asked BHj, query). We say “in almost all cases” as if j is even
and k is odd, we prove there is a power reduction of exactly one level.

In Subsection 5.2.2 we consider classes of the form PBHiBH&BH: and also classes with
a more complicated query structure. We generalize the above characterization to apply
broadly to classes with tree-like query structure.
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5.2.1 The Base Case

In this section we will handle classes only of the form PBHi:BH:  We show that for no 7,
k, ', and k' are PBHi:BHE and PBHBHY incomparable. The main theorem of this section,
Theorem 5.2.6 shows that for all 7,k > 1, PBHiBH: — R;’kal_tt(NP) if j is even and
k is odd, and PBHBH: — R?_i_%_tt(NP) otherwise. Our proof employs the mind change
technique, which predates complexity theory. In particular, we show that PBHi:BHr hag at
most j + 2k (j +2k —1if j is even and £ is odd) mind changes, and that BH;, o, (BH; 9,1
if § is even and k is odd) is contained in PBHi:BHx,

The mind change technique or equivalent manipulation (see [Wag79] for an early appli-
cation in automata theory) was applied to complexity theory in each of the early papers on
the boolean hierarchy, including the work of Cai et al. [CGH"88] (see also [Wec85, CHS6]),
Kobler et al. [KSW8T7], Wagner [Wag90], and Beigel [Bei91]. These papers use mind changes
for a number of purposes. Most crucially they use the maximum number of mind changes
(what a mind change is will soon be made clear) of a class as an upper bound that can be
used to prove that the class is contained in some other class. In the other direction, they also
use the number of mind changes that certain classes—especially the classes of the boolean
hierarchy due to their normal form as nested subtractions of telescoping sets [CGH'88]—
possess to show that they can simulate other classes. Even for classes that have the same
number of mind changes, relativized separations are obtained via showing that the mind
changes are of different character (mind change sequences are of two types, depending on
whether they start with acceptance or rejection). The technique has also proven useful in
many other more recent papers, e.g., [CK96, Cha91l, BCO93] (see also Chapter 3).

To make clear the basic nature of mind change arguments, in a simple form, we give an
example. We informally argue that each set that is m-truth-table reducible to NP is in fact
in RV, (BH;,).

Lemma 5.2.1 For every m > 1, RP . (NP) =R}, (BH,,).

Proof: This fact (stated slightly differently) is due to Kdbler et al. [KSW87], and the
proof flavor presented here is most akin to the approach of Beigel [Bei91]. Consider an m-
truth-table reduction to an NP set, F'. Let L be the language accepted by the m-truth-table
reduction to F. Consider some input  and without loss of generality assume m queries are
generated. Let us suppose for the moment that the reduction rejects when all m queries
” Consider the m-dimensional hypercube such that one dimension
is associated with each query (0 in that dimension means the query is answered no and 1
means it is answered yes). So the origin is associated with all queries getting the answer
“no” and the point (1,1,...,1) is associated with all queries getting the answer “yes.” Now,
also label each vertex with either A (accept) or R (reject) based on what the truth-table
would do given the answers represented by that vertex. So under our supposition, the
origin has the label R. Finally, label each vertex with an integer as follows. Label the
origin with 0. Inductively label each remaining vertex with the mazimum integer induced
by the vertices that immediately precede it (i.e., those that are the same as it except one yes

receive the answer “no.
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answer has been changed to a no answer). A preceding vertex v with integer label 7 induces
in a successor v’ the integer i+ 1 if v and v’ have different A /R labels, and 7 if they have the
same label. Note that vertices given even labels correspond to rejection and those given odd
labels correspond to acceptance. Informally, a mind change is just changing one or more
strings from no to yes in a way that moves us from a vertex labeled ¢ to one labeled 7 + 1.
For 1 <i < m, let B; be the NP set that accepts z if (in the queries/labeling generated by
the action of the truth-table on input z) for some vertex v labeled i all the queries v claims
are yes are indeed in the NP set F. Note that B; D By D B3 D ---, as if a node labeled v
is in Bj, j > 2, then certainly its predecessor node with label 7 —1 must be in B;_1, as that
predecessor represents a subset of the strings v represents. But now note that L is exactly
By —(By— (B3 — (- = (Bm—1 — Bm)---))). Why? Let the vertex w (say with integer
label i,,) represent the true answers to the queries. Note that by construction, z € B, for
all ¢ < iy, but z € B, for any q > 4,,. As the B; were alternating in terms of representing
acceptance and rejection, and given the format By — (By — (Bs— (- — (Bm—1—Bm) -+ ))),
the set By — (By — (B3 — (- — (Bjm—1 — Bm) --+))), will do exactly what B;, represents,
namely, the action on the correct answers. Thus, we have just given a proof that an m-
truth-table reduction that rejects whenever all answers are no can be simulated by a set in
BH,,,. Of course, one cannot validly assume that the reduction rejects whenever all answers
are no. But it is not hard to see (analogously to the above) that the case of inputs where the
reduction accepts when all answers are no can (analogously to the above) be handled via
the complement of a BH,, set, and that (since what the truth-table reduction does when
all answers are no is itself polynomial-time computable) via a set in R} (BH,,) we can
accept an arbitrary set in RP .. (NP). Of course, it is clear by brute force simulation that
R}, (BHy) C RY . (NP), and so it holds that R}, (BH,,,) = R}, (NP). |

What actually is being shown above is that R}, (BH,,) can handle m appropriately
structured mind changes, starting either from reject or accept. In the following theorem,
the crucial things we show are that (a) PBHi*BHk can simulate, starting at either accept or
reject, j + 2k (respectively, 7 + 2k — 1) mind changes if j is odd or k is even (respectively, if
4 is even and k is odd), and (b) for j even and k odd, PBHi:BHk can never have more than
J + 2k — 1 mind changes. We achieve (b) by examining the possible mind change flow of a
PBH;:BHE machine, j even and k odd, and showing that either a mind change is flagrantly
wasted, or a certain underlying graph has an odd length directed cycle (which thus is not
two-colorable, and from this will lose one mind change).

Since our arguments in the proofs of this section use paths in hypercubes, we will find
useful the concept of an ascending path in a hypercube. Let K = {0, l}d be the d-
dimensional hypercube. Then every path p in K can be described as a linear combination
of unit vectors ui,... ,uq, where u; is the ¢th unit vector. We call p an ascending path in
K leading from (0,0, ...,0) to v if and only if it can be identified with a sum

Uiy + Uiy + -+ Uy,
of distinct unit vectors u,, such that the vertices of this path p are

vo = (0,...,0),v1 = uj,,v2 = Uj;, + Ujyy ...,V = Uj + Uj, + -+ Uj,
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yes

/

no
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yEAT?
\ yReject
€B7

no

Input z

Accept

Figure 5.1: Query Tree of a Machine Having Acceptance Scheme (2)

We will call this sum the description of p. Note that the order of the w’s matters, as
a permutation of the u’s results in another path. We call p an ascending path (without
specifying starting point and endpoint) if p is an ascending path leading from (0,0,...,0)
to (1,1,...,1).

