
BACHELOR THESIS

Ondřej Ježil

Spectrum Problem

Department of Algebra

Supervisor of the bachelor thesis: prof. RNDr. Jan Kraj́ıček, DrSc.
Study programme: Mathematics for Information

Technologies
Study branch: Mathematics

Prague 2020

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I dedicate this thesis to my parents. I could not have completed it without their
love and support. I am obliged to my supervisor, prof. RNDr. Jan Kraj́ıček,
DrSC., for sharing his knowledge, thoroughly commenting on this thesis and also
for introducing me to this marvelous topic.

ii

Title: Spectrum Problem

Author: Ondřej Ježil

Department: Department of Algebra

Supervisor: prof. RNDr. Jan Kraj́ıček, DrSc., Department of Algebra

Abstract: We study spectra of first-order sentences. After providing some inter-
esting examples of spectra we show that the class of spectra is closed under some
simple set-theoretic and algebraic operations. We then define a new class of de-
finable operations generalizing the earlier constructions. Our main result is that
the class of these operations is, in a suitable technical sense, closed under a form
of iteration. This in conjunction with Cobham’s characterisation of FP offers a
new proof of Fagin’s theorem and also of the Jones-Selman characterisation of
spectra as NE sets.

Keywords: Scholz’s problem, spectrum, Asser’s problem, generalized spectrum,
Fagin’s theorem, Cobham’s theorem

iii

Contents

Introduction 2

1 Preliminaries 3
1.1 Logic . 3
1.2 Cobham’s characterization of FP 5

2 Elementary results on spectra 7
2.1 Interesting examples of spectra 7

2.1.1 Spectra based on factors 7
2.1.2 Mutually orthogonal latin squares 9

2.2 Operations on spectra . 10
2.2.1 Set operations on spectra 10
2.2.2 Arithmetical operations on spectra 11

3 Σ1
1-definable functions 13

3.1 Basic notions . 13
3.2 Σ1

1-definability of FP . 14
3.3 Fagin’s theorem . 21
3.4 FΣ1

1 operations on generalized spectra 22

Concluding remarks 24

Bibliography 25

1

Introduction
Asser’s Spectrum Problem is one of the oldest open questions that directly

relate to the famous P vs. NP problem of computational complexity. Bordering
between mathematical logic and complexity theory it asks whether spectra of
first-order sentences are closed under complementation. Spectra are simply the
sets of cardinalities of finite models of some first-order sentence.

Scholz introduced spectra in [Sch52] and asked for their characterization. This
became known as Scholz’s spectrum problem. It is generally considered to be
solved since spectra have been characterized in terms of computational complexity
[Fag74] [JS74]. Even though new answers to it can still emerge. In [Ass55] Asser
responded to Scholz’s paper and asked the question of whether the spectra are
closed under complementation.

The study of spectra leads to many interesting ideas which helped to form
at least two subfields of mathematical logic. Namely finite model theory and
descriptive complexity theory [DJMM12].

We will first recall necessary definitions and facts and introduce some notation,
both from logic and complexity theory. We will then present elementary results
on spectra which are not too hard to prove without any special theory. In Chapter
3 we define a new notion of Σ1

1-definable functions and use them to give a new
proof of Fagin’s theorem originally proved in [Fag74]. The characterization of
spectra as NE sets is then a simple corollary.

The fundamental issue in studying spectra is the underlying connection be-
tween finite models and complexity theory. Instead of some class of finite models
of some sentence we can just consider the set of their binary codes. Now a class
of finite models suddenly becomes a binary language. On the other hand, binary
words can be treated as a special class of word structures. See [GKL+07] for more
detailed explanation.

The survey article [DJMM12] is an extensive report on both historical and
contemporary directions of studying spectra and we recommend it to a reader
interested in other approaches.

2

1. Preliminaries

1.1 Logic
We will assume basic knowledge of first-order logic and model theory. We

point interested reader to [vdD10] and [Mar06] for a nice introduction into those
topics.

Let us start with some notation and terminology. We will use the word vo-
cabulary for what is in mathematical logic more commonly known as a language.
Reason being that language is also a term used in complexity theory for sets of
words over an alphabet.

Now some comments about our notations for formulas. For some unary rela-
tional symbol U and variable x we will use the notation U(x) and x ∈ U inter-
changeably. We will also use the quantifier (∃!x) meaning ”there exists a unique”.
Also the ”bounded quantifiers” (∀x ∈ U) and (∃x ∈ U) which can be understood
as abbreviations for (∀x)(x ∈ U → . . .) and (∃x)(x ∈ U ∧ . . .) respectively. In
linearly ordered structures we will use the quantifiers (∀x < y), (∃x < y), symbols
>, ≤, ≥ with their obvious interpretation and maxR to denote the maximum of
a non-empty unary relation R. Any such notation can be rewritten to an actual
formula. Sometimes we will treat binary relational symbols with a fixed variable
i as unary symbols by using the notation x ∈ Mi for M(i, x), where M− is the
actual relational symbol.

For convenience we will only consider relational vocabularies. We will however
not lose the rich supply of examples from algebra. Every n-ary functional symbol
can be replaced with (n+ 1)-ary relational symbol representing the graph of the
functional one. This restriction is traditional in finite model theory as it makes
the notion of a substructure more manageable.

Definition 1.1.1 (Spectrum). Let φ be a first-order formula in a purely relational
vocabulary τ . We define the spectrum of τ -sentence φ as

Specτ (φ) = {|A|; A is a finite τ -structure and A |= φ}. (1.1.1)

Formally, there is no way we can tell if said φ is a τ -formula, or formula of
some subset of this vocabulary which contains all non-logical symbols occurring
in φ. E.g. φ1 = (x = y) is both a {<}-formula and a ∅-formula. But since
φ does not ”talk” about other relational symbols in τ , their interpretations of
any model of the smaller vocabulary can be chosen arbitrarily to expand it to a
τ -structure. Conversely, we can just forget these relations and take a reduct of
the model to the smaller vocabulary.

That means we can simply write

Spec(φ) = {|A|; A is a finite structure and A |= φ}. (1.1.2)

Definition 1.1.2 (Spec). We denote the set of all spectra Spec.

Spec will turn out to be a complexity class, which we will characterize in terms
of a more classical complexity theoretic notion. The corollary of Fagin’s theorem
will be that Spec is exactly the set of all languages accepted in nondeterministic

3

exponential-time. Specifically in NTime(2O(n)). We will give a new proof of this
influential theorem in Chapter 3.

In Chapter 2 we give a few examples of spectra.
It turned out to be important to look at an analogue of spectra for a logic

different from the first-order one to understand the usual spectra. Namely we
will turn our attention to existential second-order logic denoted Σ1

1.

Definition 1.1.3 (Σ1
1-formulas). Let τ be a vocabulary. Σ1

1-formulas in the
vocabulary τ are of the form

(∃c1X1)(∃c2X2) . . . (∃cnXn)φ(x̄), (1.1.3)

where φ is a first-order formula and Xi is a ci-ary relational symbol not in τ for
each i ∈ {1, . . . , n}. In this context we call relational symbols not in τ second-
order variables. The notation ψ(Y1, . . . , Yk, x1, . . . , xl) for a Σ1

1-formula means
that its unquantified (free) second-order variables are among {Y1, . . . , Yk} and its
free first-order variables are among {x1, . . . , xl}.

Σ1
1-formula without both free second-order variables and free first-order vari-

ables is called a Σ1
1-sentence.

The notation (∃cZ) is nonstandard, usually the arity in the subscript is omit-
ted and is simply deduced from the type of the relational symbol. The reason for
its inclusion is that in later chapters we will encounter Σ1

1-formulas with a great
number of quantified relational symbols of different arities. Using for example
different fonts to distinguish arity of relational symbols would become unwieldy.

Note that Σ1
1-formulas are closed (up to logical equivalence) under conjunc-

tion, disjunction and first-order quantifications. We will use this heavily in later
chapters.

Definition 1.1.4 (Validity of Σ1
1-formulas). Let φ(X1, . . . , Xk;x1, . . . , xl) be a

Σ1
1-formula in the vocabulary τ . Let A be a τ -structure, let R1, . . . , Rk be rela-

tions on A with arities corresponding to Xi’s and let a1, . . . , al ∈ A. Then we
define the validity of φ in A with assignment R1, . . . , Rk, a1, . . . , al, denoted
A |= φ(R1, . . . , Rk, a1, . . . , al)), as follows. For φ(X1, . . . , Xk, x1, . . . , xl) with-
out second-order quantification we define the satisfaction relation as in Tarski’s
definition.

