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CHAPTER 1

Introduction

There are essentially two views of the concept of a mathematical proof.
The usual one is a mixture of formal and natural language and the only
criterion for its correctness is the agreement between mathematicians (rep-
resented by the referee process in mathematical journals). The second one
consists of the precise formalisation of the logical language and manipu-
lating operations upon it, established by the work of Frege and other past
logicians. In this formalization we can consider a mathematical theorem
as a string of symbols and the task of proving it becomes exactly de�ned
string-manipulations. However, such a formalization can be done in many
di�erent ways and one basic task of proof theory is the classi�cation of these
distinct approaches. The formalization usually consists of the underlying
logical language formulation, the axioms-formulation and certain inference
rules, which constitute the possible consequences of the axioms - i.e. the
proof strength of the selected proof system. The next task is to study the
structure and the size of the formal proofs in such a system, which is mainly
the task of proof complexity theory.

This paper is devoted to the construction of proofs of certain tautolo-
gies in one particular proof system recently suggested in Krají£ek[1]. The
structure of the thesis is the following: in the second chapter we introduce
the concept of a proof system due to Cook-Reckhow[2], and discuss its re-
lation to computational complexity. In the same chapter we will de�ne, in
particular, the resolution proof system, which will be used for proving pi-
geonhole principle. The proof itself and the algorithm describing it will be
formulated in chapter 3. In chapter 4 we will prove soundness and discuss
how the previous proofs relate to implicit proofs.

1.1. Notation

[n] denotes the set {1, . . . , n}.∑∗ denotes the set of words over a non-empty alphabet
∑

; this includes
also the empty word.

|w| denotes the length of a string w .

1



CHAPTER 2

Proof systems for propositional logic

2.1. Propositional logic

2.1.1. Syntax.

Definition 2.1.1. Language L of propositional logic consists of :

• Propositional variables, which represent the atomic propositions
(atoms) with the two possible values - TRUE and FALSE. Atoms
are usually denoted by pi .

• Symbols for some k-ary boolean functions

f : {TRUE, FALSE}k → {TRUE, FALSE} ,

which are usually called connectives. In this paper we will use the
following symbols: ∨ (disjunction), ∧ (conjunction), (negation)
and constants 0/1, which are 0-ary functions with FALSE/TRUE
values.

• Auxiliary symbols: ( , ) .
Propositional formulas are build inductively using rules:

• Any propositional variable or constant is formula.
• If A, B are formulas then A, (A ∨B), (A ∧B) are also formulas.

Any propositional formula is built using the above rules �nitely many times.

2.1.2. Semantics.

Definition 2.1.2. Truth assignment for set V of propositional vari-
ables is a mapping α : V → {TRUE, FALSE}. Such an assignment can be
extended to all formulas of the language L built from atoms in V using the
usual de�nition for connectives.

A formula is a tautology i� its evaluation gives TRUE for any possible
assignment to the atoms. We shall denote the fact that A is a tautology by
|= A.

For T a set of formulas we denote by T |= A the fact that every truth
assignment which satis�es T (i.e. all formulas in T ) satis�es also A.

Let TAUT denote the set of all tautologies in L.

2
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2.2. Propositional proof systems

Definition 2.2.1. (Cook-Reckhow[2]) Let us �x some alphabet
∑
,

where |
∑
| ≥ 2. A propositional proof system (pps) is any polynomial-

time computable function P :
∑∗ → L∗ , where Rng(P ) = TAUT .

For tautology A ∈ TAUT , any string w ∈
∑∗ such that P (w) = A is

called a P-proof of A .

A pps P is polynomially bounded if there exists a polynomial p(x),
such that any tautology A has a P-proof w of size |w| ≤ p(|A|) .

Definition 2.2.2. (Cook-Reckhow[2]) Let F1 :
∑∗

1 → L∗ and F2 :∑∗
2 → L∗ be pps. Then F2 p-simulates F1 i� there is polynomial time

computable function g :
∑∗

1 →
∑∗

2 , such that F2(g(w)) = F1(w) for all
w ∈

∑∗
1.

The connection between computational complexity and proof theory is
described by the following two theorems.

Theorem 2.2.3. (Cook[3]) P = NP ⇔ TAUT ∈ P .

Thus, for example, in the case of P = NP , we could construct polynomi-
ally bounded proof system, for which the given tautology A represents also
the proof of A.

The second theorem is closely related to the e�ciency of proof systems.
It shows that the de�nition of the poly-bounded pps is another way of char-
acterizing NP class, which explains some of the motivations of proof system
study.

Theorem 2.2.4. (Cook-Reckhow[2]) NP = coNP ⇔there exists a poly-
nomially bounded propositional proof system ( ⇔ TAUT ∈ NP ).

Proof. If NP = coNP then TAUT ∈ NP . Then there exists function
P which for a given certi�cate C con�rm tautology A in time polynomial in
|A| , so w.l.o.g. |C| is polynomial to |A| . In other words certi�cate (C, A)
is a proof in the requested polynomially bounded proof system P .

Conversely let us have polynomially bounded proof system P . Then the
proofs of this system are certi�cates in an NP − definition of TAUT . If
TAUT ∈ NP holds, coNP = NP follows, as TAUT is a coNP − complete
problem. �

2.3. Frege proof systems

In the case of Frege proof systems, the formalization of inference rules
and axioms falls under one common de�nition:
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Definition 2.3.1. A Frege rule is a system of formulas A0, . . . , Ak

written as:
A0, . . . , Ak−1

Ak

where A0, . . . , Ak−1 |= Ak .
A Frege rule in which k=0 is called a Frege axiom scheme.
An instance of the rule is obtained by a simultaneous substitution of

arbitrary formulas for the atoms in A0, . . . , Ak.

An Inference system F is a �nite set of Frege rules.

Definition 2.3.2. (Cook-Reckhow[2]) If F is inference system then:
An F-proof of formula B from formulas A1, . . . , An is a �nite sequence

C1, . . . , Ck of formulas, such that Ck = B , and such that Ci is either one of
A1 . . . , An or is inferred from some earlier Cj's (j < i) by a rule of F . We
denote it as A1, . . . , An F̀ B or simply A1, . . . , An ` B , if F is clear from
the context.

F is implicationally complete i�
A1, . . . , An `F B whenever A1, . . . , An |= B .

F is a Frege proof system i� F is implicationally complete.

Note that the implicational completeness of the proof system is often
deduced from its particular properties, namely:

• Soundness : ` A ⇒ |= A
• Completeness : |= A ⇒ ` A

The most often used Frege proof systems are those based on modus ponens
inference rule and the DeMorgan language. As an example we will show a
familiar Frege system.