Before turning to results, we will first study the structure of ascending paths in labeled
hypercubes and give some necessary definitions. Building upon them, we will then prove
Lemma 5.2.5, which states that PBHi*BHs can handle exactly j + 2k (5 + 2k — 1 if 5 is even
and k is odd) mind changes.

Let M be a PBHiBHe machine with oracles A € BH; and B € BHy and let z € ¥*. On
input 2, M first makes a query ¢;(z) to A and then if the answer to the first query was no
asks query ¢o2(z) to B and if the answer to the first query was yes asks query g¢3(z) to B
(see also Figure 5.1). Without loss of generality assume that on every input z exactly two
queries are asked.

Every set C' € BH; can be written as the nested difference of sets C1,C5,...,C; € NP

C=Ci=(Co= (= (G = C) )
and following Cai et al. [CGH"88] we even can assume that
CCC1C---CCCCh.

Hence a query “q € C?” can certainly be solved via [ queries “q € C17,” “q € (27,7 ...
“q e Oy
In light of this comment, we let
A=A — (A — (- = (41— 4j)--+)) where A; e NP for ¢=1,2,...,5
and A; C---C Ay, and

B=B;—(By—(-+-—(Bx_1—Bg)--+)) where  B; e NP for i=1,2,...,k
and BkggBl
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q3(x) € B—— Accept

q3(x) ¢ B—— Reject

Input + — qi(z) €

¢2(x) € B—— Reject

q2(z) ¢ B—— Accept

Figure 5.2: Refined Query Tree of a PBH4:BHs Machine Having Acceptance Scheme (2): The
inclusion structure of the underlying NP sets is shown. A black dot indicates a potential
membership situation for the asked query whereas its attached arrow points to the resulting
oracle answer received by the base machine.

An example displaying the connection between the membership of a query with respect
to the underlying NP sets and the actual oracle answer received by the base machine is
given in Figure 5.2.

For the sake of definiteness let us assume that the queries

qi(z) € Ar,...,q1(7) € Aj,q2(z) € By,...,q2(x) € Bi,q3(z) € By,...,q3(7) € By

correspond in this order to the j 4+ 2k dimensions of the (j + 2k)-dimensional hypercube
H = {0,1}7%2k. More precisely, a vector (aj, ... ,@j42r) € H is understood to consist of the
answers to the above-mentioned queries, where 0 means no and 1 means yes.

Since a query “q € C?” for some C € BH; and C = Cy — (Co — (- (C1_1 — C)) -++))
can be solved by evaluating the answers to “q € C17,” “q € Cs7,” ..., “q € C17” every
node v € H gives us answers to “q;(z) € A?” (by evaluating the first j components of v),
to “go(x) € B?” (by evaluating the k& components of v that immediately follow the first j
components of v) and to “g3(x) € B?” (by evaluating the last & of v’s components). This
gives us a labeling of all vertices of H. We simply assign label A (Accept) to vertex v € H
if M4:B(z) accepts if the answers to the two asked questions are as determined by v. If
MAB(z) rejects in this case we assign label R (Reject) to v.

So let Hys(x) be the (j+2k)-dimensional hypercube labeled according to M#:(z). The
number of mind changes on an ascending path p of Hy/(z) leading from (0,0,...,0) to a
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vertex ¢ is by definition the number of label changes when moving from (0,0, ...,0) to ¢
along p. The number of mind changes of an internal node v of Hy/(z) is the maximum
number of mind changes on an ascending path leading from (0,0, ...,0) to v. And finally,
the number of mind changes of a PBHiBHr machine M is by definition the maximum number
(we take the maximum over all z € ¥£*) of mind changes of the vertex (1,1,...,1) in Hp/(z);
in other words, this number is the maximum number of label changes on an ascending path
in Hys(z) for some z € ¥*.

We say we lose a mind change (between two adjacent vertices v; and v;41) along an
ascending path if when moving from v; to v;11 the machine does not change its acceptance
behavior.

One can easily verify the following fact:

Fact 5.2.2 If M is a PBHiBHe machine such that on input z the acceptance behavior is
independent of the answer to one or more of the two possible second queries (that is, if for
at least one of the second queries both a yes and a no answer yield the same acceptance or
rejection behavior), then we lose at least one mind change on every path in Hy;(z).

So from now on let MA:P(z) be a PBHi*BHs machine that has on input x one of the
following four acceptance schemes (for an example see Figure 5.1).

(1) M accepts if and only if exactly one of the two sequential queries is answered yes.

(2) M accepts if and only if either both or neither of the two asked queries is answered yes
(see also Figure 5.1).

(83) M accepts if and only if the second query is answered yes.

(4) M accepts if and only if the second query is answered no.

Fact 5.2.3 If p is an ascending path in Hj/(z) such that p contains adjacent vertices v and
v + ug such that

d < j and the (d')th component of v is 0 for some d’ < d,

then p loses a mind change.

Proof: Since A € BH; and thus A = A; — (A2 —(---—(4j—1—A4;)---)) and there is a 0 in
the (d')th component of v and v 4 ug4, both vertices yield the same answer to “q;(z) € A?”
The 1 in the dth component of v 4+ u4 has no affect at all on the answer to “q;(z) € A?” and
so on the outcome of M4:P(z). Hence, both vertices have the same label and p loses a mind
change. i

Similarly, one can prove that if p is an ascending path and p contains two adjacent
vertices v and v + ug such that j < d’ < d < j + k and the (d')th component of v is 0 or
j+k <d <d<j+ 2k and the (d')th component of v is 0 then p also loses one mind
change.
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So from now on let us focus only on paths p that change their first j, second £k and last
k dimensions from the smallest to the highest dimension in each group. This allows us to
simplify the description of paths as follows. Let e; be the following operator on H:

) _J (ar,eai1, 1 agpor) i <G, a0 = 0N (V) g <d)la; = 1],
ei((at,...,aj401)) —{ (a1, ajiok) otherwise.

The operators e2 and eg act on the index groups (j +1,...,7+k)and (j+Ek+1,...,5+
2k), respectively, in the same manner: the zero component with smallest index among
the zero components is incremented by 1. The only reasonable paths to consider are

those emerging from repeated applications of e;, ey and e3 to (0,...,0). We will use
(€irs€iyy- -+, €ipny,) to denote the path with vertices vg = (0,...,0), v1 = e€;(vo),v2 =
€ir (V1) Vjgak = €ij 0 (Vj42k-1) = (1,1, 1),

The next fact gives sufficient conditions for an ascending path to lose a mind change, namely,

Fact 5.2.4 On any ascending path p a mind change loss occurs if:
Case 1.1 there is an eg after an odd number of e;’s in the description of p, or
Case 1.2 there is an e3 after an even number of e;’s in the description of p, or

Case 2 the description of p contains a sequence of odd length at least 3 that starts and
ends with e; and contains no other eg’s.

