
On Lower Bounds for Circuits and Selection

Sta�an Ulfberg

Stockholm 1999

Doctoral Dissertation
Royal Institute of Technology

Department of Numerical Analysis and Computing Science

Akademisk avhandling som med tillstånd av Kungl Tekniska Högskolan framläg-
ges till offentlig granskning för avläggande av teknisk doktorsexamen fredagen
den 17 december 1999 kl 10.00 i sal D2, Lindstedtsvägen 5, Kungl Tekniska
Högskolan, Stockholm.

ISBN 91-7170-484-1

TRITA-NA-9911
ISSN 0348-2952
ISRN KTH/NA/R--99/11--SE

c© Sta�an Ulfberg, December 1999

Högskoletryckeriet, KTH, Stockholm 1999

Abstract
This thesis presents results on lower bounds for circuit complexity, implications
of some of these bounds for relativized complexity, and lower bounds for median
selection.

Boolean functions may be computed using circuits consisting of AND, OR,
and NOT gates. The size of a circuit is the number of gates it contains, and the
size of the smallest circuit computing a function is a measure of the function's
complexity. The depth of a circuit is the number of gates on the longest path
from any input to the output gate. Monotone circuits only contain AND and
OR gates, and bounded depth circuits have a speci�ed maximum allowed depth.

Razborov invented the method of approximation as a way of proving lower
bounds for the size of monotone circuits. The method involves approximating
the outputs of the gates in a circuit with DNF formulas with certain restric-
tions. We show how the method can be made more symmetric by using both
CNF and DNF formulas. As a consequence we no longer need the Sun�ower
lemma that has been essential for the method of approximation. The new ap-
proximation argument corresponds to Haken's recent method for proving lower
bounds for monotone circuit complexity (counting bottlenecks) in a natural way.
We demonstrate the method by providing lower bounds for the BMS problem
introduced by Haken, for Andreev's polynomial problem, and for Clique; the
exponential bounds obtained are the same as the previously best known for the
respective problems.

We also introduce a new function based on combinatorial designs, which is
only partially explicit, and prove the lower bound 2Õ(n1/3) for this function. The
new approximation argument is also extended to hold for monotone real circuits,
which have gates that compute arbitrary real-valued monotone functions.

For bounded depth circuits, we show that there are functions computable
by linear size boolean circuits of depth k that require super-polynomial size
perceptrons of depth k − 1, for k < log n/(6 log log n). A perceptron is a circuit
where the output gate has been replaced by a threshold gate.

There is a strong correspondence between results on bounded depth circuits
and results on relativized complexity. Using this correspondence, we show that
our result on perceptrons implies the existence of an oracle A such that Σp,A

k �⊆
PPΣp,A

k−2 ; in particular, this oracle separates the levels in the PPPH hierarchy. We
show a lower bound for another function, which makes it possible to strengthen
the oracle separation to Δp,A

k �⊆ PPΣp,A
k−2 . This separation is almost tight, which

follows from a relativization of Beigel's result that PPP[log] = PP.
Turning to median selection in the comparison based model of computation,

we present a reformulation of the 2n + o(n) lower bound of Bent and John for
the number of comparisons needed for selecting the median of n elements. Our
reformulation uses a weight function. Apart from giving a more intuitive proof for
the lower bound, the new formulation opens up possibilities for improving it. We
use the new formulation to show that any pair-forming median �nding algorithm,

iii

iv Abstract

i.e., a median �nding algorithm that starts by comparing �n/2� disjoint pairs of
elements, must perform, in the worst case, at least 2.01n+o(n) comparisons. This
provides strong evidence that selecting the median requires at least cn + o(n)
comparisons, for some c > 2. Dor and Zwick have been able to extend these
ideas to obtain a (2+ε)n lower bound, for some tiny ε > 0, on the number of
comparisons performed, in the worst case, by any median selection algorithm.

Keywords: circuit complexity, computational complexity, monotone circuit,
constant depth circuit, constant depth perceptron, oracle, relativized complexity,
approximation method, comparison based model, median selection.

ISBN 91-7170-484-1 • TRITA-NA-9911 • ISSN 0348-2952 • ISRN KTH/NA/R--99/11--SE

Acknowledgments

Working in the theory group at Nada learning about theoretical computer sci-
ence, doing research, preparing this thesis, and spending time on other distrac-
tions has been a genuine pleasure. I would like to thank everyone in the group,
past and present, including guest researchers, for making it the place it is.

My supervisor has been Johan Håstad. It has been a privilege to work with
him, and I want to thank him for his time, which he has generously shared to
explain and discuss whatever subjects I needed help with, for his encouragement,
and for sharing his ideas.

I would also especially like to mention Mikael Goldmann, who is always in-
terested in discussing and helping out with all kinds of problems, and Christer
Berg, who is the co-author of several articles that make up this thesis. Thanks
also to Avi Wigderson at the Hebrew University of Jerusalem, who shared ideas
used in part of this thesis, and to Uri Zwick at Tel Aviv University with whom
I prepared the journal version of one of the articles in the thesis.

I have shared my o�ce for a long time with my fellow students Mats Näs-
lund, Anna Redz, and again, Christer. They have helped making the last �ve
years a great time by engaging in interesting discussions, albeit not always re-
search related. The same is also true for Gunnar Andersson, Lars Arvestad, Lars
Engebretsen, Lars Ivansson, Öjvind Johansson, and Per Lindberger.

I am also indebted to Stefan Arnborg, Viggo Kann, Jens Lagergren, Karl
Meinke, Alex Russell, and Rand Waltzman for giving courses, sharing knowledge
of computer science, and providing a pleasant atmosphere.

I am thankful to my parents, Sture and Inger, for the support they have
given. Sture also helped proofreading the non-technical parts of the thesis.

Finally, I wish to express my gratitude to Fredrik Almgren for taking the
time to proofread draft versions of the thesis, and to Manne Börjel for expertise
on aquariums.

v

vi

Contents

Acknowledgments v

1 Introduction 1
1.1 An introduction to computational complexity 1
1.2 Thesis topics and background . 6

1.2.1 Monotone circuits . 6
1.2.2 Bounded depth perceptrons 9
1.2.3 Oracle separations of complexity classes 11
1.2.4 Median selection . 12

1.3 Thesis overview . 15

2 Models and Notation 17
2.1 Introduction . 17
2.2 General notational conventions 17
2.3 Boolean formulas . 18
2.4 Boolean circuits . 19
2.5 Variations of formulas and circuits 20
2.6 Turing machines . 20

2.6.1 Deterministic Turing machines 20
2.6.2 Non-deterministic and alternating Turing machines 22
2.6.3 Oracle Turing machines 23

2.7 The comparison based model . 23

3 Lower Bounds for Monotone Circuits 25
3.1 Introduction . 25
3.2 Preliminaries . 27
3.3 The proof method . 29
3.4 New proofs of previous results . 31

3.4.1 Andreev's polynomial problem 31
3.4.2 Clique . 33
3.4.3 Broken mosquito screens 36

3.5 Functions based on balanced set systems 40
3.5.1 De�nitions . 40

vii

viii Contents

3.5.2 De-randomization . 41
3.5.3 Lower bound proof . 42

3.6 Lower bounds for monotone real circuits 43
3.7 Decision trees as approximators? 46
3.8 Open problems . 48

4 A Lower Bound for Perceptrons 51
4.1 Introduction . 51
4.2 The lower bound . 52

5 Oracle Separations 59
5.1 Introduction . 59
5.2 Separating the levels of the PPPH Hierarchy 59
5.3 Improving the oracle separation 63

6 On lower bounds for selecting the median 69
6.1 Introduction . 69
6.2 Bent and John revisited . 70
6.3 An improved lower bound for pair-forming algorithms 74
6.4 Concluding remarks . 81

Bibliography 83

Index 87

Chapter 1

Introduction

1.1 An introduction to computational
complexity

Suppose you are planning to set up a large aquarium, and want to have as many
species of �sh as possible represented. The problem is that quite a few of them
feed on each other, and you want to select the species carefully so that this never
happens.

One way to solve this problem is to draw a picture like the one in Figure 1.1.
We make a point in the picture for each species, and connect a pair of points if
the respective species are a threat to each other for some reason and therefore
can not both be in the aquarium.

���������	
����	

����
��	��
��	��

����

����
��	��
�����

����	�	���
	��

����

�������	���
������
���� �������	�	�
������

�����	�����
�	����

�����	��	�����
�����

�
��	��	���
���������

��
���	���	���
���������

Figure 1.1. Some common species of aquarium �sh, with lines indicating pairs
of species that should be avoided in the same water.

In mathematical terms, Figure 1.1 is a graph; the points are called vertices
and the lines interconnecting them edges. Finding the largest collection of species
that can all be selected is now the same thing as �nding the largest collection of
vertices such that no pair is connected by an edge. This computational problem

1

2 Chapter 1. Introduction

is called �nding the maximum independent set in the graph. It is not hard to
verify, even by hand, that the largest possible independent set in Figure 1.1
contains �ve vertices (there are several possibilities of choosing an independent
set of size �ve).

If we increase the size of the graph to a few thousand vertices, however, a
number which does not seem terribly high for a computer, it turns out that no-one
has been able to devise a method to solve the problem that is practical on today's
computers. Although we have only increased the size of the problem by a factor
of a hundred or so, the time to solve it has increased dramatically. Problems with
this characteristic are called computationally hard, and it seems that �nding the
maximum independent set is a computationally hard problem. Notice that when
formulated in a general mathematical setting, the same problem corresponds
to many more real-world problems. For example, consider a number of radio
transmitters, some of which interfere with each other. Finding the maximum
number of transmitters that may be used at the same time also amounts to
�nding the maximum independent set in a graph.

There are many other problems that are generally believed to be computa-
tionally hard, such as factoring large integers into primes and computing discrete
logarithms. Public key cryptography systems rely on the hardness of computing
these and some other functions, which means that the existence of functions that
are hard to compute is sometimes an advantage.

In contrast to computationally hard problems, consider tasks such as adding
and multiplying numbers, searching for words in a dictionary, or counting the
number of pairs of species in Figure 1.1 that can be in the same aquarium. For
these tasks, there are e�cient methods that scale very well with the size of the
input data; such problems are called computationally e�cient.

As computers become faster, the maximum practical size of input data in-
creases for all of the problems mentioned above. For a simple problem like adding
two numbers, a ten-fold increase in computing speed would allow ten times as
many digits to be added in the same time as before. For a computationally
hard problem, however, the same increase in computational power only a�ects
the maximum data size marginally. This means that the computationally hard
problems will remain hard for practical purposes for a very long time, even if
computers continue to double their computational power every 18 months, which
is probably an optimistic estimate.

For theoretical treatment, we are interested in the e�ciency with which some
particular function can be computed, given a detailed description of the comput-
ing device to be used. Functions are mappings of input data to output values; for
example, the maximum independent set function maps input graphs to subsets
of the vertices. We often restrict our attention to boolean functions, for which
the input data always consists of a number of binary digits, or bits (a binary
digit is a 0 or a 1); the output from a boolean function is only one bit. It is
customary to denote the number of bits in the input data by n.

This restriction might seem like a very hard restriction, but in fact it is not,
since input data for any other function may be represented as a sequence of bits.

1.1. An introduction to computational complexity 3

For example, returning to the example of �nding the maximum independent set
in a graph, we might simply encode the number of vertices as a binary number,
and following it by a 0 or 1 for each pair of vertices, indicating the absence
or presence of an edge between them, respectively. For the output, we may
use one bit for each vertex, indicating whether it is a member of the maximum
independent set or not. We then use one function for each vertex, and treat
them all individually. This might seem very ine�cient, since each individual
function probably has to compute the maximum independent set anyway, but,
the added complexity is often negligible compared to the variations between
di�erent functions.

There are a wide variety of computing devices, some of them faster than
others, and some more suited to a particular task than others. Thus, knowing
the time required to compute some function on one device does not tell us the
time required to compute the same function on all possible devices, which leads
to the question of which one to analyze. Alan Turing introduced a mathematical
model of a theoretical computer, called the Turing machine, which has become
the standard model of computing machinery. The Turing machine captures the
most important characteristics of computers, a fact that has not changed during
the now over 50 years of rapid computer development. Since the Turing machine
is only a model of a computer, we do not need to de�ne its speed. Instead,
we count the number of computing steps it requires to complete its program,
and call this the running time of the Turing machine. The running time of
the Turing machine can be roughly translated to execution time on any speci�c
computer. The other computing resource of major importance is the amount of
memory used during a computation. Also in this respect, the Turing machine
corresponds very well with real life computers.

As well as writing programs that compute the values of our functions of in-
terest, we might use boolean circuits to evaluate the function values. Boolean
circuits consist of boolean gates, each of which computes one of the simple func-
tions AND, OR, and NOT. The gates are interconnected such that one of them,
the output gate, takes the value of the function when the input data is applied
to designated input gates. A particular circuit is designed to work for a speci�c
number of input bits; we therefore often refer to collections of circuits, one for
each possible number of input bits.

When considering the amount of computing resources required by a circuit
that computes a function, we are not concerned with the time required for the
computation. Instead, the measures of interest are the number of gates used in
the circuit, and the depth of the circuit (which is the distance from the output
gate to the most far-away input; electronics people might argue that this is a
measure of the time consumed by the circuit for computing the function).

There is a strong connection between the smallest possible circuit comput-
ing some function and the number of time steps required to compute the same
function by a Turing machine. We may therefore analyze circuits to obtain re-
sults on Turing machines, and often do so since they seem combinatorially less
complicated than Turing machines.

4 Chapter 1. Introduction

Unfortunately, however, for both Turing machines and circuits, there are no
general methods to determine the most e�cient way to compute a function.
Even without actually asking for the most e�cient method, it seems very hard
to determine the amount of computing resources needed for a speci�c function.
For example, multiplying two 1000 digit numbers intuitively seems harder than
adding the same two numbers; intuition is right in so far that computers cur-
rently add numbers faster than they multiply them, but the di�erence in speed
is probably smaller than intuition �rst suggests. From a theoretical point of
view, we do not know whether there is a di�erence between the computational
complexities of the two problems.

To determine the computational complexity of a function, we normally give
upper bounds and lower bounds on the resources needed to compute it, for some
speci�c model. The upper bound speci�es an amount of resources that is suf-
�cient for computation of the function. Notice that it does not in any way
implicate that less resources than the stated bound would be insu�cient. Most
often, upper bounds are proved by demonstrating an algorithm (method), or
circuit design to solve the particular function, together with analysis of the e�-
ciency of the proposed solution. Thus, the upper bound proofs are constructive,
and are useful in practice since they actually tell us how to compute the function
in question.

A lower bound says that any way of computing the function using the compu-
tational model in question requires at least some amount of computing resources
(e.g., steps for Turing machines and size for circuits). To prove a lower bound,
we have to exclude all possible means of computing a function more e�ciently
than the stated bound. Intuitively, this seems harder than demonstrating that
some proposed algorithm works, and in fact proving lower bounds almost always
turns out to be very hard. We therefore �nd it logical that current results in
lower bounds are weak. For many functions (such as, for example, addition and
multiplication), the trivial lower bound n is easily proved, the only argument
needed is that a program that does not even use n program steps can not read
the entire input of the function.

While a lower bound for a function does not help to actually compute it,
we need both a lower bound and an upper bound for a function if we want
to know its computational complexity. Returning to the question of whether
multiplication is computationally harder than addition, there are two possible
answers to the question. Either the two problems are equally hard, which would
be proved by demonstrating a way to multiply that is as fast as adding (it is
well known that multiplication is not easier than addition). Or, multiplication
is really harder than addition, which can only be proved by a lower bound for
multiplication that is greater than some upper bound for addition.

There are mainly two practical uses for lower bounds. The �rst is that if
we know that a lower bound for some function is achieved by some method
computing it, further optimization of the computation is not possible. The
other practical use is in cryptography. To prove that a cryptographic system is
secure, a strong lower bound for the time needed to decipher an encrypted text

1.1. An introduction to computational complexity 5

without having access to the decryption key is required. However, no-one has
been able to prove computational security for any cryptographic system, and
further development of lower bounds is therefore desired.

In the best of all worlds, the smallest upper bound and the largest lower
bound for all functions would be the same. However, as indicated above, this
is only the case for very few functions. For most functions, there is a large gap
between the best (highest) lower bound and the best (lowest) upper bound.

Often we do not care about the exact computational complexity of a func-
tion, but instead categorize them into complexity classes. A complexity class is
a collection of functions that can all be computed within some speci�ed amount
of computing resources. For example, the complexity class P contains all binary
functions that can be computed on a Turing machine in a number of steps that
is a polynomial function of the number of input bits (the number of time steps
used is bounded by knc for some constants k and c). We may also characterize
P in terms of circuits: a function is a member of the class P if there is a family
of polynomial size circuits computing it. For technical reasons, we also need to
require that for the circuit family, a circuit for a speci�ed input size can be con-
structed e�ciently by a Turing machine. The correspondence between running
time of Turing machines and size of circuits establishes that both de�nitions of
P result in the same class of functions.

Functions that are in the complexity class P are said to be e�ciently com-
putable. Of course, if the constants k and c need to be very large for some
function, its computation requires a lot of time, but it turns out that, for prac-
tical functions, they are quite small most of the time so that the classi�cation is
a reasonable one.

There are many other complexity classes, a few of the most famous being
NP and PSPACE. PSPACE is, in analogue to P, de�ned to contain all func-
tions that can be computed by a Turing machine using an amount of memory
that is bounded by a polynomial. PSPACE contains all functions in P as well,
since a program that runs in polynomial time can not possibly use more than
a polynomial amount of memory. The complexity class NP is characterized in
Section 2.6.

Models of computation are not limited to Turing machines and circuits. In
the comparison based model, the program computing some function is only al-
lowed to examine the input data in a very speci�c way. Think about functions
that take a list of names and telephone numbers (called input elements) as the
input data and produce an alphabetically sorted list. In the comparison based
model the program that computes this function is only allowed to make pair-
wise comparisons between elements of the input. That is, the program can not
actually read the names and telephone numbers but can make decisions only on
information about whether one name is lexicographically before or after some
other name. The measure of complexity in this model is the number of compar-
isons needed to compute the function. Note that we do not make any restrictions
on the way the program works, or its running time; we only count the number
of comparisons it makes.

6 Chapter 1. Introduction

Many commonly used sorting, searching, and related algorithms work in this
way, in that they never really need to understand anything about the input
data other than doing pairwise comparisons between elements. This is very
practical because the algorithms can easily be adopted to new types of input,
and in practice, it also turns out that the number of comparisons needed is a
reasonably good estimate of the running time of an algorithm. Determining the
computational complexity of a problem in the comparison based model is also
an intriguing combinatorial problem, and there are many hobby versions on this
theme, like �How many weighings, using a common beam balance, do you need
to �nd the fake coin, given 7 coins of which one is fake and di�ers in weight from
the others?�

1.2 Thesis topics and background
The main topic of this thesis is lower bounds for functions in some variations
of the circuit model, and for the comparison based model. A few of the lower
bounds for circuits are further used for results about complexity classes.

1.2.1 Monotone circuits
As is mentioned in the introduction, there are no strong lower bounds for com-
putation, and proving such lower bounds currently seems very hard. Although,
in practice, it seems that some problems, like maximum independent set, are
computationally very hard, there is no proof that they really are any harder
than counting the number of vertices in the input graph, which is, of course,
very easy to do.

Failing to prove lower bounds for Turing machines and circuits, we try some-
thing a little bit easier: we prove lower bounds for restricted models of compu-
tation. This means that we clip the wings of the Turing machine or the circuit
model, and prove that this new, weaker, model can not compute the function ef-
�ciently. Since any proof of a lower bound for the general models automatically
holds for the restricted models as well, restricting the models' computational
power can only make proving lower bounds easier.

Of course, for practical purposes, lower bounds for such restricted models
are of limited value. The main motivation for this line of research is to develop
methods of proof, which can one day be extended to work for the general case.

One well studied restricted computational model is that of monotone circuits.
The monotone computational model is easy to describe and is quite natural: a
circuit that is monotone may contain only AND and OR gates, but no NOT gates
are allowed. A direct consequence of this restriction is that monotone circuits
only can compute monotone functions. A function is monotone if (and only if)
changing one input bit from 0 to 1 never changes the function's value from 1
to 0. However, many important problems in complexity theory are monotone:
one example is the function that is 0 if and only if the input graph contains

1.2. Thesis topics and background 7

an independent set of size k, for some k. (For a graph with n vertices, the
input consists of the

(
n
2

)
possible edges in the graph, where 0 and 1 represent

the absence and presence of an edge, respectively.) To see that this function is
monotone, notice that adding an edge to a graph can never increase the size of
the maximum independent set. Other examples of monotone graph problems
are Clique and Hamiltonian path, which are both NP-complete. A clique in a
graph is a vertex subset that is fully connected, and the Clique function is 1 if a
graph with n vertices has a clique of size k. A Hamiltonian path in a graph is a
path that visits every vertex exactly once; the Hamiltonian path problem is to
determine whether such a path exists in a given graph.

Even for this restricted model, however, there were for a long time no stronger
lower bounds than there were for general circuits; the best one was only 4n
(Tiekenheinrich, 1984). When Razborov (1985b) invented the method of approx-
imation, this changed rapidly. Razborov's new method allowed him to prove a
super-polynomial lower bound as he showed that Clique requires monotone cir-
cuits of size nΩ(log n).

Shortly thereafter, Andreev (1985) applied Razborov's technique to a func-
tion (Andreev's polynomial problem�see Section 3.4.1) that is particularly well
suited for the method of approximation. It is based on polynomials over �nite
�elds, and for this function Andreev was able to prove an exponential lower
bound. Later, the results of Razborov and Andreev were improved by Alon and
Boppana (1987), and in particular, they were the �rst to prove an exponential
lower bound for Clique. For a nice exposition of this result, see Section 4 in the
survey by Boppana and Sipser (1990).

With these results on monotone circuits, the question of whether NOT gates
may help in computing a monotone function arises. An answer to that came
when Razborov proved a super-polynomial lower bound for the perfect matching
function in bipartite graphs (Razborov, 1985a). This function takes a bipartite
graph with vertex sets X and Y , |X | = |Y |, and edges E ⊆ X ×Y as input, and
checks if there is a subset of E such that each vertex is adjacent to exactly one
edge in the subset. The perfect matching function is in the complexity class P,
and it follows that general circuits are more powerful for computing monotone
functions than are monotone circuits. For perfect matching, the best known
lower bound is still the one obtained by Razborov (which is not exponential).

The method of approximation can roughly be described as follows. Assume
we have a circuit C that computes the function f for which we want to prove a
lower bound. We choose a set of functions F , called approximators, and induc-
tively �nd one of these functions to approximate the output of each gate in the
circuit. The goal is to �nd a set F with the following properties. It should be
possible to select approximators for all gates such that the approximation of each
gate introduces an error on only a few input settings. (By introducing an error
for an input x, we mean that the approximator for the gate is incorrect, while
the gate outputs f(x) and the approximators of its inputs are correct.) Also,
all functions in F should di�er from f for many input settings, i.e., no function
in F should be close to the function computed by the output gate of C. If this

8 Chapter 1. Introduction

goal is accomplished, we get a lower bound for the circuit size since errors in the
approximation of the output gate must have been introduced at some gate. The
set of approximators used in Razborov's original proofs consists of DNF formulas
(boolean formulas in disjunctive normal form, i.e., ORs of ANDs), where there
is a limit on the length of each term, and on the number of terms.

Haken (1995) proposed a new method for proving lower bounds for the size of
monotone circuits, that he named �Bottleneck counting.� He demonstrated the
method for a graph problem that resembles Clique (Broken mosquito screens�
see Section 3.4.3). Instead of trying to approximate the outputs of the gates
in the circuit, he de�ned a function μ which maps input graphs to gates of the
circuit. To prove that the circuit contains many gates, he then showed that on
one hand the total number of graphs mapped by μ is large, but on the other
hand only few graphs are being mapped to each gate.