Example 2.3.3. F proof system. Language has only two connectives
LF = {→, }. All other DeMorgan connectives can be de�ned in LF . The
only inference rule could be schematically written as:

A, A → B

B
Axiom schemes AF :

A → (B → A)

(A → (B → C)) → ((A → B) → (A → C))

(B → A) → (A → B)
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Theorem 2.3.4. F from the Example 2.3.3 is a proof system.

Proof. We will construct a function P in the sense of the De�nition 2.2.1.
For an input string w , the function P has to :

(1) Check the syntax form of w , i.e. whether w = C1, . . . , Ck . As
there are unambiguous rules for the construction of formulas, we
can �nd and check every Ci by a simple decompositional algorithm
in a time polynomial to |w| .

(2) Check the correctness of the derivation of each Ci . For this P
�rstly test, whether given Ci is an instance of an axiom scheme
from AF . This can be done in time polynomial to |Ci| . If Ci is not
such an instance, then P will test whether Ci was created by the
inference rule. For this P will try to infer Ci from some pair Cj, Cm ,
m, j < i . As there is only O(k2) pairs and each test of inference
rule can be done in time polynomial to |Ci| + |Cj| + |Cm| , the
whole inference-test can be done in time polynomial to |w| , because
i, |Ci|, |Cj|, |Cm| ≤ |w| . If both tests fail, Ci is not constructed via
Frege rules de�ned in F and the semantic check fails.

(3) When both checks are satis�ed P will return Ck as an output (i.e.
Ck is tautology and w is its proof), otherwise P will return constant
1 (i.e. w is not proof in the sense of the De�nition 2.3.2 and P
returns tautology 1 to keep Rng(P ) = TAUT ). Obviously, this
task can be performed also in time polynomial to |w| .

As three previous computations are all polynomial to |w| , the whole function
P is computable in time polynomial to |w| .

Now we show that Rng(P ) = TAUT .

(1) By the truth-table method we can easily check, that any formula
constructed from AF axiom schemes is tautology. Furthermore, the
inference rule is sound: any assignment which satis�es the hypothe-
ses A, A → B satis�es also the consequence B. Now, because P
accepts only proofs which correctly use axioms and inference rule,
any output formula from P is tautology, i.e. Rng(P ) ⊆ TAUT .

(2) To prove, that TAUT ⊆ Rng(P ) we need, for a given tautology
A, to �nd a particular string (i.e. proof), which will accepted by
P . This follows from the completeness of F , proof of which can be
found in any introductory book for propositional logic.

�



2.4. RESOLUTION 6

Note, that the �rst part is just a formulation of the soundness and the
second one of the completeness of F . Thus, we can see, that the condi-
tion Rng(P ) = TAUT in the De�nition 2.2.1 is an abstract formulation of
soundness and completeness in the De�nition 2.3.2.

Theorem 2.3.5. (Reckhow[4]) Assume that F and F ′ are two Frege
systems and that their languages are complete (i.e. all DeMorgan connectives
can be expressed there).

Then F and F ′ polynomially simulates each other.

As a consequence of this theorem it follows that one Frege system over a
complete language is polynomially bounded i� all Frege systems over com-
plete languages are.

In the e�ort to increase the strength of the proof system additional rules
can be added as in the following de�nition - however, whether the follow-
ing system is really stronger is still an open question and some results as
Theorem 3.2.3 show the possibility, that their strength is equivalent.

Definition 2.3.6. (Cook-Reckhow[2])Let us have some Frege system F .
An Extended Frege proof of formula B is a �nite sequence of formulas

C1, . . . , Ck , such that Ck = B , and such that Ci is either inferred from some
earlier Cj's by an F-rule of F or has the form of an extension axiom:

q ≡ D

where the extension atom q is not previously used (including formula D)
in the proof and it is not used in Ck .

In other words, a proof constructed in this way allows to abbreviate
formulas inside the proof and this way reduce its length. However, we can
still check such a proof in polynomial time, hence it forms a proof system,
which we denote as an Extended Frege proof system eF .

2.4. Resolution

In the rest of the thesis we con�ne ourselves to the resolution proof
system, usually denoted R. It works only on the constrained set of formulas,
which are in the DNF form, thereby we can base the whole system on a
very simple language. The constrain on the DNF form is not fatal and
other formulas can be transformed in DNF by the means of the so-called
limited extension. The next property of resolution is that it tries to refute
the negation of the given proposition instead of directly proving it. Thus
proving certain formula in resolution usually means to take its negation and
transform it to the CNF form. For this reason R is sometimes called a
refutation system.
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2.4.1. Language. A literal is an atom (propositional variable) or its
negation. A clause is a disjunction of literals, which is usually written in
the set-notation {l1, . . . , lr}. A clause can be empty. A clause is satis�ed by
a truth assignment if at least one literal in it is. In particular, the empty
clause is unsatis�able.

A set of initial clauses represents the CNF formula, which is to be re-
futed. The empty clause represents the desired contradiction, as there is no
satisfying assignment to it.

2.4.2. Inference rules. The resolution rule is :
C ∪ {pi} D ∪ {pi}

C ∪D
The atom pi is called the resolved atom and the conclusion is called

the resolvent of C ∪ {pi} and D ∪ {pi} . Without loss of generality we can
assume that neither pi nor pi occur in C ∪D .

It is easy to see, that the rule is sound: if the hypotheses of resolution
inference are simultaneously satis�able, then also the resolvent is satis�able
by the same assignment. As the empty clause is not satis�able, it lead us to
the de�nition of resolution refutation:

Definition 2.4.1. (Blake[5]) Let us have a formula in a DNF form A =∨n
i=1 Bi , where Bi =

∧ni

j=1 li,j and li,j are literals. Now for each subformula
Bi form clause Ci =

{
li,j|j ≤ ni

}
. A sequence of clauses D1, . . . , Dk is then

a resolution proof of A (or resolution refutation of C1, . . . , Cn ) i�

• each Dt is either an initial clause Ci or clause inferred from some
Dl, Dm, l,m < t by the resolution rule.

• Dk is the empty clause.

2.4.3. Soundness and completeness.

Theorem 2.4.2. Let A be a DNF formula. Then |= A ⇔ R̀ A .