Proof: We will call the occurrence of Case 1.1 (Case 1.2) in p an “es-loss” (“eg-loss”) and
the occurrence of Case 2 an “odd episode.” In general we call a subpath of p of length at
least 3 that starts and ends with e; and contains no other e; an episode.

Intuitively p loses a mind change in the case of Case 1.1 (1.2), since in the actual
computation M (x) does not really ask query g2(z) (g3(x)) and so a change in the answers
to the k underlying NP queries of ¢2(z) (g3(x)) does not affect the outcome of the overall
computation.

Intuitively in Case 2 the following argument holds. If the description of p contains an
odd episode, say starting with e;, = e; and ending with e;, = ey, then v;_y1,v,..., vy form
an even-length subpath p’ of p. If the odd episode contains both e’s and e3’s then note
that Case 1 applies and we are done. In fact due to Case 1, we may hence forward assume
the odd episode, between the starting and the ending e1’s, has only ey’s (respectively e3’s),
if we have an even (respectively odd) number of e;’s up to and including the e; starting
the odd episode. So in this case v;_; and vy have the same label Accept/Reject. The
acceptance behavior of MA:B(ZE) due to v;_; and vy is the same, because after two eq’s
the answer to “qi(z) € A?” is the same as it was before the two e;’s, and the ey’s (e3’s)
have not influenced the answer to g3(x) (g2(x)). Thus we have a subpath of even length,
namely, v;_1,v,...,vy, whose starting point and endpoint have the same Accept/Reject
label. To assign to each vertex of this path an Accept/Reject label in such a way that no
mind changes are lost is equivalent to the impossible task of 2-coloring an odd cycle. Hence
we lose at least one mind change for every occurrence of an odd episode. |
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Before stating and proving the main theorem of this section, we show the following
lemma, Lemma 5.2.5, which tells how many mind changes PBHi*BHr can handle. We say a
complexity class PBHi:BHe can handle exactly m mind changes if and only if (a) no PBHi:BHx
machine has more than m mind changes and (b) there is a specific PBHi*BHs machine that
has m mind changes. It is known (see, e.g., [CGHT88, KSW87, Bei91]) that R} ,.(NP) can
handle exactly £ mind changes.

Lemma 5.2.5 The class PBHiBH: can handle exactly m mind changes, where

| i+2k-1 if 7 is even and k is odd,
| 2k otherwise.

Proof: We first consider the case in which j is even and k is odd.

We want to argue that for every PBHiBHr machine M and every z € ¥*, on every
ascending path in the j 4+ 2k dimensional, appropriately labeled, hypercube Hy(z) there
are at most j + 2k — 1 mind changes. Let z € ©* and M be a PBHiBH: machine with the
oracles A and B. Due to Facts 5.2.3 and 5.2.2, it suffices to consider a PBHiBHr machine
M with one of the four previously mentioned acceptance schemes on input z and to show
that every path p having the introduced description loses at least one mind change. Let
M (z) be such a machine and p be such a path. There are two possibilities.

Case A The description of p contains an es-loss or an eg-loss.
According to Fact 5.2.4, p loses at least one mind change.

Case B The description of p contains neither an es- loss nor an es-loss.
Hence the description of p consists of blocks of consecutive es’s and e3’s separated by
blocks of e1’s. Since the description of p contains k e3’s and k is odd, there is a block of
es’s of odd size in p. Since we have no es-loss and j is even this block is surrounded by
e1’s. Thus we have an odd episode in the description of p and, according to Fact 5.2.4,
p loses a mind change.

So no PBHiBHr machine can realize more than j + 2k — 1 mind changes.

It remains to show that there is a PBHi*BHr machine and an input z € ¥* such that in
the associated hypercube Hj/(x) there is a path having exactly j + 2k — 1 mind changes.

Let us consider the path py,

Po = (§2,€2,---,eg,fl,ela---,61,§3,63a---,€3,61)-
1 k

k Iad
Consider the deterministic oracle machine W that asks two sequential queries (all three
underlying queries differ pairwise) and accepts an input z if and only if the second query of
W () was answered yes (acceptance scheme (3)). We know as just shown that all ascending
path of Hy (x) have at most j + 2k — 1 mind changes. Note that for every z € X* the
path pg loses only one mind change and thus PBHiBHe can handle exactly j + 2k — 1 mind
changes.
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We now turn to the j is odd or k is even case of the lemma being proven.

Since our hypercube has in all three cases j + 2k dimensions PBHi*BHe can handle at
most j + 2k mind changes.

If j is odd, we consider the path

p1=(€2,€2,...,€3,€1,€1,...,€1,€3,€3,...,€3)

k J k

and the machine with three pairwise different underlying queries having for every input z
acceptance scheme (3) or (1) for £ odd or even, respectively. If j is even and k even we
consider path py and the machine having acceptance scheme (1) for every input.

In each of these cases the considered machine changes its mind along the associated
path exactly j + 2k times. Hence for j odd or k even the class PBHiBHr can handle exactly
J + 2k mind changes. i

Now we are ready to prove our main theorem of this section.

Theorem 5.2.6 For j, k > 1,

pBH,BH, _ { R?kal_tt(NP) if j is even and k is odd,

RY\ o1t (NP) otherwise.

Proof: In order to avoid unnecessary case distinctions we prove the fact for arbitrary j
and k£ and simply denote the appropriate number of mind changes by m, namely, j + 2k — 1
if j is even and k is odd and j + 2k otherwise (see Lemma 5.2.5). First, we would like
to show that PBH:BHe C RP . (NP). We show this by explicitly giving the appropriate
truth-table-reduction.

Let A € PBHiBH: and let m be the number of mind changes (see Lemma 5.2.5) the
class PBHiBHe can handle. Let M be a deterministic oracle machine, witnessing A €
PBH;:BHE  yia the sets S; € BH; and S2 € BHj. It is not hard to verify that the set
Q = {(z,k)| M(z) has at least k£ mind changes} is an NP set. Note that if M(z) on a
particular input z rejects (respectively accepts) if both queries have the answer “no” then
M5152(g) accepts if and only if the node (of the implicit hypercube) associated with the
actual answers has an odd (respectively even) number of mind changes.