We use ideas from Haken's proof, but turn the proof itself into an approxi-
mation argument. This can be interpreted as if Haken's approach is in fact an
approximation argument in disguise, but more importantly, it leads to elegant
new proofs of previous results from the method of approximation. Out of the two
possible forms of a depth 2 formula: DNF and CNF, Razborov uses the former.
In the new proofs, we do not make this choice at all, in that we approximate
each gate with two functions, one of each of the two possible forms. It turns
out that with this modi�cation, we do not need to use the sun�ower lemma by
Erd®s and Rado (1960), which was previously a central part of the proofs. The
sun�ower lemma is traditionally used to reduce the size of the approximator
functions while not reducing their approximation qualities too much. The fact
that we do not need this lemma anymore is somewhat surprising.

While most of the known lower bounds obtained using the method of approx-
imation bene�t from being reformulated using the new set of approximators, it
is not clear that all proofs can be reformulated this way. For example, we do
not know how to prove Razborov's super-polynomial lower bound for perfect
matching (which implies that monotone circuits are strictly less powerful than
non-monotone) using the new set of approximators (and, most importantly, with-
out the use of the sun�ower lemma).

A monotone real circuit is a circuit where the gates have bounded fan-in
and compute arbitrary real-valued monotone functions of their inputs, instead
of being restricted to compute the functions AND or OR. Of course, a monotone
boolean circuit can also be considered to be a monotone real circuit. Haken's
method of Bottleneck counting was extended to hold for monotone real circuits
by Haken and Cook (1996); this extension was the analog to an extension made
by Pudlák (1997) to Razborov's method. Independent of Berg and Ulfberg,
Wigderson (private communications) discovered that Haken's method can be
turned into an approximation argument, and he also suggested how to extend
the resulting approximation argument to hold for monotone real circuits. The
details of the extension to monotone real circuits is the result of a joint work
with Wigderson and are presented in Section 3.6. For this kind of circuits, Jukna

1.2. Thesis topics and background 9

(1997) derived a general criterion for lower bounds that holds for both monotone
boolean and monotone real circuits.

We want to investigate how far the method of approximation can take us in
proving lower bounds for monotone functions, and show that the lower bound
2Ω(n1/3/ ln2/3 n) can be obtained for a function based on balanced set systems.
Balanced set systems are a relaxed form of combinatorial designs, and the func-
tion tests if the set of input bits being 1 is a superset of some block in the set
system. Although the function is only partially explicit, the lower bound is the
best known for any speci�c monotone function. We believe that this lower bound
is essentially the best that can be proved using the method of approximation.
Independently, Jukna (1999) has also showed how to prove lower bounds for
functions based on combinatorial designs using his lower bound criterion.

1.2.2 Bounded depth perceptrons
Another way of restricting the computational power of circuits is to limit their
maximum permitted depth. In contrast to monotone circuits, bounded depth
circuits can compute all boolean functions: a circuit of depth 2 can be con-
structed by having a number of AND gates that compute all the minterms of
a function; combining the minterms in a single OR gate that is also the output
gate yields such a circuit. A minterm of a function f is a single conjunction of
minimal length that, when one, forces f to 1.

Furst et al. (1984) was the �rst to prove that circuits having their depth
bounded by a constant that compute parity (the sum of the input bits modulo 2)
and majority (which is 1 if at least half of the input bits are 1) require size that
is exponential in the number of input bits.

Restricting our attention to polynomial size circuits (which are the ones of
interest for practical purposes), the complexity class AC0 is de�ned as containing
those functions that can be computed by arbitrary fan-in, constant depth circuits.
The result of Furst et al. (1984) shows that parity is not in AC0.

Sipser (1983) de�ned a family of functions that are computable by linear size
circuits of depth k, and showed that they require super-polynomial size circuits of
depth k−1. This shows that increasing the permitted depth by one for constant
size circuits always adds new functions that can be computed in polynomial size.
We say that there is a depth hierarchy within AC0.

Sipser's result was later improved by Yao (1985) and Håstad (1987, 1989),
showing that the functions de�ned by Sipser actually require exponential size
circuits of depth k − 1. A central part of Håstad's proof is the Håstad switching
lemma, which is used to extend a separation of depth 2 circuits to all k by an
induction argument.

A threshold gate is a special gate that outputs 1 if more than t of its inputs
are 1, for some �xed t. Of course, a single threshold gate can compute majority.
Circuits that have a single threshold gate at the top (the output gate), whose
inputs are normal boolean circuits, is called a perceptron. The circuits that
compute the inputs to the threshold gate are called the perceptron's sub-circuits.

10 Chapter 1. Introduction

Since threshold gates can compute majority, so can small size perceptrons, and
thus, polynomial size perceptrons of depth k are more powerful than polynomial
size circuits of the same depth.

For perceptrons, Green (1991) proved a lower bound for the size of constant
depth perceptrons that compute parity. He was also interested in whether there
are functions computable by polynomial size depth k perceptrons that can not
be computed by polynomial size perceptrons of depth k − 1 (the analog of the
result by Sipser, Yao, and Håstad for ordinary boolean circuits), and was able to
prove an exponential lower bound for depth 3 monotone perceptrons computing
a function computable by linear size depth 4 perceptrons (Green, 1995). He
proposed that a generalization of this result for non-monotone perceptrons could
be used as a basis for induction to prove the separation for all k, using the Håstad
switching lemma. In the monotone setting, the separation between depth k
and depth k − 1 perceptrons for all k follows from a stronger result by Håstad
and Goldmann (1991) that separates boolean circuits of depth k from threshold
circuits of depth k − 1.

Perceptrons were studied in depth by Minsky and Papert (1988). Their
interest in perceptrons is motivated by the fact that perceptrons are commonly
used to model neurons in the human brain, and is an important part of arti�cial
neural networks. They show the following �One-in-a-box� theorem:

Theorem 1.1 (One-in-a-box theorem). Let A1, . . . , Am be disjoint subsets
of the set of binary input variables X and de�ne the predicate

Ψ(X) =

{
1 if, ∀Ai, at least one variable in Ai is 1,

0 otherwise.

If for all i, |Ai| = 4m2, then at least one sub-circuit of any perceptron computing
Ψ depends on at least m variables.

Minsky and Papert used the one-in-a-box theorem to, among other things,
obtain a lower bound for the number of inputs to each sub-circuit of a perceptron
that can determine whether a �gure represented by discrete points is connected.
See Figure 1.2 for an example.

This theorem is actually exactly the basis we need for an induction proof of
the fact that depth k perceptrons of polynomial size can compute functions that
can not be computed by depth k−1 perceptrons of polynomial size. We show that
there are functions computable by linear size boolean circuits of depth k that re-
quire super-polynomial size perceptrons of depth k−1, for k < log n/(6 log log n),
and exponential size perceptrons for constant k.

To use the one-in-a-box theorem as the basis for the induction, we need
a modi�ed, somewhat stronger, statement of Håstad's switching lemma. The
stronger lemma actually follows if we look at the proof of the original switching
lemma more carefully. This was noted by Boppana and Håstad (see Håstad
(1987, Lemma 8.3)). Their note, however, was regarding another version of the

1.2. Thesis topics and background 11

Figure 1.2. A perceptron in which each sub-circuit depends on too few input
variables can not determine which of the two �gures that is connected.

lemma, and was not explicitly proved; for this reason we include a sketch of the
proof where we emphasize the �disjointness property� in Chapter 4.

1.2.3 Oracle separations of complexity classes

The computing power of a Turing machine can be enhanced by allowing it access
to an oracle. What this means is that we give the Turing machine the capability
of computing some speci�c function f using only one instruction. Technically,
the oracle for f is described as a set A that contains the input settings for which
f is 1. A Turing machine M with access to the oracle A is denoted MA; we say
that the computation is performed relative to the oracle A. For example, if A
is an oracle for maximum independent set, which we believe is a hard function,
the Turing machine MA can compute this function in linear time (it is not
constant because the Turing machine must still read its input and compile the
oracle query). In a sense, we can say that the computational complexity for
Turing machines with access to the oracle A, for a function g, is the additional
computation needed to compute g if f can be computed at no cost.

As mentioned earlier, we categorize functions into complexity classes, like P,
NP, and PSPACE. Having de�ned these classes, we can use an oracle to de�ne
new complexity classes. Given an oracle A, we denote by PA the class of functions
that can be computed in polynomial time in the input size, by a Turing machine
with access to the oracle A.

A complete problem for a complexity class is a function that is among the
computationally hardest in the class. More precisely, if f is a complete function
for the complexity class C, any function in C can be computed e�ciently by a
Turing machine with access to an oracle for f . Not all complexity classes have
complete functions, but as one example, NP has.

12 Chapter 1. Introduction

We write PNP to denote the complexity class that contains all functions that
can be computed in polynomial time with access to an oracle for a function that
is complete for NP. It is possible to de�ne DC as long as C has complete problems.

We use the notation Σp
0 = NP and Σp

k+1 = NPΣp
k . This results in a chain

of complexity classes, where the higher levels include any lower levels. It is
unknown whether any or all of the levels are in fact di�erent. This chain of
complexity classes is called the polynomial time hierarchy.

It is currently not known if P and NP are indeed di�erent (although it is
widely believed that they are). Given an oracle A, we may consider the relation
between PA and NPA. It has been proved that there exist oracles both for which
the classes are equal, and for which they are di�erent. Such results are called a
relativization results.

There is a strong connection between lower bounds for boolean circuits (con-
sisting of AND, OR, and NOT gates) and relativization results about the poly-
nomial time hierarchy. This fact was �rst established by Furst et al. (1984).

The results by Yao (1985) and Håstad (1987, 1989), that there are functions
that can be computed in polynomial size by depth k circuits, but require ex-
ponential size circuits of depth k − 1, imply the existence of an oracle A that
separates the levels in the polynomial time hierarchy, i.e., Σp,A

k �⊆ Σp,A
k−1.

There is a similar correspondence between the levels in PPPH and constant
depth perceptrons. Green's motivation when trying to separate the computing
power of depth k perceptrons and that of and depth k−1 perceptrons from each
other (see the last section) was that a su�ciently strong such a separation would
imply a separation of the PPPH hierarchy.

We show that our result on perceptrons in Chapter 4 solves the problem by
Green in that it implies the existence of an oracle that separates the levels in
the PPPH hierarchy.

For the lowest levels in the hierarchy, the fact that the one-in-a-box theorem
implies that NPNP �⊆ PP under an oracle was noted by Fu (1992). Beigel (1994)
has strengthened this separation to obtain that PNP �⊆ PP under an oracle, by
showing a result for depth 2 perceptrons.

We improve on our separation of the levels in the PPPH hierarchy by using
his result on perceptrons with bounded weights as a basis for the induction
argument, and get an oracle A such that Δp,A

k �⊆ PPΣp,A
k−2 . (Δp

k is the complexity
class PΣp

k−1 .)
Beigel et al. (1991) showed that PNP[log] ⊆ PP, and later Beigel et al. (1995)

proved the even stronger PPP[log] = PP. The notation A[log] denotes that at
most O(log n) oracle queries may be made to the oracle A by the Turing machine.
A relativization of these results shows that our result is almost tight.

1.2.4 Median selection
Sorting and selection problems may very well be the most well-studied of all com-
putational problems. Sorting refers to the procedure of ordering the input data,

1.2. Thesis topics and background 13

for example, an unordered telephone directory, into sorted order. By selection
we mean to �nd the ith largest (or smallest) element among the input elements.
Some common special cases of selection is �nding the largest, the smallest, or
the median element.

Comparison based algorithms for solving these problems work by performing
pairwise comparisons between elements until enough information about their
relative order is obtained. For sorting, the relative order of all elements needs
to be known (notice, though, that this does not imply that an algorithm solving
the problem needs to compare all pairs explicitly; if it is already known that
a > b, and the algorithm compares b with c, the result that b > c gives the
relation a > c for free). For selection, the algorithm needs to obtain, for the ith
largest element, i − 1 relations to larger elements, and n− i relations to smaller
elements.

Sorting in a comparison based computational model is quite well understood.
Any deterministic algorithm can be modeled by a decision tree in which all inter-
nal nodes represent a comparison between two elements; every leaf represents a
result of the computation. Since there must be at least as many leaves in the deci-
sion tree as there are possible re-orderings of n elements, all algorithms that sort
n elements use at least �log n!	 ≥ n log n−n log e+ o(n) ≈ n log n− 1.44n+ o(n)
(log denotes the base 2 logarithm) comparisons in the worst case. The sort-
ing method with best performance in the worst case, called merge insertion by
Knuth (1973), is due to Ford and Johnson (1959). It sorts n elements using
at most n log n − 1.33n + o(n) comparisons. Thus, the gap between the upper
and lower bounds is very narrow in that the error in the second order term is
bounded by 0.11n.

A special case of selection, when i = �n/2	, is �nding the median among n
elements, where there is a well-de�ned ordering between all pairs of elements.
Although much e�ort has been put into �nding the exact number of required
comparisons, there is still an annoying gap between the best upper and lower
bounds currently known.

Knowing how to sort, we could select the median by �rst sorting, and then
selecting the middle-most element; it is quite evident that we could do better, but
how much better? This question received a somewhat surprising answer when
Blum et al. (1973) showed how to determine the median in linear time using at
most 5.43n comparisons. This result was improved upon when Schönhage et al.
(1976) presented an algorithm that uses only 3n+o(n) comparisons. Their main
invention was the use of factories which mass-produce certain partial orders that
can be easily merged with each other.

This remained the best algorithm for almost 20 years, until Dor and Zwick
(1995) pushed down the number of comparisons a little bit further to 2.95n+o(n)
by adding green factories that recycle debris from the merging process used in
the algorithm of Schönhage et al. (1976).

The �rst non-trivial lower bound for the problem was also presented by Blum
et al. (1973) using an adversary argument. Their 1.5n lower bound was subse-
quently improved to 1.75n + o(n) by Pratt and Yao (1973). Then Yap (1976),

14 Chapter 1. Introduction

and later Munro and Poblete (1982), improved it to 38
21n+O(1) and 79

43n+O(1),
respectively. The proofs of these last two bounds are long and complicated.

Fussenegger and Gabow (1979) proved a 1.5n + o(n) lower bound for the
median using a new proof technique. While this did not improve on the best
lower bound, the proof was short and simple. Bent and John (1985) used the
same basic ideas when they gave a short proof that improved the lower bound
to 2n + o(n).

Since our methods are based on the proof by Bent and John, let us describe
it in some detail. Given the decision tree of a comparison based algorithm, they
invented a method to prune it that yields a collection of pruned trees. Then,
lower bounds for the number of pruned trees and for their number of leaves are
obtained. A �nal argument saying that the leaves of the pruned trees are almost
disjoint then gives a lower bound for the size of the decision tree.

In Section 6.2 we reformulate the proof by Bent and John by assigning weights
to each node in the decision tree. The weight of a node v corresponds to the
total number of leaves in subtrees with root v in all pruned trees where v occurs
in the proof by Bent and John. The weight of the root is approximately 22n; we
show that every node v in the decision tree has a child whose weight is at least
half the weight of v, and that the weights of all leaves are small.

When the proof is formulated in this way, it becomes more transparent, and
one can more easily study individual comparisons, to rule out some as being bad
from the algorithm's point of view.

For many problems, such as �nding the maximal or the minimal element of
an ordered set, and �nding the maximal and minimal element of an ordered set,
there are optimal algorithms that start by making �n/2� pairwise comparisons
between singleton elements. We refer to algorithms that start in this way as
being pair-forming. It has been discussed whether there are optimal pair-forming
algorithms for all partial orders, and in particular this question was posed as an
open problem by Aigner (1981). Some examples were then found by Chen (1993),
showing that pair-forming algorithms are not always optimal.

It is interesting to note that the algorithms by Dor and Zwick (1995) and
Schönhage et al. (1976) are both pair-forming. It is still an open problem whether
there are optimal pair-forming algorithms for �nding the median.

In Section 6.3 we use our new approach to prove that any pair-forming algo-
rithm uses at least 2.01227n + o(n) comparisons to �nd the median.

For general comparison based median selection algorithms, Dor and Zwick
(1996) have recently been able to extend the ideas described in Chapter 6 to
obtain a (2+ε)n lower bound, for some tiny ε > 0, on the number of comparisons
performed, in the worst case.

Despite recent progress on both upper and lower bounds for median selection,
however, the uncertainty in the coe�cient of n for �nding the median is still
0.95n, which is larger than the gap of only 0.11n for sorting, even though the
linear term is the second order term in the case of sorting.

1.3. Thesis overview 15

1.3 Thesis overview
The thesis is organized as follows. Chapter 3 deals with lower bounds for mono-
tone circuits, and introduces a symmetric version of Razborov's method of ap-
proximation (Razborov, 1985b). This formalism is used to prove lower bounds
that match the best known for several well-known monotone functions, and also
for a new function inspired by combinatorial designs for which the lower bound
2Õ(n1/3) is obtained. We also show how the proofs can be extended to work for
monotone real circuits. Most of this chapter is based on an article in Compu-
tational Complexity (Berg and Ulfberg, 1999), but also on discussions with Avi
Wigderson. Approximately one half of the work leading to these results has been
contributed by the author.

Chapter 4 provides lower bounds for perceptrons, which are a variation of
boolean circuits where the top gate is replaced by a threshold gate. The lower
bounds hold for bounded depth perceptrons. The structure of the proofs are
the same as in proofs of lower bounds for bounded depth circuits (Håstad, 1987,
1989). The proofs in this section use a slightly enhanced version of the Håstad
switching lemma, which is also contained in this section.

In Chapter 5 we turn to computational complexity and use the results ob-
tained for perceptrons in Chapter 4 to prove oracle separations of complexity
classes. Most notably, it is shown that there exists an oracle that separates the
levels of the PPPH hierarchy, but we also prove a stronger version of this state-
ment. The results in Chapters 4 and 5 were published in Journal of Computer
and System Sciences (Berg and Ulfberg, 1998) and were contributed to in equal
parts by both authors.

Chapter 6 deals with lower bounds for selecting the median in a comparison
based computational model. The 2n lower bound (Bent and John, 1985) is proved
using a new formalism, which enables us to more easily prove that any pair-
forming algorithm requires 2.01227n+o(n) comparisons to select the median. A
pair-forming algorithm starts out by making �n/2� pairwise comparisons between
disjoint pairs of elements. This result was obtained in cooperation with Johan
Håstad; it was contributed to in equal parts by both authors. Dor and Zwick
independently discovered the same result which appears in a joint paper by the
four authors (Dor et al., 2000).

16

Chapter 2

Models and Notation

2.1 Introduction
In this chapter we de�ne some mathematical notation used throughout the thesis,
and most of the relevant computational models.

2.2 General notational conventions
We use the usual de�nitions for O, Θ, Ω, o, and ω:

O(f(n)) ={g | ∃N, c > 0 : ∀n ≥ N : g(n) ≤ cf(n)},
Ω(f(n)) ={g | ∃N, c > 0 : ∀n ≥ N : g(n) ≥ cf(n)},
Θ(f(n)) ={g | ∃N, c1 > 0, c2 > 0 : ∀n ≥ N : c1f(n) ≤ g(n) ≤ c2f(n)},
o(f(n)) ={g | ∀c > 0 : ∃N : ∀n ≥ N : g(n) < cf(n)},
ω(f(n)) ={g | ∀c > 0 : ∃N : ∀n ≥ N : g(n) > cf(n)},

and also

Õ(f(n)) ={g | ∃N, c : ∀n ≥ N : g(n) ≤ f(n) logc n}.

The set of functions

{h(g(n)) | g ∈ O(f(n))}

is denoted by h(O(f(n))).
We use log to denote base 2 logarithms, and ln to denote natural (base e)

logarithms.

17

18 Chapter 2. Models and Notation

2.3 Boolean formulas
A boolean formula consists of boolean gates that are interconnected. A single
gate computes one of the logical functions AND (∧), OR (∨), and NOT (¬). An
AND gate outputs the value 1 if (and only if) all its inputs are 1, and an OR
gate outputs 1 if (and only if) at least one of its inputs is 1. A NOT gate has
only one input and outputs 1 if the input is 0 and 1 otherwise. A formula's input
consists of the binary variables x1, x2, . . . , xn, and the constants 0 and 1.

The fan-in of a gate is the number of inputs that connect to it. AND and
OR gates may have arbitrary fan-in, but NOT gates always have fan-in 1. For
example, in the formula in Figure 2.1, all AND and OR gates have fan-in 3.

In a formula, the output of each gate is connected to exactly one other gate,
except for the output gate, whose output is not connected. Each input variable
may be used as input for any number of gates. This implies that the structure
of a formula is a tree. Input variables are at the leaves and the output gate at
the root of the tree.

x1 x2 x3 x1 x2 x3 x1 x2 x3

Figure 2.1. A formula that tests if exactly one of its inputs is 1; it computes
the function (x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ ¬x2 ∧ x3).

We may assume that a formula has all its NOT gates on the bottom-most
level, since, working top-down using DeMorgan's laws, any other formula can
be converted to this form without increasing its size. It is often convenient to
consider ¬x1,¬x2, . . . ,¬xn input variables, to get rid of NOT gates completely.

We de�ne the size of a formula F as the number of gates is contains, and
denote this by size(F). The depth of a formula F is the length of the longest
path from the root to a leaf of the formula, disregarding NOT gates; we denote
this by depth(F). The formula in Figure 2.1 has size 10 and depth 2.

A depth 1 formula consisting of only one gate is called a disjunction if the
gate is an OR gate, and a conjunction if the gate is an AND gate. Two other
special forms of boolean formulas that are commonly used are CNF (conjunctive
normal form) and DNF (disjunctive normal form) formulas, both of which have
depth 2. A CNF formula has an AND gate in the root and OR gates at the
bottom-most level; a DNF formula has an OR gate in the root and AND gates
on the bottom-most level.

2.4. Boolean circuits 19

2.4 Boolean circuits
A boolean circuit is a generalization of a formula in that its structure is a di-
rected acyclic graph rather than a tree. Edges point in the direction from the
inputs towards the root of the tree. The fan-out of a gate in a circuit is the
number of gates that connect to its output, or equivalently, the out-degree of the
corresponding vertex. Fan-in is de�ned in the same way as for formulas.

As for boolean formulas, we de�ne the size of a circuit C as the number of
gates is contains, and denote this by size(C). The depth of a circuit C is the
length of the longest path from the output node to an input of the circuit; we
denote this by depth(C).

An observation that sometimes helps in analyzing circuits is that if any
NOT gates appear inside a circuit, there is always an equivalent circuit of
the same depth and at most twice the size that uses the additional inputs
¬x1,¬x2, . . . ,¬xn, but does not have any NOT gates. Such a circuit can be
constructed by working bottom-up and, for each gate g, adding a gate that com-
putes the negation of g, using the negations of the inputs to g as inputs. Thus,
a lower bound for circuits where the only negations occur as negated input vari-
ables also implies a lower bound for general circuits. It is standard practice to
disregard the negations of input variables when counting the depth and size in
this context.

Since a circuit only works for a speci�c number of input variables, we consider
families of circuits that compute a function f : {0, 1}∗ �→ {0, 1}. The family
contains one circuit for each size of the input. Since formulas is a special case of
circuits, this holds for formulas as well.

There are families of small size circuits that compute undecidable functions.
To see this, consider an undecidable boolean function f and de�ne g(x) = f(|x|).
The function g is also undecidable, since otherwise, we could use it to decide f .
For each length of the input data, however, g is �xed, so there are families of
constant size circuits that compute g.

This example shows that the size of the circuits in a circuit family computing a
function does not, in general, correspond to the running time of a Turing machine
that computes the same function. If we, however, require that each circuit in a
family can be constructed e�ciently by a Turing machine, it is not possible to
compute the circuit family de�ned above. Families of circuits, where the circuit
for each individual input size can be constructed e�ciently by a Turing machine,
are called uniform. Polynomial size uniform circuits can compute exactly those
functions that are in the complexity class P. The lower bounds we prove, however,
are all for non-uniform circuit families; any lower bound for non-uniform circuits
of course also hold for uniform circuit families.

20 Chapter 2. Models and Notation

2.5 Variations of formulas and circuits

A monotone formula is a boolean formula with AND gates (∧) and OR gates (∨),
but without NOT (¬) gates. Size and depth are de�ned as for general circuits
and formulas. Monotone circuits are the circuit analog of monotone formulas.

Monotone circuits and formulas can only compute monotone functions, which
is easily seen by considering how the change of an input variable from 0 to 1
propagates through the circuit. There are many interesting monotone functions,
however, so this does not in itself render monotone circuits and formulas use-
less. Razborov (1985a) showed, however, that some monotone functions can be
computed more e�ciently by non-monotone circuits.