For φ = (∃c1Z1) . . . (∃cnZn)φ0(Z1, . . . , Zn, X1, . . . , Xk, x1, . . . , xl) we define

A |= φ(R1, . . . , Rk, a1, . . . , al) (1.1.4)

iff there exists interpretations of Zi called Bi for all i ∈ {1, . . . , n} such that

(A, B1, . . . , Bn, R1, . . . , Rk, a1, . . . , al) |= φ0(B1, . . . , Bn, R1, . . . , Rk, ā). (1.1.5)

We call an expansion of A containing a satisfying interpretation for each ex-
istentially quantified symbols in φ an witnessing expansion of A. If φ is a
Σ1

1-sentence and A |= φ then we call A a model of φ.

Definition 1.1.5. Let φ = (∃c1Z1) . . . (∃cnZn)φ0(Z1, . . . , Zn, Ȳ , x̄) be a Σ1
1-

formula. We define its first-order part as φ0 and denote it by φFO.

4

For example (∃2R)R(x, y) is a Σ1
1-formula, (∃2R)(∃y)(∀x)(R(x, y)) is a Σ1

1-
sentence. Many examples of models of an Σ1

1-sentence come from algebra. Namely
if you consider a conjunction of axioms of groups (their relational version), by
existentially quantifying a unary relation, different from the singleton {1} and
the whole group, that is closed under multiplication, inverses and conjugation by
every element in the group, the resulting models are exactly non-simple groups.
A similar construction can be carried out for local rings, solvable groups of fixed
order and other notions from algebra that depend on the existence of some subset
with special properties.

Definition 1.1.6 (Generalized spectra). Let φ be a Σ1
1-sentence in some vocab-

ulary τ . We define the generalized spectrum of φ

GenSpecτ (φ) := {A; A |= φ, |A| < ℵ0}. (1.1.6)

In other words it is the class of all finite models of φ. We call φ a defining
sentence of the generalized spectrum. As opposed to (regular) spectra, here
different choices of vocabulary result in different generalized spectra. However,
when the vocabulary is clear from the context we will simply write GenSpec(φ).

We denote GenSpec the class of all generalized spectra. After some binary
encoding of finite structures is fixed we can instead of each generalized spectrum
consider the set of binary codes of its members. Fagin’s theorem then charac-
terizes GenSpec as those classes of finite structures whose set of codes is in
NP.

An important connection to first-order spectra is that for a first-order sentence
φ in some vocabulary τ if we quantify all the relational symbols in τ we get
φ̂ = (∃a1R1) . . . (∃ak

Rk)φ. The generalized spectrum of φ̂ contains exactly the
structures which contain no relations with an universe of cardinality from Spec(φ).
These structures will later correspond to unary encodings of numbers.

1.2 Cobham’s characterization of FP
In this section we present the complexity class FP and Cobham’s character-

ization of it. We will not introduce all the terminology from complexity theory
and instead direct the interested reader to [AB09] for an extensive explanation
of the subject.

Definition 1.2.1. FP denotes the class of functions, with arguments and values
in the set of binary words, that are computable by a polynomial-time algorithm.

We will now present a theorem proved by Cobham [Cob65]. It provides a
recursion theory style characterization of FP, without referring to any formal
notion of machine or computation.

For x ∈ {0, 1}∗ we denote its bit length by |x|.

Theorem 1.2.2 (Cobham [Cob65])
Define B as the smallest class of functions that:

1. contains

5

(a) successor functions si : {0, 1}∗ → {0, 1}∗, si(x) = xi, where i ∈ {0, 1},
(b) projections πn

i : ({0, 1}∗)n → {0, 1} : (x1, . . . , xn) ↦→ xi, where n ∈
N+, i ≤ n,

(c) binary function x#y := 2|x|·|y| = 1000 . . . 0⏞ ⏟⏟ ⏞
|x|·|y| zeroes

, called the smash function,

2. is closed under composition,

3. is closed under limited recursion on notation, that is, for each g, h0, h1 ∈ B,
where g is n-ary and h0, h1 (n + 2)-ary. If for the (n + 1)-ary function f
defined as

f(x1, . . . , xn, 0) := g(x1, . . . , xn) (1.2.1)
f(x1, . . . , xn, si(x)) := hi(x1, . . . , xn, x, f(x)) (1.2.2)

there exists c ∈ N+ such that for all x1, . . . , xn ∈ {0, 1}∗:

|f(x1, . . . , xn, x)| ≤ max(|x1|, . . . , |xn|, |x|, 2)c, (1.2.3)

then f ∈ B.

Then B = FP.

We will use this characterization in Chapter 3 to prove Fagin’s theorem in
a way that completely avoids representing computations of machines by finite
structures.

6

2. Elementary results on spectra

2.1 Interesting examples of spectra
In this section we provide a few interesting examples of spectra and we will

start with some simple ones. One of the most basic examples of spectra are finite
and cofinite sets. First we consider the sentence

cardk = (∃x1) . . . (∃xk)((
⋀︂

1≤i<j≤k

xi ̸= xj) ∧ (∀y)(
⋁︂

1≤i≤k

y = xi)), (2.1.1)

which states that the cardinality of any model of this sentence is exactly k ∈ N+.
Any finite set {n1, . . . , nm} can be defined by a disjunction of all cardni

, i ∈
{1, . . . ,m}. Any cofinite set can be defined by the negation of such a sentence.

Moreover it can be shown that spectra of ∅-sentences are precisely those.
First note that for spectra over the empty vocabulary we have Spec(¬φ) =
N+ \ Spec(φ). (! This does not hold for all vocabularies. See section 2.2 for more
details.) Namely, consider ∅-sentence φ such that both Spec(φ) and N+\Spec(φ)
are infinite then by the compactness theorem and Löwenheim-Skolem theorem we
have countable structures A |= φ and B |= ¬φ, but those structures are neces-
sarily isomorphic because they are just sets with no relations. A contradiction.

It follows from Fagin’s theorem 3.3.1 that even many ”complex” sets are spec-
tra. Fagin’s theorem uses logic notions but in this chapter we shall give examples
of spectra that have mathematically natural constructions.

2.1.1 Spectra based on factors
Simple examples of spectra are the sets kN+ for some k ∈ N+. Those are

exactly the spectra of the {X, Y, I}-sentences

φk : = cardk(X) ∧ (∀x ∈ X)(∀y ∈ Y)(∃!z)(I(x, y, z)) (2.1.2)
∧ (∀z)(∃!x ∈ X)(∃!y ∈ Y)(I(x, y, z)),

for some k ∈ N+, where

cardk(X) : = (∃x1 ∈ X) . . . (∃xk ∈ X)((
⋀︂

1≤i<j≤k

xi ̸= xk) (2.1.3)

∧ (∀y ∈ X)(
⋁︂

1≤i≤k

xi = y))

which is a sentence stating that X has cardinality k. The sentence φk states
that I is a graph of a bijection between X × Y and the whole universe of the
structure. It follows that the size of every finite model of φk is divisible by k,
therefore Spec(φk) = kN+.

More interesting are the sets of the form

⟨p1, . . . , pn⟩(N+,·) = {
n∏︂

j=1
p

ij

j ; ij ∈ N+}, (2.1.4)

7

where the left side denotes closure under the operation in the monoid (N+, ·).
Here, instead of specifying which factors should be present in the elements of the
sets, we specify which factors can be present.

These cannot be proved to be spectra by an analogous argument. If we include
some ternary relation I(x, y, z) in the sentence we can just state properties it
needs to fulfill. This works if we want check if some mapping exists. However we
need to check that every mapping fails to witness that some factor is outside of
{p1, . . . , pn}. There is no direct way to adapt the earlier simple argument.

Example 2.1.1
The sets ⟨p1, . . . , pn⟩(N+,·) are spectra.

Proof. We will use the fact that these sets are precisely the cardinalities of finite
Z/(p1 . . . pn)Z-modules. First notice that Z/kZ-modules are just abelian groups
satisfying the equality

x+ · · · + x⏞ ⏟⏟ ⏞
k times

= 0. (2.1.5)

Now from (2.1.5) we have that every element of a finite Z/kZ-module M must
have order dividing k.