Define the variables o, y1,y2,...,y, and the m-ary boolean function «:

o = 0 if M°152(z) rejects if both queries are answered no,
o = 1 if M5152(z) accepts if both queries are answered no,

Y1 = <$71>7
Y2 = (:E,2>,

Y3 = <$7 3>7

Ym = (x,m),
and a(z1,22,...,2m) =1 <= (max{l|z =1} +0) =1 (mod 2).
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Clearly we can compute the just defined variables for a given x and also evaluate
the function o at (xo(y1), X@(¥2),---,xQ(Ym)) in polynomial time. And finally, we have

r€A = alxo),xq2),---,x0(ym)) = 1. Thus A € R} ,,(NP).
It remains to show that R , (NP) C PBHi:BHe Recall RY , (NP) = R}, (BH;) from

m-tt
Lemma 5.2.1. Since the class PBHiBH is closed under <¥,; reductions it suffices to prove
BHm C PBHj:BHk.

So let B € BH,,. Following Cai et al. [CGH"88] we may assume that the set B is of
the form B = By — (BZ — (B3 — ( — (Bmfl —Bm)))) with By, Bo,...,B,, € NP and
By 2 By D -+ 2 By,

We show B € PBHiBH: by using ideas of the second part of the proof of Lemma 4.1,

namely, by implementing the specific good path pg, respectively p;. B is accepted by a
PBH;:BHE machine MO1:02 as follows:

Case 1 j is odd.
Define the two oracle sets O and Oy,

O1 = Bgy1— (Bry2 — (- = (Brgj 1 — Bigj)-++)),

and

Os ={(y,2) |y € B1 — (Ba — (-+* = (Bg—1 — Bg) -+ )) U
{y,3) |y € Bjskr1r — (Bjyrgz — (- — (Bjyarw-1 — Bjror) -+ )}

Note that O; € BH; and Oy € BH. On input 2 M first queries “z € O1.” In case of
a no answer M (x) queries (x,2) € Oy and in case of a yes answer to the first query
M (z) asks (z,3) € Os.

Case 1.1 £ is odd.
M (x) accepts if and only if the second query is answered yes.

Case 1.2 k is even.
M (x) accepts if and only if exactly one of the two queries is answered yes.

Case 2 j is even.
Define the two oracle sets O and Oy,

O1 = Biy1 — (Br2 — (- = (Brgj—1 — Bm) --+)),
and

O ={(y,2)|y € B1 — (Ba — (-+- — (Bk—1 — Bg) -+ ))}U
{(v,3) |y € Bjsk — (Bjtht1 — (- = (Bm—2 — Bm-1) -+ ) }-
Note that O; € BH; and Oy € BH. On input 2 M first queries “z € O1.” In case of

a no answer M (x) queries (z,2) € Oy and in case of a yes answer to the first query
M(x) asks (z,3) € Os.
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Case 2.1 £ is odd.
M (x) accepts if and only if the second query is answered yes.

Case 2.2 k is even.
M (x) accepts if and only if exactly one of the two queries is answered yes.

It is interesting to note which properties of NP are actually required in the above proof
for the result to hold. The proof essentially rests on the fact that the key set @) (describing
that, for given = and m, the PBHi*BHx machine M on input 2 has at least m mind changes)
is an NP set. So considering an arbitrary underlying class C, for proving @ € C it suffices
to note that ) is in the class 3 - RP, . (C),! and to assume that C be closed under 3° and
conjunctive bounded-truth-table reductions. Indeed, the 3* quantifier describes that there
is a path in the boolean hypercube Hps(z), and via the <P . -reduction it can be checked
that this path is an ascending path and all the answers the vertices on that path claim
to be yes answers indeed correspond to query strings that belong to the class C. Similar
observations have been stated in earlier papers [Bei91, BCO93]. In terms of the present
paper, note in particular that the assertion of Theorem 5.2.6 holds true for all classes C
closed under union, intersection, and polynomial-time many-one reductions. C_P, R, and
FewP all have these closure properties, to name just a few examples. If the underlying
class C is closed under polynomially bounded 3 quantification and unbounded conjunctive
truth-table reductions, it is not hard to see that this analysis can even be done safely up to
the case of logarithmically bounded query classes, as the number of paths in the hypercube
is polynomial and thus generates a polynomial-sized disjunction.

From Theorem 5.2.6 we can immediately conclude that order matters for queries to the
boolean hierarchy unless the boolean hierarchy itself collapses.

Corollary 5.2.7 1. If (j=Fk)V (jiseven and k = j + 1), 1 < j < k, then PBL:B =
PBHk.:BHj‘

2. Unless the boolean hierarchy (and thus the polynomial hierarchy) collapses: for any
1 <j <k, PBHiBHy £ PBHeBH; ypless (j = k) V (j is even and k = j + 1).

The corollary holds, in light of the theorem, simply because the boolean hierarchy and
the bounded-truth-table hierarchy are interleaved [KSW87] in such a way that the boolean
hierarchy levels are sandwiched between levels of the bounded-truth-table hierarchy, and
thus if two different levels of the bounded-truth-table hierarchy are the same (say levels r
and s, r < s), then some level (in particular, BH, 1) of the boolean hierarchy is closed
under complementation, and thus, by the downward separation property of the boolean
hierarchy [CGH™'88], the boolean hierarchy would collapse. Furthermore, Kadin [Kad88]
has shown that if the boolean hierarchy collapses then the polynomial hierarchy collapses,

'Here, <P .t denotes the conjunctive bounded-truth-table reducibility, and for any class K, 3. K is
defined to be the class of languages A for which there exists a set B € K and a constant bound m such that
z € A if and only if there exists a string y of length at most m with (z,y) € B.
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and Wagner, Chang and Kadin, and Beigel, Chang, and Ogihara have improved the strength
of this connection [Wag87, Wag89, CK96, BCO93] (see Chapter 3). The strongest known
connection is established in Theorem 3.3.1; for m > 2, if BH,, = coBH,,, then PH =
BH,, ADIFF,,_1(2}).

In light of this discussion, we can make more clear exactly what collapse is spoken of in
the second part of the above corollary. In particular, the collapse of the polynomial hierarchy
is (at least) to BHy 941 ADIFF,4,;(2)). Though one level is gained by the m — 1 in the
Theorem 3.3.1 connection between the boolean hierarchy and the polynomial hierarchy, one
level is lost in the collapse of the boolean hierarchy that follows from a given collapse in the
bounded-truth-table hierarchy. Observe that in light of the results of Chapter 4, especially
Theorem 4.2.4, a slightly deeper collapse of the polynomial hierarchy can be concluded if
query order classes in the boolean hierarchy over some Eg, k > 1, are equal.

5.2.2 The General Case

In the previous subsection, we studied classes of the form PBHi:BHe  We completely char-
acterized them in terms of reducibility hulls of NP and noted that in this setting the order
of access to different oracles matters quite a bit. What can be said about, for example,
the class PBHiBHe:BHI? Tg it equal to PBHi:BHe:BHI? We will see that the answer is no in
certain cases. Even more generally, what can be said about the classes of languages that
are accepted by deterministic oracle machines with tree-like query structures and with each
query being made to a (potentially) different oracle from a (potentially) different level of the
boolean hierarchy? Is it possible that with a more complicated query structure we might
lose even more than the one mind change lost in the case of PBHi:BHk with j even and k
odd? From the results of the section, it will be clear that the answer to this question is yes;
mind changes can, in certain specific circumstances, accumulate.