A monotone real circuit consists of analog gates that are monotone real func-
tions of two real variables. The input and output of the circuit is still required to
be 0 or 1. It has been shown by Pudlák (1997), Haken and Cook (1996), Jukna
(1997), and in this thesis that, for many problems, the method of approximation
yields almost the same lower bounds for monotone real circuits as for monotone
boolean circuits.

A bounded depth boolean formula or circuit is a boolean formula, or a circuit,
respectively, for which an upper bound on the maximum permitted depth has
been imposed. Depth 2 formulas and circuits can trivially compute all boolean
functions, using negated input variables as inputs, but it is usually easy to show
that such circuits require exponential size. Super-polynomial size lower bounds
for circuits of constant depth computing parity, majority, and some other func-
tions have been obtained by, among others, Sipser (1983), Yao (1985), and Hås-
tad (1987, 1989).

A perceptron is a circuit with a single threshold gate at the top, whose inputs
are the outputs of boolean circuits with AND, OR, and NOT gates, called the
perceptron's sub-circuits. A depth k perceptron has sub-circuits of depth k − 1.
A threshold gate is a special gate that outputs 1 if more than t of its inputs
are 1, for some �xed t. Polynomial size perceptrons of constant depth can, of
course, compute majority and are therefore more powerful than polynomial size
constant depth circuits (see the last paragraph).

2.6 Turing machines

2.6.1 Deterministic Turing machines

The deterministic Turing machine is the standard way of modeling a computer.
In contrast to formulas, circuits, and related models, Turing machines are not
tailored for a speci�c input size. A Turing machine consists of three components:

• A �nite control, that consists of a set of states Q and a transition function δ.

2.6. Turing machines 21

• An in�nite work tape, used to store data during the computation. The
tape is divided into cells, and each cell may contain one symbol of an
alphabet Σ. The tape has a leftmost cell, but no rightmost cell. At the
start of the computation, the input data is written on the work tape.

• A tape head, used to read and write data on the work tape, one cell at a
time.

The state of the �nite control, the contents of the work tape, and the position
of the tape head de�ne the machine's con�guration.

The �nite control has three special states: an initial state, an accepting state,
and a rejecting state. At the start of the computation, the Turing machine is put
in the initial state, with the input data present on the work tape. The tape head
is initially positioned to the far left of the work tape. The computation ends
when the Turing machine has reached either the accepting state or the rejecting
state. We say that the machine accepts or rejects ; the idea is that the machine
should accept input data for which the function to be computed is 1, and reject
other inputs.

More technically, Turing machines check whether the input is contained in a
given set of strings on {0, 1}, called a language. We say that a Turing machine
decides the language L if the machine reaches the accepting state for any input
in L, and the rejecting state for any input not in L. Given a language L, the
characteristic function of the language is 1 if and only if the input is a member
of the language.

The alphabet Σ used on the working tape is arbitrary but �nite. The most
commonly used example is {0, 1, B}, where B is used to mark cells as being
empty.

The transition function δ : Q×Σ → Q×Σ×{R, L, N} decides what happens
in one computation step. Depending on the current state of the �nite control
and the symbol in the cell at the tape head's current position, the transition
function speci�es the next state of the �nite control, the symbol to be written
to the tape cell at the position of the head, and in which direction to move the
head (R means right, L means left, and N no move).

The time of a computation is measured as the number of steps required to
reach either the accepting state or the rejecting state. The space used by the
Turing machine during a computation is the number of cells of the tape that are
used.

There are a number of variants of the model described in common use. For
example, several work tapes, with one tape head for each tape, simpli�es the
description of many algorithms. It is easy to show that a Turing machine with
only one work tape can simulate such machines e�ciently.

The Turing machine model can easily be used to de�ne the complexity class P:
the complexity class P is the set of all languages that are decided by some Turing
machine in time that is a polynomial function of the length of the input string.

22 Chapter 2. Models and Notation

2.6.2 Non-deterministic and alternating Turing machines
For a deterministic Turing machine, the transition function decides the next
con�guration of the machine uniquely from the current con�guration. Non-
deterministic Turing machines are di�erent in that there are several possible
next con�gurations given the present one.

The transition function is now de�ned as δ : Q×Σ → P(Q×Σ×{R, L, N}),
where P(A) denotes the power set of A. This results in several possible compu-
tations of the non-deterministic Turing machine, each of which may either accept
or reject. The running time and space requirements of a non-deterministic Tur-
ing machines are de�ned to be the maximum of the respective resources requires
over all possible computations.

The non-deterministic Turing machine is said to accept an input x if there
exists a computation that ends in the accepting state, and to reject the input x
if all computations end in the rejecting state. We use non-deterministic Turing
machines to de�ne the complexity class NP: the complexity class NP is the set
of all languages that are decided by some non-deterministic Turing machine in
time that is a polynomial function of the length of the input string.

Given an input x, we may view the computation performed by a non-deter-
ministic Turing machine M as follows. Every possible machine con�guration is
represented by a node in a computation tree; the root is the machine's initial
con�guration. A node is the parent to those nodes that represent the possible
next con�gurations; thus the nodes representing halting con�gurations are the
leaves of the tree. Label internal nodes by ∨, accepting leaves by 1, and rejecting
leaves by 0. The result of the computation can now be determined by evaluating
the resulting tree in a natural way, in fact, as if it was a boolean formula.

Notice that, since at most a constant number of con�gurations can be reached
in one step from any con�guration, we may assume that at most two next con�g-
urations are possible at any time without sacri�cing more than a constant factor
on the length of any path.

An alternating Turing machine is a non-deterministic Turing machine whose
states are marked by ∧, ∨, 0, or 1; the initial state is marked by ∨. States
marked ∧ and ∨ have at most two next con�gurations, and states marked 0 and
1 are the halting states, in which the machine rejects or accepts, respectively.

The computation tree for an alternating Turing machine is de�ned as for
non-deterministic Turing machines, where internal nodes are labeled by ∧ or ∨,
depending on the marking of the corresponding state. Nodes that correspond to
accepting states are labeled 1 and nodes that correspond to rejecting states are
labeled 0.

We de�ne a Σp
d machine as an alternating Turing machine where the maxi-

mum number of blocks of consecutive states labeled by ∧ or ∨ on a path from
the root to a leaf is d, and for which the maximum length of a path is bounded
by a polynomial of the input length. We also de�ne the complexity class Σp

d as
containing those languages that are decided by some Σp

d machine. Notice that
NP=Σp

1.

2.7. The comparison based model 23

The union of Σp
d, for all d, is called the polynomial time hierarchy, and is

denoted PH. It is unknown whether Σp
d are di�erent for any (or all) d, but Håstad

(1987, 1989) showed that there exists an oracle such that the corresponding
classes relative to the oracle are indeed di�erent.

2.6.3 Oracle Turing machines
We sometimes want to enhance the Turing machine model by giving the Tur-
ing machine access to an oracle. This means that we give the Turing machine
the capability of computing some speci�c function f using only one computing
step. The oracle for f is a set A that contains all inputs for which f is 1. A
Turing machine M with access to the oracle A is denoted MA; we say that the
computation is performed relative to the oracle A.

An oracle Turing machine has a special work tape, called the oracle query
tape. To perform an oracle query, the Turing machine writes a string on the oracle
query tape, and then enters a special oracle query state. This instantaneously
erases the contents of the oracle query tape and replaces it with the symbol 1
or 0, depending on whether the string on the query tape is present in the oracle
set or not. We use oracle Turing machines in Chapter 5.

2.7 The comparison based model
The comparison based model is used mostly for solving sorting, searching, selec-
tion, and related problems. In this model, we do not measure the amount of time,
memory, or other computing resources used during the computation, but count
the number of pair-wise comparisons of input elements used. Also, comparing
two of the input elements is the only operation permitted on the input data. (It
is possible to write a sorting program that does not make a single comparison
between input elements; an example of this is the radix sort algorithm. This is,
however, not an example of a comparison based algorithm.)

We require that the input elements form an ordered set. That is, for all
input elements a and b, we have that a < b, a = b, or a > b. Ordered sets also
have the transitive property: if a < b and b < c, it holds that a < c. Out of
the three possible outcomes when comparing two input elements a and b, it is
often convenient to ignore the possibility of the outcome a = b. When proving
lower bounds, we may simply require that there are no such input elements.
The bound obtained still holds for general input data, since a function can not
become harder by imposing restrictions on its input.

Many commonly used sorting, searching, and selection algorithms are com-
parison based. One advantage with these algorithms is that they are completely
independent of the type of the input data; only the comparison function needs to
be modi�ed to sort a new type of elements. It also turns out that the number of
comparisons made in these algorithms corresponds very well with their running
time.

24 Chapter 2. Models and Notation

It is also a combinatorially interesting problem to investigate how many com-
parisons are needed to solve a particular problem. For example, selecting the
median from a set of 5 elements can be done using only 6 comparisons in the
worst case, but it is not trivial to see how to do this. See Knuth (1973) for a
step-by-step solution of this problem.

One of the most well-known lower bounds is probably the fact that sorting
n elements requires �log n!	 ≥ n log n − n log e + o(n) ≈ n log n − 1.44n + o(n)
comparisons in the worst case. Let us sketch a proof of this fact.

A comparison based algorithm can be described in terms of a decision tree.
Each node of the tree represents an individual comparison; the root node repre-
sents the �rst comparison made. As the algorithm makes more comparisons, it
collects information about the relative order of the input elements, and �nally
outputs the result when it has reached one of the leaves of the decision tree.

For sorting, all n! ways of permuting the input elements need to be recognized
by the algorithm, and thus, the depth of the decision tree is at least log n!.

Chapter 3

Lower Bounds for Monotone

Circuits

3.1 Introduction
Monotone circuits is the �rst restricted computational model that is investigated
in this thesis. Monotone circuits do not use any form of negation, which means
that monotone boolean circuits only contain AND and OR gates. In monotone
real circuits, internal gates are allowed to compute any monotone real function
of their inputs, although the output is still required to be 0 or 1. It is shown in
Section 3.6 that the proofs in this chapter can be extended to work for monotone
real circuits with only minor adjustments of parameter values.

Razborov's method of approximation was a major breakthrough for lower
bound proofs when it �rst appeared (Razborov, 1985b). Razborov was able to
show that any monotone circuit that computes the Clique function contains at
least nΩ(log n) gates. After this breakthrough, Andreev (1985) proved that a
function based on polynomials over �nite �elds requires an exponential number
of gates, and Alon and Boppana (1987) improved the results to 2Ω(n1/6) for
Clique and 2Ω(n1/4) for Andreev's problem. The new results all used the method
of approximation in essentially the same form as Razborov did.

To apply the method of approximation on the function f we approximate the
output of each gate in a circuit C that computes f by an approximator, which is
selected from a set of functions F . We then prove that the approximation of each
gate in the circuit introduces an error on only a few input settings, and also, that
there is no approximator that computes the output gate correctly for many input
values. It follows that the circuit must be large since errors in the approximator
for the output gate must emerge from errors introduced when approximating
some gate in the circuit. The set of approximators used by Razborov is DNF
formulas, where there is a limit on the length and number of terms.

25

26 Chapter 3. Lower Bounds for Monotone Circuits

Intuitively, this choice of approximators works because each gate performs a
very simple calculation step and therefore, given approximators for its inputs,
the gate computes a function close to some other function in F . The function
for which we prove the lower bound typically has many inputs consisting of a
majority of 1s for which the output is 0, and many inputs consisting of a majority
if 0s for which the output is 1.

Haken (1995) introduced a new method for proving lower bounds for the
size of monotone circuits, and he called this method �Bottleneck counting.� His
method involves de�ning a function μ that maps a large subset of the inputs to
gates in the circuit, and proving that not too many inputs are mapped to the
same gate.

We use the techniques developed by Haken for his Bottleneck counting proof,
but in an approximation setting. In fact, in a gate g, our approximators introduce
errors for exactly those inputs that are mapped to g by Haken's function μ.
Section 3.4.3 contains the proof by Haken using the approximation formalism.

The integration of Haken's techniques into the method of approximation leads
to the use of two approximators for each gate in the circuit. That is, instead
of choosing only DNF formulas as approximators, we approximate each gate
with both a DNF and a CNF formula. Somewhat surprisingly, a central part of
previous proofs using the method of approximation, the sun�ower lemma (Erd®s
and Rado, 1960), is not needed anymore, and we think that this simpli�es the
proofs substantially.

Razborov (1989) showed that the method of approximation will not work
very well to prove lower bounds for general circuits. He proved that, at least
using the basic technique, no bound better than Ω(n2) can be proved for such
circuits.

The close relation between Bottleneck counting and the method of approxi-
mation unfortunately also leads to the conclusion that Bottleneck counting can
not be used to prove strong lower bounds for general circuits.

Pudlák (1997) extended Razborov's method to hold for circuits consisting
of bounded fan-in gates computing monotone real functions. The corresponding
extension of Haken's method was made by Haken and Cook (1996). Jukna (1997)
has also derived a very general criterion for lower bounds that holds for both
monotone boolean and monotone real circuits.

Ideas from the bottleneck counting argument were independently also used
by Amano and Maruoka (1996) to develop approximators similar to the ones
presented in this chapter. They used the approximators to prove lower bounds
for Clique and Andreev's polynomial problem. Simon and Tsai (1997) indepen-
dently showed that Bottleneck counting is actually equivalent to the method of
approximation by showing an equivalence between proofs in the two methods.

Wigderson independently discovered that Haken's method can be turned into
an approximation argument, and he also noted that this holds for the extension
made by Haken and Cook; the details of the extension to monotone real circuits
is a joint work with Wigderson and is detailed in Section 3.6.

3.2. Preliminaries 27

We also de�ne a function based on balanced set systems, which are a relaxed
form of combinatorial designs, and prove the lower bound 2Ω(n1/3/ ln2/3 n) for this
function. We also believe that this lower bound is essentially the best that can
be proved using Razborov's method.

3.2 Preliminaries
The three �rst monotone functions for which we provide lower bounds (Andreev's
polynomial problem, Clique, and Broken mosquito screens) are all graph prob-
lems, and we therefore consider the inputs as being graphs when describing the
method. An input graph on n vertices is represented by

(
n
2

)
variables xi,j whose

value is 1 if the edge (i, j) exists in the graph.
The circuit which we want to prove is large is called C. The output of a gate

e in C when the input x is applied to the circuit is denoted by e(x). Let the
output gate be eo so that the circuit C computes the boolean function eo(x).

Every gate e in C is approximated by two functions, fD
e and fC

e , the approx-
imators for the gate e. The approximator fD

e has the form C1 ∨ C2 ∨ · · · ∨ Ct,
where Ci is a conjunction containing less than c distinct literals. The approxi-
mator fC

e has the form D1 ∧D2 ∧ · · · ∧Ds, where Di is a disjunction containing
less than d distinct literals. (Notice that we put no explicit restriction on the
numbers s and t.)

The following characteristics of the approximator functions fD
e and fC

e are
essential to the proof.

1. The approximators fD
eo

(x) and fC
eo

(x) fail to correctly represent the output
of C for many inputs x.

2. For every gate e, the number of inputs for which the approximators intro-
duce errors (measured in a speci�c way) is small.

For every x for which the approximators for eo fail, the error must have been
introduced in at least one of the gates in C. We can therefore draw the conclusion
that C contains many gates.

For convenience we consider the inputs to the circuit as being gates them-
selves, and for an input variable xi,j we simply de�ne fD

xi,j
= fC

xi,j
= xi,j . We

also de�ne empty disjunctions to have the value 0, and empty conjunctions to
have the value 1.

De�nition 3.1. For a gate e and an input x for which e(x) = eo(x), we say that
the approximator fD

e fails for x if fD
e (x) �= e(x), and that the approximator fC

e

fails for x if fC
e (x) �= e(x).

If either fD
e or fC

e fails for x, we say that the approximators for the gate e
fail for the input x.

A central part of the proofs is counting the number of errors that are intro-
duced in the gates of C. This is de�ned as follows.

28 Chapter 3. Lower Bounds for Monotone Circuits

De�nition 3.2. An approximator, fD
e or fC

e , is said to introduce an error for
the input x if it fails on the input x, but none of the approximators for the input
gates to e fail for the input x.

If either fD
e or fC

e introduces an error for the input x, we say that the ap-
proximators for the gate e introduce an error for the input x.

We now describe how an AND gate e is approximated assuming that its input
gates are already approximated by fD

e1
, fD

e2
, . . . , fD

em
and fC

e1
, fC

e2
, . . . , fC

em
.

The approximator fC
e is simply de�ned as

fC
e =

m∧
i=1

fC
ei

=
s∧

i=1

Di,

in which all disjunctions still have length at most d. If none of fC
e1

, fC
e2

, . . . , fC
em

fails for the input x, neither will fC
e , so the approximator fC

e introduces no errors.
The approximator fD

e should be a disjunction of conjunctions; it is formed
by converting fC

e into the form

t∨
i=1

Ci.

The standard way for doing this is to form a conjunction Ci for every possible
way to pick one literal from each disjunction Di in fC

e . All conjunctions that have
at least c distinct literals are then discarded, which means that long conjunctions
are approximated by the constant 0.

In the proofs to follow we need to establish upper bounds for the number of
errors introduced when forming fD

e from fC
e . To get as good bounds as possible,

we have to be more careful when forming fD
e (so that more conjunctions get

shorter than c). We shortly describe the process we actually use in detail.
Returning to the de�nitions of fD

e and fC
e , we note that fD

e is produced from
fC

e , which in turn is constructed from the approximators fC
ei

of the input gates.
Thus, when approximating an AND gate, we do not use the approximators fD

ei

for the input gates.
The approximator functions for an OR gate e are formed analogously. We

construct fD
e from the approximators fD

ei
of the input gates; this introduces no

errors. The disjunction of conjunctions is then converted into a conjunction
of disjunctions, and disjunctions with d or more distinct literals are discarded
(they are in e�ect approximated by the constant 1). Notice that the way the
approximators are constructed we have fD

e ≤ fC
e for all gates e.

We end this section by describing the details involved when converting fC
e to

fD
e in an AND gate (this part is analogous for OR gates).

A set of conjunctions is formed that have the property that at least one of
them is satis�ed if and only if all disjunctions in fC

e are satis�ed. The approxi-
mator fD

e is then formed from all resulting conjunctions shorter than c.
The rewriting process can be viewed as the construction of a tree: Each edge

in the tree is labeled by a literal. For every node v in the tree we de�ne a

3.3. The proof method 29

corresponding conjunction that is formed by all literals on the path from the
root to v.

At the root we create one labeled edge to a new child for each of the literals
in the �rst disjunction. We say that we have expanded D1 under the root.

Suppose w is a leaf that was created while expanding Di, and that C is
the conjunction corresponding to w. Then, D1, . . . , Di are all satis�ed if C is
satis�ed. We now take care of Di+1.

First consider the case that when C is satis�ed, we know that for all accepting
instances of the problem at least one of the literals in Di+1, say xu,v, must be
satis�ed as well. (This happens if Di+1 contains a literal in common with C,
but it could also happen in some other situations if there are restrictions on the
possible inputs.) We then make only one new child under w for the literal xu,v

and skip the rest of Di+1. This results in fewer leaves in the tree and therefore
fewer conjunctions.

Otherwise, we expand the disjunction Di+1 under w.
The result is that if the conjunction corresponding to one of the new children

is satis�ed, so is Di+1. Conversely, if all of D1, . . . , Di+1 are satis�ed, there is a
node on depth i + 1 in the tree whose corresponding conjunction is satis�ed.

When there are no more leaves for which there are remaining disjunctions
to expand, we are done and we get one conjunction for each leaf in the tree.
Leaves whose corresponding conjunctions have at least c distinct literals are
then removed, and this is the reason why fD

e may make an error for some inputs.
Note that such inputs are always accepted by some conjunction (correspond-

ing to a node in the tree) that has exactly c distinct literals, and bounding the
number of such conjunctions is the reason for constructing the tree. By count-
ing the number of inputs accepted by each conjunction, we can therefore get an
upper bound for the number of errors introduced by fD

e .

3.3 The proof method
Although they di�er in details, the basic strategy for the proofs in the following
sections is the same. In this section we therefore describe the strategy by giving
generic versions of the theorems, and of the lemmas that are used in the proof
of the theorems.

The generic theorem and lemmas contain various unspeci�ed entities, such as
numerical functions α, β, and γ. The outline can be turned into an actual proof
of an actual theorem by specifying these entities (and checking their required
properties).

Let MGP(n) be a monotone language on graphs with n input variables (which
indicate the presence or absence of edges). For some function h(n) we want to
prove the following.

Generic Theorem. The monotone circuit complexity for the language MGP(n)
is at least h(n).

30 Chapter 3. Lower Bounds for Monotone Circuits

Generic proof. Suppose we are given a circuit C that correctly decides MGP(n).
In order to prove that C must consist of at least h(n) gates, we study two subsets
of the possible input graphs: the positive test graphs, which is a subset of the
graphs in MGP(n), and the negative test graphs, which is a subset of the graphs
not in MGP(n). Let γ1(n) be the number of positive test graphs and γ0(n) the
number of negative test graphs.

Instead of directly proving that a circuit that decides MGP(n) must be large,
we prove that a circuit that separates the positive and negative test graphs from
each other must be large; choosing the test graphs in a suitable way is of course
essential.

We start by showing that the approximators for the output gate of C fail for
most inputs.

Generic Lemma A. At the output gate eo, the approximators either fail for
all negative test graphs or they fail for at least half of the positive test graphs.

Generic proof. Assume that the approximators do not fail for all negative test
graphs; otherwise there is nothing to prove. Hence, there exists a negative test
graph b such that fC

eo
(b) = 0 which implies that fC

eo
contains a disjunction D.

Furthermore, for all positive test graphs g on which fC
eo

is correct, we must have
D(g) = 1. Since D contains less than d distinct literals, we can bound the
fraction of positive test graphs for which fC

eo
= 1 by multiplying the fraction of

positive test graphs for which any speci�c edge is present with d. A suitable
choice of d proves the lemma.

The next objective is to bound the number of inputs for which the approxi-
mators introduce errors at a single gate. Assume e is an AND gate. In this case
fC

e introduces no errors at all, and hence, we need only study fD
e . Also, since

fD
e ≤ fC

e , no errors are ever introduced for negative test graphs in AND gates.
The next two lemmas introduce the functions α and β as bounds for the number
of errors introduced in a single AND and OR gate respectively.

Generic Lemma B. At an AND gate e, the approximator fD
e introduces an

error for at most α(n, c, d) positive test graphs.

Generic proof. To prove the lemma, we give an upper bound on the number
of positive test graphs g such that C(g) = 1 (g is accepted by C), where C is
any conjunction with c distinct literals corresponding to a node in the tree that
represents the rewriting process.

For each node in the tree that has more than one child, the number of children
is bounded by d, and descending to such a child always adds a distinct literal
to the corresponding conjunction. There are therefore at most dc conjunctions
with exactly c distinct literals. It remains to �nd out the number of positive test
graphs accepted by each such conjunction.

This is easily done if the edges in the positive test graphs are present in-
dependently from each other (as is the case in the lower bound for Andreev's
polynomial problem in Section 3.4.1). If the problems are speci�ed in terms of

3.4. New proofs of previous results 31

vertices (e.g., the BMS problem in Section 3.4.3 and Clique in Section 3.4.2), we
have to be a bit more careful since edges are not independent in the natural test
graphs for these problems. Actually, in the proofs for these speci�c problems,
we do not limit the number of distinct literals in conjunctions, but introduce
another more natural measurement of their size.

The lemma should now follow from multiplying the number of conjunctions
that have c distinct literals by the number of inputs accepted by each such
conjunction.

The following lemma is analogous and it is proved by bounding the number
of errors introduced on negative test graphs when fC

e is formed from fD
e .

Generic Lemma C. At an OR gate e, the approximator fC
e introduces an error

for at most β(n, c, d) negative test graphs.

To �nish the proof of the generic theorem we need to consider the two cases
from Generic Lemma A. First, if the approximators fail for all negative test
graphs, Generic Lemma C implies that size(C) ≥ γ0(n)/β(n, c, d). Otherwise
the approximators fail for at least half of the positive test graphs and then
Generic Lemma B implies that size(C) ≥ γ1(n)/(2α(n, c, d)). So if h(n) is less
than both these values, we are done.