Proof. Soundness: Let us have the refutation of initial clauses con-
structed from A. As the resolution inference rule is sound, any resolution
refutation preserves satis�ability of the initial clauses. That implies, that
the end clause is also satis�ed, which is impossible for any assignment, as
there is nothing to satisfy in the empty clause. It follows that there is no
assignment satisfying all initial clauses. Hence A is a tautology.
Completeness: Let us have the set of unsatis�able clauses C = {C1, . . . , Cn}
constructed from some tautology in the way described in the de�nition
above. We will prove by induction on the number of r variables appear-
ing in C (i.e. C consists of l1, . . . , lr, l1, . . . , lr literals), that any such C has a
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refutation. The case of r = 0 is trivial. Assume r > 0. We will �nd a set of
clauses C ′ such that:

(1) each clause in C ′ is derivable from C
(2) C ′ is unsatis�able
(3) At most (l − 1) di�erent variables appear in C ′

Let x be some variable in C, then we construct:

Cx = {Ci|x ∈ Ci ∧ x /∈ Ci}
Cx = {Ci|x ∈ Ci ∧ x /∈ Ci}
C∅ = {Ci|x /∈ Ci ∧ x /∈ Ci}

C∪ =

{
D

∣∣∣∣ Cx Cx

(Cx\{x}) ∪ (Cx\{x}) (≡ D)
, Cx ∈ Cx, Cx ∈ Cx

}

C ′ = C∅ ∪ C∪
Firstly C ′ does not contain variable x. That implies, that we have trans-

formed our case l into the case l− 1, where the induction hypothesis holds.
Secondly, C ′ is unsatis�able: suppose there is a truth assignment which

satis�es C ′ . This implies that either all clauses Cx\{x} or all Cx\{x} are
satis�ed, otherwise we can �nd a combination from both sets, which could
not be satis�ed in C∪ . W.l.o.g. assume all (Cx\{x}) are satis�ed. We
extend the assignment by setting x := 0 , so now the whole C is satis�ed.
But that contradicts the assumption that C is unsatis�able.

It follows, by induction hypothesis, that C ′ has a refutation and as our
transformation used only resolution rule, C has also a refutation. �

2.5. The strength of proof systems

To sum up, we show in the following �gure a relation between proof
systems described earlier. The arrow from A to B indicates that A can
polynomially simulate B.

Figure 2.5.1. Hierarchy of the proof systems



CHAPTER 3

The pigeonhole principle

3.1. De�nition

The pigeon-hole principle is a very simple combinatorial statement. Its
informal form states that having n−1 holes and n pigeons sitting in the holes,
there is some hole with more than one pigeon. The usual formalization in
combinatorics is that there is no one-to-one mapping from a set of n elements
into a set of n− 1 elements.

In the context of propositional proofs, the formalization encodes this
mapping (or relation) into propositional formulas using boolean variables
pij, where pij = 1 ⇔ pigeon i is in hole j . The universal quanti�er is
transformed into the set of the formulas connected by conjunctions while
the existential quanti�er is represented by disjunctions.

Since we will work in the resolution proof system, we will take the nega-
tion of this principle and encode individual parts as can be seen in the
following table:

Part Relation Clause

1. totality for every pigeon there exists
some hole

For every i, 1 ≤ i ≤ n, include
clause

∨
1≤j≤n−1 pij

2. injectivity for each hole: for every pair of
two pigeons,

one of those pigeons is not
placed in the hole

For every i, j, k,
1 ≤ j ≤ n− 1, 1 ≤ i < k ≤ n

include clause (¬pij ∨ ¬pkj)

3. surjectivity for every hole there exists
some pigeon

For every j, 1 ≤ j ≤ n− 1,
include clause

∨
1≤i≤n pij

4. function for every pigeon: for every
pair of two holes,

one of those holes does not
contain the pigeon

For every i, j, k, 1 ≤ i ≤ n,
1 ≤ j < k ≤ n− 1 include

clause (pij ∨ pik)

Table 1. PHP parts

9
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Various conjunctions of the constrains from the previous table lead to
the propositional de�nition of various pigeonhole principles :

¬PHP n
n−1 ≡ 1 ∧ 2

¬onto− PHP n
n−1 ≡ 1 ∧ 2 ∧ 3

¬functional − PHP n
n−1 ≡ 1 ∧ 2 ∧ 4

¬symmetric− PHP n
n−1 = 1 ∧ 2 ∧ 3 ∧ 4

Up to now we consider n− 1 holes and m = n pigeons. Another variety
of the pigeonhole principles can be obtained for m � n pigeons. Gener-
ally these cases (denoted as weak − PHP ) are easier to prove and many
complexity results are known, but we will not study these variants here.

3.2. Proofs

3.2.1. Overview. First we recall a few results concerning the proof
complexity of PHP .

Theorem 3.2.1. (Cook-Reckhow[2]) The upper bound for a proof of
PHP n

n−1 in the Extended Frege system is nO(1) .

Theorem 3.2.2. (Haken[6]) The lower bound for a proof of symmetric−
PHP n

n−1 in the resolution proof system is exp(Ω(n)) .

Theorem 3.2.3. (Buss[7]) The upper bound for a proof of PHP n
n−1 in

the Frege proof system is nO(1) .

By the Theorem 3.2.2 PHP requires exponential size proofs in resolution
and indeed, the proof we construct has exponential size too.

However, our aim in the following chapters is to describe this proof via a
polynomial-time algorithm, so the proof system, which uses this algorithm
as part of its proof can be more powerful than the resolution itself.

One obvious question is, why we introduce new exponential size proof
of the PHP tautologies, when we have constructively built the resolution
refutation for any tautology in the completeness part of the Theorem 2.4.2.
The point is that the soundness of the construction in the proof of Theorem
2.4.2 (i.e. that it constructs a resolution proof) is derived from the fact that
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the formula is a tautology. The proof of the soundness of our construction
does not need to assume this.

Remark. From now on, we will talk about initial clauses of PHP , mean-
ing really of ¬PHP , which is quite customary in the area. However there is
no danger of confusion.

3.2.2. Metaproof. We will construct the proof of PHP n
n−1 by induc-

tion on n. In the induction step we remove the last pigeon and the last hole,
i.e. from

f : {1, . . . , n} → {1, . . . , n− 1}
we restrict

f ′ : {1, . . . , n− 1} → {1, . . . , n− 2} ,

where

f ′ (i) =
{ f (i) when f (i) 6= n− 1

f (n) otherwise

Thus if f is one-to-one then f ′ is also one-to-one. As each step removes
one pigeon and one hole, the whole induction proceed to the case of two
pigeons sitting in one hole, which has the proof of the constant length - in
the language of the resolution : {p1,1}, {p2,1}, {p1,1, p2,1}, {p2,1}, {}.

3.2.3. Resolution proof. Since we will manipulate a lot with the ax-
ioms (initial clauses) during the proof, we introduce an additional notation.

Definition 3.2.4. Let M ⊆ [n] denote a set of pigeons and N ⊆ [n− 1]
denote a set of holes. We encode the pigeonhole principle for pigeons from
M and holes from N via two sets of clauses as suggested in Section 3.1,
namely

PHP1(M, N) ≡ {{pi,j | j ∈ N} | i ∈ M}

PHP2(M, N) ≡ {{pi,k; pj,k} | i, j ∈ M ; i 6= j; k ∈ N}
Then de�ne

PHP (M, N) ≡ PHP1(M, N) ∪ PHP2(M, N) .