From the classification of finitely generated abelian groups, proof of which
can be found in [Rot10], we have that for M there exist primes p′

1, . . . , p
′
m and

natural numbers i1, . . . , im such that M ∼=
⨁︁m

j=1 Z/(p′
j)ijZ, therefore all (p′

j)ij

have to divide k. Also a module of every needed cardinality can be constructed
as a ⨁︁o

j=1(Z/p′
jZ)lj for some natural numbers l1, . . . , lo.

Now we just need a sentence which axiomatizes Z/kZ-modules for k := ∏︁
pi.

We consider the vocabulary τ = {A, I,N}, where A is ternary, for the graph of
addition, I is binary, for the graph of inverse, and N is unary, singling out the
neutral element.

We construct the sentence modk as a conjunction of the universal closures of
the following formulas.

constN = (∃n)(N(n) ∧ (∀m)(N(m) → m = n)) (2.1.6)
unfcnI = (∃y)(I(x, y) ∧ (∀z)(I(x, z) → y = z)) (2.1.7)
bifcnA = (∃v)(A(x, y, v) ∧ (∀w)(A(x, y, w) → v = w)) (2.1.8)
assoc = (A(x, y, v) ∧ A(y, z, w)) → (∀u)(A(x,w, u) ↔ A(v, z, u)) (2.1.9)
neutr = N(n) → (A(x, n, x) ∧ A(n, x, x)) (2.1.10)
inver = I(x, y) → (∀z)(A(x, y, z) → N(z))) (2.1.11)

commt = A(x, y, z) ↔ A(y, x, z) (2.1.12)
modulk = (A(x, x, x2) ∧ A(x2, x, x3) ∧ · · · ∧ A(xk−1, x, xk)) → N(xk) (2.1.13)

Here (2.1.6)-(2.1.8) just state N, I, A are graphs of a constant, a unary function
and a binary function respectively. The rest of the formulas are just the usual
axioms of abelian groups rewritten using the graphs of the operations and the
last formula is there to limit the models to Z/kZ-modules.

It follows that Spec(modk) = ⟨p1, . . . , pk⟩(N+,·).

8

α β γ
β γ α
γ α β

α β γ
γ α β
β γ α

(α, α) (β, β) (γ, γ)
(β, γ) (γ, α) (α, β)
(γ, β) (α, γ) (β, α)

Figure 2.1: 2 mutually orthogonal latin squares over the of set of size 3 and their
overlap.

2.1.2 Mutually orthogonal latin squares
In this section we will demonstrate how computationally unfeasible can in-

dividual spectra be by describing a specific spectrum for which it is unknown
whether it contains number 10.

Latin square is a tuple (A, ·), where · is a binary operation on a finite set A,
which satisfies both that (∀x)(∀z)(∃y)(x · y = z) and (∀y)(∀z)(∃x)(x · y = z).
That is if we look at the table of · we have that in every row there is each element
of A exactly once and the same for every column.

Definition 2.1.2. Let X = {(A, ·1), . . . , (A, ·k)} be a set of latin squares over
the same set A. We say that the latin squares in X are mutually orthogonal
if the mapping (x, y) ↦→ (x ·1 y, . . . , x ·k y) is injective.

This is equivalent to the more visual condition (see Figure 2.1) that when
you overlap all the tables of ·i, for i ∈ {1, . . . , k}, the resulting table contains no
k-tuple twice. We will use the abbreviation MOLS for mutually orthogonal
latin squares.

Mutually orthogonal latin squares are studied in combinatorics. There are
many open questions surrounding them [CD01]. We will use this to demonstrate
that membership of some number in a spectrum can be an open problem.

One of the open problems about latin squares asks what what is the maximum
number of MOLS for each finite n = |A|. It is not hard to show that there cannot
be more than n − 1 MOLS for a set of size n. And for n = pm for some prime
number p and a natural number m it is not hard to show a general construction for
achieving this upper bound using the theory of finite fields [Bos38]. We will call
MOLSk the set of all cardinalities of sets A that permit the existence k mutually
orthogonal latin squares.

Example 2.1.3
MOLSk is a spectrum for each k ∈ N+.

Proof. This can be shown by directly writing down the axioms for tables of
·1, . . . , ·k. Again, we will introduce a couple of formulas and consider the sen-
tence molsk as a conjunction of the universal closures of those formulas. We will
use the vocabulary {M1, . . . ,Mk} of ternary relational symbols representing the
graphs of the individual operations. For each i ∈ {1, . . . , k} we put

bifcnMi
= (∃v)(Mi(x, y, v) ∧ (∀w)(Mi(x, y, w) → v = w)) (2.1.14)

ldivMi
= (∃x)(Mi(x, y, z) ∧ (∀x′)(Mi(x′, y, z) → x = x′)) (2.1.15)

rdivMi
= (∃y)(Mi(x, y, z) ∧ (∀y′)(Mi(x, y′, z) → y = y′)) (2.1.16)

9

The universal closures of these formulas just state that Mi is a graph of a binary
function that satisfies both axioms of latin squares.

Now for the mutual orthogonality we put

orth =
⋀︂

1≤i≤k

(Mi(x, y, zi) → (2.1.17)

(∀x′)(∀y′)(
⋀︂

1≤i≤k

Mi(x′, y′, zi) → (x = x′ ∧ y = y′))).

It is clear that models of molsk are tables of k mutually orthogonal latin square
operations. That is MOLSk = Spec(molsk).

MOLSk always contains every prime power greater than k − 1. What other
elements are in these sets is a subject of active research. For example, it is
unknown whether there exist three mutually orthogonal latin squares on a 10
element set [CD01]. In other words

10
?
∈ Spec(mols3) (2.1.18)

is an open question.

2.2 Operations on spectra
A natural idea is to start with a few simple spectra and generate more complex

ones using some operations that result in potentially new spectra.

2.2.1 Set operations on spectra
Lemma 2.2.1
Let A,B ∈ Spec, then A ∪B ∈ Spec and A ∩B ∈ Spec.

Proof. We assume that A = Spec(φA) B = Spec(φB). It is not hard to see that
Spec(φA ∨ φB) = A ∪B.

For A∩B we have to be a bit more careful. If we have A |= φA and B |= φB of
size n, the sentence φA ∧φB might be unsatisfiable if the vocabularies of φA and
φB are not disjoint. This can be fixed by constructing a sentence φ′

B by replacing
each relational symbol in it by some symbol of the same arity which is not used
in φA. Then Spec(φA ∧ φ′

B) = A ∩ B, since you can construct each model of
φA ∧φ′

B by superposing a model of φA on a model of φB of the same cardinality.
On the other hand from each model of φA ∧ φ′

B we can just take reducts to the
vocabularies of φA and φ′

B.

A natural question becomes whether or not is the class of spectra closed under
complementation. That is whether for every φ we have that N+ \ Spec(φ) is a
spectrum. A first guess would be to check whether Spec(¬φ) = N+ \ Spec(φ).
However, this is not true in general.

Let φ be a conjunction of the universal closures of axioms of fields. Then
Spec(φ) = {pm; p a prime and m ∈ N+}. However,

Spec(¬φ) = N+ ⊋ N+ \ Spec(φ). (2.2.1)

10

This is because for each cardinality we can pick an interpretation such that
the resulting structure would not be a finite field.

In general Spec(¬φ) ⊇ N+ \ Spec(φ) since for every structure A of size m ̸∈
Spec(φ) we have that A ̸|= φ therefore A |= ¬φ.

Whether spectra are closed under complementation is actually an open ques-
tion. For this thesis it is actually the open question. It is called the Asser’s
Spectrum problem.

Conjecture 2.2.2 (Asser’s spectrum problem)
Spectra are not closed under complementation.

If this conjecture were to be proven it would have vast consequences in com-
plexity theory. From Corollary 3.3.2 which states that Spec = NE it follows
that if the conjecture was proved to be true we would also get NE ̸= coNE.
Since deterministic complexity classes are closed under complementation, we get
E ̸= NE and it is well-known this implies that P ̸= NP.