3.4 New proofs of previous results
3.4.1 Andreev's polynomial problem
The best lower bound for Andreev's polynomial problem was proved by Alon
and Boppana (1987). The function for which this bound was obtained was the
same that Andreev (1985) used when he was the �rst to prove an exponential
lower bound for a monotone problem. We here present our new version of this
proof.

We are given a bipartite graph G = (U, V, E) with vertex sets U = GF[q]
and V = GF[q], where q is a prime power. The problem POLY(q, s) is to decide
whether there exists a polynomial p over GF[q] of degree at most s−1 such that
∀i ∈ U : (i, p(i)) ∈ E.

Theorem 3.3 (Alon and Boppana, 1987). The monotone circuit complex-
ity for POLY(q, s) is qΩ(s) when s ≤ 1

2

√
q/ ln q.

Proof. We �rst de�ne the set of positive test graphs used in the proof. There
are qs di�erent polynomials of degree at most s − 1, each of which corresponds
to a positive test graph in a natural way: the polynomial p de�nes a test graph
with the edges E = {(i, p(i)) | i ∈ U}.

The negative test graphs are constructed randomly, by having each possible
edge appear with probability 1− ε for ε = (2s ln q)/q. Notice that this construc-
tion may result in all possible bipartite graphs on 2q vertices; therefore we need
the following lemma.

32 Chapter 3. Lower Bounds for Monotone Circuits

Lemma 3.4. The probability that a negative test graph is in POLY(q, s) is at
most q−s.

Proof. The probability that the q speci�c edges that correspond to a certain
polynomial are present in a randomly chosen negative test graph is (1 − ε)q. So
the probability that the edges corresponding to at least one of the qs possible
polynomials are present in a random graph is at most

qs(1 − ε)q ≤ qse−εq = qsq−2s = q−s.

We choose the parameters c = s and d = q2/3/2.

Lemma 3.5 (Specialization of Generic Lemma A). At the output gate eo,
we either have that the approximator fC

eo
is identically 1, or that the approxima-

tors for eo fail for at least half of the positive test graphs.

Proof. If fC
eo

is identically 1 we are in the �rst case. Otherwise, there is a graph
b such that fC

eo
(b) = 0, and hence there is a disjunction D in fC

eo
. There are

qs−1 positive test graphs that contain any speci�c edge since �xing an edge is
equivalent to �xing the value of a polynomial in one point. Thus, there are at
most dqs−1 = qs−1/3/2 positive test graphs that contain at least one edge from
D. Hence D (and therefore also fC

eo
) is 1 for at most a fraction qs−1/3/(2qs) =

q−1/3/2 of the positive test graphs.

Lemma 3.6 (Specialization of Generic Lemma B). At an AND gate e the
approximator fD

e introduces an error for at most dc positive test graphs.

Proof. When rewriting fC
e to fD

e , we form at most dc conjunctions that contain
c distinct literals, and for the current function, each removed conjunction intro-
duces an error on at most one positive test graph. This follows since c = s and
since a polynomial of degree s−1 is completely speci�ed by s function points.

Lemma 3.7 (Specialization of Generic Lemma C). At an OR gate e, the
probability that fC

e introduces an error for a random negative test graph is at
most (cε)d.

Proof. We bound the probability of an error being introduced for a random
negative test graph by multiplying the number of disjunctions with d distinct
literals, cd, by the probability that the d literals are 0 in one disjunction, which
is εd.

Notice that, in particular, the upper bound in the lemma holds for the
number of errors introduced for negative test graphs that are not in the lan-
guage POLY(q, s).

To prove the theorem we have to consider the two cases from Lemma 3.5.
If the approximators fail for at least half of the positive test graphs we use

3.4. New proofs of previous results 33

Lemma 3.6 which states that the number of errors introduced in a single AND
gate is at most dc to get

size(C) ≥ qs

2dc
=

2sqs/3

2
∈ qΩ(s).

If, on the other hand, the approximator fC
eo

is identically 1, the approximators
for eo fail for a random negative test graph with probability 1 − q−s ≥ 1/2 by
Lemma 3.4. The probability of introducing an error in a single OR gate is at
most (cε)d; thus

size(C) ≥ 1
2(cε)d

=
1
2

(
q

2s2 ln q

)q2/3/2

≥ 1
2
2q2/3/2 ∈ qΩ(s).

3.4.2 Clique
In this section we prove that deciding whether a graph on n vertices contains any
complete subgraph of size m (the problem CLIQUE(m, n)) requires monotone
circuits of exponential size.

Theorem 3.8 (Alon and Boppana, 1987). The monotone circuit complex-
ity for CLIQUE(m, n) is 2Ω(

√
m) when m ≤ n2/3.

Proof. Let the positive test graphs be all possible graphs on n vertices with a
clique of size m and no other edges. This makes

(
n
m

)
positive test graphs. We

make one negative test graph for each possible coloring of the n vertices using
m− 1 colors by connecting vertices of di�erent colors by edges. Note that some
colorings result in the same graph, but we treat them as di�erent for counting
purposes and get (m − 1)n negative test graphs.

In this section we introduce two new measures of size for disjunctions and
conjunctions. For each conjunction and disjunction, let a graph correspond to
it in the natural way: for every literal, include the corresponding edge in the
graph.

For disjunctions, we do not, as before, limit the number of literals they con-
tain, but instead we de�ne their size by n minus the number of connected com-
ponents in their corresponding graphs, and require that their size is less than
d.

For the conjunctions, we introduce a new notation of size that counts the
number of vertices they touch. The number of vertices that a conjunction touches
is the number of di�erent vertices to which any of the edges connect. A conjunc-
tion is required to touch less than c vertices.

Choose c = �√m�, so that conjunctions touch less than �√m� vertices. Im-
plicitly, the number of literals in conjunctions is bounded by c2/2 ≤ m/2.

Let d = �n/(8m)� so that the graphs corresponding to disjunctions have more
than n−�n/(8m)� connected components; this implies that they touch less than
2d ≤ n/(4m) vertices.

34 Chapter 3. Lower Bounds for Monotone Circuits

Lemma 3.9 (Specialization of Generic Lemma A). At the output gate of
C, eo, the approximators either fail for all negative test graphs or they fail for
at least half of the positive test graphs.

Proof. Assume that there is a negative test graph b such that fC
eo

(b) = 0 (oth-
erwise we are done already). Then there is a disjunction D in fC

eo
, and we show

that this disjunction can be 1 for at most half of the positive test graphs.
A necessary condition for D to be 1 on a positive test graph g is that one

of the vertices it touches is in the clique of g. Since any given vertex is part of
the clique in a fraction m/n of the positive test graphs, a collection of at most
n/(8m) vertices has a vertex in common with less than half the positive test
graphs.

Lemma 3.10 (Specialization of Generic Lemma B). At an AND gate e,
the approximator fD

e can be selected such that it introduces an error for at most(
n − c

m − c

)(n

2m

)c

positive test graphs.

Proof. When building the tree, let w be the node that was created while expand-
ing the disjunction Di, and let C be the conjunction corresponding to w.

Consider the case that Di+1 contains a literal xu,v for which both endpoints
are already touched by C. Then a positive test graph that satis�es C also satis�es
Di+1, so we only create one single child under w containing xu,v.

Otherwise, Di+1 contains a mix of literals, for some none of the two endpoints
are touched by C, and for some one endpoint is touched by C.

First consider the literals that have one endpoint that is already touched by
C: they all have another endpoint that is not touched by C. For each such
endpoint, arbitrarily select one of the literals that connect to the endpoint, and
form one child for it. The reason that we may disregard some literals from
consideration is that two conjunctions that touch the same vertices will accept
the same positive test graphs. The total number of children created this way is
less than 2d since Di+1 touches at most 2d vertices.

For the literals that connect to two vertices that are not touched by C, we
�rst select one of their endpoints in some arbitrary way and create a child for it;
however, we do not label the edges to these children. At most 2d such children
are created. Then, we create less than 2d children under each of these children
for the other endpoint, and the edges down to these children are labeled by
literals.

The way we have constructed the tree implies that no node has more than
4d = n/(2m) children, and when descending to a child from a node with more
than one child, the number of vertices touched by the corresponding conjunction
increases by 1. Therefore, there are at most (n/(2m))c conjunctions touching c
vertices.

3.4. New proofs of previous results 35

The number of positive test graphs accepted by a single conjunction touching
c vertices is the number of ways to choose the remaining m − c vertices for the
clique out of the total remaining n − c vertices, which is

(
n−c
m−c

)
.

Finally, the lemma follows from multiplying the bound for the number of
conjunctions touching c vertices by the maximum number of inputs they may
accept.

Lemma 3.11 (Specialization of Generic Lemma C). At an OR gate e, it
is possible to select fC

e such that it introduces an error for at most (m/2)d(m −
1)n−d negative test graphs.

Proof. We start by bounding the number of disjunctions corresponding to nodes
in the tree, whose corresponding graphs contain n − d connected components.

When building the tree, let w be the node that was created while expanding
the conjunction Ci, and let D be the disjunction corresponding to w.

Consider the case that Ci+1 contains a literal xu,v for which both endpoints
are in the same connected component in the graph corresponding to D. Then a
negative test graph that falsi�es D also falsi�es Ci+1, since u and v must have
the same color. It is therefore enough to create only one single child under w
and label the edge xu,v.

Otherwise, w gets at most m/2 children, since each conjunction contains at
most m/2 literals. In this case the number of connected components decreases
by one for the children, so we will make d such expansions before we reach a node
for which the graph for the corresponding disjunction contains n − d connected
components. In all, there can hence be at most (m/2)d such disjunctions.

It remains to count the number of negative test graphs rejected by a single
disjunction whose corresponding graph H contains n−d connected components.
The negative test graphs that are rejected by such a disjunction are those that use
only one color within each connected component, and their number is (m−1)n−d.

Multiplying the number of disjunctions whose corresponding graphs contain
n − d connected components by the number of negative test graphs rejected by
each yields the bound in the lemma.

We now determine the lower bound for the circuit size. There are two cases
to consider: either fD

eo
fails on at least half the positive test graphs so that

size(C) ≥
(

n
m

)
2
(

n−c
m−c

) (
n

2m

)c
=

1
2

n! (m − c)!
(n − c)! m!

(2m)c

nc

≥ 1
2
2c (n − c)c

mc

mc

nc

∈ 2Ω(
√

m),

36 Chapter 3. Lower Bounds for Monotone Circuits

or the approximators fail for all negative test graphs so that

size(C) ≥ (m − 1)n

(m − 1)n−d(m/2)d

= 2d

(
m − 1

m

)d

∈ 2Ω(n/m).

Since 2Ω(
√

m) ⊆ 2Ω(n/m) for m ≤ n2/3, the theorem follows.

3.4.3 Broken mosquito screens
The Broken mosquito screens (BMS) problem was introduced by Haken (1995)
to illustrate how to count bottlenecks to show that monotone P �= NP. In this
section we show that the same result can be obtained using our approximator
formalism.

Haken de�nes the BMS problem for graphs with m2−2 vertices as the problem
of distinguishing good and bad graphs from each other. Graphs containing m−1
cliques of size m and one clique of size m − 2 (but no other edges) are good;
graphs containing m − 1 independent sets of size m and one independent set of
size m−2 but all other edges are bad. Hence, by taking the dual of a good graph
(i.e., inverting all the input bits) we get a bad graph. Notice that not all graphs
are either good or bad, but the de�nition can be extended to include all graphs.
Haken shows that a monotone circuit that distinguishes good graphs from bad
must be large.

We use the following extended de�nition of the BMS problem.

De�nition 3.12. Instances of BMS(m) are graphs with m2−2 vertices (m > 2).
A graph is in the language BMS(m) if there exists a partition of the vertices into
m− 1 sets of size m and one of size m− 2, so that each of these subsets forms a
clique.

Using this de�nition, it is easy to see that the BMS problem is monotone and
in NP.

Theorem 3.13 (Haken, 1995). The monotone circuit complexity for the lan-
guage BMS(m) is 2Ω(

√
m).

Proof. We let the set of positive test graphs G for the BMS problem be all graphs
with m2 − 2 vertices that contain m − 1 cliques of size m and one clique of size
m − 2, but no other edges. The set of negative test graphs B is all graphs on
m2−2 vertices that contain m−1 independent sets of size m and one independent
set of size m−2, but where all other edges are present. Our positive and negative
test graphs correspond to Haken's good and bad graphs, respectively.

Clearly, all positive test graphs are in the BMS language. Negative test
graphs are not in the BMS language since they contain only m−2 cliques of size
m.

3.4. New proofs of previous results 37

Next we count the number of test graphs. Counting the number of positive
test graphs is the same as counting the number of ways that a set of m2 − 2
elements can be partitioned into m − 1 sets containing m elements and one set
containing m − 2 elements. We get

|G| =
(m2 − 2)!

(m!)(m−1)(m − 2)!(m − 1)!
, (3.1)

and by duality |B| = |G|.
For each conjunction and disjunction, let, as in the previous section, a graph

correspond to it in the natural way: for every literal, include the corresponding
edge in the graph.

Suppose we want to determine whether a positive test graph satis�es a con-
junction C. This is the case when the graph corresponding to C is a subgraph of
the positive test graph. Therefore, we only have to know how the vertices of the
graph corresponding to C are divided into connected components to determine
what positive test graphs are accepted by C.

As in the proof of the lower bound for Clique, we de�ne the size of disjunctions
by m2 − 2 minus the number of connected components in their corresponding
graphs, and require that their size is less than d. In this section, we analogously
de�ne the size of conjunctions analogously, as m2 − 2 minus the number of
connected components in their corresponding graphs.

We choose c = d = �√m� (since c = d we only use c), i.e., the graphs
corresponding to the conjunctions and disjunctions in the approximators have
more than m2 − 2 − �√m� connected components. Note that, implicitly, the
number of literals in conjunctions and disjunctions is bounded by c2/2 ≤ m/2.

Lemma 3.14 (Specialization of Generic Lemma A). At the output gate of
C, eo, the approximators either fail for all negative test graphs, or they fail for
at least half of the positive test graphs.

Proof. If the approximator fC
eo

for the output gate fails for all the graphs in B we
are in the �rst case. Otherwise, let b ∈ B be a graph for which the approximator
does not fail at eo.

Since fC
eo

(b) = 0, there is a disjunction D in fC
eo
, and as noted above, this

disjunction contains less than c2/2 ≤ m/2 literals.
The fraction of graphs in G that contain a speci�c one of these literals is less

than 1/m, which can be seen as follows.
A graph in G has (m− 1)

(
m
2

)
+
(
m−2

2

)
edges out of the possible

(
m2−2

2

)
ones.

Since all edges are equally likely, this means that a speci�c edge appears in a
fraction

(m − 1)
(
m
2

)
+
(
m−2

2

)
(
m2−2

2

) <
1
m

of the graphs in G.

38 Chapter 3. Lower Bounds for Monotone Circuits

Thus, the fraction of G that contains at least one of the m/2 literals in D is
at most 1/2. So for at least half of all g ∈ G, we have D(g) = 0 and therefore
also fC

eo
(g) = 0.

Next, we establish an upper bound for the number of test graphs for which
the approximators introduce an error at a single gate.

Lemma 3.15 (Specialization of Generic Lemma B). At an AND gate e,
the approximator fD

e can be selected such that it introduces an error for at most

m4c(m2 − 2 − 2c)!
2c(m!)(m−1)(m − 2)!(m − 1)!

(3.2)

positive test graphs.

Proof. We introduce errors on positive test graphs by removing conjunctions
whose corresponding graphs contain at most m2 − 2 − c connected components.
When counting the number of positive test graphs for which an error is intro-
duced, we consider di�erent orderings of the vertices within the partitions and
the order of the partitions as di�erent graphs, and in the end we divide by the
same denominator as in (3.1).

When building the tree, let w be the node that was created while expanding
the disjunction Di, and let C be the conjunction corresponding to w.

Consider the case that Di+1 contains a literal xu,v for which both endpoints
are in the same connected component in the graph corresponding to C. Then,
we create only one single child under w and label the edge xu,v. In this case,
we know that xu,v is satis�ed if C is, so dropping all other children does not
introduce errors for any positive test graphs. Clearly, ignoring to create some
children never introduces errors for negative test graphs.

Otherwise, w gets less than c2/2 ≤ m/2 children, since each disjunction
contains less than c2/2 literals. In this case the number of connected components
decreases by one for the children, so we will make c such expansions before
we reach a node where the graph for the corresponding conjunction contains
m2−2−c connected components. Therefore, there are at most (c2/2)c ≤ (m/2)c

such conjunctions.
We now count the number of inputs accepted by a single conjunction whose

corresponding graph H contains m2−2− c connected components. Let a denote
the number of vertices in H that are part of connected components with more
than one vertex. It follows that the number of isolated vertices in H is m2−2−a,
and that the number of connected components in H with more than one vertex
is a − c.

To get an upper bound for the number of positive test graphs that are com-
patible with H we count as follows. Each connected component in H with more
than one vertex must go into one of the m partitions, which makes at most ma−c

choices. Then, each vertex in those connected components can be placed in at
most m ways each within the partition. Lastly, the remaining m2−2−a vertices

3.4. New proofs of previous results 39

can be placed freely in (m2 − 2 − a)! ways. To sum up, the total number of
choices is at most

ma−cma(m2 − 2 − a)! = m2a−c(m2 − 2 − a)!,

which is increasing with a. Since the graph H contains a − c connected compo-
nents with more than one vertex, the total number a of vertices in such com-
ponents is at most 2c. This follows since the number of connected components
with more than one vertex is at most c. So an upper bound for the number of
choices is

m3c(m2 − 2 − 2c)!.

Multiplying the maximum number of conjunctions for which the correspond-
ing graphs contain m2 − 2 − c connected components by the maximum number
of inputs accepted by each, and �nally dividing with the same denominator as
in (3.1) yields the lemma.

The proof of the lemma above di�ers slightly from the corresponding proof by
Haken. The reason for this is that we make a construction of the approximator
for an AND gate from the approximators for the input gates, whereas Haken
only proves the existence of a set of short conjunctions that describe the gate
well enough.

Because of the duality of the test graphs and since c = d, the following lemma
can be proved analogously to the previous one.

Lemma 3.16 (Specialization of Generic Lemma C). At an OR gate e, the
number negative test graphs for which the approximator fC

e introduces an error
is bounded by (3.2).

We now consider the two cases from Lemma 3.14. Either the approximators
for the output gate eo fail for at least half the positive test graphs, or they fail
for all negative test graphs. Since |G| = |B|, and since we have the bound (3.2)
for the maximum number of errors introduced in a single gate, the minimum size
of C is

2c(m2 − 2)!
2m4c(m2 − 2 − 2c)!

.

If we expand this expression we get

size(C) ≥ 2c (m2 − 2) · · · (m2 − 2 − 2c + 1)
2m4c

≥ 2c

2
(m2 − 2 − 2c + 1)2c

(m2)2c

=
2�

√
m�

2

(
m2 − 2�√m� − 1

m2

)2�√m�

∈ 2Ω(
√

m).

40 Chapter 3. Lower Bounds for Monotone Circuits

3.5 Functions based on balanced set systems
In this section we de�ne a function based on balanced set systems, and prove a
lower bound for the size of circuits computing this function. In fact, we provide
the best known monotone lower bound for any reasonably explicit monotone
function in that the lower bound obtained is 2Õ(n1/3).

3.5.1 De�nitions
De�nition 3.17. A (t, λ) balanced set system on X is a set B of subsets of X ,
such that for all S ⊂ X of size t, S is a subset of at most λ sets in B. The
members of B are referred to as blocks.

Let X be the set of input variables, and de�ne a monotone function from a
(t, λ) balanced set system on X by having one minterm for each block in the
balanced set system.

Denote |X | by n. We want to construct a (t, λ) balanced set system where all
blocks have size q and |B| = b, for q = n2/3, t = (n/ ln2 n)1/3, λ = 3 lnn/(ln lnn−
ln 8), and b = (n/ ln n)t/3 (we assume n > e8 so that λ is positive). It is not
clear that this is possible, but we show that just selecting the blocks randomly
works.

Lemma 3.18. For a set of variables X of size n, there are b subsets (blocks) of
X of size q, such that each t-subset of X is included in at most λ blocks, for b,
q, t, λ chosen as in the previous paragraph.

Proof. We randomly choose b subsets of q elements from X and show that the
probability P that any subset of t literals is a subset of more than λ blocks is
less than one. We consider the probability that λ+1 blocks contain a subset of t
elements from X simultaneously, and multiply by the number of possible choices
for the subset of size t, and by the number of (λ + 1)-subsets of blocks:

P ≤
((

n − t

q − t

)
/

(
n

q

))λ+1(
n

t

)(
b

λ + 1

)

<

(
(n − t)!q!
n!(q − t)!

)λ+1

nt bλ+1

<

(
2q

n

)t(λ+1)

nt
(n

ln n

)t(λ+1)/3

=
(

8
n

)t(λ+1)/3

nt
(n

ln n

)t(λ+1)/3

=
(

8n3/(λ+1)

ln n

)t(λ+1)/3

.

3.5. Functions based on balanced set systems 41

It su�ces to show that the mantissa in this expression is less than one:

8n3/(λ+1)

ln n
<

8n3/λ

ln n
=

8n
(ln ln n−ln 8)

ln n

ln n
= 1.

Our balanced set systems are very similar to combinatorial designs, and in
fact a combinatorial design is a special case of a balanced set system. Designs
are, however, known to exist only for very few parameter choices, and we have
therefore relaxed the requirements.

3.5.2 De-randomization
The construction of the balanced set system can be made slightly more explicit
by de-randomizing it using the method of conditional probabilities, which is
standard and can be found in for example the book by Alon and Spencer (1992).
The resulting complexity of the construction then becomes 2Õ(n1/3) instead of
2Õ(n2/3), which is the complexity of the brute force algorithm. Brie�y, the de-
randomization is done as follows.

Let s =
(

b
λ+1

)
denote he number of (λ + 1)-subsets of blocks, and choose

some ordering of them. Let Ai denote the event that subset i is illegal (contains
a common t-subset of X). We have that the expected number of illegal λ + 1-
subsets equals

s∑
i=1

P[Ai] =
((

n − t

q − t

)
/

(
n

q

))λ+1 (
n

t

)
s < 1

from the computation of the upper bound for the probability P above.
The deterministic construction of blocks is done by adding elements one by

one to the blocks (add one element to the �rst block, one element to the second
block, and so on). Suppose we have added k elements to each block, and let
C denote this event. We are now about to add an element to position k + 1
in the �rst block. To do this, we �rst compute the expected number of illegal
(λ + 1)-subsets that would result by adding an element to this position:

s∑
i=1

P[Ai | C] =
1

n − k

n−k∑
r=1

s∑
i=1

P[Ai | C ∧ xjr is added to the �rst block]

≥ min
1≤r≤n−k

s∑
i=1

P[Ai | C ∧ xjr is added to the �rst block],

where {xjr}n−k
r=1 denotes the n− k elements not already added to the �rst block.

Now, we choose to add the element xjr for which the minimum occurs in the
last inequality.

42 Chapter 3. Lower Bounds for Monotone Circuits

Thus, if we in each step of the algorithm choose to add the element that
minimizes

∑s
i=1 P[Ai | C ∧ xjr is added], then the value of this sum can not

increase. Since this sum is less than 1 at the beginning, it is less than 1 at the
end, and then we have succeeded in constructing the blocks so that no illegal
subsets of blocks occur.

The complexity of computing the sum in each step of the algorithm is 2Õ(n1/3),
and since there are bq ∈ 2Õ(n1/3) positions for which this sum must be computed,
the complexity of this algorithm is 2Õ(n1/3).

Although this improves the running time of the trivial algorithm, new results
for combinatorial designs would, of course, be needed to obtain a truly explicit
function.

3.5.3 Lower bound proof
In this section we prove the lower bound for functions based on balanced set
systems. Recall from the Section 3.5.1 that q = n2/3, t = (n/ ln2 n)1/3, λ =
3 ln n/(ln lnn − ln 8), and b = (n/ ln n)t/3.

Theorem 3.19. The monotone circuit complexity for a function f de�ned as
in Section 3.5.1, based on balanced set systems, is (ln n)Ω(n1/3/ ln2/3 n).

Proof. Let the set of positive test inputs be the minterms that de�ne the func-
tion; there are b positive test inputs. The negative test inputs are constructed
randomly, by having each possible positive literal appear with probability 1 − ε
for ε = (lnn/n)1/3.