We de�ne the special case PHP1([1], ∅) ≡ {∅} .
Sometimes we will use just PHP1 or PHP2 , when the sets M and N

will be obvious from the context.
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So the PHP n
n−1 from the previous paragraphs becomes PHP ([n], [n− 1]).

As will be described below, the part PHP1 will be transformed as the proof
will proceed, while the clauses in PHP2 part remain untouched. So the
PHP2 part will be tacitly included in PHP (M, N) and often not discussed
at all.

Next we need to index somehow the k-th axiom in the PHP1 part, hence
we introduce the following clause:

Definition 3.2.5. PHP (M, N)[k] ≡ c , such that

c ∈ PHP1(M, N) & ∃pk,j ∈ c ,

for some arbitrary j. In particular PHP ([1], ∅)[1] ≡ {∅} .
In the case of PHP ([n], [n− 1])[k] we get {pk,j | j ∈ [n− 1]}.

The Idea of the resolution proof. We would like to prove PHP n
n−1 by

induction. In such a case the basic task is to convert PHP i
i−1 into PHP i−1

i−2

and use that PHP i−1
i−2 can be refuted by the induction hypothesis.

More precisely, one wants to derive the clauses of PHP i−1
i−2 from the

clauses PHP i
i−1 and then complete the refutation by appending a refutation

of PHP i−1
i−2 , which exists by the induction hypothesis. As pointed out, the

PHP2 clauses of PHP i−1
i−2 are a subset of the PHP2 clauses of PHP i

i−1 , so
nothing needs to be done to deduce them.

Although the idea is not di�cult, the formalization is technically more
intricated, so for the demonstration purposes we �rstly show the transfor-
mation step from n to n−1. Later on we formulate it precisely and generally
for the i-th induction step.

Let us have PHP ([n], [n− 1]). We will derive the empty clause from the
last axiom PHP ([n], [n− 1])[n] ≡ {pn,1, . . . , pn,n−1} via sequential resolving
with literals pn,x , x ∈ [n − 1] (i.e. with clauses {pn,x}). Now we focus on
the question how to obtain these literals pn,x . Firstly we introduce the ⊕
operator:

Definition 3.2.6. Let g1, . . . , gj be some literals. Then de�ne

PHP (M, N)⊕ g1 ⊕ · · · ⊕ gj

as
{x ∪ {g1, . . . , gj}|x ∈ PHP1(M, N)} ∪ PHP2(M, N) .

We call any of the gi's a side literal.
Similarly we denote

PHP (M, N)[k]⊕ g1 ⊕ · · · ⊕ gj ≡ {x ∪ {g1, . . . , gj}|x ∈ PHP (M, N)[k]} .
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Figure 3.2.1. Transformation of PHP1 clauses

Further, we say that PHP (M, N) ⊕ g1 ⊕ · · · ⊕ gj is side-refutable i�
{g1, . . . , gj} can be derived from it (i.e. PHP (M, N) is refutable). If P ⊕ g

is side-refutable, we denote g as refutant.

Now consider the following operation (see Figure 3.2.1): each clause
PHP ([n], [n−1])[k] (∈ PHP1) resolve with the clause {pk,x, pn,x} (∈ PHP2) .
The resulted set of the derived clauses can be in our notation described as
PHP1([n− 1], [n− 1]\{x})⊕ pn,x . The clauses of PHP2([n], [n− 1]) remain
the same , but only their subset PHP2([n− 1], [n− 1]\{x}) will be chosen .
If we ignore the side literal, then in case of x = n − 1 we get precisely
PHP ([n − 1], [n − 2]) and for the others x′s we get the same instance of
PHP only with the renamed indexes.

So, if we are able to refute PHP ([n − 1], [n − 2]), we automatically get
the resolution steps for deriving the side literal, because to derive the empty
clause from PHP ([n − 1], [n − 1]\{x}) yields automatically a derivation of
pn,x from PHP ([n−1], [n−1]\{x})⊕pn,x - the side literal is untouched by the
resolution rule and �bubles up� through the whole refutation process. Thus
using the side-refutability of PHP ([n−1], [n−1]\{x})⊕pn,x we sequentially
get all negative literals needed for the refutation of PHP ([n], [n− 1]) .

The general case of PHP1(M, N) di�ers from our demonstration only in
the fact that we get a (possibly) renamed set of holes and some side literals,
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which have been added in the previous steps of resolution, but the operation
remains the same.

Our procedure leads us to the tree-structure (as can be seen in the Fig-
ure 3.2.2) of the whole proof, where each vertex is equivalent to some set
PHP ([n− i], [n−1]\{v1, v2, . . . , vi})⊕pn,v1⊕pn−1,v2 · · ·⊕pn−i+1,vi

; each edge
corresponds to the resolved literal pn−j+1,vj

, which is to be found as the side
literal in the vertices below and v1, . . . , vi actually describes a path in the
tree. The �nal clause PHP ([1], [n−1]\{v1, . . . , vn−1})⊕pn,v1⊕· · ·⊕p2,vn−1 =

{pn,v1 , . . . , p2,vn−1} is always a leaf vertex of the tree.
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Figure 3.2.2. Structure of the proof
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3.3. P-tree & DFS

Now we will describe our tree formally and make its relation to the
eventual resolution proof explicit (see �g. 3.3.1).

The tree (denote it p-tree) is not a proof itself, but only an auxiliary
structure, which helps to describe the actual resolution proof. After we
describe the p-tree, we can conceive two algorithms:

(1) First one is the classical DFS1 algorithm (denote it alg-dfs), which
has the p-tree as an input and produces resolution steps as an out-
put. When it steps into the vertex v from the vertex u through edge
e it dumps out the resolution steps transforming v into the u ac-
cording the information associated with e. In this way the algorithm
gradually prints the whole resolution proof and the correctness of
the resolution proof can be easily seen, because DFS give us order-
ing of the vertices of the p-tree. Further, we �x the ascending order
of edges (according to the associated values) outcoming from vertex
u in which will alg-dfs evaluate u.

(2) However the algorithm used in the implicit proof (denote it alg-ip)
has the index of a place (w.l.o.g. a literal or a whole clause) in the
resolution proof as an input and the literal (resp. the clause) at the
place as an output. Thus the output of alg-ip for all the indexes
gives the same as alg-dfs. Moreover, the algorithm has to be fast
enough, i.e. it has to allow to generate a resolution step without
a computation of the previous resolution steps. The details will be
given in section 3.5.