First of all, we can immediately derive a characterization of the class PBHi:BH&:BH: from
the results of the previous section, namely,

Theorem 5.2.8 For j,k,[ > 1,

pBH, BHBH, _ R?—l—lc-l—l—l—tt(NP) if j is even and [ is odd,
N R? hsrts (NP) otherwise.

Proof: Note that in Lemma 5.2.5 we handle the special case of k¥ = [. However, notice
that the mind change loss for j even and k£ odd is due only to the fact that the query made
after the first query is answered yes is made to an oracle from an odd level, namely, k, of
the boolean hierarchy. In particular, the mind change loss is not tied to the query we ask
in case the first query is answered no. Thus we have that the class PBHiBH&BH: can handle
exactly m mind changes where

i+ E+I-1 if § is even and [ is odd,
IR otherwise.
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Similarly to the proof of Theorem 5.2.6 one can now show the equality we claim. |
Note that for every j, k,I > 1, we obviously have

pBH;:BH;,BH, _ pRY (BH,):RY  (BH,),RP  (BH)

and thus the following corollary holds.

Corollary 5.2.9 For 5, k.1 > 1,

PRIf_tt(BHJ_):Rllﬁ)_tt(BHk),RllD_tt(BHl) _ R‘I;+k+lfl—tt(NP) lfj iS even and l iS Odd,
R? irits (NP) otherwise.

The last corollary is the key tool to use in evaluating any class of languages that are
accepted by deterministic oracle machines with tree-like query structures and with each
query being made to a (potentially) different oracle from a (potentially) different level of
the boolean hierarchy.

We formalize some notions to use in studying this. Let T" be a binary tree, not necessarily
complete, such that each internal node v; (a) has exactly two children, and (b) is labeled
by a natural number n; (whose purpose will be explained below). For such a tree T, define
fr by fr(v;) = n;. Henceforward, we will write f for fr in contexts in which T is clear.
Let rootr be the root of the tree (we will assign to this node the name v;) and let LTp
and RTr respectively be the left and right subtrees of the root. We will denote the class of
sets that are accepted by a deterministic oracle machine with a T-like query structure by
P(T). Here the structure of the tree T gives the potential computation tree of every P(1)
machine in the sense that inductively if a query at node v is answered no (yes) we keep
on moving through the tree in the left (right) subtree of v. And at each internal node v;
of T the natural number n; gives the level of the boolean hierarchy from which the oracle
queried at that node is taken.

For example consider the tree 7 (see Figure 5.3), in which f(vi) = 2, f(ve) = 2,
f(vs) =4, f(vg) =1, and f(vs) = 3. A P(7T) machine works as follows. The first query is
made to a DP oracle. If the answer to that first query is no a second query is made to the
DP oracle associated with vy, and if the answer to the first query is yes the second query is
made to the BHy oracle associated with vs. A third query is made only if the answer to the
first query is yes; in this case, the oracle set of the third query is in NP if the answer to the
second query is no, and is in BHj if the answer to the second query is yes. Note that for
every input z € ¥* every P(7) machine M (z) assigns a label A (Accept) or R (Reject) to
each leaf of 7 with its own specific acceptance behavior (which, in particular, may depend
on ).

If T is the complete tree of depth 1 (i.e., a root plus two leaves), then by definition
m(T) = f(rootr) , and otherwise define

f(rooty) + m(LTr) + m(RTy) — 1 if f(rootr) =0 (mod 2) and
m(T) = m(RTr) =1 (mod 2),
f(rootr) + m(LTr) + m(RTr) otherwise.
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Figure 5.3: Example Tree T

For our example tree 7 we have m(7) = 10. The main theorem of this section will
prove m(T) determines the number of bounded-truth-table accesses to NP that completely
characterizes the class P(*). It follows from the main theorem that, for example, P(7) =
Rio.41(NP).

Theorem 5.2.10 P) =RP . (NP).

(T)-tt (

Proof: The proof consists of an obvious induction over the depth d of the tree. Note that
the correctness of the base case of the induction, d = 2, is given by Theorem 5.2.8. The
proof of the inductive step follows immediately from the obvious fact that

P(T) — pBH (oot PHT) PHIT)

)

combined with Lemma 5.2.1 (R}, (NP) = R}, (BH;)) and Corollary 5.2.9. |

5.2.3 Remarks

Of course, the main theorem of this section, Theorem 5.2.6, applies far more generally. From

it, for any j, k, j', and k', one can either immediately conclude PBHi:BHr — PBHJ“BH’C’, or
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can immediately conclude that the classes PBHiBHe and PBHBHY a6 not equal unless
the polynomial hierarchy collapses to BHyin{a(j.k), a( #)1+1 ADIFF intair), oG )t (55)s
where a(a,b) equals a +2b — 1 if @ is even and b is odd and a + 2b otherwise.

The point of Theorem 5.2.6 is that from the even/odd structure of PBHiBHr classes
one can immediately tell their number of mind changes, and thus their strength, without
having to do a separate, detailed, mind change analysis for each j and k pair. For example,
one can quickly see that one query to DP followed by one query to BH, yields exactly the
languages in R{, ,,(NP).

Theorem 5.2.6 should be compared with the work of Agrawal, Beigel, and Thier-
auf [ABT96]. They prove (using different notation):

pBH;BH+ _ BH; o1 if jZk (mod 2),
BH; o otherwise.

Note that this result is incomparable with the results of Theorem 5.2.6, as their result deals

with a different and seemingly more restrictive acceptance mechanism. Some insight into
the degree of restrictiveness of their acceptance mechanism, and its relationship to ours, is
given by the following Corollary 5.2.11, which follows immediately from Theorem 5.7 and
Lemma 5.9 of [ABT96] and Theorem 5.2.6.

Corollary 5.2.11 For every j, k > 1,

pBHj_l:BH;c

. if 7 is odd and k is even,

otherwise.