Lemma 3.20. The probability that f(x) = 1 for a negative test input x is at
most 1/4.

Proof. The probability that the q speci�c literals that correspond to a minterm
are present in a randomly chosen negative test input is (1 − ε)q. Therefore,
the probability that the edges corresponding to at least one of the b possible
minterms are present in a random input is at most

b(1 − ε)q ≤ be−εq =
(n

ln n

) 1
3 (n/ ln2 n)1/3

e−n2/3(ln n/n)1/3

=
(n

ln n

) 1
3 (n/ ln2 n)1/3

n−(n/ ln2 n)1/3

< 1/4.

We choose the parameter d = c = t.

Lemma 3.21 (Specialization of Generic Lemma A). At the output gate of
C, eo, we either have that the approximator fD

eo
is identically 0, or the probability

that the approximators for eo is 1 for a random negative test input is at least
1/2.

3.6. Lower bounds for monotone real circuits 43

Proof. If fD
eo

is identically 0 we are in the �rst case. Otherwise, there is an input x
such that fD

eo
(x) = 1, and hence there is a conjunction C in fD

eo
. This conjunction

contains at most c literals, and each literal has the probability ε to be 0 for a
random negative test input. Thus, with probability at most cε = (1/ lnn)1/3 the
conjunction outputs 0.

Lemma 3.22 (Specialization of Generic Lemma B). At an AND gate E,
fD

E introduces an error for at most λdc positive test inputs.

Proof. When rewriting fC
E to fD

E , we can form at most dc conjunctions that
contain c distinct literals, and for the current function, each removed conjunction
of length c introduces an error on at most λ positive test inputs.

Lemma 3.23 (Specialization of Generic Lemma C). At an OR gate E the
probability that fC

E introduces an error for a random negative test input is at most
(cε)d.

Proof. We bound the probability of an error being introduced for a random
negative test graph by multiplying the number of disjunctions with d distinct
literals, cd, by the probability that the d literals are 0 in one disjunction, which
is εd.

To prove the theorem we have to consider the two cases from Lemma 3.21.
If the approximators fail for all positive test inputs we use Lemma 3.22 which
states that the number of errors introduced in a single AND gate is at most λdc

to get

size(C) ≥ b

λdc
=

ln lnn − ln 8
3 ln n

(ln n)c/3 ∈ (ln n)Ω(n1/3/ ln2/3 n).

If, on the other hand, the approximator fC
eo

is 1 with probability 1/2 for a
random negative test input, the approximators for eo fail for a random negative
test input with probability at least 1/4. The probability of introducing an error
in a single OR gate is at most (cε)d; thus

size(C) ≥ 1
4(cε)d

=
(ln n)d/3

4
∈ (ln n)Ω(n1/3/ ln2/3 n).

3.6 Lower bounds for monotone real circuits
A monotone real circuit consists of gates with fan-in two that can compute any
monotone real function of its two inputs; for the gate e call this function re. Let
e(x) denote the real output value from the gate e when the input x is applied to
the circuit. The output of the circuit is required to be 0 or 1. This is the model
used by Pudlák (1997), Haken and Cook (1996), and by Jukna (1997).

44 Chapter 3. Lower Bounds for Monotone Circuits

In this section we show how the method of approximation, using our formal-
ism, can be extended to work for monotone real circuits such that Theorem 3.3,
Theorem 3.8, Theorem 3.13, and Theorem 3.19 essentially hold for this model
as well.

The approach we use to approximate the outputs of the real gates in the
circuit is that we consider thresholds of the real gates and approximate the
thresholded values. Let et(x) denote the boolean function that is 1 if e(x) ≥ t
and 0 otherwise.

For a gate e with the two inputs e1 and e2 the threshold function et can be
determined from the thresholds of its input gates as

et =
∨

re(t1,t2)≥t

et1
1 ∧ et2

2

or

et =
∧

re(t1,t2)<t

et1
1 ∨ et2

2 .

It is convenient to think about these expressions as an in�nite OR and in�nite
AND, respectively. However, since the number of settings of the input variables
is �nite, the real gates only take discrete values, and therefore, we really only
need �nite expressions.

Every threshold et is approximated by two functions: fD
et which is a dis-

junction of conjunctions of length less than c, and fC
et which is a conjunction of

disjunctions of length less than d. The approximators for the thresholds of the
inputs are 0, 1, or the input itself, depending on the value of t; they can always
be represented by at most one literal and thus never fail.

To construct the approximator fC
et from the approximators of its two input

gates e1 and e2, we �rst form∨
re(t1,t2)≥t

fD
e

t1
1
∧ fD

e
t2
2

. (3.3)

All the subexpressions fD
e

t1
1
∧ fD

e
t2
2

can be turned into a single disjunction of con-

junctions, where each conjunction is at most twice the length of the conjunctions
in fD

e
t1
1

and fD
e

t2
2
. Thus, the result is a disjunction of conjunctions, and we use

the same procedure as before to convert it into the approximator fC
et .

When forming fC
et , we introduce errors on negative test inputs as we throw

away disjunctions that become longer than d. We want to count the number of
inputs x such that et(x) = 0 while fC

et(x) = 1 for some t, i.e., the union over t of
the errors introduced in a gate by fC

et .
When the value of t is decreased, the number of conjunctions obtained in (3.3)

increases; let m(t) denote the number of conjunctions. Arrange the conjunctions
Ci such that {Ci | i ≤ m(t′)} ⊆ {Ci | i ≤ m(t)} for t′ ≥ t. For the tree that

3.6. Lower bounds for monotone real circuits 45

corresponds to the rewriting process, this means that smaller values of t makes
deeper trees, but with the top unchanged. So, when we bound the number of
errors introduced in fC

et , we count not only possible errors introduced for t, but
also errors introduced for all t′ ≥ t.

Thus, to get a bound for the number of negative test inputs for which we
introduce an error for some t, we may consider fC

e−∞ and count the number of
negative test inputs rejected by disjunctions corresponding to nodes at level d in
the tree.

The number of such negative test inputs can be counted in the same way as
for monotone circuits with AND and OR gates, the only di�erence being that the
conjunctions have length 2c instead of c. This means that the branching factor
of the tree used in the construction of fC is twice of what it is in the boolean
case.

A dual argument can be used to bound the number of errors introduced for
positive test inputs when constructing the approximator fD

et , using t = +∞.
At the output gate eo, we get a bound for the number of inputs for which

the approximators fail using exactly the same argument as for AND/OR circuits.
The reason for this is that eo only takes the values 0 and 1, so approximating any
threshold between these values is the same as approximating the output value
of a circuit consisting of AND and OR gates.

Now, a lower bound for the size of a real circuit can be obtained in the
same way as for monotone circuits consisting of AND and OR gates. For an
input for which the approximators fail at the output, the error must have been
introduced in one of the real gates in the circuit, so we can divide a lower bound
for the number of errors at the inputs by an upper bound for the number errors
introduced in each gate.

Theorem 3.24 (Pudlák, 1997, Jukna, 1997). For POLY(q, s), the mono-
tone real circuit complexity is qΩ(s) when s ≤ 1

3

√
q/ ln q.

Proof. The proof is the same as the proof of Theorem 3.3 with the exception that
the number of errors introduced for positive test graphs in one gate is at most
(2d)c, and that the probability of introducing an error for a negative test graph
in one gate is at most (2cε)d. The di�erences are due to the higher branching
factors in the trees used to construct the approximators.

Theorem 3.25 (Pudlák, 1997, Jukna, 1997). For CLIQUE(m, n), we have
that the monotone real circuit complexity is 2Ω(

√
m) when m ≤ n2/3.

Proof. The proof is almost identical to the proof of Theorem 3.8; we only have
to change the constants c and d.

Let c = �√m/2�. Implicitly, the number of literals in conjunctions is bounded
by c2/2 ≤ m/4.

Let d = �n/(16m)�. This implies that the graphs corresponding to a disjunc-
tions touch less than 2d ≤ n/(8m) vertices.

The bound for the number of inputs for which the approximators fail for the
output gate still holds, since making c and d smaller only helps for this bound.

46 Chapter 3. Lower Bounds for Monotone Circuits

For the number of errors introduced in one gate for positive test graphs, notice
that the OR of two disjunctions that each touch at most 2d vertices touches at
most 4d vertices.

With the new constants, the bounds given in Lemma 3.10 and Lemma 3.11
still hold. It is easily veri�ed that di�erence in the obtained bound of the the-
orem, using the new constants, is absorbed by the implicit constant in the Ω
notation.

Theorem 3.26 (Haken and Cook, 1996). The monotone real circuit com-
plexity for BMS(m) is 2Ω(

√
m).

Proof. The proof is almost identical to the proof of Theorem 3.13; we only have
to change the constant c.

Let c = �√m/2�. Implicitly, the number of literals in conjunctions is bounded
by c2/2 ≤ m/4.

As for Clique, the bound for the number of inputs for which the approximators
fail for the output gate still holds.

With the new constants, the bounds given in Lemma 3.10 and Lemma 3.11
still hold. It is easily veri�ed that the bound of the theorem, using Ω notation,
is not a�ected by the new constants.

Theorem 3.27. For a function based on balanced set systems with the parame-
ters q = n2/3, t = (n/ ln2 n)1/3, λ = 3 lnn/(ln lnn − ln 8), and b = (n/ lnn)t/3

(see Section 3.5.1), is (ln n)Ω(n1/3/ ln2/3 n).

Proof. The proof is the same as the proof of Theorem 3.19 with the exception
that the number of errors introduced for positive test inputs in one gate is at
most (2d)c, and that the probability of introducing an error for a negative test
input in one gate is at most (2cε)d. Both these changes are absorbed by the
implicit constant in the Ω notation in the bound of the theorem.

3.7 Decision trees as approximators?
A well known lemma (see for example Linial et al. (1989)), states that a function
that can be written as both a DNF and a CNF formula, terms and clauses having
at most t and s literals, respectively, can be represented by a decision tree of
depth st. Is is therefore tempting to try to represent the two approximators
for each gate in the proofs in this chapter by a decision tree of depth cd. This
would require only one approximator with a simple and natural restriction for
each gate.

Of course, our case is a little bit di�erent, since the DNF and CNF formulas
do not necessarily represent exactly the same function. However, the lemma can
be modi�ed to hold for this case as well.

Lemma 3.28. Suppose f(x) ≤ g(x) for all x. If the minterms of f have at most
t literals, and the maxterms of g have at most s literals, then there is a decision

3.7. Decision trees as approximators? 47

tree of depth st that evaluates a function m such that f(x) ≤ m(x) ≤ g(x) for
all x.

Proof. Write f as a DNF formula: a disjunction of its minterms, and g as a CNF
formula: a disjunction of its maxterms. First notice that each conjunction in the
DNF formula for f has at least one literal in common with every disjunction in
the CNF formula for g. This follows since if this was not the case, consider what
happens if we set all the variables that occur in the conjunction for which this is
not the case to 1, and all other variables to 0. The DNF formula then gets the
value 1, and the CNF formula the value 0, a contradiction.

The proof is by induction on s. The basis s = 0 corresponds to g being
constant, so a decision tree of depth 0 that always outputs this constant computes
an adequate m.

Suppose the lemma holds for all s < s′ and consider s = s′. If there are no
minterms of f then f = 0 and we get a decision tree of depth 0. Otherwise, we
construct the decision tree by �rst making a complete decision tree of depth at
most t for the �rst conjunction in the DNF formula for f . We let the leaf that
outputs 1 remain in the �nal decision tree, since for the variable setting on the
path to it, we clearly have f = 1, and therefore also g = 1.

For a leaf that outputs the value 0, the function m we want to compute is
between two functions f ′ and g′, where f ′ and g′ are the functions that result if
setting variables in f and g respectively according to the path to the leaf.

The path will surely set one literal in each disjunction for g. If set to 0, the
literal can be dropped from the disjunction, and if set to 1, the entire disjunction
can be dropped. In any case, g′ will only contain disjunctions with at most
s− 1 < s′ literals (notice that g′ may be a constant function, and will surely be
if s = 1).

We have that f ≤ g, and setting some variables in both f and g can not
change this relationship; hence f ′ ≤ g′. We now use the induction hypothesis
to �nd a decision tree for a function m′ such that f ′ ≤ m′ ≤ g′; this tree has,
according to the induction hypothesis, depth at most (s − 1)t, which together
with the tree for the expanded conjunction makes a total depth of at most st.

Notice that the way the one-sidedness goes is important: if we had a bound
for the length of the maxterms for f and minterms for g instead, the proof would
not work.

Unfortunately, however, it turns out that the decision tree constructed in the
lemma above is not necessarily monotone. A decision tree of depth 1 that outputs
the negation of one input variable approximates the functions for which we want
to prove lower bounds quite well on test inputs, and therefore monotonicity of
the decision trees are essential.

To see that the construction may yield a non-monotone function, consider
the following counter example:

g = (x1 ∨ x5) ∧ (x4 ∨ x5 ∨ x2),
f = (x1 ∧ x2) ∨ (x1 ∧ x3 ∧ x4) ∨ (x3 ∧ x5) ∨ (x4 ∧ x5).

48 Chapter 3. Lower Bounds for Monotone Circuits

Clearly, f and g are monotone, and we have that f(x) ≤ g(x) for all x, since
each term of f has a common variable with each clause of g. Now consider what
happens when we use the construction of the lemma.

We write (x1, x2, x3, x4, x5), where xi ∈ {0, 1, ∗} to denote an assignment of
a subset of the variables; xi = ∗ indicates that xi is undecided. Let fi and gi be
the functions that remain after i conjunctions of f have been expanded. In one
path of the constructed decision tree, the following happens.

The �rst conjunction of f contains x1 and x2 which are set to x1 = x2 = 0:

g1 = g�(0,0,∗,∗,∗)= x5 ∧ (x4 ∨ x5),
f1 = f�(0,0,∗,∗,∗)= (x3 ∧ x5) ∨ (x4 ∧ x5).

In the �rst conjunction of f1, set x3 = 0, x5 = 1:

g2 = g�(0,0,0,∗,1)= 1,

f2 = f�(0,0,0,∗,1)= x4.

At this point, the decision tree outputs 1 since g2 is decided.
In another path of the same decision tree, we get the following outcome.

The �rst conjunction of f0 contains x1 and x2 which are set to x1 = 1, x2 = 0:

g1 = g�(1,0,∗,∗,∗)= x4 ∨ x5,

f1 = f�(1,0,∗,∗,∗)= (x3 ∧ x4) ∨ (x3 ∧ x5) ∨ (x4 ∧ x5).

In the �rst conjunction of f1, set x3 = x4 = 0:

g2 = g�(1,0,0,0,∗)= x5,

f2 = f�(1,0,0,0,∗)= 0.

In this case, the decision tree outputs 0 since f2 is decided.
The function that is computed by the decision tree that results from the

construction is, thus, not monotone: setting (x1, x2, x3, x4, x5) to (0, 0, 0, 0, 1)
outputs 1, and setting the the variables to (1, 0, 0, 0, 1) outputs 0.

3.8 Open problems
As we stated in the introduction we believe Ω(2n1/3

) to be essentially the best
possible lower bound that can be proved with the method of approximation. It

3.8. Open problems 49

would be nice to prove this, and also to �nd a truly explicit function for which
this bound holds.

On an orthogonal level, a proof that perfect matching in a bipartite graph
requires super-polynomial circuit size with some other set of approximators than
that used by Razborov would be interesting. In particular, it would be nice to
avoid the sun�ower lemma in this proof.

50

Chapter 4

A Lower Bound for

Perceptrons

4.1 Introduction
It has been shown in a sequence of papers (Sipser, 1983; Yao, 1985; Håstad, 1987,
1989) that there are functions computable by linear size circuits of depth k that
require exponential size circuits of depth k − 1.

A perceptron is a circuit where the output (top) gate has been replaced by
a threshold gate. The inputs to this gate are the outputs of boolean circuits
with AND, OR, and NOT gates, called the perceptron's sub-circuits. A depth k
perceptron has sub-circuits of depth k − 1.

Green (1991) used a result by Boppana and Håstad (1987) on approximating
parity to prove a lower bound for the size of constant depth perceptrons that
compute parity. This bound implies the existence of an oracle that separates ⊕P
from PPPH.

Green (1995) also discussed the question of whether there is an oracle that
separates the levels in the PPPH hierarchy. Since this follows from a su�ciently
strong lower bound for the size of depth k − 1 perceptrons computing func-
tions computable by perceptrons of depth k, Green was working on such a lower
bound. He was able to successfully prove an exponential lower bound for depth 3
monotone perceptrons computing a function computable by linear size depth 4
perceptrons, and concluded that if the same result could be proved in the non-
monotone case, the Håstad switching lemma could be used to show the separation
for all k.

In this chapter we show that there are functions computable by linear size
boolean circuits of depth k that require super-polynomial size perceptrons of
depth k − 1, for k < log n/(6 log log n), and exponential size perceptrons for
constant k.

51

52 Chapter 4. A Lower Bound for Perceptrons

The key to making the proof work is to use a separation between polynomial
size depth 2 perceptrons with bounded fan-in and general polynomial size depth
2 perceptrons as the basis for the induction. This separation follows from the
one-in-a-box theorem (Minsky and Papert, 1988). To use this simpler basis
(compared to that Green suggested), we need a somewhat stronger statement of
Håstad's switching lemma. The statement as formulated in this chapter actually
follows from looking at the proof by Håstad more carefully; we provide the
modi�ed proof for completeness.

4.2 The lower bound
We begin this section by de�ning the function fm

k , �rst de�ned by Sipser (1983),
which can be computed by linear size circuits of depth k. Then we show the
main theorem, which states that perceptrons of depth k with bounded fan-in
that compute this function must be large. As a corollary we get that perceptrons
of depth k − 1 computing fm

k must be large.
A perceptron is a circuit with a single threshold gate at the top. The thresh-

old gate may have arbitrary weights and outputs 1 if its weighted sum of the
input variables exceeds some threshold value. The inputs to the threshold gate
are outputs of boolean circuits, the perceptron's sub-circuits. The sub-circuits
consist of alternating levels of AND and OR gates; their top gate is either an
AND gate for all the sub-circuits, or they may all be OR gates. Input variables
may be negated, but otherwise no NOT gates may occur in the circuits. A gen-
eral perceptron can be transformed into this form by at most doubling its size.
A depth k perceptron has sub-circuits of depth k − 1.

De�nition 4.1. The function fm
k uses mk−2 1

2 (m log m)1/4(1
2km log m)1/2 input

variables. It is de�ned by a depth k circuit that has the form of a tree. At the
leaves of the tree are unnegated variables.

The root is an OR gate with fan-in 1
2 (m log m)1/4. Below are alternating

levels of AND and OR gates with fan-in m. The bottom-most level has fan-in
(1
2km logm)1/2.

Recall from Chapter 2 that log denotes the base 2 logarithm.
The theorem is proved analogously to Håstad's proof that circuits of depth k

are more powerful than circuits of depth k − 1. A central part of the proofs is
the Håstad switching lemma, which states that if we set a subset of the input
variables to 0 or 1 randomly, we can switch the two lowest levels of AND and
OR gates without increasing the circuit size very much. Then, two levels of the
circuit can be collapsed into one.

The way that we set some input variables of a circuit C to 0 and 1 is through
the use of restrictions . A restriction ρ is a mapping of the variables to the
set {0, 1, ∗}, where ∗ means that the variable remains unset. Let C�ρ denote the
circuit obtained by replacing each input variable xi by ρ(xi). We use the same

4.2. The lower bound 53

distribution of restrictions as Håstad used in (Håstad, 1987, Chapter 6); they
are de�ned below.

De�nition 4.2. Let q be a real number and (Bi)r
i=1 a partition of the variables

(that is, the Bi are disjoint and their union equals the set of all variables). Let
R+

q,B be the probability space of restrictions which takes values as follows. For
ρ ∈ R+

q,B and every Bi, 1 ≤ i ≤ r, independently

1. With probability q let si = ∗ and else si = 0.

2. For every xk ∈ Bi let ρ(xk) = si with probability q and else ρ(xk) = 1.

Similarly a R−
q,B probability space of restrictions is de�ned by interchanging the

roles played by 0 and 1.

De�nition 4.3. For a restriction ρ ∈ R+
q,B, let g(ρ) be a restriction de�ned as

follows: for all Bi with si = ∗, g(ρ) gives the value 1 to all variables given the
value ∗ by ρ, except one to which it gives the value ∗. To make g(ρ) deterministic,
we assume that it gives the value ∗ to the variable with the highest index given
the value ∗ by ρ.

If ρ ∈ R−
q,B , then g(ρ) is de�ned similarly, but now takes the values 0 and ∗.

It follows from the de�nition of g(ρ) that it never assigns values to the same
variables as ρ, and for a circuit C, we denote (C�ρ)�g(ρ) by C�ρg(ρ).

The variables can be partitioned according to what gates they occur at in
the circuit that de�nes fm

k . When the restrictions are used, the blocks Bi in the
previous two de�nitions correspond to this partitioning.

We use the Håstad switching lemma for this distribution of restrictions (Hås-
tad, 1987, Lemma 6.3), and in the proof of the main theorem, we need an im-
portant property of the switching lemma: after switching, the inputs accepted
by the di�erent ANDs form disjoint sets. The fact that this property follows
from the proof of the switching lemma was noted by Håstad (1987, Lemma 8.3).
Their note, however, was regarding another distribution of random restrictions,
and was not explicitly proved; for this reason we include a sketch of the proof
where we emphasize the �disjointness property.�

Lemma 4.4. Let G be an AND of ORs, all of size at most t, and ρ a random
restriction from R+

q,B or R−
q,B. Then the probability that G�ρg(ρ) can not be

written as an OR of ANDs all of size less than s, where the inputs accepted by
the di�erent ANDs form disjoint sets, is bounded by αs where α = 6qt.

The analog lemma is also true for converting an OR of ANDs to an AND of
ORs: with high probability G�ρg(ρ) can be written as an AND of ORs all of size
less than s, where the inputs rejected by the di�erent ORs form disjoint sets.

Proof. Let AND(G�ρg(ρ)) ≥ s denote the event that G�ρg(ρ) can not be written
as an OR of ANDs that accept disjoint sets, all ANDs having size less than s.
This de�nition is slightly di�erent from that in Håstad's original proof, where

54 Chapter 4. A Lower Bound for Perceptrons

the same notation is used to denote the event that G�ρg(ρ) can not be written as
an OR of ANDs of size less than s.

We use induction to prove the lemma, and in fact, we prove that if G =
∧w

i=1Gi, where Gi are ORs of fan-in at most t, then

P[AND(G�ρg(ρ)) ≥ s | F �ρ≡ 1] ≤ αs,

for an arbitrary F .
The basis w = 0 is obvious. For the induction step �rst rewrite

P[AND(G�ρg(ρ)) ≥ s |F �ρ≡ 1]
≤ max(P[AND(G�ρg(ρ)) ≥ s | F �ρ≡ 1 ∧ G1�ρ≡ 1],

P[AND(G�ρg(ρ)) ≥ s | F �ρ≡ 1 ∧ G1�ρ �≡ 1]).

The �rst term is taken care of by the induction hypothesis, and the rest of
the proof deals with the estimate of the second term.

We denote the set of variables occuring in G1 by T and we have that |T | ≤ t.
If G�ρ is identically 0, G�ρg(ρ) does not require long ANDs, so we may assume
that it is not 0, and therefore that some of the variables in T must be given the
value ∗ by ρ.

A block B is exposed if there is a variable xi ∈ B ∩ T and ρ(xi) = ∗. If the
variables in T belong to the r di�erent blocks B1, . . . , Br, we know that some
of these blocks are exposed. Let exp(Y), Y ⊆ {1, . . . , r}, denote that the blocks
indexed by Y are the ones that are exposed.

We get

P[AND(G�ρg(ρ)) ≥ s | F �ρ≡ 1 ∧ G1�ρ �≡ 1]

≤
∑

∅
=Y ⊆{1,...,r}
P[exp(Y) | F �ρ≡ 1 ∧ G1�ρ �≡ 1]

·P[AND(G�ρg(ρ)) ≥ s | F �ρ≡ 1 ∧ G1�ρ �≡ 1 ∧ exp(Y)].

In this sum, the �rst factor is identical to the corresponding �rst factor in the
original proof by Håstad, which uses the following lemma.