3.3.1. p-tree description. The proof tree has depth n. The root of
the tree (1-st level) consists of axioms PHP ([n], [n− 1]).
Each vertex on level d is associated (consists of) with set of n−d+1 clauses
PHP1([n− d + 1], [n− 1]\{v1, . . . , vd−1}), which has been resolved from the
parent vertex. To simplify the description we denote such a vertex on level
d as t-vertex, where t = n− d + 1 .
From each t-vertex originate t-1 edges (not counting the edge from the par-
ent), each one being associated with one of pt,z (z ∈ [n− 1] \ {v1, . . . , vd−1}).
Each edge from t-vertex to (t-1 )-vertex (child) with its associated literal pt,z

will substitute pi,z in each (t-1 )-vertex clause (i.e. z-th �column� in t-vertex
clauses will be replaced by column �lled with pt,z, see Figure 3.2.1). Leafs
of the tree are the vertices on the n-th level, i.e. there is only one clause
associated with the vertex and consists only of the literals associated with
the edges on the path to the leaf.
1depth-�rst-search
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Figure 3.3.1. p-tree
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Till now, we could conceive the whole resolution proof as two phases
procedure:

(1) As alg-dfs output on our tree, where the step-downwards from the
(root) vertex into some lower-level vertex via edge e means that we
are resolving all clauses in that vertex with the literal associated
with edge e, while the step-upwards does nothing.

(2) In this way we 'prepared' all the leaves in the tree, and now we have
to derive the empty clause from them.

However, it is more appropriate to join these two steps together, so all
the resolution steps relating to the last axiom of the current vertex will be
located on the same place. This can be done by changing the upwards-step
of the alg-dfs. Each upward-step on the edge associated with pt,z will be
associated with resolution steps, which are used to remove pt,z from the leaf-
clause (or its smaller consequence which gradually arise as we move upwards
to the root). These resolution steps consist of resolving the last axiom clause
PHP1([t], [n−1]\{v1, . . . , vd−1})[t] of t-vertex gradually with t-1 leaf-clause-
derivates returned by the upward-step from child (t-1 )-vertices. So �nally
at the root we obtain the empty clause.

To simplify the precise description of the proof we introduce a new kind
of summary vertex in the p-tree as can be seen in Figure 3.3.2. For each
t-vertex, besides t-1 child vertices we add one summary vertex. The unique
edge of the summary vertex will be associated with the 'upward' resolution
steps described above. When we associate these steps with the edge from
the parent-vertex to summary(child)-vertex, we can still apply DFS, which
produce resolution steps, by down-stepping into the vertex; in this way we
also obtain a linear ordering of resolution steps associated with the edges in
the tree.

3.3.2. Addressing. Now we de�ne a concept of an address in the tree.

Definition 3.3.1. The address in the p-tree is a two-component vector
~av = (~x, ~y), where ~x = (v1, . . . , vk, 0, . . . , 0) determine the path from the
root to vertex v via pn,v1 , . . . , pn−k+1,vk

− edges. In case of the path to the
summary vertex, we introduce the symbol s (i.e. vk = s).
Vector ~y = (i, j) determine, the j-th atom in the i-th clause of vertex v
(PHP ([n− k], [n− 1]\{v1, . . . , vk})[i]).

We de�ne the index of the address to be

‖~av‖ = zn3 +
2∑

i=1

y3−i ∗ zi +
n∑

i=1

xn−i+1 ∗ zi+2 ,

where z = 2 + max(n,max length of clause in p− tree).
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Figure 3.3.2. Structure of the vertices in p-tree. The �rst
n− i− 1 branches from parent vertex serve to obtain negative
literals, which will be used in the summarizing branch to re-
duce their positive counterpart in last (n− i)-th clause of the
parent vertex.
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For symbol s we reserve the value of z − 1. The maximal length of the
PHP clause can be estimated by 10n dlog ne.

The �nal resolution proof will have on the indexes corresponding to an
address ~av the clause v, while the rest of the proof will be padded with some
auxiliary symbol (padding literal). The range 1, . . . , zn3 of the index values
is reserved for indexing the PHP2 clauses.

We de�ne the ordering of the vertices by v < u ⇔ ‖~av‖ < ‖ ~au‖.
Observation: When alg-dfs reaches vertex v before u, then u < v.

Corollary. If alg-dfs dumps resolution steps correctly (in the sense,
that each dumped clauses can be resolved from the previous dumped clauses),
addressing will index atoms in the �nal resolution proof and the resolutions
steps in that proof will be also correct.

3.4. Detailed description of the p-tree

In this section we give a precise description of the vertices in the p-tree.
We picked a notation, which uses only very simple constructions, in such
a way that from it can be straightforwardly constructed an algorithm we
shall need later. It can be also clearly seen, that for constructing some
inner vertex of the p-tree, we do not need any additional computation which
would evaluate the previous resolution steps. This is a crucial demand on
our algorithm, as we need to �nd an e�ective algorithm describing the full
resolution proof.

Notation 3.4.1. Here we describe the conventions and the notation used
in the Table 2. Common symbols are:
Used �columns� U := {j1, . . . , jk−1} . All �columns� R := [n− 1] .
PX

z := {pz,i|i ∈ X}. PR
i then actually means PHP1([n], [n− 1])[i] .

We will address {pa,b; pc,b} simply be denoting PHP2(a, b, c) instead of cod-
ing it into the �rst zn3 values by some arbitrary formula.

We will classify all the vertices in the p-tree. Each classi�ed family consists
of associated resolution rules and description of each resolution rule will
have the following structure:

Clause 1
Clause 2
` Clause 3
Addresses

Address 1
Address 2
` Address 3
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with the obvious meaning, that Clause 1, Clause 2 on addresses Address 1,
Address 2 can be resolved into Clause 3 with Address 3, which is actually
the address of the currently classi�ed vertex.

In order to write the formulas generally for all cases of vertices we make
a rule, that whenever we should denote a non-existing literal (e.g. {pi,0}) , it
will be ignored (i.e. ∅) - thus (j1, . . . , jk−1, z, . . . ) for k = 1 denotes (z, . . . ).

There are two kinds of numbers which appear in the address as can be
seen in the Figure 3.4.1. While a plain number (e.g. ji) in the address de-
notes the edge associated with the corresponding literal-number, the number
of the form oio denotes the i-th edge arising from the vertex. These two kinds
of denotations can be easily transformed into each other in time polynomial
to n. When oio appears in literal, it has the same value, as it would have
after the index jk−1 in the address of currently investigated vertex class.
The symbol s in the address denotes the edge to the summary vertex,
on− k + 1o in other words.

As we count the pigeons from 1 to n we can use number 0 in the address
for the recognition of the end of the path in the p-tree (i.e. ji 6= 0). We
will write the termination as �0, . . . � because the following numbers are not
important as far as the p-tree is concerned. A bolded or an underlined font
is used just for a better comprehension and has no syntactical consequence.