One way to see that E ̸= NE ⇒ P ̸= NP is to consider NP1 the class of all
NP languages that contain only words over the unary alphabet {1}. The only
information each word in such a language gives is the number of ones in it. We
will call these tally languages. Given a binary word w, we denote by 1w the unary
word whose length is the number represented by w. Note that if n = |w|, the
length of 1w is proportional to 2n. Hence algorithms running in 2O(n)-time on
binary words correspond to algorithms that run in polynomial-time on the unary
representations of words 1w. Therefore L ∈ NE ⇔ L1 ∈ NP and analogously
L ∈ E ⇔ L1 ∈ P, where L1 is the tally representation of the language L.

Now if the conjecture were to be proven and as a corollary we had some
language L ∈ NE \ E then we would have L1 ∈ NP \ P which would mean that
P ̸= NP which is a fundamental problem in mathematics.

To summarize: if we expect the solution of Asser’s spectrum problem to be
negative then the problem is at least as hard as proving P ̸= NP.

2.2.2 Arithmetical operations on spectra
Since spectra are subsets of natural numbers it is also possible to consider

adding and multiplying spectra element-wise.

Lemma 2.2.3
Let A,B ∈ Spec, then

A+B = {a+ b; a ∈ A, b ∈ B} ∈ Spec (2.2.2)
A ·B = {a · b; a ∈ A, b ∈ B} ∈ Spec. (2.2.3)

Proof. We assume that Spec(φA) = A and Spec(φB) = B and that τA is a
vocabulary of φA and τB of φB.

For the addition we consider the vocabulary τ+ = {X, Y } ∪ τA ∪ τB where X
and Y are unary relational symbols. Now we define

φA+B = (∀x)(X(x) ̸≡ Y (x)) ∧ φX
A ∧ φY

B, (2.2.4)

where the notation ψZ for a sentence ψ and a unary relational symbol Z is the
relativization of ψ to Z and is defined by replacing every quantifier (∀v) by

11

(∀v ∈ Z) and (∃v) by (∃v ∈ Z). The models of φA+B are precisely the disjoint
unions of pairs of a model of φA and a model of φB. Therefore Spec(φA+B) =
A+B.

Now for the multiplication we consider the vocabulary τ· = {B,X, Y }∪τA∪τB

where X and Y are as before and B is a ternary relational symbol and define

φA·B = (∀x ∈ X)(x ̸∈ Y) ∧ (∀y ∈ Y)(y ̸∈ X) ∧ τX
A ∧ τY

B (2.2.5)
∧ (∀x ∈ X)(∀y ∈ Y)(∃!z)(B(x, y, z))
∧ (∀z)(∃!x ∈ X)(∃!y ∈ Y)(B(x, y, z))).

The finite models of φA·B are precisely those finite τ·-structures A that contain
the disjoint union of a model of φA with universe XA and a model of φB with
universe Y A such that the whole universe of A is in bijection with XA × Y A and
BA is a graph of the bijection. It follows that Spec(φA·B) = A ·B.

This lemma can be used multiple times to combine more than two spectra.
The following corollary can be proved in a simmilar manner.

Corollary 2.2.4
Let p ∈ N+[x1, . . . , xn] be a polynomial and X1, . . . , Xn ∈ Spec. Then

p(X1, . . . , Xn) = {p(a1, . . . , an); ai ∈ Xi} ∈ Spec. (2.2.6)

Now we know that spectra are closed under union, intersection, element-wise
addition and multiplication and also under every polynomial mapping. From
this and the fact that (co)finite sets of natural numbers are spectra we get many
examples of spectra. Numbers congruent to j mod k, squares, cubes, numbers
that are both squares and cubes, fourth-powers and so on.

What other operations on spectra result in spectra? It turns out that spectra
are closed under every non-decreasing exponential-time function. See Corollary
3.4.2 for more details.

In the next chapter we define a new notion of Σ1
1-definable functions which

generalizes all of these classes of operations. We prove that Σ1
1-definable function

are closed under composition (with some mild assumptions) and under a form
of iteration as in Cobham’s theorem. We use this to prove Fagin’s theorem and
hence also the Jones-Selman characterization of spectra as NE sets.

12

3. Σ1
1-definable functions

To study iterations of operations on spectra it appears to be more natural
to aim first at characterizing generalized spectra. In this chapter we define Σ1

1-
definable functions. We will use Cobham’s theorem 1.2.2 to show that all func-
tions in FP are Σ1

1-definable and we will then use it to give a new proof of Fagin’s
theorem. We later show in what sense are Σ1

1-definable functions a generalization
of the earlier examples of operations on Spec.

3.1 Basic notions
Definition 3.1.1 (Coding binary words by relations). Let (A,<) be a finite
linearly ordered set, let <n be the lexicographical ordering on An and let R ⊆ An

be nonempty. We define the binary word coded by the relation R as ∗R ∈ {0, 1}∗

such that

|∗R| = ord(max
<n

R) (3.1.1)

∗Ri = χR(ord−1(i)), for i ∈ {0, . . . , |∗R| − 1}, (3.1.2)

where χR is the characteristic function of R and ord : An ∼= {0, . . . , |∗R| − 1} is
an order preserving bijection and ∗Ri is the i-th bit of ∗R.

Definition 3.1.2 (Σ1
1-definable function). We say f : ({0, 1}∗)k → {0, 1}∗ is Σ1

1-
definable iff there exist Σ1

1-sentence θf in the vocabulary τ := {U1, . . . , Uk, V, <},
where U1, . . . , Uk, V are unary relational symbols, < is a binary relational symbol
and for every τ -structure A with nonempty interpretations of τ , where <A is an
linear ordering, we have

A |= θf (U1, . . . , Uk, V, <) (3.1.3)

iff

f(∗UA
1 , . . . , ∗UA

k) = ∗V A. (3.1.4)

We call θf a defining Σ1
1-sentence of the function f . We denote the set of

all Σ1
1-definable functions FΣ1

1.

Many functions in mathematics are defined by recursion. E.g. multiplication
as repeated addition and exponentiation as repeated multiplication. We want to
be able to imitate similar recursions while constructing Σ1

1-defining formulas. The
following lemma helps us define functions by defining each of their intermediate
values in such a recursive scheme.

Lemma 3.1.3 (Indexed relational symbols are ”substitutable”)
Let θ(x̄) be an {S1, . . . , Sk, R}-formula, where R is c-ary relational symbol. Then
there exists {S1, . . . , Sk, R−}-formula ψ(x̄, y), where R− is (c + 1)-ary such that
for each {S1, . . . , Sk, R−}-structure A and ā, i ∈ A

A |= ψ(ā, i) ⇔ (A, SA
1 , . . . , S

A
k , R

A
i) |= θ(ā), (3.1.5)

where RA
i := {(x2, . . . , xc+1); (i, x2, . . . , xc+1) ∈ RA

−}.

13

Proof. (sketch) We can define a translation (−)′ solely on atomic formulas as

(−)′ : φ(z̄) ↦→

⎧⎨⎩R−(y, z̄) φ = R(z̄)
φ(z̄) otherwise

(3.1.6)

and let it commute with all logical connectives and quantifiers. It is not hard to
see that by putting ψ := θ′ we have (3.1.5).

Lemma 3.1.4
The following functions are Σ1

1-definable:

(i) (x, y) ↦→ x+ y

(ii) (x, y) ↦→ x · y

(iii) x ↦→ ⌊x
2 ⌋

(iv) x ↦→ ⌊
√
x⌋

(v) (x, y) ↦→ ⌊x
y
⌋

(vi) exp : x ↦→ 2x.

Proof. (sketch) We shall only outline the proof since the details are easy to fill.
We can also assume that the underlying set of each model is just a finite initial
segment of N+ with its natural ordering.

The function (i) can be Σ1
1-defined in an analogous way to how boolean circuit

for an adder is implemented. That is, for each two bits we compute their addition
that is their XOR and their carry and use that carry for the addition of the next
two bits. The carry can be ”stored” in another unary relation with symbol C
which we can existentially quantify.

For (ii) we can formalize the grade-school multiplication algorithm. We use
the Σ1

1-formula for (i) to compute the intermediate results. For ”storing” them
we can use Lemma 3.1.3 and existentially quantify a binary relation with symbol
M− which would be for each element a understood as the a-th unary relation
denoted Ma. Then we can set the output relation with symbol V to be equal to
the last of Ma’s.