Lemma 4.5 (Håstad (1987, Lemma 6.6)). P[exp(Y) | F �ρ≡ 1 ∧ G1�ρ �≡ 1]
≤ (2q)|Y |.

It remains to estimate the second factor, which di�ers from that in the original
proof.

Let Y ∗ denote the set of variables that remain in the exposed blocks after
the restriction ρg(ρ) when the blocks indexed by Y are exposed. Notice that
|Y | = |Y ∗| since ρg(ρ) assigns only one ∗ for each block. We rewrite

G =
∨

σ∈{0,1}|Y |

G�Y ∗=σ∧Q(Y ∗, σ),

where Q(Y ∗, σ) denotes a predicate that is true when the undecided variables in
Y take the values of σ; it can be written as an AND of size |Y |.

4.2. The lower bound 55

Partition ρ into ρ1, that is the restriction on the exposed blocks, and ρ2, that
is the restriction on the blocks that are not exposed. We write ρ = ρ1ρ2.

We get

Pρ[AND(G�ρg(ρ)) ≥ s | F �ρ≡ 1 ∧ G1�ρ �≡ 1 ∧ exp(Y)]

= Pρ[AND(G�ρg(ρ)) ≥ s | F ′�ρ2≡ 1 ∧ G1�ρ1 �≡ 1 ∧ exp(Y)]

= Pρ

[
AND

(∨
σ∈{0,1}|Y |

(G�Y ∗=σ)�ρg(ρ)∧Q(Y ∗, σ)
)
≥ s

∣∣∣F ′�ρ2≡ 1 ∧ G1�ρ1 �≡ 1 ∧ exp(Y)
]

≤
∑

σ∈{0,1}|Y |
Pρ[AND((G�Y ∗=σ)�ρg(ρ)) ≥ (s − |Y |)

| F ′�ρ2≡ 1 ∧ G1�ρ1 �≡ 1 ∧ exp(Y)]

≤
∑

σ∈{0,1}|Y |

max
ρ1

Pρ2 [AND((G�Y ∗=σ�ρ1g(ρ1))�ρ2g(ρ2)) ≥ (s − |Y |)

| F ′�ρ2≡ 1]

≤ 2|Y |αs−|Y |.

For the �rst equality, note that the condition G1�ρ �≡ 1 is equivalent to G1�ρ1 �≡
1 ∧ G1�ρ2 �≡ 1. Since ρ2 assigns only the values 0 and 1 to variables in T , the
second of these requirements can be combined with (F �ρ1)�ρ2≡ 1, and we write
this as F ′�ρ2≡ 1.

In the second equality, we do not have to apply the restriction to Q(Y ∗, σ),
since the variables in Y ∗ are not a�ected by it anyway.

The �rst inequality is obtained by noting that if for all σ, (G�Y ∗=σ)�ρg(ρ) can
be written as an OR of ANDs, all of length less than s − |Y |, and all of which
accept disjoint input sets, then G�ρg(ρ) can be written as an OR of ANDs, all of
length at most s, in a way that they all accept disjoint input sets.

In the second inequality we use that for boolean predicates R and S we have
Pρ1,ρ2 [R(ρ1, ρ2) | S(ρ1)] ≤ maxρ1:S(ρ1) Pρ2 [R(ρ1, ρ2)] to get rid of the two last
conditions.

We are �nally in a position to use the induction hypothesis, which is done in
the last inequality.

We now evaluate the sum to get

∑
∅
=Y ⊆{1,...,r}

(2q)|Y |2|Y |αs−|Y | = αs
r∑

i=1

(
r

i

)(
4q

α

)i

= αs((1 + 4q/α)r − 1) ≤ αs((1 + 2/(3t))t − 1)

≤ αs((e2/(3t))t − 1) ≤ αs.

56 Chapter 4. A Lower Bound for Perceptrons

The next lemma shows that applying a restriction to the de�ning circuit for
fm

k does not reduce it too much: with high probability the remaining circuit
computes fm

k−1. We �x the parameter q that is used for the restrictions to
be (2k

m log m)1/2 for the rest of the paper.

Lemma 4.6 (Håstad (1987, Lemma 6.8)). If k is even the circuit that de-
�nes fm

k �ρg(ρ) for a random ρ ∈ R+
q,B, will contain the circuit that de�nes fm

k−1

with probability at least 2/3, for all m such that m/ logm ≥ 100k, m > m1,
where m1 is some constant. The same is true for odd k when R+

q,B is replaced
by R−

q,B.

Proof. Suppose k is even so that the restriction comes from R+
q,B and the lowest

level of the de�ning circuit for fm
k consists of AND gates; the other case is

analogous.
The probability that one or more of the AND gates on the lowest level is

reduced to the constant 1 by the restriction, or, equivalently, that one or more
OR gates on the next lowest level is reduced to the constant 1 by the restriction,
is bounded by 1/6. This fact follows since the AND gate corresponding to the
block Bi takes the value 1 with probability

(1 − q)|Bi| = (1 − (2k
m log m)1/2)

√
1
2 km log m

=
(
(1 − (2k

m log m)1/2)−
√

m
2k log m

)−k log m

< e−k log m

<
1
6
m−k,

and since there are less than mk AND gates on the bottom-most level.
Now suppose we are in the (good) case that all AND gates take the val-

ues si. The probability that the number of remaining inputs to an OR gate

(i.e., the number of AND gates not forced to 0) is less than
√

1
2km logm is

at most 1/6m−k. This follows since the expected number of such gates is
qm =

√
2km logm, and using Cherno�'s inequality we get that the probabil-

ity of obtaining less than half the expected number is at most e−qm/8 < 1/6m−k

for m/ logm ≥ 100k. So, with probability 5/6 none of the OR gates will have

less than
√

1
2m log m inputs.

To sum up, we get a circuit that contains fm
k−1 with probability at least 2/3.

We use induction over the depth of the perceptron to prove the theorem. For
the basis we need the following lemma.

Lemma 4.7. The bottom fan-in of a depth two perceptron that computes fm
2 is

at least 1
2 (m log m)1/4.

4.2. The lower bound 57

Proof. The one-in-a-box theorem by Minsky and Papert (see Section 1.2.2) is
exactly what we need. Substituting the variable m in the one-in-a-box theorem
by 1

2 (m log m)1/4 proves the lemma.

We are now ready to prove the main theorem.

Theorem 4.8. There are no depth k perceptrons computing fm
k with bottom fan-

in 1√
3k

(m log m)1/4 and less than 2
1√
3k

(m log m)1/4

gates, not counting the gates
on the lowest level, for m ≥ m1, where m1 is some constant.

Proof. Without losing generality, we may assume that m log m ≥ k2, since oth-

erwise we have that 2
1√
3k

(m log m)1/4 ≤ 21/
√

3.
The theorem is proved by induction over k. The basis k = 2 follows from

Lemma 4.7. We �rst give an overview for the proof of the induction step, which
is proved by contradiction.

We assume that there is a small-sized depth-k perceptron with bounded fan-
in computing fm

k . Then, we apply a random restriction to the inputs, and with
high probability we get a perceptron that computes fm

k−1. Also, because of the
Håstad switching lemma, we can switch the two lower levels of ANDs and ORs
in the perceptron without increasing the fan-in, and therefore collapse two levels
to one and obtain a small-sized perceptron of depth k − 1 and bounded fan-in
computing fm

k−1.
When k = 3 the procedure above does not work, since there are only two

levels of AND and OR gates in the perceptron. However, we can deal with this
as follows. Suppose that the lower level of the depth-three perceptron consists
of OR gates (the other case is analogous). When switching an AND of ORs to
an OR of ANDs, Lemma 4.4 says that the input sets accepted by the ANDs are
mutually disjoint. Therefore, the output from the OR gate is always equal to
the sum of the outputs of the AND gates, and we can thus substitute all OR
gates that resulted after switching by summation gates, and thereafter collapse
the two top-most levels.

We make the intuition formal by assuming that there is a depth-k perceptron

P with bottom fan-in 1√
3k

(m log m)1/4 that has less than 2
1√
3k

(m log m)1/4

gates,
not counting the gates on the lowest level, computing fm

k .
Apply a random restriction from R+

q,B or R−
q,B depending on whether k is

even or odd respectively. From Lemma 4.6 we have that with probability at
least 2/3, the perceptron P computes a function at least as hard as fm

k−1. Note
that this lemma requires m/ log m ≥ 100k which follows from m log m ≥ k2 for
large enough m.

Now we want to use Lemma 4.4 to show that all the sub-circuits on the two
bottom levels can be switched. We know that the bottom fan-in is at most
t = 1√

3k
(m log m)1/4, and to use the induction hypothesis we have to obtain

a circuit with fan-in at most s = 1√
3(k−1)

(m log m)1/4. For each single sub-

circuit, the probability that this fails is at most (6qt)s, which we multiply by the

58 Chapter 4. A Lower Bound for Perceptrons

maximum number of such circuits to get a bound for the probability that this
fails for at least one circuit:

2
1√
3k

(m log m)1/4

(6qt)s

= 2
1√
3k

(m log m)1/4(
6(2k

m log m)1/2 1√
3k

(m log m)1/4
) 1√

3(k−1)
(m log m)1/4

≤
(
12(2k

m log m)1/2 1√
3k

(m log m)1/4
) 1√

3(k−1)
(m log m)1/4

≤ 1/2,

where the last inequality holds since m log m ≥ k2.
Note that the number of gates that are not on the bottom-most level does

not increase when switching, which we need to use the induction hypothesis.
Thus, with probability at least 2/3, P �ρg(ρ) computes a function at least as

hard as fm
k−1, and with probability at least 1/2, P �ρg(ρ) is a function that does

not compute fm
k−1 by the induction hypothesis. Therefore, both of these events

must happen simultaneously with positive probability, a contradiction.

Corollary 4.9. There are no depth k−1 perceptrons that compute fm
k with less

than 2
1√
3k

(m log m)1/4

gates, for m ≥ m1, for some constant m1.

Proof. Assume there is a perceptron such that the corollary does not hold. Then,
adding a gate with fan-in one to all the inputs yields a depth k perceptron that
does not exist according to Theorem 4.8.

Corollary 4.10. There are functions computable by linear size circuits of depth
k that require super-polynomial size perceptrons of depth k−1 if 3 ≤ k < log n

6 log log n ,
where n is the number of input variables.

Proof. From Corollary 4.9 we have that if 1√
3k

(m log m)1/4 ∈ ω(log n) then depth
k − 1 perceptrons computing fm

k require super-polynomial size. We have n >
mk−2 and thus k − 2 < log n/ logm and log m/ log n < 1. For m log m ≥ k2 we
have n < mk and thus k > log n/ log m. We get

√
3k <

√
3

log n

log m
+ 6 =

√
log n

log m

(
3 + 6

log m

logn

)
< 3

√
log n

log m

so that

1√
3k

(m log m)1/4 >

(
m log3 m

log2 n

)1/4

,

which is ω(log n) if m log3 m ∈ ω(log6 n). This holds if k < log n
6 log log n , since we

then have (log6 n)k < n < mk so that m > log6 n.

Chapter 5

Oracle Separations

5.1 Introduction
The connection between lower bounds for boolean circuits (consisting of AND,
OR, and NOT gates) and relativization results about the polynomial time hier-
archy (Furst et al., 1984) can be extended to a similar correspondence between
the levels in PPPH and constant depth perceptrons.

We show that our result on perceptrons from Chapter 4 implies the existence
of an oracle that separates the levels in the PPPH hierarchy, and in fact that
there exists an A such that Σp,A

k �⊆ PPΣp,A
k−2 .

The fact that our basis, i.e., the one-in-a-box theorem by Minsky and Papert,
implies that NPNP �⊆ PP under an oracle was noted by Fu (1992). Beigel (1994)
has strengthened this separation to obtain that PNP �⊆ PP under an oracle, and
in the last section of this chapter we use his result as a basis for a lower bound for
perceptrons with bounded weights. Using this lower bound, we get an oracle A

such that Δp,A
k �⊆ PPΣp,A

k−2 . (Recall that Δp
k denotes the complexity class PΣp

k−1 .)
Beigel et al. (1995) proved that PPP[log] = PP. A relativization of this results

shows that our result is almost tight.

5.2 Separating the levels of the PPPH Hierarchy
In this section we show how the lower bound from Theorem 4.8 implies the
existence of an oracle that separates the di�erent levels in the PPPH hierarchy.

An oracle A is a �xed set of strings called an oracle set. Let yA denote the
characteristic function for the oracle A so that yA

z is 1 if the string z is in A.
Recall that an alternating Turing machine is a non-deterministic Turing ma-

chine whose states are marked by ∧, ∨, 0, or 1. States marked ∧ and ∨ have at
most two next con�gurations, and states marked 0 and 1 are the halting states,
in which the machine rejects or accepts, respectively. Let a Σp,A

d machine denote
an alternating Turing machine with access to the oracle A. Such a machine has

59

60 Chapter 5. Oracle Separations

an additional oracle query tape; when the query tape contains the string z, the
machine can enter a special oracle query state to compute yA

z in one time step.

Given an input value x to a Σp,A
d machine, the result of the computation is

determined by evaluating the computation tree in the natural way. The compu-
tation tree is de�ned as follows. Every possible machine con�guration is repre-
sented by a node, which is labeled by ∧, ∨, 0, or 1, depending on the marking of
the corresponding state. A node is the parent to those nodes that represent the
possible next con�gurations; thus the nodes representing halting con�gurations
are the leaves of the tree. The maximum number of blocks of consecutive states
labeled by ∧ or ∨ on a path from the root to a leaf is d, and the block of states
closest to the root is an ∨ block.

A PPΣp,A
d−1 machine is de�ned like a Σp,A

d machine, but where the machine
starts its computation in a state marked by + (a counting state). In the com-
putation tree, the block closest to the root is labeled by +, and the machine
accepts if the evaluation of the tree exceeds a threshold value.

The complexity classes Σp,A
d and PPΣp,A

d−1 contain exactly those languages that

can be decided by Σp,A
d and PPΣp,A

d−1 machines in polynomial time, respectively.
Given an alternating Turing machine, it can be converted to a machine that

makes all oracle queries at the end of the computation with only a polynomial
increase in execution time and no extra alternations. By making the oracle
queries at the end of the computation, we mean that the machine does not make
any alternations between states marked by ∧ and states marked by ∨ after the
�rst oracle query has been made. We assume that all machines have this form
for the rest of the chapter. The conversion of a machine that does not make all
oracle queries at the end of the computation to one that does can be done as
follows: Oracle queries are replaced by non-deterministic guesses for the oracle
answer. Along one computation branch the machine assumes the answer 0, and
along the other it assumes the answer 1; it remembers the question, the guess
for the answer, and the marking of the original query state for the rest of the
computation. A halting state is replaced by a number of states that verify the
guesses made in the computation. If all the guesses were correct, the computation
branch accepts or rejects according to the marking of the original halting state.
Otherwise, the machine makes sure that the computation branch does not a�ect
the result of the computation by accepting if the �rst incorrect guess was made
in an ∧ state, and rejecting otherwise.

The following relation between alternating oracle Turing machines and per-
ceptrons is similar to for example Lemma 2.1 in (Ko, 1989).

Lemma 5.1. Let MA be a PPΣp,A
d−1 oracle machine which runs in time t on

input x. Then there is a depth d + 1 perceptron P with unit weights and bottom
fan-in t which has a subset of the yA

z as inputs such that for every oracle A, MA

accepts x precisely when P outputs 1 on inputs yA
z . This perceptron has at most

2t gates, not counting gates on the bottom-most level.

5.2. Separating the levels of the PPPH Hierarchy 61

Proof. For a �xed x, write down the computation tree for MA(x) for some
oracle A. On a path from the root of the tree to a leaf, let the �rst node where
an oracle query occurs (if one exists) be called a boundary node. Boundary nodes
mark where in the computation that the machine starts verifying its guesses, and
since this is the last part of a computation branch, and since it is deterministic,
there is exactly one leaf under each boundary node.

When varying the oracle A we get di�erent computation trees. However,
the part of the computation trees that are above the boundary nodes remain
the same regardless of the oracle. The part of the computation trees below a
boundary node accepts or rejects depending on the oracle. However, note that
the only oracle queries that may occur at and below the boundary node are the
ones for which guesses have been made above the boundary node; their number
is bounded by t.

We now construct a perceptron from the computation tree of MA(x). Every
boundary node in the computation tree is replaced by a DNF or CNF formula,
depending on if the boundary node is labeled by ∨ or ∧, respectively. In the
case of boundary nodes labeled by ∨, we make a conjunction for each possible
set of oracle answers that makes the computation branch accept, and combine
them into a DNF formula. In the case of boundary nodes labeled ∧, make a
conjunction for each possible set of oracle answers that makes the computation
branch reject, and combine them into a DNF formula. Taking the negation of
this formula and applying De Morgan's law yields a CNF formula. Finally, the
resulting tree is collapsed to yield a perceptron of depth d+1 and bottom fan-in t.

The depth of the original computation tree is at most t, and hence its size
at most 2t. Since new gates from the DNF and CNF formulas only appear on
the bottom-most level, the maximum number of gates on higher levels in the
resulting perceptron is at most 2t.

Theorem 5.2. There exists an oracle A such that, for all d, there is a language
Ld(A) in Σp,A

d which is not recognizable by any PPΣp,A
d−2 machine, i.e., Σp,A

d �⊆
PPΣp,A

d−2 .

Proof. The intuition for the proof is that a PPΣp,A
d−2 machine corresponds to a

depth d perceptron with inputs yA
z for each input x. Theorem 4.8 from the last

section is used to show that such a perceptron is too small for computing the
function fm

d of the oracle bits for some m. We de�ne a language Ld(A) that
depends on A in a way that for a machine to decide the language properly for
all oracles would require the corresponding perceptron to compute fm

d ; thus we
can choose an oracle such that the machine makes an error.

Let x = x1x2 · · ·xn and

Ld(B) = {1n | ∃x1, x2, . . . , xn/d∀xn/d+1, . . . , x2n/d · · ·
Qxn(d−1)/d+1, . . . , xn : x ∈ B}.

62 Chapter 5. Oracle Separations

Now, a PPΣp,B
d−2 machine that decides if 1n ∈ Ld(B) has a corresponding percep-

tron of depth d that evaluates a function hn
d in the variables yB

z for |z| = n, as
exempli�ed in Figure 5.1.

����

���� ����

���� ���� ���� ����

�����
�����

��� ��� ������

�� �� �� �� 								

yB
000 yB

001 yB
010 yB

011 yB
100 yB

101 yB
110 yB

111

Figure 5.1. To check if 13 ∈ L3(B) corresponds to evaluating the function h3
3

given by this circuit.

The function hn
d resembles f2n/d

d , the only di�erence being the fan-in on the
top and bottom level which for hn

d is 2n/d while it is lower for f2n/d

d . This means
that hn

d contains f2n/d

d , and is therefore at least as hard to compute.
By the construction of Ld(B) it is clear that Ld(B) ∈ Σp,B

d , and we now

construct an oracle B such that Ld(B) can not be decided by a PPΣp,B
d−2 machine

for any d.
Let MB

i for i = 1, 2, . . . be an enumeration of PPΣp,B
d−2 machines for all con-

stants d. The oracle is built in rounds, and in round i we make sure that the
machine Mi makes an error for some input.

In round i we do the following: Suppose MB
i is a PPΣp,B

d−2 machine which
runs in time cnc (observe that c and d depend on i). We want to �x some of the
yB

z such that MB
i makes an error for at least one of the strings in Ld(B). More

precisely, we make MB
i fail on the string 1ni , where ni is chosen such that both

the following statements are satis�ed, which they are for large enough ni.

1. None of the yB
z with |z| = ni have previously been set.

2. 1√
3d

(
2ni/dni/d

)1/4
> cnc

i .

The �rst requirement makes sure that none of the strings previously set in
the oracle interfere with the current machine on input 1ni . For any oracle query
yB

z with |z| �= ni that MB
i may make, we substitute the correct value for those

that are already determined, and �x previously undetermined variables to some
arbitrary value.

From Lemma 5.1 there is a perceptron of depth d, bottom fan-in cnc, and
with at most 2cnc

gates (excluding those on the bottom-most level) with a subset
of the yB

z as inputs that outputs 1 for the oracles that make MB
i accept the

5.3. Improving the oracle separation 63

string 1ni . This perceptron is, due to Theorem 4.8, not powerful enough to
compute hni

d and is thus unable to determine if the string 1ni is in Ld(B) for
all B. It is therefore possible to set the yB

z of length ni such that MB
i makes an

error on 1ni .

5.3 Improving the oracle separation
Beigel (1994) obtained the oracle separation PNP �⊆ PP. To do this he introduced
the language ODD-MAX-BIT and proved a relation between the bottom fan-in,
the maximum weight, and the size for perceptrons deciding it.

De�nition 5.3 (Beigel (1994, De�nition 2)). ODD-MAX-BIT is the set of
all strings over {0, 1}∗ whose rightmost 1 is in an odd-numbered position, i.e.,
the set of strings of the form x10k where the length of x is even.

We use this function to de�ne a more complex one that is suited for obtaining
a lower bound for perceptrons of depth k. We �rst slightly change the de�nition
of the function fm

k from the previous section.

De�nition 5.4. The function fm
k is a function of mk−1

√
1
2km logm variables.

It is de�ned by a depth k circuit that has the form of a tree. At the leaves of
the tree are unnegated variables.

The bottom-most level has fan-in
√

1
2km log m. The rest of the levels, in-

cluding the root for k > 1, all have fan-in m. The root is an AND gate, and
below are alternating levels of OR and AND gates.

The function that we obtain a lower bound for is gm
k , de�ned below.

De�nition 5.5. For k = 2, de�ne gm
2 to be the ODD-MAX-BIT function of

1
6

√
m log m variables.

For k > 2, gm
k is a function of mk−2

√
1
2 (k − 2)m logm variables. It computes

the ODD-MAX-BIT function of the outputs of m disjoint fm
k−2 functions.

When applying a random restriction to a circuit computing gm
k , as is the case

with fm
k , with high probability we get a circuit that computes gm

k−1. As before,
�x the parameter q that is used for the restrictions to be (2k

m log m)1/2.

Lemma 5.6. If k is odd the circuit that de�nes gm
k �ρg(ρ) for a random ρ ∈ R+

q,B

will contain the circuit that de�nes gm
k−1 with probability at least 2/3, for all m

such that m/ logm ≥ 100k, m > m1, where m1 is some constant. The same is
true for even k when R+

q,B is replaced by R−
q,B.

Proof. When k > 3, the proof works as for Lemma 4.6. The case k = 3 is now
special and let us consider this case; the circuit computes the ODD-MAX-BIT

function of m AND gates, each with fan-in
√

1
2m log m. As in the proof of

64 Chapter 5. Oracle Separations

Lemma 4.6, with probability at least 5/6, none of the AND gates is reduced to
the constant 1, and they thus take the values si.

When all m AND gates take the values si (which is 0 or ∗) by the restriction,
we show that with high probability the remaining circuit contains a circuit that
computes the ODD-MAX-BIT function of 1

6

√
m log m variables.

Divide the m inputs to the ODD-MAX-BIT function (which take the values
of s1, s2, . . . , sm) into

√
m logm blocks Di of size |Di| =

√
m/ log m. The prob-

ability that such a block Di has a ∗ in at least one odd numbered input and also
in at least one even numbered input is at least

1 − 2(1 − q)|Di|/2 = 1 − 2

((
1 −

√
6 log m

m

)−√ m
6 log m

)−√
6/2

> 1 − 2e−
√

6/2 > 1/3,

since the probability that a block does not get any ∗ in an even (odd) numbered
input is (1 − q)|Di|/2.

We construct a new ODD-MAX-BIT circuit by using one input from every
block that has a ∗ at both an odd numbered and an even numbered input. We
use an odd numbered input from the �rst such block, an even numbered input
from the next one, and so on. Thus, we obtain a circuit computing ODD-MAX-
BIT of as many inputs as there are blocks having both an odd numbered and an
even numbered ∗.

There are
√

m log m blocks, so the expected number of such such blocks is at
least 1

3

√
m log m, and using Cherno�'s inequality we obtain that the probability

of getting less than 1
6

√
m log m such blocks is at most e−

√
m log m/24 < 1/6.