5.3 Query Order in the Polynomial Hierarchy

In this section we will study results regarding query order in the polynomial hierarchy. While
stating and discussing previously obtained results that essentially establish that query order
does not matter in the polynomial hierarchy we observe that the results regarding general
query order classes with more than one query in each round miss one interesting case. We
ask whether for j < k, one round of j parallel queries to a X oracle followed by one round
of k parallel queries to a Ef oracle is stronger than one round of k parallel queries to a Ef
oracle followed by one round of j parallel queries to a X oracle. So we study classes of

7,k-tt
by a P et
p
k-t
;?:2? — RP
query rounds does not matter. However, in contrast to the case that the query rounds are

P.yP .
the form P~ . On one hand, j + 2’k different XY queries can potentially be generated
P.y P
%20 hachine. On the other hand, only 7 + k£ queries are asked in any run of a
5P P.y P

P> 2 machine. We show that for all i,5,k > 1, Pi;cﬁz is as powerful as j + jk + k parallel
queries to a ¥} oracle, Pm_tt j—l—jk—l—k—tt(zg)' It follows that also in the case that all
queries are made to oracles from the same level of the polynomial hierarchy the order of
made to oracles from different levels of the polynomial hierarchy, the query rounds can not
be made in parallel unless the polynomial hierarchy collapses.
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5.3.1 Previous Results—An Overview

Query order in the polynomial hierarchy was first studied by Hemaspaandra, Hemaspaan-
dra, and Hempel [HHH98b]. They studied classes of the form PP where C and D are
classes from the polynomial hierarchy. It was shown that query order never matters in the
polynomial hierarchy.

Theorem 5.3.1 [HHH98b]

1. For all ¢,/ > 1,
PE?:Z? — PE?:Z?.

2. For all 4,£ > 1 such that i # ¢,

pEPEl _ pubsl | p(sheh)

Observe that we truly need the 7 # £ restriction in the second statement of the above the-

orem. Otherwise we would have included the claim P>/ 2] = P?_Et which due to the closely re-
lated structure of the bounded-query, bounded-truth-table and difference hierarchies over Ef
would imply a collapse of the polynomial hierarchy to (at least) DIFF3(X}) ADIFFy(X7, )
(see Corollary 3.3.3 and Theorem 3.3.4). Results similar to those of Theorem 5.3.1 do also
hold for the classes A} and X} NIIY from the polynomial hierarchy.

The result of Theorem 5.3.1 has been generalized to the case that more than one query

is asked to each oracle by Beigel and Chang [BC].

Theorem 5.3.2 [BC] For all / >4 >1 and all j,k > 1,

P.yP
oPs

Z?:EP
[ —
iktt =P

(=55
kj-tt — P

P G, k-tt

Note that no statement is made for i = £ in the above theorem. We will study and solve
the 1 = £ case in the next section. Beigel and Chang also studied the effect of query order
on the computational power of computing functions. They obtained that in the function
setting the order of oracle access for oracles from the polynomial hierarchy is important.

Theorem 5.3.3 [BC]. For all £ >4 > 1 and all j,k > 1,

2?:2?

sl (EPED)
1. FP il = FP. R

k-t ikt S FP

sPiey =Py
2. FPj,k-tt[ = Fsz._tt — PH = Efﬂ.
Wagner [Wag98] also studied multiple rounds of multiple queries to different oracles from
the polynomial hierarchy. He characterized those query order classes in terms of Selivanov’s
plus hierarchy [Sel94a, Sel95], the generalized boolean hierarchy over {NP, X5 ¥F .. }.
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5.3.2 The Missing Case

Though generalized query order classes of the form P =7 have been studied in [BC] all

kgt
results being obtained assume z < £. It is not at all clear whether the result of Theorem 5.3.2
also holds when 7 = /. As P] ltt PPIFF; (S0 [KSW8T7] (see also Lemma 5.2.5) it might
P b
well be that similarly P ik ﬁz = PDIFFJ(E?):DIFF“E?), in which case, due to the results of

Sectlon 5 2 the order of query rounds would be crucial. However, we will show in this section

that P> i, N tt = PPIFF;(27):DIFFL(37) does not hold unless the polynomial hierarchy collapses.
P.yP
This follows from a characterization of P ik ﬁz that also establishes that P k tt = leji

for all 4,7,k > 1.

For clarity of presentation we will from now on restrict ourself to X7 = NP. However,
it will be clear from the proofs that similar results hold for X, i > 1.

The main theorem of this section gives a characterization of query order classes PNIE tl\tIP
in terms of bounded-truth-table closures of NP. Our approach closely follows the approach
of Section 5.2. In particular, we will make use of all concepts and notations defined in
Section 5.2. We will use the mind change technique while arguing about paths in hypercubes
much in the same way as it was done while proving Theorem 5.2.6. In particular, we will

make use of all concepts and notations defined in Section 5.2.

Lemma 5.3.4 For all 5,k > 1, P?,EtlfP can handle exactly j + jk + k£ mind changes.

Proof: Similar to the proof of Lemma 5.2.5 we will first argue that every PNP*NP machine

Jsk-tt
can have at most j 4+ jk + k mind changes. Second we will give a P;\I,E tl\tIP machlne that on

some input has exactly 7 + jk + k£ mind changes.
Without loss of generality assume that all queries are made to the same oracle, for
instance, a language being many-one complete for NP, and that exactly j queries are made

in the first round and exactly k queries are made in the second round. So let ML b k .+ be a

Pf};’ ‘NP machine, L € NP. Observe that on every input z, (potentially) j + 27k different

NP queries can generated. Let x € %*. Denote the queries asked by M LkLtt( ) in the first
query round by ¢qi(z),g2(z), ..., qj(z). For every answer string to this ﬁrst set of queries, k
different second queries are asked in parallel.

In order to enumerate all potential second queries the following concepts will be useful.
Let bin(i) denote the binary representation of the integer 7. For a string z € %7 let num(z)
denote the integer such that z = 0...0bin(num(z)). Informally, num(z) is the unique
integer such that the binary representation of that integer padded with leading zeros equals
z. For z € ¥9, we say that qi(z),q2(),...,qj(z) are answered according to z if and only
if for all £, 1 < ¢ < j, query ¢(x), is answered yes if the ¢th bit (counting bits from most
significant to least significant) of z is 1 and answered no if the £th bit of z is 0.

Now we are prepared to enumerated all (potential) second queries. Let for every 0 <
i <27 =1, qjrik1(2), gjrik+2, - - - » Gjrik+k denote the queries asked by M (z) if the queries
of the first round have been answered according to z and num/(z) = i.
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Consider the j + 27k-dimensional hypercube H. Let for every i, 1 < i < j + 27k,
dimension 7 of the j 427 k-dimensional hypercube H correspond to query ¢;(z). Hence every
vertex v € H corresponds to an answer string to all potential queries, when interpreting a 1
(0) in the 7th dimension of v as a yes (no) answer to query ¢;(x). This allows to label each
vertex v € H with Reject/Accept according to what M ]L,kLtt(m) would do when all queries
are answered as given by v. Similar to the proof of Lemma 5.2.5 we obtain the labeled
hypercube Hp/(x).

Claim: Ewvery ascending path in Hpr(z) has at most j + jk + k mind changes.