Figure 3.4.1. Correspondence between oio and jk in address
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• standard vertex
(1) st-v1: standard vertex with ~x = (j1, . . . , jk, 0, . . . )

Associated resolution rules
∀z ∈ [n− k] : {pn−k+1,jk

; pz,jk
} ,(

PR
z \PU

z

)
∪ {pn−i+1,ji

| i ∈ [k − 1]}
`

(
PR

z \
(
PU

z ∪ {pz,jk
}
))
∪ {pn−i+1,ji

| i ∈ [k]}
Addresses
PHP2(n− k + 1, jk, z),
(~x = (j1, . . . , jk−1, 0, 0, . . . ) , ~y = (z, . . . ))
` (~x = (j1, j2, . . . , jk, 0, . . . ) , ~y = (z, . . . ))

• summary vertex
(1) sum-v1 : inner summary with ~x = (j1, . . . , jk−1, jk ≡ s, 0, . . . )

First part of associated resolution rules(
PR

n−k+1 \ PU
n−k+1

)
∪ {pn−i+1,ji

| i ∈ [k − 1]} ,
{pn−i+1,ji

| i ∈ [k − 1]} ∪ {pn−k+1,o1o}
`

((
PR

n−k+1 \ PU
n−k+1

)
∪ {pn−i+1,ji

| i ∈ [k − 1]}
)
\ {pn−k+1,o1o}

Addresses
(~x = (j1, . . . , jk−1, 0, . . . ) , ~y = (n− k + 1, . . . )) ,
(~x = (j1, . . . , jk−1, o1o, s, 0, . . . ) , ~y = (n− k − 1, . . . ))
` (~x = (j1, . . . , jk, 0, . . . ) , ~y = (1, . . . ))
sum-v2: Second part of associated resolution rules
∀z ∈ [n− k − 1]((

PR
n−k+1 \ PU

n−k+1

)
∪ {pn−i+1,ji

| i ∈ [k − 1]}
)
\ {pn−k+1,oto|t ∈ [z]} ,

{pn−i+1,ji
| i ∈ [k − 1]} ∪ {pn−k+1,oz+1o}

`
((

PR
n−k+1 \ PU

n−k+1

)
∪ {pn−i+1,ji

| i ∈ [k − 1]}
)
\ {pn−k+1,oto|t ∈ [z + 1]}

Addresses
(~x = (j1, . . . , jk, 0, . . . ) , ~y = (z, . . . )) ,
(~x = (j1, . . . , jk−1, oz + 1o, s, 0, . . . ) , ~y = (n− k − 1, . . . ))
` (~x = (j1, . . . , jk, 0, . . . ) , ~y = (z + 1, . . . ))

(2) sum-v3 : leaf summarizing vertex with ~x = (j1, . . . , jn−2, o2o)
Has the same formulas. However, k = n − 1 and thus second iterative
part through z will not be present. The second address in the �rst part
is (~x = (j1, . . . , jk−1 ≡ jn−2, o1o, 0, . . . ) , ~y = (1)).

(3) sum-v4 : root summarizing vertex with ~x = (j1 ≡ s, 0, . . . )
Has the same formula. Addresses of (~x = (0, . . . ) , ~y = (i)) we de�ne as
axiom PHP ([n] , [n− 1]) [i].
The desired empty clause has address (~x = (s, 0, . . . ) , ~y = (n− 1, . . . )).

Table 2. Classi�cation of the vertices
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3.5. Alg-ip

Up to now we have showed how the address from the p-tree will be converted
into the index in the �nal resolution proof. In fact, alg-ip algorithm has to
do just the opposite - from a given index it will decode a proper address
and further from the decoded address it will compute the proper clause with
desired literal; this is possible according to the formulas given in the Table 2.

However, the output of the algorithm will be only a subset of the informa-
tion given in the Table 2 - in particular, for given Address 3, the output will
have the form of �Address 1,Address 2,Clause 3�. Adding the antecedents
addresses for each clause in the resulted resolution proof is in no con�ict with
the de�nition of resolution, moreover it simpli�es the proof of correctness.

Both addressing and alg-ip were formulated for the case of the one-
symbol-output. However, when considering the Table 2 and the proof of
correctness we work with the whole clauses, which is more convenient and
do not bring any essential change.

Note also, that much space of the resolution proof will be �lled with the
padding literal, which will be output of alg-ip in case that the input number
cannot be converted into the correct address (i.e. pointer to existing clause)
of the p-tree. Although there would be some loss as far as the length of the
proof is concerned, we gain the possibility of an e�cient computation of the
clause when given its address.

Figure 3.5.1. Address - to - index transformation
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3.5.1. Outline of alg-ip. Here we give a skeleton, how would be the
algorithm alg-ip constructed. Note that this sketch is for demonstration
purpose only and the implementation should be done more e�ciently.

Index_to_Clause(index a, size n )
if (a ≤ zn3) ⇒ PHP2

else
address := Index_to_Address(a,n );
clause := Generate_vertex(address,n );
result := clause [a.y2];

end

Index_to_Address(index a,size n )
a := a− zn3;
y1 := a mod z; a := a/z;
y2 := a mod z; a := a/z;
for (i = 1; a > 0 ; i = i + 1)
xi := x mod z;
a := a/z;
end
result := (~x, ~y);

end

//Generate the vertex according to the Table 2
Generate_vertex(address a,size n )
if (a ∼ summary vertex)

result := generate_summary_clause(a,n );
else
if (a ∼ ordinary vertex)

result := generate_ordinary_clause(a,n );
else

result := padding_literal;
end



CHAPTER 4

Soundness and complexity demands

4.1. Relation to implicit proofs

In this chapter we will prove the soundness of the refutation algorithm.
We will also measure the complexity demands. That is important for two
reasons - �rstly we will check the correctness of the alg-dfs given by the
Table 2, secondly we will give by this proof informal description of the
correctness proof used as a part of an implicit proof.

The idea introduced in Krají£ek[1] is that we construct a proof system,
which instead of using exponentially long proof for a given tautology supplies
a circuit of polynomial size, which outputs the required proof bit-by-bit. To
ful�l the conditions in the De�nition 2.2.1 of a proof system (in particular we
need that it can be recognized in p-time whether a string is a proof or not),
we have to check somehow the correctness (optimally in the time polynomial
to the size of the given circuit). This cannot be done simply by checking the
output of the algorithm for being a correct proof, because such evaluation
will lead to the exponential time complexity (here we take the circuit size
as the input). We can avoid this di�culty, when we prove the correctness of
the algorithm's computation - then if the input and the last output formula
is correct, we know without the evaluation that the whole proof generated
by the algorithm is correct. Hence we take the pair of algorithm and its
correctness proof as proof itself and denote a proof system based on such
pair-proofs as implicit proof system.

In our case there would be the possibility (which we do not pursue here
formally) to construct the implicit proof system based on the proof-pairs
of alg-ip and correctness proof from the Section 4.3 written in some formal
calculus. From the Section 4.2 we can see, that such a proof system would
be polynomially bounded on the class of PHP -tautologies and thus more
strong then the resolution proof system.