A depth two perceptron that contains no AND gates with negated literals
and no identical AND gates is said to be in positive normal form by Minsky and
Papert (1988). Beigel called this clean form, and he formulated the following
lemma, which uses the construction from (Minsky and Papert, 1988, page 33).

Lemma 5.7 (Beigel (1994, Lemma 1)). If f is computed by a perceptron
with size s, maximum weight w, and order d, then f is computed by a perceptron
in clean form with size 2ds, weight sw, and order d.

Lemma 5.8. There are no depth two perceptrons with unit weights that compute
gm
2 with bottom fan-in m1/6 and less than 25m1/6

gates, for m larger than some
constant.

Proof. A lemma due to Beigel (1994, Lemma 5) gives the following relation
between the size s, maximum weight w, and order d for depth two perceptrons
on clean form computing ODD-MAX-BIT of N input bits:

w ≥ 1
s
2
⌊

N−1
2�d2/(

√
87−9)�

⌋
.

Suppose there is a depth two perceptron with unit weights that computes gm
2

that has bottom fan-in (order) m1/6 and less than 25m1/6
gates. Then, due to

5.3. Improving the oracle separation 65

Lemma 5.7, there is a perceptron in clean form with fan-in m1/6, size 26m1/6
and

weights bounded by 25m1/6
computing ODD-MAX-BIT of 1

6

√
m log m variables.

If we put these values into Beigel's formula above, we get a contradiction for
large enough m.

Theorem 5.9. For k ≥ 3, there are no depth k perceptrons computing gm
k with

unit weights, bottom fan-in 1√
k
m1/6, and less than 26 1√

k
m1/6

gates, not counting
the gates on the lowest level, for m larger than some constant.

When k = 2 we have a somewhat stronger result. The bound for the number
of gates holds when counting all gates in the circuit.

Proof. We may assume that m ≥ k3, since otherwise we have 26 1√
k

m1/6 ≤ 26.
The basis for the induction, k = 2, follows from Lemma 5.8.

Assume there is a depth-k perceptron P with bottom fan-in 1√
k
m1/6 that

has less than 26 1√
k

m1/6

gates computing gm
k .

To be able to apply Lemma 5.6, choose one of R+
q,B or R−

q,B and apply a
random restriction to the perceptron. We have that with probability at least
2/3, the perceptron P computes a function at least as hard as gm

k−1.

The bottom fan-in is at most t = 1√
k
m1/6, and to use the induction hypothesis

we have to obtain a circuit with fan-in at most s = 1√
(k−1)

m1/6. For each single

gate on the next to the lowest level, the probability that this fails is at most
(6qt)s due to Lemma 4.4, and we multiply this by the maximum number of
switchings to get a bound for the probability that the conversion fails for at
least one circuit:

26 1√
k

m1/6

(6qt)s = 64
1√
k

m1/6(
6(2k

m log m)1/2 1√
k
m1/6

) 1√
(k−1)

m1/6

≤
(
6 · 64(2k

m log m)1/2 1√
k
m1/6

) 1√
(k−1)

m1/6

≤ 1/2,

where the last inequality holds since m ≥ k3.
Going from depth 3 to depth 2 is a special case, since we need to bound the

number of gates in the entire depth 2 circuit. Suppose without loss of generality
that the lowest level of the depth 3 perceptron consists of OR gates (if it consists
of AND gates we can negate the perceptron's weights and use De Morgan's law).
Then, the depth 2 perceptron that results after switching has AND gates on the
lowest level, and the fan-in of these gates is bounded by s so that each of them
accepts at least a fraction 2−s of the inputs. We know from Lemma 4.4 that all
the AND gates accept disjoint inputs so we get that the maximum number of

66 Chapter 5. Oracle Separations

AND gates that results from each switching is bounded by 2s. Thus, the total
number of gates in the resulting depth 2 circuit is at most

2s26 1√
k

m1/6

= 2
1√
2
m1/6

2
6√
3
m1/6

< 2
6√
2
m1/6

.

Theorem 5.10. There exists an oracle A such that, for all d, there is a language
Ld(A) in Δp,A

d which is not recognizable by any PPΣp,A
d−2 machine, i.e., Δp,A

d �⊆
PPΣp,A

d−2 .

Proof. The proof is analogous to the proof of Theorem 5.2, but we change the
language to one that can be decided by a Δp,A

d machine.
First, let

L′
d(B) = {y | ∀x1, x2, . . . , x|y|∃x|y|+1, . . . , x2|y| · · ·

Qx(d−1)|y|+1, . . . , xd|y| : yx ∈ B},

where x1, x2, . . . denote the individual bits of x. This language is reminiscent
of the language we used in the proof of Theorem 5.2, but it may contain many
strings of the same length.

We then de�ne

Ld(B) = {1n | max(L′
d−2(B) ∩ {0, 1}n/(d−1)) ends in a 1}.

The idea is that deciding if the string 1n is in Ld(B) is the same as comput-
ing the ODD-MAX-BIT function of 2n/(d−1) inputs, where the inputs are the
characteristic function of the language L′

d−2(B) for inputs of length n/(d − 1).
Notice that a deterministic Turing machine using an NP machine as an oracle

can compute the ODD-MAX-BIT function of 2n input variables in polynomial
time by doing binary search for the index of the variable with the highest index
being 1. Since a Σp,B

d−2 oracle can decide the language L′
d−2(B), we thus have

that a PNP machine using a Σp,B
d−2 machine as an oracle can decide the language

Ld(B), and therefore, the language Ld(B) is in Δp,B
d .

The existence of a PPΣp,B
d−2 machine that decides if 1n ∈ Ld(B) implies a

perceptron of depth d that evaluates a function hn
d in the variables yB

z for |z| = n.
The language construction ensures that the function hn

d is at least as hard to
compute as g2n/(d−1)

d (the de�ning circuit for g2n/(d−1)

d has smaller fan-in at some
levels).

Due to Theorem 5.9, however, the perceptron corresponding to a PPΣp,A
d−2

machine deciding the language is too small for computing the function gm
d of the

oracle bits for some m.

5.3. Improving the oracle separation 67

The construction of an oracle B such that Ld(B) can not be decided by
a PPΣp,B

d−2 machine for any d is now as in the proof of Theorem 5.2, the only
di�erence being that ni is chosen such that

6√
d

(
2ni/(d−1)

)1/6

> cnc
i

in each round.

68

Chapter 6

On lower bounds for selecting

the median

6.1 Introduction

Comparison based algorithms for solving median selection work by performing
pairwise comparisons between the elements until the ith largest element among
the n input elements is found. The problem of �nding the median is the special
case of selecting the ith largest in an ordered set of n elements, when i = �n/2	.

Bent and John (1985) proved that median selection requires 2n + o(n) com-
parisons in the worst case. This proof was substantially shorter and more elegant
than the proofs of the best lower bounds known before.

Our methods are based on the proof by Bent and John; Section 6.2 contains a
reformulation of their proof where we assign weights to each node in the decision
tree of the algorithm we want to prove makes many decisions. The weight of a
node v corresponds to the total number of leaves in subtrees with root v in all
pruned trees where v occurs in the proof by Bent and John. The weight of the
root is approximately 22n; we show that every node v in the decision tree has a
child whose weight is at least half the weight of v, and that the weights of all
the leaves are small.

When the proof is formulated in this way, it becomes more transparent, and
one can more easily study individual comparisons, to rule out some as being bad
from the algorithm's point of view.

In Section 6.3 we use our new approach to prove that any pair-forming algo-
rithm uses at least 2.01227n + o(n) comparisons to �nd the median.

Dor and Zwick (1996) have recently been able to extend the ideas described
here to obtain a (2+ε)n lower bound, for some tiny ε > 0, on the number of
comparisons performed, in the worst case, by any median selection algorithm.

69

70 Chapter 6. On lower bounds for selecting the median

6.2 Bent and John revisited

Bent and John (1985) proved that 2n+o(n) comparisons are required for selecting
the median. Their result is, in fact, more general and provides a lower bound
for the number of comparisons required for selecting the ith largest element, for
any 1 ≤ i ≤ n. We concentrate here on median selection although our results,
like those of Bent and John, can be extended to general i.

Although the proof given by Bent and John is relatively short and simple, we
here present a reformulation. There are two reasons for this: the �rst is that the
proof gets more transparent; the second is that this formulation makes it easier
to study the e�ect of individual comparisons.

Theorem 6.1 (Bent and John (1985)). Finding the median requires 2n +
o(n) comparisons.

Proof. Any deterministic algorithm for �nding the median can be represented
by a decision tree T , in which each internal node v is labeled by a comparison
a : b. The two children of such a node, va<b and va>b, represent the outcomes
a < b and a > b, respectively. We assume that decision trees do not contain
redundant comparisons between elements whose relative order has already been
established.

We consider a universe U containing n elements. For every node v in T and
subset C of U we make the following de�nitions:

maxv(C) =
{

a ∈ C

∣∣∣∣ every comparison a : b above v
with b ∈ C had outcome a > b

}
,

minv(C) =
{

a ∈ C

∣∣∣∣ every comparison a : b above v
with b ∈ C had outcome a < b

}
.

Before we proceed with the proof that selecting the median requires 2n + o(n)
comparisons, we present a proof of a somewhat weaker result. We assume that U
contains n = 2m elements and show that selecting the two middlemost elements
requires 2n + o(n) comparisons. The proof in this case is slightly simpler, yet it
demonstrates the main ideas used in the proof of the theorem.

We de�ne a weight function on the nodes of T . This weight function satis�es
the following three properties: (i) the weight of the root is 22n+o(n). (ii) each
internal node v has a child whose weight is at least half the weight of v. (iii)
the weight of each leaf is small.

For every node v in the decision tree, we keep track of subsets A of size m
which may contain the m largest elements with respect to the comparisons al-
ready made. Let A(v) contain all such sets which are called upper half compatible
with v. The As are assigned weights which estimate how far from a solution the

6.2. Bent and John revisited 71

case w1
va<b

(A) w1
va>b

(A)

a ∈ A b ∈ A 1
2 or 1 1

2 or 1
a ∈ A b ∈ Ā 0 1
a ∈ Ā b ∈ A 1 0
a ∈ Ā b ∈ Ā 1

2 or 1 1
2 or 1

Table 6.1. The weight of a set A ∈ A(v) in the children of a node v, relative to
its weight in v.

algorithm is, assuming that the elements in A are the m largest. The weight of
every A ∈ A(v) is de�ned as

w1
v(A) = 2|minv(A)|+|maxv(Ā)|,

and the weight of a node v is de�ned as

w(v) =
∑

A∈A(v)

w1
v(A).

The superscript 1 in w1
v(A) is used as we shall shortly have to de�ne a second

weight function w2
v(B).

In the root r of T , all subsets of size m of U are upper half compatible with
r so that |A(r)| =

(
2m
m

)
. Also, each A ∈ A(r) has weight 22m, and we �nd, as

promised, that

w(r) = 22m

(
2m

m

)
= 22n+o(n).

Consider the weight w1
v(A) of a set A ∈ A(v) at a node v labeled by the

comparison a : b. What are the weights of A in v's children? This depends on
which of the elements a and b belongs to A (and on which of them is minimal in
A or maximal in Ā). The four possible cases are considered in Table 6.1. The
weights given there are relative to the weight w1

v(A) of A at v. A zero indicates
that A is no longer compatible with this child and thus does not contribute to
its weight. The weight w1

va<b
(A), when a, b ∈ A, for example, is 1

2w1
v(A), if

b ∈ minv(A), and is w1
v(A), otherwise. As can be seen, v always has at least one

child in which the weight of A is at least half its weight at v. Furthermore, in
each one of the four cases, w1

va<b
(A) + w1

va>b
(A) ≥ w1

v(A).
Each leaf v of the decision tree corresponds to a state of the algorithm in

which the two middlemost elements were found. There is therefore only one set
A left in A(v). Since we have identi�ed the minimum element in A and the
maximum element in Ā, we get that w1

v(A) = 4. So, if we follow a path from
the root of the tree and repeatedly descend to the child with the largest weight,

72 Chapter 6. On lower bounds for selecting the median

we will, when we eventually reach a leaf, have performed at least 2n + o(n)
comparisons.

We now prove that selecting the median also requires at least 2n + o(n)
comparisons. To make the median well de�ned we assume that n = 2m−1. The
problem that arises in the above argument is that the weights of the leaves in
T , when the selection of the median, and not the two middlemost elements, is
considered, are not necessarily small enough: it is possible to know the median
without knowing any relations between elements in Ā (which now contains m−1
elements); this is remedied as follows.

In a node v where the algorithm is close to determining the minimum element
in A, we essentially force it to determine the largest element in Ā instead. This
is done by moving an element a0 out of A and creating a set B = Ā∪{a0}. This
set is lower half compatible with v and the median is the maximum element in B.
By a suitable choice of a0, most of maxv(Ā) is in maxv(B). A set B is lower half
compatible with v if |B| = m and it may contain the m smallest elements in U .
We keep track of Bs in the multiset B(v).

For the root r of T , we let A(r) contain all subsets of size m of U as before,
and let B(r) be empty. We exchange some As for Bs as the algorithm proceeds.
The weight of a set B is de�ned as

w2
v(B) = 2|maxv(B)|.

The weight of B estimates how far the algorithm is from a solution, assuming
that the elements in B are the m smallest elements. The weight of a node v is
now de�ned to be

w(v) =
∑

A∈A(v)

w1
v(A) + 24

√
n
∑

B∈B(v)

w2
v(B).

In the beginning of an algorithm (in the upper part of the decision tree),
the weight of a node is still the sum of the weights of all As, and therefore
w(r) = 22n+o(n).

We now de�ne A(v) and B(v) for the rest of T more exactly. For any node
v in T , except the root, simply copy A(v) and B(v) from the parent node and
remove all sets that are not upper or lower half compatible with v, respectively.
We ensure that the weight of every leaf is small by doing the following: If, for
some A ∈ A(v) we have |minv(A)| = �2√n	, we select an element a0 ∈ minv(A)
which has been compared to the fewest number of elements in Ā; we then remove
the set A from A(v) and add the set B = Ā ∪ {a0} to B(v).

Note that at the root, |minr(A)| = m for all A ∈ A(r), and that this quantity
decreases by at most one for each comparison until a leaf is reached. In a leaf v
the median is known; thus, A(v) is empty.

Lemma 6.2. Let A(v) and B(v) be de�ned by the rules described above. Then,
every internal node v (labeled a : b) in T has a child with at least half the weight
of v, i.e., w(va<b) ≥ w(v)/2 or w(va>b) ≥ w(v)/2.

6.2. Bent and John revisited 73

case w2
va<b

(B) w2
va>b

(B)

a ∈ B b ∈ B 1
2 or 1 1

2 or 1
a ∈ B b ∈ B̄ 1 0
a ∈ B̄ b ∈ B 0 1
a ∈ B̄ b ∈ B̄ 1 1

Table 6.2. The weight of a set B ∈ B(v) in the children of a node v, relative to
its weight in v.

Proof. Table 6.1 gives the weights of a set A ∈ A(v) at v's children, relative to the
weight w1

v(A) of A at v. Similarly, Table 6.2 gives the weights of a set B ∈ B(v)
in v's children, relative to the weight w2

v(v) of B at v. As w1
va<b

(A)+w1
va>b

(A) ≥
w1

v(A) and w2
va<b

(B) + w2
va>b

(B) ≥ w2
v(B), for every A ∈ A(v) and B ∈ B(v),

all that remains to be checked is that the weight does not decrease when a lower
half compatible set B replaces an upper half compatible set A. This is covered
by Lemma 6.3.

Lemma 6.3. If A is removed from A(v) and B is added in its place to B(v),
and if fewer than 4n comparisons have been performed on the path from the root
to v, then 24

√
nw2

v(B) > w1
v(A).

Proof. A set A ∈ A(v) is replaced by a set B = Ā ∪ {a0} ∈ B(v) only when
|minv(A)| = �2√n	. The element a0, in such a case, is an element of minv(A)
that has been compared to the fewest number of elements in Ā. If a0 was
compared to at least 2

√
n elements in Ā, we get that each element of minv(A)

was compared to at least 2
√

n elements in Ā, and at least 4n comparisons have
been performed on the path from the root to v, a contradiction. We get therefore
that a0 was compared to fewer than 2

√
n elements of Ā and thus |maxv(B)| >

|maxv(Ā)|−2
√

n. As a consequence, we get that 4
√

n+|maxv(B)| > |minv(A)|+
|maxv(Ā)| and thus 24

√
nw2

v(B) > w1
v(A), as required.

We now know that the weight of the root is large, and that the weight does
not decrease too fast; what remains to be shown is that the weights of the leaves
are relatively small. This is established in the following lemma.

Lemma 6.4. For a leaf v (in which the median is known), w(v) ≤ 2m24
√

n.

Proof. Clearly, the only sets compatible with a leaf of T are the set A containing
the m largest elements, and the set B containing the m smallest elements. Since
|minv(A)| = |maxv(B)| = 1, we get that w2

v(B) = 2 and A �∈ A(v).
Since there are exactly m elements that can be removed from B to obtain a

corresponding Ā, there can be at most m copies of B in B(v).

74 Chapter 6. On lower bounds for selecting the median

Let T be a comparison tree that corresponds to a median �nding algorithm.
If the height of T is at least 4n, we are done. Otherwise, by starting at the root
and repeatedly descending to a child whose weight is at least half the weight of
its parent, we trace a path whose length is at least 2n + o(n) and Theorem 6.1
follows.

Let us see how the current formalism gives room for improvement that did not
exist in the original proof. The 2n+o(n) lower bound is obtained by showing that
each node v in a decision tree T that corresponds to a median �nding algorithm
has a child whose weight is at least half the weight of v. Consider the nodes
v0, v1, . . . , v� along the path obtained by starting at the root of T and repeatedly
descending to the child with the larger weight, until a leaf is reached. If we could
show that su�ciently many nodes on this path have weights strictly larger than
half the weights of their parents, we would obtain an improved lower bound for
median selection. If w(vi) ≥ 1

2 (1+δi)·w(vi−1), for every 1 ≤ i ≤ �, then the length
of this path, and therefore the depth of T , is at least 2n+

∑�
i=1 log2(1+δi)+o(n).

6.3 An improved lower bound for pair-forming
algorithms

Let v be a node of a comparison tree. An element x is a singleton at v if it
was not compared above v with any other element. Two elements x and y form
a pair at v if the elements x and y were compared to each other above v, but
neither of them was compared to any other element.

A pair-forming algorithm is an algorithm that starts by constructing �n/2� =
m − 1 pairs. By concentrating on comparisons that involve elements that are
part of pairs, we obtain a better lower bound for pair-forming algorithms.

Theorem 6.5. A pair-forming algorithm for �nding the median must perform,
in the worst case, at least 2.00691n + o(n) comparisons.

Proof. It is easy to see that a comparison involving two singletons can be delayed
until just before one of them is to be compared for the second time. We can
therefore restrict our attention to comparison trees in which the partial order
corresponding to each node contains at most two pairs. Allowing only one pair
is not enough as algorithms should be allowed to construct two pairs {a, b} and
{a′, b′}, and then compare an element from {a, b} with an element from {a′, b′}.

We focus our attention on nodes in the decision tree in which an element
of a pair is compared for the second time and in which the number of non-
singletons is at most εm, for some ε < 1. If v is a node in which the number
of non-singletons is at most εm, for some ε < 1, then B(v) is empty and thus
w(v) =

∑
A∈A(v) w1

v(A) and we do not have to consider Table 6.2 for the rest of
the section.

6.3. An improved lower bound for pair-forming algorithms 75

� c � c � c

� c � c � c

�a

�b �a

�b �a

�b

�a

�b �a

�b �a

�b

A

Ā

Figure 6.1. The six possible ways that a, b, and c may be divided between A
and Ā. Note that c is not necessarily a singleton element; it may be part of a
larger partial order.

Recall that A(v) denotes the collection of subsets of U size m that are upper
half compatible with v. If H, L ⊆ U are subsets of U , of arbitrary size, we let

AH/L(v) = {A ∈ A(v) | H ⊆ A and L ⊆ Ā}.

We let wH/L(v) be the contribution of the sets of AH/L(v) to the weight of v,
i.e.,

wH/L(v) =
∑

A∈AH/L(v)

w1
v(A).

We write Ah1...hr/l1...ls(v) for A{h1,...,hr}/{l1,...,ls}(v) and wh1...hr/l1...ls(v) for
w{h1,...,hr}/{l1,...,ls}(v).

Before proceeding, we describe the intuition that lies behind the rest of the
proof. Consider Table 6.1 from the last section. If, in a node v of the decision
tree, the two cases a ∈ A, b ∈ Ā and a ∈ Ā, b ∈ A are not equally likely, or more
precisely, if the contributions wa/b(v) and wb/a(v) of these two cases to the total
weight of v are not equal, there must be at least one child of v whose weight is
greater than half the weight of v. The di�culty in improving the lower bound of
Bent and John lies therefore at nodes in which the the contributions of the two
cases a ∈ A, b ∈ Ā and a ∈ Ā, b ∈ A are almost equal. This fact is not so easily
seen when looking at the original proof given in (Bent and John, 1985).

Suppose now that v is a node in which an element a of a pair {a, b} is
compared with an arbitrary element c and that the number of non-singletons in
v is at most εm. We assume, without loss of generality, that a > b. The weights
of a set A ∈ A(v) in v's children depend on which of the elements a, b, and
c belongs to A, and on whether c is minimal in A or maximal in Ā. The six
possible ways of dividing the elements a, b, and c between A and Ā are shown
in Figure 6.1. The weights of the set A in v's children, relative to the weight
w1

v(A) of A at v, in each one of these six cases are given in Table 6.3. Table 6.3 is
similar to Table 6.1 of the previous section, with c playing the role of b. There is
one important di�erence, however. If a, b, c ∈ A, as in the �rst row of Table 6.3,
then the weight of A in va>c is equal to the weight of A in v. The weight is
not halved, as may be the case in the �rst row of Table 6.1. If the contribution
wabc/(v) of the case a, b, c ∈ A to the weight of v is not negligible, there must
again be at least one child of v whose weight is greater than half the weight of v.

76 Chapter 6. On lower bounds for selecting the median

case w1
va<c

(A) w1
va>c

(A)

a ∈ A b ∈ A c ∈ A 1
2 or 1 1

a ∈ A b ∈ Ā c ∈ A 1
2 or 1 1

2

a ∈ Ā b ∈ Ā c ∈ A 1 0

a ∈ A b ∈ A c ∈ Ā 0 1

a ∈ A b ∈ Ā c ∈ Ā 0 1

a ∈ Ā b ∈ Ā c ∈ Ā 1
2

1
2 or 1

Table 6.3. The weight of a set A ∈ A(v) in the children of a node v, relative to
its weight in v, when the element a of a pair a > b is compared with an arbitrary
element c.

The improved lower bound is obtained by showing that if the contributions of
the cases a ∈ A, b ∈ Ā and a ∈ Ā, b ∈ A are roughly equal, and if most elements
in the partial order are singletons, then the contribution of the case a, b, c ∈ A
is non-negligible. The larger the number of singletons in the partial order, the
larger is the relative contribution of the weight wabc/(v) to the weight w(v) of v.
Thus, whenever an element of a pair is compared for the second time, we make
a small gain. The above intuition is made precise in the following lemma:

Lemma 6.6. If v is a node in which an element a of a pair a > b is compared
with an element c, and if the number of singletons in v is at least m+2

√
n, then

w(va<c) ≥ 1
2w(v) + 1

2 (wc/a(v) − wa/c(v)) ,

w(va>c) ≥ 1
2w(v) + 1

2 (wa/c(v) − wc/a(v) + wabc/(v)) .

Proof. Both inequalities follow easily by considering the entries in Table 6.3.
To obtain the second inequality, for example, note that w(va>c) ≥ 1

2 (w(v) +
wabc/(v)−wc/ab(v)+wab/c(v)+wa/bc(v)). As wc/ab(v) = wc/a(v) and wab/c(v)+
wa/bc(v) = wa/c(v), the second inequality follows.

It is worth pointing out that in Table 6.3 and in Lemma 6.6, we only need
to assume that a > b; we do not use the stronger condition that a > b is a pair.
This stronger condition is crucial however in the sequel, especially in Lemma 6.8.

To make use of Lemma 6.6 we need bounds on the relative contributions of
the di�erent cases. The following lemma is a useful tool for determining such
bounds.