To see this let p be an ascending path in Hjs(z). Observe that exactly j times
we change a 0 to a 1 in the first j dimensions when moving along p. Hence, every
vertex on p has one of j + 1 different sequences of first j components. Observe
that for every vertex v = (a1,az,...,a;,...,a,49;) on p we loose a mind change if
the vertex v’ following v on p differs from v in a dimension 7, ¢ ¢ {1,2,...,5} and
i € {j+num(aiay...aj)k+1, j+num(aias...aj)k+2,...,j+num(aias...aj)k+k}.
This follows from the fact that in that case (observe that both vertices correspond to
the same set of second k queries as they do not differ in the first j components) the
query ¢;(x) has no effect on the labeling of the two vertices.

This implies that for every prefix ai,as,...,a; for a vertex on p at most £ changes in
the remaining 2/k components can be made without losing a mind change. It follows
that p has at most 5+ (j + 1)k = j + jk + k mind changes.

NP:NP
k-t
PNPNP can handle at most j 4 jk + & mind changes.

7,k-tt
It remains to show that there is a P?,E}TP

j + 7k + k mind changes. Let M be a PEE_}TP machine such that for every pair of different
answer strings for the first j queries, the corresponding sets of second k parallel queries are
disjoint. In other words, we require M to not ask the same query in the second round for
different outcomes of the first j parallel queries.

We distinguish two cases. If k is even, let M(z) accept if and only if the sum of the
number of yes answers received in the first and second rounds of queries is odd. If k is
odd, let M (x) accept if and only if the sum of yes answers received in the second round of
queries is odd. Recall that u; denotes the ith unit vector. For both cases, observe that the
ascending path p starting with

This shows that every P machine can have at most 7 + 7k + k mind changes which

implies that the class
machine that, for some input z, has exactly

(Ujqp1 4 Fujpr) +uj + (Ujpprr + o+ wjgon) Fuj—1 + (Ujpskpr + -0 + Ujgar)
Fuj—2 + (Ujrkt1 + o+ Ujpse) +uj_3 o F U+ (Ui 1)k T Wigaik)

already has j 4+ jk + k mind changes on this initial part. Clearly, by the above fact, the
remaining part of the ascending path will not add a single mind change.
This shows that PEIE_%EP can handle exactly j + jk + k£ mind changes. |
Similar to the proof of Theorem 5.2.6 we will exploit the preceding mind change Lemma

to prove the main result of this section.
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Theorem 5.3.5 For all 5,k > 1,

NP:NP
Pj,k—tt = R?+jk+k—tt (NP).
Proof: It follows immediately from Lemma 5.3.4 that P}\IE_%EP - R?—I—jk:—l—k:—tt(NP) since

PNP:NP

R;’ ikttt (NP) is capable of determining the exact number of mind changes of any P ¢

machine on any input.

To show RY, ;, ,(NP) C PYPRY, let L e RY ;0 (NP). Let MPYy . bea

p _ pNP : _ SAT _

R bk (NP) = Pily o machine such that L = L(M7{; ). Observe that Q =

{{z,1) | M jsqu;c 4411 (7) has at least ¢ mind changes} is clearly an NP set. We now describe a
P?E_}TP machine ]\//.7;2/,3t that accepts L.

1. On input z compute what M JSJ’jJTk +#-1(7) would do if all queries to SAT are answered

no. Set a =1 if Mjs_f_*ka_i_k_tt(m) accepts in that case and set a = 0 otherwise.

2. Generate the queries (z,k + 1), (z,2(k 4+ 1)), ..., (x,7(k + 1)) and ask them in par-
allel to Q. Let ajaz...a; € ¥/ be the string corresponding to the received answers,
where for all 1 <4 < j, a; = 1 if and only if query (z,i(k + 1)) has been answered
yes.

3. Observe that we have a; > a2 > --- > a;. Let ¢ be the smallest integer such that
a; = 0. Note that this means that Mjs_f_*ka_i_k_tt(m) has at least (i — 1)(k + 1) mind
changes and at most i(k+ 1) —1 = (¢ — 1)(k + 1) + k£ mind changes.

4. In order to determine the exact number of mind changes of M ]-Sf‘jj;c 4111 () generate
the queries (z, (1 —1)(k+1)+ 1), (z, (i —1)(k+1)+2), ..., (z, (i —1)(k+ 1)+ k)
and submit them in parallel to Q. Let biby...b, € XF be the string correspond-
ing to the received answers, where for all 1 < ¢ < k, by = 1 if and only if query
(x,(t — 1)(k + 1) 4+ £) has been answered yes.

5. Observe that we have by > by > --- > bg. Let £ be the largest integer such that by = 1.
Note that this means that M ].S_if“ﬁ +k-tt () has exactly (i —1)(k + 1) + £ mind changes.
Accept if and only if a + (4 — 1)(k + 1) + £ is odd.

It follows from the construction that indeed L(M ]S_ﬁ‘]Tk +k—tt) = L(A//Tfkcit) This shows that
R\ jkiren(NP) C PY" and completes our proof. |

It follows immediately from Theorem 5.3.5 that the order of query rounds of different
size when all queries are made to the same oracle does not matter. However, in contrast to
the case of Theorem 5.3.2 these query rounds can not be made simultaneously unless the
polynomial hierarchy collapses.

Corollary 5.3.6 1. For all j,k > 1, Py = PP

2. For all 5,k > 1, PEE_:EP # Pﬂi’tNP) unless the polynomial hierarchy collapses.
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Proof: Part one follows directly from Theorem 5.3.5. Regarding part two, note that

PO = RP,, . (NP). In light of Theorem 5.3.5, we have that PXENP 2 PUPANP if and
only if RY ;. «(NP) =R?,, . (NP). For j,k > 1 this implies a collapse of the bounded-

truth-table hierarchy at level j + k. It is known that a collapse of the bounded-truth-table
hierarchy at level j + k implies a collapse of the boolean hierarchy at level j + k + 1 which
in turn implies a collapse of the polynomial hierarchy. This follows from the intertwined
structure of the bounded-truth-table hierarchy and the boolean hierarchy and a result by
Kadin [Kad88] (see Theorem 3.2.1). In order to specify the collapse of the polynomial
hierarchy, we mention that in light of Theorem 3.3.1, we can conclude a collapse of the
polynomial hierarchy to BH; 41 ADIFF; (35). |
Theorem 5.3.5 has an interesting corollary with respect to results obtained in Section 5.2.
In Section 5.2 (see Lemma 5.2.1) we have established that for all m > 1, RP . (NP) =
RY . (BH,,), or equivalently, pNP. = P]f’_?tm. Inside the proof of Theorem 4.3.5 we mentioned

that PVt = PO (S).DIFF(S)),

g,k >1, P?{,EjtlfP = PBHi:BH: | However, this is in general not the case unless the polynomial

hierarchy collapses.