4.2. Complexity demands

4.2.1. General estimates. Our language contains constant number of
symbols used for constructions of clauses. A number in an address or a literal
in a clause used for description of pigeons and holes in PHP ([n], [n− 1]) has
space complexity of O(log(n)) - because the logarithmic factor will not a�ect

25
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(non)polynomiality of computations, we will count its complexity as O(1).
Also when we speak about polynomial or exponential time we mean it with
respect to n. In the estimates below we distinguish particular polynomial
classes, which is not necessary as we need to distinguish only polynomial
and exponential complexity classes.

There is O(n2) �initial� literals used for initial clauses of PHP . All
literals in the inferred clauses during the proof originate from these initial
literals, so one clause has the length at most O(n2). In case of the clauses
in p-tree we get even the O(n)(= O(z)) estimate.

An address has the length of O(n), thus a complete output �a1, a2, c3�
for a given index from alg-ip gives O(n) length.

The number of clauses in the resolution proof can be estimated from the
size of p-tree - its depth, number of descendants of each vertex and number
of clauses in each vertex are all at most n, so we get exponential number
of clauses in the proof. ~alast = (~x = (s ≡ n, 0, . . . ), ~y = (n − 1, . . . )) is the
address of the last clause, and ‖ ~alast‖ gives us the highest index used for
input of alg-ip - O (zn), z comes from De�nition 3.3.1. Thus we can see,
that the input of alg-ip has at most O(n) symbols.

4.2.2. alg-ip. Now we will consider alg-ip algorithm, because a poly-
nomial time complexity of alg-ip implies a polynomial size of the circuit
computing alg-ip. Firstly we have to convert an index into the address for-
mat. This can be done straightforwardly in O(n) time. After that we have
to recognize the class of a given vertex, which can be done according to
the Table 2 in a polynomial time. Construction of one clause in any vertex
family consists of the following operations:

• Evaluating PX
y sets. This can be done in O(n).

• Basic set operations on evaluated sets, which can be done in O(n2).
• Conversion of index-type number (e.g. oxo), which can be done in

O(n2) time.
All of the above operations are used only constant-times, so we can conclude
that the time complexity of the whole alg-ip is polynomial.

4.3. Soundness

Notation 4.3.1. We will use the Notation 3.4.1 from the Table 2. More-
over, for a given vertex with the address a.~x = (j1, . . . , jk, 0, . . . ) we will
sometimes use the index jk+1 (or higher) with the meaning of the �rst (or
higher) unused number in the address - in other words: with given ad-
dress a.~x, jk+h corresponds to the value oho computed from the address
a.~x = (j1, . . . , jk, oho, 0, . . . ).
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Theorem 4.3.2. alg-ip is correct.

Firstly we introduce a notion of the proof tree. The output1 of alg-ip
for all indexes (i.e. previously shown resolution refutation of PHP ) can
be presented as a proof tree. Each vertex represents some output clause
from alg-ip and (two) incoming edges from vertices V1, V2 to some vertex V3

represent one resolution inference V1, V2 `R V3 . Thus leafs of the proof tree
are initial clauses for refutation and the root of the tree is the empty clause.

To prove the soundness of alg-ip we need to prove that it produces a
correct proof in the sense of De�nition 2.3.2, in other words to check these
three properties:

(1) The root vertex of the proof tree is the empty clause (formally
speaking: alg − ip(‖alast‖).c3 = ”{}”).

(2) The leafs are the initial clauses of PHP .
(3) We can resolve each vertex (except the leafs) from some two previ-

ous vertices. Moreover, we can compute these previous vertices (and
their positions) explicitly knowing only the position of the current
one and in a polynomial time.

All the vertices in the proof tree originate from the clauses of p-tree vertices.
Thus if we check correctness of the rules described in Table 2, which de�nes
the p-tree, we verify correctness of the proof tree also, because the property
�V3 is correctly inferred from V1, V2� is preserved in the translation from the
p-tree to the proof-tree.

Proof. Firstly we �x the convention used in the proof. Usually the
sub-proof of a single case of a vertex with address a3 will have the
following structure:

vertex− class, a3 ≡ address
a1 ≡ address1

a2 ≡ address2

` c3 ≡ clause3

alg − ip(a1).resolvent ≡ c1

alg − ip(a2).resolvent ≡ c2

For a given vertex with the address a3 we simply compute a1, a2, c3 from the
Table 2 - which is nothing but the output of alg − ip(a3). Now for proving
the correctness, we have to compute clauses c1, c2 from a1, a2, resolve them
by resolution rule and compare, whether the resolvent is identical with c3, in
other words to check, whether the rules in Table 2 are correct. Furthermore,

1We will not consider the padding symbols in output of alg-ip, as they have no meaning
for the correctness of the proof.
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this is done not using particular numerical values of indexes but rather
several properties of addresses - otherwise it will lead to the exponential
number of checks.

Now we will check the three previously mentioned properties.

1. The root of the proof tree corresponds to the last clause of the last-
visited summary vertex of the p-tree, which has the following address: (~x =
(s ≡ n, 0, . . . ), ~y = (n − 1, . . . )). By Table 2 we can express the resultant
clause c3 ≡

(
PR

n \P ∅
n ∪ ∅

)
\ {pn,oto|t ∈ [n− 1]} = {}.

2. All the vertices in the proof tree are translated from the p-tree, and
as the translation preserves antecedents in the resolution rules, we can de-
termine the leafs of proof tree with the help of Table 2. Analyzing the table
we can see that all the clauses in the p-tree has antecedents, except:

(1) Clauses in a vertex with address ~x = (0, . . . ).
(2) Clauses denoted as PHP2(x, y, z).

Now, because ~x = (0, . . . ) is address of PHP1, all the clauses without an-
tecedents are clauses of PHP , thus all the leafs of the proof tree are initial
clauses.

3. To check the inner vertices of the proof tree, we check for the cor-
rectness systematically all the classes of generic vertices in the p-tree. As
mentioned above we use here only the general properties of the addresses,
not any particular numerical values.

• st-v1, a3.~x = (j1, . . . , jk, 0, . . . ).