Lemma 6.7. Let G = (V1, V2, E) be a bipartite graph. Let δ1 and δ2 be the
minimal degree of the vertices of V1 and V2, respectively. Let Δ1 and Δ2 be the
maximal degree of the vertices of V1 and V2, respectively. Assume that a positive

6.3. An improved lower bound for pair-forming algorithms 77

weight function w is de�ned on the vertices of G such that w(v1) = r · w(v2),
whenever v1 ∈ V1, v2 ∈ V2 and (v1, v2) ∈ E. Let w(V1) =

∑
v1∈V1

w(v1) and
w(V2) =

∑
v2∈V2

w(v2). Then,

r
δ2

Δ1
· w(V2) ≤ w(V1) ≤ r

Δ2

δ1
· w(V2).

Proof. Let v1(e) ∈ V1 and v2(e) ∈ V2 denote the two vertices connected by the
edge e. We then have

δ1

∑
v1∈V1

w(v1) ≤
∑
e∈E

w(v1(e)) = r
∑
e∈E

w(v2(e)) ≤ rΔ2

∑
v2∈V2

w(v2).

The other inequality follows by exchanging the roles of V1 and V2.

Using Lemma 6.7 we obtain the following basic inequalities.

Lemma 6.8. If v is a node in which a > b is a pair and the number of non-
singletons in v is at most εm, then

1
2 (1 − ε)·wac/b(v) ≤ wabc/(v) ≤ 1

2(1−ε) ·wac/b(v) ,

2(1 − ε)·wc/ab(v) ≤ wac/b(v) ≤ 2
1−ε ·wc/ab(v) ,

1
2 (1 − ε)·wa/bc(v) ≤ wab/c(v) ≤ 1

2(1−ε) ·wa/bc(v) ,

2(1 − ε)·w/abc(v) ≤ wa/bc(v) ≤ 2
1−ε ·w/abc(v) .

Each one of these inequalities relates a weight, such as wabc/(v), to a weight,
such as wac/b(v), obtained by moving one of the elements of the pair a > b from
A to Ā. In each inequality we `lose' a factor of 1 − ε. When the elements a and
b are joined together a factor of 2 is introduced. When the elements a and b are
separated, a factor of 1

2 is introduced.

Proof. We present a proof of the inequality wabc/(v) ≤ 1
2(1−ε) ·wac/b(v). The

proof of all the other inequalities is almost identical.
Construct a bipartite graph G = (V1, V2, E) whose vertex sets are V1 =

Aabc/(v) and V2 = Aac/b(v). De�ne an edge (A1, A2) ∈ E between A1 ∈ Aabc/(v)
and A2 ∈ Aac/b(v) if and only if there is a singleton d ∈ Ā1 such that A2 =
A1 \ {b} ∪ {d}. Suppose that (A1, A2) is such an edge. As a �∈ minv(A1)
but a ∈ minv(A2), while all other elements are extremal with respect to A1

if and only if they are extremal with respect to A2 (note that b ∈ minv(A1) and
b ∈ maxv(Ā2)), we get that w1

v(A1) = 1
2 ·w1

v(A2).
For every set A of size m, the number of singletons in A is at least (1−ε)m and

at most m. We get therefore that the minimal degrees of the vertices of V1 and V2

are δ1, δ2 ≥ (1 − ε)m and the maximal degrees of V1 and V2 are Δ1, Δ2 ≤ m.
The inequality wabc/(v) ≤ 1

2(1−ε)·wac/b(v) therefore follows from Lemma 6.7.

Using these basic inequalities we obtain:

78 Chapter 6. On lower bounds for selecting the median

Lemma 6.9. If v is a node in which a > b is a pair and the number of non-
singletons is at most εm, for some ε < 1, then

wabc/(v) ≥ (1−ε)2

(2−ε)2 ·wc/(v) ,

wa/c(v) ≥ (1−ε)(3−ε)
(2−ε)2 ·w/c(v) ,

wc/a(v) ≤ 1
(2−ε)2 ·wc/(v) .

Proof. We present the proof of the �rst inequality. The proof of the other two
inequalities is similar. Using inequalities from Lemma 6.8 we get that

wc/(v) = wabc/(v) + wac/b(v) + wc/ab(v)

≤ wabc/(v) + 2
1−ε ·wabc/(v) + 1

(1−ε)2 ·wabc/(v)

= (2−ε)2

(1−ε)2 ·wabc/(v)

and the �rst inequality follows.

We are now ready to show that if v is a node in which an element of a pair
is compared for the second time, then v has a child whose weight is greater than
half the weight of v. Combining Lemma 6.6 and Lemma 6.9, we get that

1
2 ·(w(va<c) + w(va>c)) ≥ 1

2 ·w(v) + (1−ε)2

4(2−ε)2 ·wc/(v) ,

w(va>c) ≥ 1
2 ·w(v) − ε

2(2−ε) ·wc/(v) + (1−ε)(3−ε)
2(2−ε)2 ·w/c(v) .

Let α = wc/(v)/w(v) and 1 − α = w/c(v)/w(v). We get that

1
2 ·(w(va<c) + w(va>c)) ≥

(
1
2 + (1−ε)2

4(2−ε)2 α
)
·w(v) ,

w(va>c) ≥
(

1
2 − ε

2(2−ε)α + (1−ε)(3−ε)
2(2−ε)2 (1 − α)

)
·w(v)

=
(

1
2 − 3−2ε

2(2−ε)2 α + (1−ε)(3−ε)
2(2−ε)2

)
·w(v) .

As a consequence, we get that

max{w(va<c), w(va>c)} ≥ max
{

1
2 + (1−ε)2

4(2−ε)2 α, 1
2 − 3−2ε

2(2−ε)2 α + (1−ε)(3−ε)
2(2−ε)2

}
·w(v) .

The coe�cient of w(v), on the right hand side, is minimized when the two expres-
sions whose maximum is taken are equal. This happens when α = 2(3−4ε+ε2)

7−6ε+ε2 .
Plugging this value of α into the two expressions, we get that

max{w(va<c), w(va>c)} ≥ 1
2 (1 + f1(ε))·w(v) ,

where

f1(ε) =
(3 − ε)(1 − ε)3

(2 − ε)2(7 − 6ε + ε2)
.

It is easy to check that f1(ε) > 0 for ε < 1.

6.3. An improved lower bound for pair-forming algorithms 79

A pair-forming comparison is a comparison in which two singletons are com-
pared to form a pair. A pair-touching comparison is a comparison in which an
element of a pair is compared for the second time. In a pair-forming algorithm,
the number of singletons is decreased only by pair-forming comparisons. Each
pair-forming comparison decreases the number of singletons by exactly two. As
explained above, pair-forming comparisons can always be delayed so that a pair-
forming comparison a : b is immediately followed by a comparison that touches
the pair {a, b}, or by a pair-forming comparison a′ : b′ and then by a comparison
that touches both pairs {a, b} and {a′, b′}.

Consider again the path traced from the root by repeatedly descending to the
child with the larger weight. As a consequence of the above discussion, we get
that when the ith pair-touching comparison along this path is performed, the
number of non-singletons in the partial order is at most 4i. It follows therefore
from the remark made at the end of the previous section that the depth of the
comparison tree corresponding to any pair-forming algorithm is at least

2n +
m/4∑
i=1

log2(1 + f1(
4i

m
)) + o(n)

= 2n +
n

8
·
∫ 1

0

log2(1 + f1(t))dt + o(n) ≈ 2.00691n + o(n) .

This completes the proof of Theorem 6.5.

The worst case in the proof above is obtained when the algorithm converts all
the elements into quartets . A quartet is a partial order obtained by comparing
elements contained in two disjoint pairs. In the proof above, we analyzed cases
in which an element a of a pair a > b is compared with an arbitrary element c. If
the element c is also part of a pair, a tighter analysis is possible. By performing
this analysis we can improve Theorem 6.5.

Theorem 6.10. A pair-forming algorithm for �nding the median must perform,
in the worst case, at least 2.01227n + o(n) comparisons.

Proof. Consider comparisons in which the element from a pair a > b is compared
with an element of a pair c > d. The nine possible ways of dividing the elements
a, b, c, and d among A and Ā are depicted in Figure 6.2. Because of symmetry
we may assume, without loss of generality, that the element a is compared with
either c or with d.

Let v be a node of the comparison tree in which a > b and c > d are pairs
and which one of the comparisons a : c or a : d is performed. Let A ∈ A(v). The
weights of a set A in v's children, relative to the weight w1

v(A) of A at v, in each
one of these nine cases are given in Table 6.4. The two possible comparisons a : c
and a : d are considered separately. The following equalities are easily veri�ed.

80 Chapter 6. On lower bounds for selecting the median

�a
�b �a

�b �a
�b

�a
�b �a

�b �a
�b

�a
�b �a

�b �a
�b

� c
� d

� c
� d

� c
� d � c

� d

� c
� d

� c
� d � c

� d

� c
� d

� c
� d

A

Ā

Figure 6.2. The nine possible ways that a, b, c, and d may be divided between A
and Ā.

case w1
va<c

(A) w1
va>c

(A) w1
va<d

(A) w1
va>d

(A)

A ∈ Aabcd/ 1 1 1
2 1

A ∈ Aacd/b 1 1
2

1
2

1
2

A ∈ Acd/ab 1 0 1 0

A ∈ Aabc/d
1
2 1 0 1

A ∈ Aac/bd
1
2

1
2 0 1

A ∈ Ac/abd 1 0 1
2

1
2

A ∈ Aab/cd 0 1 0 1

A ∈ Aa/bcd 0 1 0 1

A ∈ A/abcd
1
2

1
2

1
2 1

Table 6.4. The weight of a set A ∈ A(v) in the children of a node v, relative to
its weight in v, when the element a of a pair a > b is compared with an element
of a pair c > d.

Lemma 6.11. If a > b and c > d are pairs in v then

wacd/b(v) = wabc/d(v) ,

wcd/ab(v) = wab/cd(v) ,

wc/abd(v) = wa/bcd(v) ,

wac/bd(v) = 4·wab/cd(v) .

The following inequalities are analogous to the inequalities of Lemma 6.8.

Lemma 6.12. If a > b and c > d are pairs in v and if the number of non-
singletons in v is at most εm, for some ε < 1, then

1
2 (1 − ε)wabc/d(v) ≤ wabcd/(v) ≤ 1

2(1−ε)wabc/d(v) ,

2(1 − ε)wab/cd(v) ≤ wabc/d(v) ≤ 2
1−εwab/cd(v) ,

1
2 (1 − ε)wa/bcd(v) ≤ wab/cd(v) ≤ 1

2(1−ε)wa/bcd(v) ,

2(1 − ε)w/abcd(v) ≤ wa/bcd(v) ≤ 2
1−εw/abcd(v) .

6.4. Concluding remarks 81

Consider �rst the comparison a : c. By examining Table 6.4 and using the
equalities of Lemma 6.11, we get that

w(va<c)+w(va>c)
2

= wabcd/(v) +
3
4
wacd/b(v) +

1
2
wcd/ab(v) +

3
4
wabc/d(v)

+ 1
2wac/bd(v) + 1

2wc/abd(v) + 1
2wab/cd(v) + 1

2wa/bcd(v) + 1
2w/abcd(v)

= wabcd/(v) + 3
2wabc/d(v) + 3wab/cd(v) + wa/bcd(v) + 1

2w/abcd(v).

Minimizing this expression, subject to the equalities of Lemma 6.11, the inequal-
ities of Lemma 6.12, and the fact that the weights of the nine cases sum up to
w(v), amounts to solving a linear program. By solving this linear program we
get that

w(va<c) + w(va>c)
2w(v)

≥ 1
2
(1 + f2(ε)) · w(v) ,

where

f2(ε) =
(3 − ε)(1 − ε)3

(2 − ε)4
.

It seems intuitively clear that the comparison a : d is a bad comparison from
the algorithm's point of view. The adversary will most likely answer with a > d.
Indeed, by solving the corresponding linear program, we get that

w(va>d) = wabcd/(v) + 1
2wacd/b(v) + wabc/d(v) + wac/bd(v)

+ 1
2wc/abd(v) + wab/cd(v) + wa/bcd(v) + w/abcd(v)

= wabcd/(v) + 3
2wabc/d(v) + 5wab/cd(v) + 3

2wa/bcd(v) + w/abcd(v)

≥ 3
4w(v).

As 1
2 (1 + f2(ε)) ≤ 3

4 , for every 0 ≤ ε ≤ 1, we may disregard the comparison a : d
from any further consideration.

It is easy to verify that (1 + f1(ε))2 ≥ 1 + f2(ε) which means that the bad
case (from a lower bound point of view) is when the algorithm uses two pairs by
comparing them to each other. As a result, we get a lower bound of

2n +
n

8
·
∫ 1

0

log2(1 + f2(t))dt + o(n) ≈ 2.01227n + o(n) .

This completes the proof of Theorem 6.10.

6.4 Concluding remarks
We presented a reformulation of the 2n+ o(n) lower bound of Bent and John for
the number of comparisons needed for selecting the median of n elements. Using

82 Chapter 6. On lower bounds for selecting the median

this new formulation we obtained an improved lower bound for pair-forming
median �nding algorithms. As mentioned, Dor and Zwick (1996) have recently
extended the ideas described here to obtain a (2+ε)n lower bound for general
median �nding algorithms, for some tiny ε > 0.

We believe that the lower bound for pair-forming algorithms obtained here
can be substantially improved. Such an improvement seems to require, however,
some new ideas. Obtaining an improved lower bound for pair-forming algorithms
may be an important step towards obtaining a lower bound for general algorithms
which is signi�cantly better than the lower bound of Bent and John (1985).

Paterson (1996) conjectures that the number of comparisons required for
selecting the median is about (log4/3 2)·n ≈ 2.41n. His conjecture is based on
considering the number of partitions of the elements into two subsets A and B,
where |A| = �n/2	 and |B| = �n/2�, such that the elements in A may all be
larger than the elements in B with respect to the comparisons made. Before an
algorithm makes any comparisons, there are

(
n

�n/2�
)
such partitions. The �rst

comparison brings down the number of compatible partitions by a factor of 3/4,
and it seems reasonable that further comparisons can not, at average, do better
than that. When the median is known, there is only one compatible partition
left, so we get the equation (3/4)h

(
n

�n/2�
) ≤ 1 for the lower bound h.

Bibliography

Aigner, M. (1981). Producing posets. Discrete Mathematics 35, 1	15.

Alon, N. and R. B. Boppana (1987). The monotone circuit complexity of
boolean functions. Combinatorica 7, 1	22.

Alon, N. and J. H. Spencer (1992). The probabilistic method. Wiley-Interscience
Series in Discrete Mathematics and Optimization. New York: John Wiley &
Sons Inc. With an appendix by Paul Erd®s, A Wiley-Interscience Publication.

Amano, K. and A. Maruoka (1996). Potential of the approximation method.
In Proc. 37th Ann. IEEE Symp. Found. Comput. Sci., pp. 431	440.

Andreev, A. E. (1985). On a method for obtaining lower bounds for the com-
plexity of individual monotone functions. Soviet Mathematics Doklady 31, 530	
534.

Beigel, R. (1994). Perceptrons, PP, and the polynomial hierarchy. Computa-
tional Complexity 4 (4), 339	349.

Beigel, R., L. A. Hemachandra, and G. Wechsung (1991). Probabilistic polyno-
mial time is closed under parity reductions. Information Processing Letters 37,
91	94.

Beigel, R., N. Reingold, and D. Spielman (1995). PP is closed under intersec-
tion. Journal of Computer and System Sciences 50 (2), 191	202.

Bent, S. W. and J. W. John (1985). Finding the median requires 2n compar-
isons. In Proceedings of the Seventeenth Annual ACM Symposium on Theory
of Computing, pp. 213	216.

Berg, C. and S. Ulfberg (1998). A lower bound for perceptrons and an oracle
separation of the PPph hierarchy. Journal of Computer and System Sciences 56,
263	271.

Berg, C. and S. Ulfberg (1999). Symmetric approximation arguments for mono-
tone lower bounds without sun�owers. Computational complexity 8, 1	20.

83

84 Bibliography

Blum, M., R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan (1973). Time
bounds for selection. Journal of Computer and System Sciences 7, 448	461.

Boppana, R. B. and M. Sipser (1990). The complexity of �nite functions. In
J. van Leeuwen (Ed.), Handbook of theoretical computer science, Volume A,
Algorithms and complexity, pp. 757	804. Elsevier/MIT Press.

Chen, J. (1993). Partial Order Productions. Ph. D. thesis, Lund University,
Box 118, S-221 00 Lund, Sweden.

Dor, D., J. Håstad, S. Ulfberg, and U. Zwick (2000). On lower bounds for
selecting the median. SIAM Journal of Discrete Mathematics . to appear.

Dor, D. and U. Zwick (1995). Selecting the median. In Proceedings of 6th
SODA, pp. 88	97.

Dor, D. and U. Zwick (1996). Median selection requires (2+ε)n comparisons.
In Proceedings of 37th FOCS.

Erd®s, P. and R. Rado (1960). Intersection theorems for systems of sets. J.
London Math. Soc. 35, 85	90.

Ford, L. R. and S. M. Johnson (1959). A tournament problem. American
Mathematical Monthly 66, 387	389.

Fu, B. (1992). Separating PH from PP by relativization. Acta Mathematica
Sinica (New Series) 8 (3), 329	336.

Furst, M., J. B. Saxe, and M. Sipser (1984). Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory 17, 13	27.

Fussenegger, F. and H. N. Gabow (1979, April). A counting approach to lower
bounds for selection problems. Journal of the Association for Computing Ma-
chinery 26 (2), 227	238.

Green, F. (1991). An oracle separating ⊕P from PPPH. Information Processing
Letters 37, 149	153.

Green, F. (1995). A lower bound for monotone perceptrons. Mathematical
Systems Theory 28, 283	298.

Haken, A. (1995). Counting bottlenecks to show monotone P �= NP. In Proc.
36th Ann. IEEE Symp. Found. Comput. Sci., pp. 36	40.

Haken, A. and S. Cook (1996). An exponential lower bound for the size of
monotone real circuits. Submitted to J. Comput. System Sci.

Håstad, J. (1987). Computational Limitations for Small-Depth Circuits. ACM
doctoral dissertation awards. Cambridge, Massachusetts: MIT Press.

Bibliography 85

Håstad, J. (1989). Almost optimal lower bounds for small depth circuits. In
S. Micali (Ed.), Randomness and Computation, Volume 5 of Advances in Com-
puting Research, pp. 143	170. JAI Press Inc.

Håstad, J. and M. Goldmann (1991). On the power of small-depth threshold
circuits. Computational Complexity 1 (2), 113	129.

Jukna, S. (1997). Finite limits and monotone computations over the reals. In
Twelfth Annual IEEE Conference on Computational Complexity.

Jukna, S. (1999). Combinatorics of monotone computations. Combinatorica 19,
65	85.

Knuth, D. E. (1973). The Art of Computer Programming, vol. 3, Searching and
Sorting. Addison-Wesley Publishing Company, Inc.

Ko, K.-I. (1989). Relativized polynomial time hierarchies having exactly k
levels. SIAM Journal of Computing 18 (2), 392	408.

Linial, N., Y. Mansour, and N. Nisan (1989). Constant depth circuits, Fourier
transform, and learnability. In 30th Annual Symposium on Foundations of
Computer Science, pp. 574	579.

Minsky, M. and S. Papert (1988). Perceptrons (Expanded ed.). Cambridge,
Massachusetts: MIT Press.

Munro, I. and P. Poblete (1982). A lower bound for determining the median.
Technical report, Technical Report Research Report CS-82-21, University of
Waterloo.

Paterson, M. S. (1996). Progress in selection. In 5th Scandinavian Workshop
on Algorithm Theory, Reykjavík, Iceland, pp. 368	379.

Pratt, V. R. and F. F. Yao (1973). On lower bounds for computing the i-
th largest element. In 14th Annual Symposium on Switching and Automata
Theory, pp. 70	81.

Pudlák, P. (1997). Lower bounds for resolution and cutting planes proofs and
monotone computations. Journal of Symbolic Logic 62, 981	998.

Razborov, A. A. (1985a). A lower bound on the monotone network complexity
of the logical permanent. Mathematical Notes of the Academy of Sciences of
the USSR 37, 485	493.

Razborov, A. A. (1985b). Lower bounds on the monotone complexity of some
boolean functions. Sov. Math. Dokl. 31, 354	357.

Razborov, A. A. (1989). On the method of approximations. In Proc. Twenty-
�rst Ann. ACM Symp. Theor. Comput., pp. 167	176.

86 Bibliography

Schönhage, A., M. Paterson, and N. Pippenger (1976). Finding the median.
Journal of Computer and System Sciences 13, 184	199.

Simon, J. and S.-C. Tsai (1997). A note on the bottleneck counting argument.
In Twelfth Annual IEEE Conference on Computational Complexity.

Sipser, M. (1983). Borel sets and circuit complexity. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, pp. 61	69.

Tiekenheinrich, J. (1984). A 4n lower bound on the monotone network com-
plexity of a one-output boolean function. Inform. Process. Lett. 18, 201	202.

Yao, A. (1985). Separating the polynomial-time hierarchy by oracles. In Pro-
ceedings of the 26th IEEE Symposium on Foundations of Computer Science,
pp. 1	10.

Yap, C. (1976). New lower bounds for medians and related problems. Technical
report, Computer Science Report 79, Yale University. Abstract in Symposium
on Algorithms and Complexity: New Results and Directions, (J. F. Traub, ed.)
Carnegie-Mellon University, 1976.

Index

accepting state, 21
adding, complexity of, 2
addition, hardness of, 2
algorithm, 4

optimal, 14
pair-forming, 14

Andreev's polynomial problem, 31
approximator, 7, 27

balanced set system, 40
binary digit, 2
bit, 2
BMS (Broken mosquito screens), 36
boolean circuit, 19
boolean formula, 18

bounded depth, 20
depth of, 18
monotone, 20
size of, 18

boolean function, 2
bottleneck counting, 8, 26
Broken mosquito screens (BMS), 36

cell, of work tape, 21
characteristic function, 21
circuit, 19

bounded depth, 20
depth of, 19
monotone, 6, 20
monotone real, 20
size of, 19

circuit family, 19
Clique, 7, 33
CNF formula, 18
comparison based model, 5, 13, 23,

69

complexity class, 5
complexity classes

NP, 5, 22
P, 5
PH, 23
PSPACE, 5

computation tree, 22
computational problem, 1
computationally e�cient, 2
computationally hard, 2
conjunction, 18
conjunctive normal form, 18
connectedness, 10
cryptographic security, 2

decision tree, 13, 24, 46
design, combinatorial, 41
discrete logarithm, 2
disjunction, 18
disjunctive normal form, 18
DNF formula, 18

edge, in graph, 1

factoring, into primes, 2
fan-in, 18
fan-out, 19
function

boolean, 2
monotone, 6

gate, 18
graph, 1

Håstad switching lemma, 53

initial state, 21

87

88 Index

input representation, of graph, 7

language, 21
lower bound, 4

for median selection, 69
for monotone circuits, 25
for pair-forming algorithms, 74
for sorting, 24

maximum independent set, 2
median

lower bounds for, 69
selection, 12, 13, 69

merge insertion, 13
models of computation

boolean circuit, 19
boolean formula, 18
comparison based, 23
perceptron, 20
restricted, 6, 20
Turing machine, 20

monotone boolean formula, 20
monotone circuit, 6, 20

lower bounds for, 25
monotone function, 6
monotone real circuit, 20
multiplication, hardness of, 2

One-in-a-box theorem, 10
optimal algorithm, 14
oracle, 23
oracle query, 23
oracle query tape, 23
ordered set, 23

pair-forming algorithms, 14
lower bound for, 74

perceptron, 20
perfect matching, 7
polynomial time hierarchy, 23

radix sort, 23
random restrictions, 52
rejecting state, 21
relativization, 12
restrictions, 52

searching, 2, 6
selection

maximal element, 14
median, 12, 69
minimal element, 14

sorting, 6, 13
by merge insertion, 13
lower bound for, 24

tape head, 21
transition function, 21, 22
Turing machine, 3, 20

alternating, 22, 59
deterministic, 20
non-deterministic, 22
with oracle access, 23

undecidability, 19
uniform circuits, 19
upper bound, 4

vertex, in graph, 1

weight function, 70
work tape, 21