The (iii) - (v) can be Σ1
1-defined analogously using the Σ1

1-defining formulas
for (i) and (ii).

To Σ1
1-define (vi) we can use the same technique as in (ii) only on the Σ1

1-
formula from (ii) itself by existentially quantifying a binary relation E− treated
as an indexed tuple of unary relations, such that Ea would be understood as a
unary relation symbol coding 2a. We can then set V to be interpreted the same
as Ex, where U codes the binary code of number x. Singling out the element x
coded by U can be also done iteratively.

3.2 Σ1
1-definability of FP

Note that the last item in Lemma 3.1.4 implies that FΣ1
1 is not contained in

FP. However, in this section we prove that FΣ1
1 contains FP. We will do so

14

in a series of lemmas and theorems. We show that a subset of FΣ1
1 satisfies the

conditions from Theorem 1.2.2 by finding a bit more general conditions for com-
posing Σ1

1-definable functions and constructing Σ1
1-definable functions by limited

recusion on notation.
We start by showing that the generating functions of FP are Σ1

1-definable.

Lemma 3.2.1
The following functions are Σ1

1-definable:

1. si : x ↦→ xi, where i ∈ {0, 1}

2. πk
i : (x1, . . . , xk) ↦→ (xi), where i ∈ {1, . . . , k}

3. # : (x, y) ↦→ 2|x|·|y|

Proof. For si we put the Σ1
1-defining sentence to be

θ1,i = (∃2S)(∀x)(∀y)(S(x, y) ↔ (x < y ∧ (∀z < y)(z ≤ x))) (3.2.1)
∧ (∀x)(x ∈ V ↔ (

(x ∈ U ∧ x < maxU)
∨ (x = maxU ∧ x =i x)
∨ (∀y)(S(maxU, y) → x = y)),

where =i denotes = for i = 1 and ̸= for i = 0. The sentence formalizes that ∗V
is one bit longer that ∗U and that the rightmost bit is i.

πk
i can be Σ1

1-defined by the formula θk
2,i = (∀x)(V (x) ↔ Ui(x)).

The smash function # can be Σ1
1-defined by the sentence

θ3 : = (∃3B)((∀u1 < max U1)(∀u2 < max U2)(∃!v < max V)(B(u1, u2, v)) (3.2.2)
∧ (∀v < max V)(∃!u1 < max U1)(∃!u2 < max U2)(B(u1, u2, v))
∧ (∀v ∈ V)((v < max V) → (∀w)(v ≤ w))).

The first two lines just state that B is the graph of a bijective function from the
cartesian product of bits of ∗U1 and ∗U2 to the bits of ∗V and the last line states
that the first bit of ∗V is the only one with value 1, therefore ∗V is of the form
10 . . . 00.

We would now like to show that Σ1
1-definable functions are closed under com-

position and limited recursion on notation. We would like to prove it in a straight-
forward way by essentially composing their graphs and using the conjunction of
the given Σ1

1-defining formulas. However the intermediate values can be longer
than the model can encode by a unary relation. In limited recursion on nota-
tion the intermediate values are bounded in length by a polynomial in the length
of inputs and we can use relations of higher arities to encode them. Now fol-
lows a lemma of a technical nature which solves this issue by allowing us to use
Σ1

1-defining formulas for relational symbols with higher arities. Interpretation of
these can then code polynomially long words.

Lemma 3.2.2 (Inflating arities)
Let θf Σ1

1-define the function f(x1, . . . , xk) and c ∈ N+. Let τ̃ :=
{Ũ1, . . . , Ũk, Ṽ , <} such that relational symbols of τ̃ are all c-ary except < which

15

is binary. Then there exists a Σ1
1-sentence θ(c)

f in the vocabulary τ̃ and for each
τ̃ -structure A linearly ordered by <A:

A |= θ
(c)
f (Ũ1, . . . , Ũk, Ṽ) ⇔ f(∗ŨA

1 , . . . , ∗Ũ
A
k) = ∗Ṽ A

. (3.2.3)

Proof. We define the translation (−)(c) on Σ1
1-formulas in the vocabulary τ :=

{U1, . . . , Uk, V, <} by induction on the complexity of the formula. We will proceed
by replacing variables of these formulas with c-tuples of new variables. First for
atomic formulas

• (x = y)(c) = ⋀︁c
i=1 xi = yi, where xi’s and yi’s are newly introduced variables,

• (x < y)(c) = ⋁︁c
i=1(

⋀︁i−1
j=1(xj = yj) ∧ xi < yi), where xi’s and yi’s are newly

introduced variables,

• (R(x1, . . . , xa))(c) = R̃(x1,1, . . . , x1,c; . . . ;xa,1, . . . , xa,c), where R is an a-ary
relational symbol or a second-order variable, R̃ is c · a-ary and xi,j’s are
newly introduced variables.

The newly introduced variables are equal iff they have the same index and they
substitute the same original variable. The semicolons in the last item are just for
better readability.

Now assume that the translation for θ1 and θ2 is defined, then

• (¬θ1)(c) = ¬θ(c)
1

• (θ1 ⋄ θ2)(c) = θ
(c)
1 ⋄ θ(c)

2 , where ⋄ ∈ {∧,∨},

• ((Qx)θ1(x, y1, . . . , ya))(c) = (Qx1) . . . (Qxc)θ(c)
1 (x1, . . . , xc; y1,1, . . . , y1,c; . . .),

where Q ∈ {∃,∀},

• ((∃aR)θ1(R, S1, . . . , Sl, . . .))(c) = (∃c·aR̃)θ(c)
1 (R̃, S̃1, . . . , S̃l, . . .).

Now for each τ̃ -structure A we define B := (Ac, Ũ
A
1 , . . . , Ũ

A
k , Ṽ

A
, <′) interpret-

ing the vocabulary τ , where <′ is the lexicographical order on c-tuples constructed
using <A.

Claim: Let φ(x1, . . . , xa) be a Σ1
1-formula in the vocabulary τ , let A be a

τ̃ -structure and v1,1, . . . , v1,c; . . . , ; va,1, . . . , va,c ∈ A. Then

A |= φ(c)(v1,1, . . . , v1,c; . . . ; va,1, . . . , va,c) (3.2.4)
⇕

B |= φ((v1,1, . . . , v1,c), . . . , (va,1, . . . , va,c)). (3.2.5)

Specifically for φ a Σ1
1-sentence we simply have

A |= φ(c) ⇔ B |= φ. (3.2.6)

This claim can be straightforwardly proved by induction on the formula φ
(which could have some free second-order variables whose arities are inflated as
well).

16

Let RA be some interpretation of (i · c)-ary relational symbol R in A and
let R̃B be the corresponding interpretation in B. Since ∗RA is defined using
characteristic function of the corresponding lexicographical ordering on (i · c)-
tuples and ∗R̃B is defined using the corresponding lexicographical ordering on
i-tuples of c-tuples it easily follows that ∗RA = ∗R̃B.

Now since θf is a sentence in the vocabulary {U1, . . . , Uk, V, <}, then
A |= θ

(c)
f (Ũ1, . . . , Ũk, Ṽ) ⇔ B |= θf (U1, . . . , Uk, V) ⇔ f(∗UB

1 , . . . , ∗UB
k) = ∗V B ⇔

f(∗ŨA
1 , . . . , ∗Ũ

A
k) = ∗Ṽ A which proves the lemma.

The following definition will come in handy when we use Lemma 3.2.2 to
construct new Σ1

1-defining formulas. When we ”inflate” the arities of one formula
then we cannot directly plug in the input relations into it, we need c-ary versions
of these relations. These are defined so that they code the same binary word.

Definition 3.2.3 (extdc). Let c ∈ N+, then the {X, Y }-formula for X unary and
Y c-ary relational symbols extdc(X, Y) is defined as

(∀x1) . . . (∀xc)((xc ∈ X ∧ (∀z)(
c−1⋀︂
i=1

xi ≤ z)) ↔ (x1, . . . , xc) ∈ Y). (3.2.7)

It is not hard to show, that for any A |= extdc(X, Y) we have ∗XA = ∗Y A.