∀z ∈ [n− k] :
a1 ≡ PHP2(n− k + 1, jk, z)
a2 ≡ (~x = (j1, . . . , jk−1, 0, . . . ) , ~y = (z, . . . ))

` c3 ≡
(
PR

z \
(
P
{j1,...,jk−1}
z ∪ {pz,jk

}
))

∪ {pn−i+1,ji
|i ∈ [k]}

=
{
pz,jk+1

; . . . ; pz,jn−1 ; pn,j1 ; . . . ; pn−k+1,jk

}
c1 = {pn−k+1,jk

;pz,jk}
c2 =

(
PR

z \
(
P
{j1,...,jk−2}
z ∪

{
pz,jk−1

}))
∪ {pn−i+1,ji

|i ∈ [k − 1]}
=

{
pz,jk ; . . . ; pz,jn−1 ; pn,j1 ; . . . ; pn−k,jk−1

}
As we can see c2 has additional pz,jk

and does not have pn−k+1,jk
compared

to c3, so c1 is exactly needed for a correct resolution inference c1, c2 `R c3.
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• sum-v1, a3 = (~x = (j1, . . . , jk−1, jk ≡ s, 0, . . . ) , ~y = (1, . . . )).

a1 ≡ (~x = (j1, . . . , jk−1, 0, . . . ) , ~y = (n− k + 1, . . . ))

a2 ≡ (~x = (j1, . . . , jk−1, o1o, s, 0, . . . ) , ~y = (n− k − 1, . . . ))

` c3 ≡
((

PR
n−k+1\P

{j1,...,jk−1}
n−k+1

)
∪ {pn−i+1,ji

|i ∈ [k − 1]}
)
\{pn−k+1,o1o}

=
{
pn−k+1,jk+1

; . . . ; pn−k+1,jn−1 ; pn,j1 ; . . . ; pn−k+2,jk−1

}
c1 =

(
PR

n−k+1\
(
P
{j1,...,jk−2}
n−k+1 ∪

{
pn−k+1,jk−1

}))
∪ {pn−i+1,ji

|i ∈ [k − 1]}

=
{
pn−k+1,jk ; . . . ; pn−k+1,jn−1 ; pn,j1 ; . . . ; pn−k+2,jk−1

}
Note, that a1 is the address of the last clause of a standard-type vertex

from a higher level in the p-tree. This last clause is the only clause from
a1.~x vertex, which has not been used up to now in contrast to the rest of
the clauses in a1.~x. Thus we do not break the tree-condition of proof tree -
any clause is still used as an antecedent only once.

Evaluating c2 is bit more complicated. Because a2 is an address of a
summary-type clause we should distinguish two cases:

• whether a2.~y[1] = 1(sum-v1 type)
• or a2.~y[1] > 1 (sum-v2 type).

However, these two cases di�er only in the antecedent pointer of c2, not in
the way how the resolvent clause c2 is expressed. As we only need c2 clause
to check c1, c2 `R c3 , we can check both cases in one common expression of
c2.
To avoid a confusion we distinguish between indexes (j1, . . . , jk−1, o1o, s) used
when describing the vertex with address a3 and identical indexes (j′1, . . . , j

′
k, s)

used when evaluating c2. Thus pn−k,oto is here computed as if oto appear in
address (j′1, . . . , j

′
k, oto).

c2 =

((
PR

n−k\P
{j′1,...,j′k−1,j′k≡o1o}
n−k

)
∪

{
pn−i+1,j′i

|i ∈ [k]
})

\ {pn−k,oto|t ∈ [n− k − 1]}

=
({

pn−k,j′k+1
; . . . ; pn−k,j′n−1

}
∪

{
pn,j′1

; . . . ; pn−k+1,j′k

})
\ {pn−k,o1o; . . . ; pn−k,on−k−1o}

Now, the �rst and the third curly brackets are just another expressions for
the same set of clauses and j′k = jk, hence c2 =

{
pn,j1 ; . . . ; pn−k+2,jk−1

;pn−k+1,jk

}
.

We can clearly see, that c1, c2 `R c3.
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• sum-v2, a3 = (~x = (j1, . . . , jk−1, jk ≡ s, 0, . . . ) , ~y = (z + 1, . . . )).

a1 ≡ (~x = (j1, . . . , jk ≡ s, 0, . . . ) , ~y = (z, . . . ))

a2 ≡ (~x = (j1, . . . , jk−1, oz + 1o, s, 0. . . . ) , ~y = (n− k − 1, . . . ))

` c3 ≡
((

PR
n−k+1\P

{j1,...,jk−1}
n−k+1

)
∪ {pn−i+1,ji

|i ∈ [k − 1]}
)
\ {pn−k+1,oto|t ∈ [z + 1]}

=
{
pn−k+1,jk+z+1

; . . . ; pn−k+1,jn−1 ; pn,j1 ; . . . ; pn−k+2,jk−1

}
c1 =

((
PR

n−k+1\P
{j1,...,jk−1}
n−k+1

)
∪ {pn−i+1,ji

|i ∈ [k − 1]}
)
\ {pn−k+1,oto|t ∈ [z]}

=
{
pn−k+1,jk+z

; . . . ; pn−k+1,n−1; pn,j1 ; . . . ; pn−k+2,jk−1

}
Note, that jk+z = oz+1o (oz+1o computed as from address (j1, . . . , jk−1, oz + 1o)).
For c2 we proceed as in sum − v1.c2 - we again join cases a2.~y[1] = 1,
a2.~y[1] > 1 and introduce notation (j′1, . . . , j

′
k, s) for (j1, . . . , jk−1, oz + 1o, s).

c2 =

((
PR

n−k\P
{j′1...,j′k−1,j′k}
n−k

)
∪

{
pn−i+1,j′i

|i ∈ [k]
})

\ {pn−k,oto|t ∈ [n− k − 1]}

=
{
pn−i+1,j′1

; . . . ;pn−k+1,j′k

}
Now because j′k = oz + 1o, c1, c2 `R c3 holds.

• sum-v3, a3 = (~x = (j1, . . . , jn−2, o2o ≡ s, 0, . . . ) , ~y = (1, . . . )).

a1 ≡ (~x = (j1, . . . , jn−2, 0, . . . ) , ~y = (2, . . . ))
a2 ≡ (~x = (j1, . . . , jn−2, o1o, 0) , ~y = (1, . . . ))

` c3 ≡
((

PR
2 \P

{j1,...,jn−2}
2

)
∪ {pn−i+1,ji

|i ∈ [n− 2]}
)
\ {p2,o1o}

=
{
pn,j1 ; . . . ; p3,jn−2

}
c1 =

(
PR

2 \
(
P {j1,...,jn−3} ∪

{
p2,jn−2

}))
∪ {pn−i+1,ji

|i ∈ [n− 2]}
=

{
p2,jn−1

}
∪

{
pn,j1 ; . . . ; p3,jn−2

}
c2 =

(
PR

1 \
(
P
{j1,...,jn−2}
1 ∪

{
p1,jn−1≡o1o

}))
∪ {pn−i+1,ji

|i ∈ [n− 1]}
=

{
pn,j1 ; . . . ;p2,jn−1

}
It is easy to see, that c1, c2 `R c3.

• sum-v4, a3.~x = (j1 ≡ s, 0, . . . ).

De�ning a = (~x = (0, . . . ), ~y = (i, . . . )) as PHP1 ([n] , [n− 1]) [i] = PR
i is

correct, as the formula c2 becomes exactly PR
i . Thus the current case sum-

v4 is covered by the previous cases sum-v1/2.

Note that nowhere in the proof we have used that PHP is, in fact, a tau-
tology.

�
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