One might be tempted to claim that similarly for

Corollary 5.3.7 Forall j,k > 1, if P;-\I,fjgp = PBHBHk then either j = 1 or the polynomial
hierarchy collapses.

Proof: Suppose P?E_}TP = PBH;BH: - Tn light of Theorem 5.3.5, we have P;-\I,f_:tl\gp =

R (NP). In Section 5.2 (see Theorem 5.2.6) we have established that PBH:BHe =

ikttt
(NP) if j is even and k is odd and PBHi:BHx = RP

p
R j+2k-tt

42k —1-tt (NP) otherwise. Suppose

j is even and & is odd. Then our assumption implies RY, ;. . ((NP) = RY o | . (NP).
Since j + jk+k > 7+ 2k — 1 for all 5,k > 1, we obtain that the bounded-truth-table
hierarchy collapses at level j + 2k — 1. As in the proof of Corollary 5.3.6 we conclude a
collapse of the polynomial hierarchy to BHjJrgkADIFFjJFQk,l(Eg). If j is odd or k is even
we have that R?—l—jlc—l—k—tt(NP) = R?_l_%_tt(NP). Hence either j = 1 or the bounded-truth-
table hierarchy collapses at level j 4+ 2k implying a collapse of the polynomial hierarchy to
BH; 9+1ADIFF, 9 (35). |
As already mentioned, all results of the current section immediately carry over to X},
i > 1. But note that for X}, ¢ > 1, we can, in light of the downward collapse between the
levels of the bounded-truth-table hierarchy over £ and the levels of the boolean hierarchy
over X (see Theorem 4.2.4), claim a slightly deeper collapse of the polynomial hierarchy

than stated in the proofs of Corollary 5.3.6 and Corollary 5.3.7.

.o 2?:2?
Theorem 5.3.8 1. Forall¢,j,k > 1, P70 = R?-l—jk-i-k-tt(zg))'
. oh:xt »P.xP
2. For all4,5,k > 1, Pj,;c_ttl = Pk:j_ttz
. SPP (5P 5P N
3. Foralls, 5,k > 1, P it #P et unless the polynomial hierarchy collapses.
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Part 1 of Theorem 5.3.8 can be generalized to more than two rounds of queries. With the
same method as in the proof of Theorem 5.3.5 one is able to show that the class of languages
being accepted by some DPTM making consecutive rounds of ny, ng, ... , ng parallel queries
to some X} oracle, respectively, is exactly the (nq 4+ 1)(ng +1)--- (ng + 1) — 1-truth-table
closure of XP. This shows that the order of query rounds for more than two rounds does
not matter.

5.4 Applications of Query Order and Related Results

Since query order has been studied for the first time in [HHW99] a number of results have
been obtained that either directly grew out of the study of query order classes or are related
to query order. In this section we will give a short overview over some of these results.

5.4.1 Base Classes Other than P

It has been observed by Hemaspaandra, Hemaspaandra, and Hempel [HHH98b] that most
query order results being valid for the base class P do also hold for a large variety of other
base classes.

Theorem 5.4.1 [HHH98b] Let C; and Cy be complexity classes and let
D € {R,coR, UP, coUP, NP, coNP, BPP,PP, ®P}.

PC1:CQ C PCQ:Cl : DC1:C2 C DCQ:CI.

The above theorem shows, in light of Corollary 5.2.7, Theorem 5.3.1, and Corollary 5.3.6,
that for instance,

1. UPDP:BH3 — UPBHg:DP — UPNP:BH?’.

9. PPNP:EE _ PP2§:NP‘
»h:xk hxb

3. OPy 7" = OP755

Though Theorem 5.4.1 says that all order exchanges of P apply to essentially all standard
complexity classes, it of course remains possible that certain path-based classes may possess
additional order exchanges. Relatedly, classes may also trivially exhibit certain equalities
based on class-specific features. For example, it follows trivially from NP C PP and the
(nontrivial) result of Fortnow and Reingold [FR91] regarding the <!, closure of PP that
PP = PPNP:PP — PPPP:NP.

5.4.2 Results Related to Query Order

The notion of query order, established and studied for the first time in [HHW95, HHW99],
has influenced research in complexity theory. Not only that researchers started to study
query order in other settings than the boolean hierarchy, the very concept of query order
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and the resulting new insights into the structure of complexity classes has led to a number of
results regarding topics that at first blush might seem totally unrelated, such as bottleneck
computation and downward translation of equality. We will in the following list some of
the research areas that have been influenced by the research on query order.

Downward Translation of Equality In [HHH98b] Hemaspaandra, Hemaspaandra, and
Hempel studied query order in the polynomial hierarchy. It turned out that though query
order never matters in the polynomial hierarchy, query order classes seemingly form a
refinement of the levels of the polynomial hierarchy. While trying to give evidence that
this refinement is strict unless the polynomial hierarchy itself collapses, Hemaspaandra,
Hemaspaandra, and Hempel established the first downward collapse result in the polynomial
hierarchy (see Theorem 4.2.1). The search for other downward collapses that has been
ignited by this result has been studied in detail in Chapter 4.

Bottleneck Computations In a quite different direction, bottleneck machines are a
model used to study whether a computational problem can be decomposed into a large
number of simple, sequential, tasks, each of which passes on only a very limited amount
of information to the next task, and all of which differ only in that input and in a “task
number” input [CF91]. A recent paper of Hertrampf [Her97] uses ordered access involving
multiple queries, combined with quantifier-based and modulo-based computation, to com-
pletely characterize the languages accepted by certain bottleneck machine classes—classes
that had long eluded crisp characterization.

Self-Specifying Machines Hemaspaandra, Hempel, and Wechsung [HHW97] have stud-
ied self-specifying machines—nondeterministic machines that dynamically specify the path
sets on which they will accept. They completely characterize the two most natural such
classes in terms of query-order classes with a “positive final query” restriction. They show
that the classes have equivalent characterizations as the #P-closures of P and NP, re-
spectively, and they establish a query order result mixing function and language classes:
P#Pll — p#PNP — p#P[l] - Pﬁg:(l\ll)fj i+ They also show that the classes have characteri-

zations in terms of the “input-specific advice” notation of Kébler and Thierauf [KT94].

Robust Completeness A long line of research has studied the question of whether <, -
completeness and <}.-completeness stand or fall together for classes that potentially lack
complete sets. Gurevich [Gur83] and Ambos-Spies [Amb86] have shown that, for all classes
C closed downwards under Turing reductions, it holds robustly that: C has <}, -complete
sets if and only if C has SI% -complete sets. Nonetheless, by studying a strong nondeter-
ministic closure of NP that, it turns out, exactly equals the query-order class PNPMcoNP:NP
Hemaspaandra, Hemaspaandra, and Hempel have recently shown that on some reducibil-
ity closures of NP, <P, -completeness and <7 -completeness do not robustly stand or fall
together [HHH98c].
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