Theorem 3.2.4 (Composition of Σ1
1-definable functions)

Let f : ({0, 1}∗)k → {0, 1} and g : ({0, 1}∗)k+1 → {0, 1}∗ be Σ1
1-definable and let

there exist c ∈ N+ such that for all x1, . . . , xk ∈ {0, 1}∗

|f(x1, . . . , xn)| ≤ max(|x1|, . . . , |xk|, |g(x1, . . . , xk, f(x1, . . . , xk))|, 2)c (3.2.8)

then g(x1, . . . , xk, f(x1, . . . , xk)) is Σ1
1-definable.

Proof. Let θf , θg be the Σ1
1-defining formulas of f and g respectively in the vo-

cabularies τ = {U1, . . . , Uk, V } and τ ∪ Uk+1. We then define

θ0 :=(∃cVf)(∃cŨ1) . . . (∃cŨk)(∃cṼ) (
k⋀︂

i=1
extdc(Ui, Ũ i) ∧ extdc(V, Ṽ) (3.2.9)

∧ θ
(c)
f (Ũ1, . . . , Ũk, Vf) ∧ θ(c)

g (Ũ1, . . . , Ũk, Vf , Ṽ)).

If g(ϵ, ϵ, . . . , f(ϵ, . . . , ϵ)) = ϵ, where ϵ denotes the empty word, we put

θ := θ0 ∨ ((∃x)(∀y)(x = y) ∧ (∀x)x ∈ V), (3.2.10)

otherwise we put θ := θ0.
We will proceed to prove that θ Σ1

1-defines g(x1, . . . , xk, f(x1, . . . , xk)). We
just need

g(∗UA
1 , . . . , ∗UA

k , f(∗UA
1 , . . . , ∗UA

k)) = ∗V A ⇔ A |= θ (3.2.11)

for |A| ≥ 2, since the case for |A| = 1 is covered by (3.2.10).
”⇒” We assume g(∗UA

1 , . . . , ∗UA
k , f(∗UA

1 , . . . , ∗UA
k)) = ∗V A. We will con-

struct the witnessing expansion of A denoted A+.

17

Since we have

|f(∗U1
A, . . . , ∗UA

k)| ≤ max(|∗UA
1 |, . . . , |∗UA

k |, |∗V A|, 2)c (3.2.12)
≤ (|A| − 1)c

≤ |A|c − 1

we can put V A+
f such that ∗V A+

f = f(∗UA
1 , . . . , ∗UA

k). There also exist some
witnessing interpretations of the second-order variables quantified in θf and θg

because they are Σ1
1-defining. Finally for each R̃ ∈ {Ũ1, . . . , Ũk, Ṽ } we put R̃A+

such that A+ |= extdc(R, R̃).
Let the {Ũ1, . . . , Ũk, Vf , <}-reduct of A+ be denoted A′. Since θf Σ1

1-defines
f and f(∗ŨA′

1 , . . . , ∗Ũk
A′

) = ∗Ṽ A′

f , then by Lemma 3.2.2 we have A′ |= θ
(c)
f .

Therefore A+ |= θ
(c)FO
f which in turn yields A |= θ

(c)
f .

Analogously taking the {Ũ1, . . . , Ũk, Vf , Ṽ , <}-reduct of A+ denoted A′′ we
have A′′ |= θ(c)

g and so A |= θ(c)
g . This is enough to conclude A |= θ.

”⇐” On the other hand assume A |= θ. We will call the witnessing expansion
A+ and the reducts corresponding to the ones from the ”⇒” part A′ and A′′.

We then have

A |= θ ⇒ A+ |= θF O (3.2.13)
⇒ A′ |= θ

(c)
f (Ũ1, . . . , Ũk, Vf) (3.2.14)

Lemma 3.2.2⇒ f(∗ŨA
1 , . . . , ∗Ũ

A
k) = ∗V A

f (3.2.15)

and

A |= θ ⇒ A+ |= θF O (3.2.16)
⇒ A′ |= θ(c)

g (Ũ1, . . . , Ũk, Vf , V) (3.2.17)
Lemma 3.2.2⇒ g(∗ŨA

1 , . . . , ∗Ũ
A
k , ∗V A

f) = ∗Ṽ A
. (3.2.18)

It follows from (3.2.15) and (3.2.18) that

g(∗UA
1 , . . . , ∗UA

k , f(∗UA
1 , . . . , ∗UA

k)) = ∗V A, (3.2.19)

which proves the theorem.

Theorem 3.2.5 (Limited recursion on notation of Σ1
1-definable functions.)

Assume h0(x1, . . . , xk, x, y), h1(x1, . . . , xk, x, y), g(x1, . . . , xn) are Σ1
1-definable

functions, defined by formulas θh0 , θh1 , θg respectively. Let c ∈ N+. Assume
the function f : ({0, 1}∗)k+1 → {0, 1}∗ satisfies

f(x1, . . . , xk, ϵ) : = g(x1, . . . , xk) (3.2.20)
f(x1, . . . , xk, s0(x)) : = h0(x1, . . . , xk, x, f(x1, . . . , xk, x)) (3.2.21)
f(x1, . . . , xk, s1(x)) : = h1(x1, . . . , xk, x, f(x1, . . . , xk, x)), (3.2.22)

and for all x1, . . . , xk, x ∈ {0, 1}∗ we have

|f(x1, . . . , xk, x)| ≤ max(|x1|, . . . , |xk|, |x|, 2)c. (3.2.23)

Then f is Σ1
1-definable.

18

Proof. We want to find some Σ1
1-sentence θ which would define the process from

limited recursion on notation and prove it to be a Σ1
1-defining sentence of f .

To compute the value f(x1, . . . , xk, x) we start by computing
y0 = g(x1, . . . , xk) then y1 = hi(x1, . . . , xk, ϵ, y0), where i is the first bit,
and so on for |x| many steps. The existentially quantified relations will encode
this process, in particular the values y0, . . . , y|x| are encoded by the interpretations
of Ṽ i’s.

To formalize the process we use the binary symbol S, which will represent the
successor relation, and the unary symbol Min, which will represent the singleton
containing the minimum.

We define

θ0 :=(∃1+cṼ −)(∃2W−)(∃1+cW̃ −)(∃1Min)(∃2S)(∃2C)((3.2.24)
(∀x)(x ∈ Min ↔ (∀y)(x ≤ y))

∧ (∀x)(∀y)(S(x, y) ↔ (x < y ∧ (∀z)(x < z → y ≤ z)))
∧ (∀i)(∀x)(x ∈ Wi ↔ ((x ∈ U ∧ x < i) ∨ (x = i)))
∧ (∀i)extd′

c(Wi, W̃ i)
∧ extd′

c(V, Ṽ max U)
∧ (∀x)(∀y)((S(x, y) ∨ y ∈ Min) → (

(y ∈ Min ∧ θ′(c)
g (Ũ1, . . . , Ũk, Ṽ y))

∨ (y ̸∈ Min ∧ y ≤ max U ∧ x ̸∈ U ∧ θ
′(c)
h0

(Ũ1, . . . , Ũk, W̃ x, Ṽ x, Ṽ y))

∨ (y ̸∈ Min ∧ y ≤ max U ∧ x ∈ U ∧ θ
′(c)
h1

(Ũ1, . . . , Ũk, W̃ x, Ṽ x, Ṽ y))
∨ (y ̸∈ Min ∧ y > max U)

))),

where θ′
g, θ

′
h0 , θ

′
h1 , extd′

c are obtained by applying the Lemma (3.1.3) enough times
to make all indexed relations substitutable. If f(ϵ, . . . , ϵ) = ϵ we then put

θ := θ0 ∨ ((∃x)(∀y)x = y ∧ (∀x)x ∈ V) (3.2.25)

otherwise we put θ := θ0.
To prove that θ Σ1

1-defines f we first need to know that the values used in
the recursion are encodable by a c-ary relation. Let A be an {U1, . . . , Uk, V, <}-
structure linearly ordered by <A. We then have

|g(∗UA
1 , . . . , ∗Uk

A)| = |f(∗UA
1 , . . . , ∗UA

k , ϵ)| (3.2.26)
≤ max(|∗UA

1 |, . . . , |∗UA
k |, 2)c

≤ (|A| − 1)c

≤ |A|c − 1

and for every x ∈ {0, 1}∗ such that si(x) is encodable by a c-ary relation we have

|hi(∗UA
1 , . . . , ∗UA

k , x, f(x))| = |f(∗UA
1 , . . . , ∗UA

k , si(x))| (3.2.27)
≤ max(|∗UA

1 |, . . . , |∗UA
k |, |si(x)|, 2)c

≤ (|A| − 1)c

≤ |A|c − 1.

19

To prove that θ Σ1
1-defines f(x1, . . . , xk, x) we just need

f(∗UA
1 , . . . , ∗UA

k , ∗UA) = ∗V A ⇔ A |= θ(UA
1 , . . . , U

A
k , V

A) (3.2.28)

for |A| ≥ 2 since the case for |A| = 1 is covered by (3.2.25).
”⇒” We assume f(∗UA

1 , . . . , ∗UA
k , ∗UA) = ∗V A. We now need to construct

the witnessing expansion A+.
The witnessing interpretations of explicitly quantified relational symbols other

than Ṽ − are uniquely determined from UA
1 , . . . , U

A
k , V

A,<A. Moreover the wit-
nessing interpretations of relational symbols quantified in θ′(c)

g , θ
′(c)
hi
, extd′

c exist
because of the construction of those sentences. So we just need to find the wit-
nessing interpretation of Ṽ −.

Without loss of generality we have A = {0, . . . , n − 1} ordered exactly as
written. Thanks to the bound (3.2.26) we can put Ṽ A+

0 such that

∗Ṽ A+

0 = g(∗UA
1 , . . . , ∗UA

k). (3.2.29)

Simmilary because of (3.2.27) we can put V A+
j , where j ∈ {1, . . . , |∗UA|} such

that

∗Ṽ A+

j = h(∗UA
1 , . . . , ∗UA

k , ∗WA+

j−1, ∗V A+

j−1). (3.2.30)

From the way θ′
g, θ′

h are constructed and Lemma 3.2.2 we have A+ |= θF O.
Therefore A |= θ.

”⇐” We assume that A |= θ and denote A+ the witnessing expansion. Again
without loss of generality we have A = {0, . . . , n− 1} ordered exactly as written.
Since θg Σ1

1-defines g then by Lemma 3.1.3 we have ∗Ṽ A+

0 = g(∗UA
1 , . . . , ∗UA

k).
Similarly θhi

defines hi, i ∈ {0, 1}, therefore by Lemma 3.1.3 we have for j ∈
{1, . . . , |∗UA|} : ∗Ṽ A+

j = hbj
(∗UA

1 , . . . , ∗UA
k , ∗W̃

A+

j−1, ∗Ṽ
A+

j−1), where bj is the j-th
bit of ∗UA.

Since ∗W̃A+

j is defined to be the first j bits of ∗UA and ∗V A = ∗Ṽ A+

|∗UA| we
have

∗V A = f(∗UA
1 , . . . , ∗UA

k , ∗UA). (3.2.31)

Which proves the theorem.

Now we can easily show that every function in FP is Σ1
1-definable.

Theorem 3.2.6

FP ⊊ FΣ1
1 (3.2.32)

Proof. The inequalities needed in Theorems 3.2.4 and 3.2.5 are trivially met for
any function in FP since for any f(x1, . . . , xk) ∈ FP we have a polynomial p
such that |f(x1, . . . , xk)| ≤ p(|x1|, . . . , |xk|). This is because otherwise the Turing
machine computing the function would have only polynomial-time to write the
whole superpolynomially long output and that is impossible.

In Lemma 3.2.1 and Theorems 3.2.4 and 3.2.5 we verified that FP ∩ FΣ1
1

satisfies the assumptions of the Cobham’s characterization of FP (Theorem 1.2.2)
hence FP ⊆ FΣ1

1.
Moreover exp ∈ FΣ1

1 but exp ̸∈ FP, so the inclusion is strict.

20

3.3 Fagin’s theorem
Now everything is ready and we can proceed to prove Fagin’s theorem. Let

us note that Fagin’s theorem as usually stated considers generalized spectra only
over a non-empty vocabulary. This is important only because the usual encoding
of finite structures encodes models without relations as the binary number repre-
senting the size of the set, which is exponentially shorter then the codes of models
over non-empty vocabulary. To make the statement of the theorem more clean we
assume that sets without relations are encoded by a unary number representing
their size. This allows us to include the empty vocabulary in the statement of
the theorem.

For a class of binary structures K we will denote by K∗ the set of binary
codes of every linearly ordered τ -structure (A, <), where A ∈ K and < is a linear
ordering on A. By a binary code of an linearly ordered τ -structure (A, <) we
mean a binary word which starts with unary representation of the length of A
delimited by 0 and followed by the characteristic table for each R ∈ τ in some
fixed order. We will denote it codeτ (A, <).

The delimiting 0 is present only for structures with non-empty vocabulary.
That means for an ∅-structure A we have code∅(A, <) = 1 . . . 1⏞ ⏟⏟ ⏞

×|A|

.

Theorem 3.3.1 (Fagin)
Let K be an isomorphism-closed class of τ -structures. Then

K∗ ∈ NP ⇔ K ∈ GenSpec. (3.3.1)

Proof. ”⇐” When K ∈ GenSpec, it is not hard to find a nondeterministic algo-
rithm deciding for any structure whether codeτ (A,<) ∈ K∗ in polynomial-time.
Since A ∈ K ⇔ A |= φK, where φK is the defining formula of the generalized
spectrum K we can just guess the witnessing relations and then check whether
the resulting expansion satisfies φFO

K .
To do so, we can just enumerate every c-tuple of elements of A, where c is the

number of quantifiers of φFO
K and check whether the quantifier-free part of φFO

K is
true with this evaluation of variables. The last part can be done in polynomial-
time since it only requires to check a constant number of entries of codeτ (A, <).
There are nc c-tuples of A, so the final complexity of this algorithm will be O(nc).

”⇒” We assume K∗ ∈ NP. We want to prove K is a generalized spectrum.
Since K∗ ∈ NP then there is L′ ∈ P and d ∈ N+ such that

x ∈ K∗ ⇔ ∃w, |w| ≤ |x|d : (x,w) ∈ L′. (3.3.2)

We have χL′ ∈ FP, where χL′ is the characteristic function of L′ with two argu-
ments for both the witness and potential member of K∗. By Theorem 3.2.6 χL′

is Σ1
1-definable. Let θ′

L(X,W, V) be its Σ1
1-defining formula.

We pick c > d such that for every linearly ordered τ -structure (A, <) with at
least two elements we have that codeτ (A,<) is encodable by an c-ary relation on
A. Notice that the code of a structure is Σ1

1-definable. That is, there exists a
Σ1

1-formula encc(X) such that for an c-ary relational symbol X we have

(A, XA, <) |= encc(X) ⇔ ∗XA = codeτ (A, <). (3.3.3)

21

Such a formula can by constructed by formalizing there is an initial segment of
∗XA containing only 1’s delimited by 0 that has a bijection with the universe A
and that the tables of other relations A follow. Now we claim that

φK =(∃2 <)(∃cX)(∃cW)(∃cO)(encc(X) ∧ onec(O) ∧ lin(<) ∧ θ
(c)
L′ (X, W, O)) (3.3.4)

∨ φ1

is a Σ1
1-defining formula of the generalized spectrum K, where φ1 is a disjunction

of all sentences describing one-element structures whose codes are in K∗ up to
isomorphism, lo(<) states that < is a linear order and onec(O) just states that
∗OA = 1.

From the construction of encc and θL′ we have that it defines structures from
K with at least two elements. One-element structures are defined additionally by
φ1. This proves the theorem.

With Fagin’s theorem in hand the next characterization of spectra follows
easily. This corollary has been proved independently in [JS74].
Corollary 3.3.2 (Jones, Selman)

Spec = NE (3.3.5)

Proof. This follows from Theorem 3.3.1 and from the fact that

L ∈ Spec ⇔ ∃K ∈ GenSpec∅ : L1 = K∗, (3.3.6)

where L1 denotes the tally langauge corresponding to L and GenSpec∅ denotes
the set of generalized spectra over the empty vocabulary. The ”⇐” direction is
trivial. On the other hand from L = Spec(φ) we can get that L1 = GenSpec∅(φ′)∗

where φ′ is Σ1
1-formula which results from existentially quantifying every rela-

tional symbol in φ.
In the end we have L ∈ Spec ⇔ ∃K ∈ GenSpec∅ : L1 = K∗ ⇔ L1 ∈ NP ⇔

L ∈ NE, where the second ”⇔” is just Fagin’s theorem for τ = ∅ because a tally
language is just a set of codes of all ∅-structures of given sizes.

3.4 FΣ1
1 operations on generalized spectra

In Chapter 2, we have shown that Spec is closed under union, intersection and
many arithmetical operations. These operations can be, in some sense, under-
stood as element-wise application of a function computable in polynomial-time.
From the theorem 3.2.6 we have that all such functions are Σ1

1-definable. In what
sense are Σ1

1-definable functions operations on spectra?
Again it is more natural to first consider generalized spectra. We now give

sufficient conditions for Σ1
1-function to be an operation on generalized spectra.

Theorem 3.4.1
Let K1, . . . ,Kk ∈ GenSpec in a vocabulary τ and f ∈ FΣ1

1 a k-ary function such
that there exists c ∈ N+ and for each i ∈ {1, . . . , k} and x1, . . . , xk ∈ {0, 1}∗ we
have |xi| ≤ |f(x1, . . . , xk)|c. Then

f(K1, . . . ,Kk) = {A; codeτ (A, <) ∈ f(K∗
1, . . . ,K∗

k)} (3.4.1)

is also a generalized spectrum in the vocabulary τ .

22

Proof. (sketch) We can define f(K1, . . . ,Kk) by existentially quantifying the input
structures since the length of their codes is polynomially bounded by the length
of the output code. From the proof of Theorem 3.3.1 we know that encoding of
structures is Σ1

1-definable.

This theorem shows that, with assumptions on the input and ouput length,
FΣ1

1 forms a large class of operations on generalized spectra. For τ = ∅ this
again translates to a statement about regular spectra. Namely each function f
such that its unary version f1 ∈ FΣ1

1 is an element-wise operation on spectra.
In Theorem 3.2.6 we proved that functions in FΣ1

1 contains every function
computable in FP. Again, transitioning from unary, we get that functions com-
putable in DTime(2O(n)) have Σ1

1-definable unary versions.

Corollary 3.4.2
Let X1, . . . , Xk be spectra and f a k-ary function in DTime(2O(n)) such that there
exists c ∈ N+ such that |xi| ≤ c · |f(x1, . . . , xk)| for every i ∈ {1, . . . , k}. Then

f(X1, . . . , Xk) = {f(x1, . . . , xk);xi ∈ Xi} ∈ Spec. (3.4.2)

Proof. Follows directly from Theorem 3.4.1 and the last paragraphs.

Note, that there exist functions that, when applied element-wise, are opera-
tions on spectra yet their unary versions are not Σ1

1-definable. Let A ⊆ N+ be
non-recursive and define

f(x) =

⎧⎨⎩1 x ∈ A

2 otherwise.
(3.4.3)

This function is clearly not recursive therefore f1 cannot be Σ1
1-definable, because

every function in FΣ1
1 is recursive. This is because you can check for higher and

higher values whether they satisfy the Σ1
1-defining sentence in bigger and bigger

structure. Also notice that f is an operation on Spec, because ∅, {1}, {2} and
{1, 2} are all spectra.

23

Concluding remarks
In the first two chapters we introduced some notions we needed later on and

gave some examples of spectra and operations on the class of all spectra that result
in new spectra. In Chapter 3 we proved Fagin’s theorem in a way that completely
avoids arguments about formal machines by showing that every polynomial time
function is Σ1

1-definable; this notion was introduced in this context of our thesis.
Lastly we have shown that a subclass of Σ1

1-definable functions forms a class of
operations on generalized spectra.

Apart from Asser’s spectrum problem there are many other open problems
regarding spectra. We again recommend [DJMM12] for a long list of open prob-
lems. Author of this thesis was particularly interested in the question whether
categorical spectra CatSpec are equal to the complexity class UE [Fag93].

Categorical spectra are spectra of sentences that for each cardinality have
at most one model up to isomorphism. Categorical generalized spectra are the
classes of those models. Categorical generalized spectra are for example finite
fields, linearly ordered sets and many others.

The complexity class UE (unambiguous exponential time) is the subclass of
NE consisting of those languages which can be accepted in O(2c·n) time and
the accepting computation, if it exists, is unique. If we were to show that the
codes of categorical generalized spectra CatGenSpec are exactly the languages
in unambiguous polynomial time UP we could by the same argument as we
proved the corollary 3.3.2 prove that CatSpec = UE.

This is not easy, because for a model M in a categorical generalized spectrum
there could be actually many different codes. This is because the encoding de-
pends on how is the structure ordered and there is not one canonical ordering. It
is entirely possible that UP ⊊ CatGenSpec. Note that proving this is at least as
hard as proving P ̸= NP since P ⊆ UP and CatGenSpec ⊆ GenSpec = NP.

Another interesting open problem is whether the set of all spectra over sen-
tences with at most binary relations is equal to all spectra [DJMM12]. Notice
that in the proofs of Theorems 3.2.4 and 3.2.5 we use relational symbols of arbi-
trary high arities and there does not seem to be a straightforward way to adapt
the argument with just binary relational symbols.

24

Bibliography
[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern

approach. Cambridge University Press, 2009.

[Ass55] Günter Asser. Das repräsentenproblem in prädikatenkalkül der ersten
stufe mit identität. Zeitschrift für mathematische Logik und Grund-
lagen der Mathematik, 1:252–263, 1955.

[Bos38] Raj Chandra Bose. On the application of the properties of galois
fields to the problem of construction of hyper-graeco-latin squares.
Sankhyā: The Indian Journal of Statistics, pages 323–338, 1938.

[CD01] Charles J. Colbourn and Jeffrey H. Dinitz. Mutually orthogonal latin
squares: a brief survey of constructions. Journal of Statistical Plan-
ning and Inference, 95(1-2):9–48, 2001.

[Cob65] Alan Cobham. The intrinsic computational difficulty of functions. In
Y. Bar-Hillel, editor, Proceedings of the International Conference on
Logic, Methodology, and Philosophy of Science, pages 24–30. North
Holland, 1965.

[DJMM12] Arnaud Durand, Neil D. Jones, Johann A. Makowsky, and Malika
More. Fifty years of the spectrum problem: survey and new results.
The Bulletin of Symbolic Logic, 18(4):505–553, 2012.

[Fag74] Ronald Fagin. Generalized first-order spectra and polynomial-time
recognizable sets. In Richard Karp, editor, Complexity of computa-
tion, volume 7, page 2741. SIAM-ASM Proceedings, 1974.

[Fag93] Ronald Fagin. Finite-model theory-a personal perspective. Theoreti-
cal computer science, 116(1):3–31, 1993.

[GKL+07] Erich Grädel, Phokion G Kolaitis, Leonid Libkin, Maarten Marx,
Joel Spencer, Moshe Y Vardi, Yde Venema, and Scott Weinstein.
Finite Model Theory and its applications. Number 13 in Texts in
Theoretical Computer Science (An EATCS Series). Springer-Verlag
Berlin Heidelberg, 2007.

[JS74] Neil D Jones and Alan L. Selman. Turing machines and the spectra
of first-order formulas. The Journal of Symbolic Logic, 39(1):139–150,
1974.

[Mar06] David Marker. Model theory: an introduction, volume 217 of Graduate
Texts in Mathematics. Springer Science & Business Media, 2006.

[Rot10] Joseph J Rotman. Advanced modern algebra, volume 114 of Graduate
Texts in Mathematics. American Mathematical Soc., 2010.

[Sch52] Heinrich Scholz. Ein ungelöstes problem in der symbolischen logik.
The Journal of Symbolic Logic, 17:160, 1952.

25

[vdD10] Lou van den Dries. Mathematical logic lecture notes. https:
//faculty.math.illinois.edu/˜vddries/, 2010.

26

https://faculty.math.illinois.edu/~vddries/
https://faculty.math.illinois.edu/~vddries/

	Introduction
	Preliminaries
	Logic
	Cobham's characterization of FP

	Elementary results on spectra
	Interesting examples of spectra
	Spectra based on factors
	Mutually orthogonal latin squares

	Operations on spectra
	Set operations on spectra
	Arithmetical operations on spectra

	Σ11-definable functions
	Basic notions
	Σ11-definability of FP
	Fagin's theorem
	FΣ11 operations on generalized spectra

	Concluding remarks
	Bibliography

