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Abstract

The paper investigates the extent to which a public source of random bits can
be used to obtain private random bits that can be safely used in cryptographic
protocols� This process is called privatization of random bits� We consider the
case in which the party privatizing random bits has a small number of private
random bits� Using techniques from the theory of pseudo�random generators and
�nely tailoring them for the speci�cs of this problem� we show that starting with
cn private bits and using a long but public random string� one can produce �dn

random bits that cannot be distinguished �but with exponentially small bias� from
real random bits by any adversary circuits of size ������n�

Keywords� one�way function� pseudo�random generator� random bits�

� Introduction

It is commonly accepted that random bits are a valuable computational resource� Unfortu�
nately� random bits are hard and expensive to produce� Generating them by special�purpose
devices such as Geiger counters or Zener diodes is slow and the outcomes must still be further
processed �see 	SV
�� and 	Blu

��� One solution to reduce the costs of getting good ran�
dom bits is to share the random source� We can think of a scenario where there is a public
agent that provides random bits to anyone requesting them� It is conceivable that this is more
practical than connecting a Geiger counter to your PC� However� in some �in fact� in most�
cryptographic protocols one needs private random bits� i�e�� bits that cannot be predicted by
the adversary� Consider for example the perfect encryption system� the one�time pad� that was
invented in ���� by Major Joseph Mauborgne and Gilbert Vernam 	Kah���� In this system
both the sender and the receiver have a common key consisting of a long string of random bits�
called the one�time pad� Encryption is done by XORing bitwise the message with the one�time
pad and decryption is done by XORing the ciphertext with the one�time pad� While the sys�
tem is provably resistant to any cryptanalysis attack� it has the drawback of requiring a key
that is as long as the message and this creates big problems with key distribution and storage�
These problems would disappear if there was a public agent distributing random one�time pads
from which the legitimate sender and receiver could extract strings that look random to any
adversary of some signi�cant computational power� Thus� the problem reduces to privatizing
random bits� i�e�� to obtaining private random bits out of a public source�
In this work we investigate theoretical aspects related to the privatization of random bits� We
do not address here the issue of producing the public random string� We just assume that there
is an agent capable of a signi�cant one�time e�ort targeted at producing a long high�quality



random string� Some speculations about possible practical variants of the algorithm are brie�y
discussed in Section �� In this respect� it is noteworthy that George Marsaglia has produced a
���MB high quality random string that is publicly available on a CD�ROM 	�����a� or from
the internet 	�����b��
Clearly the party ��we�� that wants to obtain private random bits must have some advantage
over the adversary ��they��� as otherwise �they� could simply reproduce the operations per�
formed by �us�� For example� one such advantage is for �us� to possess more computational
power than �they� but this is not a sound assumption in a cryptographical context� The type
of advantage that we consider in this work is much more interesting for cryptographical appli�
cations and assumes that �we� possess a small number of private random bits� The theoretical
issue on which we focus is that of making the privatization work with an advantage as small as
possible�
In this setting the privatization of random bits amounts to building a pseudo�random generator�
i�e�� a function f that takes as input a small number of random bits �which in our context are
private� and produces a larger number of bits that look random to the adversary� Again this
must hold with high probability over the choices of public random bits� In the presence of a
public random string �that can be viewed as an oracle� this seems to be an easy task� �We�
could simply use the private string as the address of a block in the public random string and
output that block� This seems to be safe� since the adversary does not know what block has
been selected� However� this approach �which we dub �naive�� is neither theoretically secure�
nor practically feasible� Maurer 	Mau��� has presented a solution that is provably secure with
high probability over the joint distribution of the public string and the private string �a similar
solution is presented in 	Zim����� In other words the public source should continuosly produce
and distribute long random strings and the legitimate parties ��we�� must synchronize perfectly�
We present a solution in which a good public random string �for example something similar
to Marsaglia�s CD�ROM� can be reused forever� Our construction uses O�n� private random
bits� �O�n� public random bits and produces up to ���n� bits that are not distinguishable with
a bias better than ����n� by any adversary circuit of size �an� where a � ���� Moreover� every
bit of the output is produced in nO��� time� This holds with probability over the choices of
public random bits larger than � � ����n�� If we assume that �they� have polynomial�time
computational capabilities� in order to produce an output of length m� the construction uses a
private string of length �logm����� Since a private string of length c logm is clearly not enough
against a polynomial�time adversary� it follows that our solution is almost optimal with respect
to the length of the private key�
The construction is done by transforming a function built by Impagliazzo 	Imp���� which is
strongly one�way with respect to a random oracle and is safe against non�uniform adversaries�
into a randomized pseudo�random generator� Impagliazzo inferred the existence of such a ran�
domized pseudo�random generator from the general result of H�astad� Impagliazzo� Levin� and
Luby 	HILL��� that shows that the existence of one�way functions is equivalent to the exis�
tence of pseudo�random generators� Our main concern here is the e�ciency of the privatization
process with respect to the length of the private string� We present a construction that is
signi�cantly more e�cient than the construction implied by 	HILL���� Thus� the algorithm
presented here uses cn private random bits and produces an output of length �dn for some con�
stants c and d� while the general method requires order of n	 private random bits� Moreover�
by using �nely tuned extractors �rather than just universal hashing functions�� the constant c
is small� being approximately equal to � �and it can be reduced to approximately ���
We recall that �� is the set of �nite binary strings and �n is the set of binary strings of length
n� if x � ��� then jxj is the length of string x� x�i� denotes the i�th bit of x� if S is a set�



then jSj is the cardinality of S� and� �nally� if y is a real number� then jyj is the modulus of
y� The notation Probx�DX�A� represents the probability of A when x is randomly chosen in
X according to a distribution D� Sometimes x� X� or D are clear from the context and are
therefore omitted�

� Formal Framework

The access to a public source of random bits is formalized by using functional oracles� That
is the machine computing the pseudo�random generator is an oracle machine and we stipulate
that the oracle is a function R such that if x is on the query tape and the machine enters
a query state� then R�x� is immediately provided on some specially designated answer tape�
This models both the situation when the request to the public�server is done on�line and the
situation in which the random bits are transferred in a precomputation phase and stored� say�
on the hard�disk� The function R consists in fact of a family of functions �Rn�n�N� where
Rn � �

i�n� � �m�n�� We stipulate that the machine that privatizes the bits taken from the
server asks on inputs of length n only queries of length i�n�� The probabilistic space on inputs
of length n is denoted by Rn and consists of the set of all functions Rn as above and the uniform
distribution on this set �note that i�n� and m�n� are the same for all functions in Rn�� Such a
function Rn can be encoded in �

i�n�m�n� bits� and if the oracle machine M works with Rn as
its oracle on inputs of length n� we say that M uses �i�n�m�n� public random bits�
A pseudo�random generator is a function f that maps short strings to longer strings such that
any adversary of some signi�cant computational power cannot distinguish with a good bias
between the uniform distribution on the set of long strings and the distribution induced by f
when its input is uniform randomly selected in the set of short strings� Thus the function f
takes as input short random strings and outputs long strings that look random to the adversary�
In our setting� the pseudo�random generator takes as input a short private random string and�
using a public source of random bits� produces a long string that looks random to the adversary
even though this one knows the public string that has been used�
In order to make the de�nition below more clear� let us recapitulate the ideas leading to the def�
inition of a pseudo�random generator� We consider families of distributions� also called ensem�
bles� X � �Xn�n�N� where each Xn is a distribution on �

n� The statistical di�erence between
two ensembles X and Y is de�ned by  �Xn� Yn� �

P
��
n j Prob�Xn � ��� Prob�Yn � �� j�

Ideally� we would like that the pseudo�random generator G � �s � �l induces a distribution
�G�x��x�
s that is ��close to the uniform distribution Ul on �

l for some small �� i�e�� that has
 �G�x�� Ul� � �� If this were possible� then an adversary of arbitrarily large size could not dis�
tinguish between the two distributions with a bias greater than �� simply because there is no such
statistical di�erence between the two distributions� It is easy to see that if s � l this is not possi�
ble for � � o���� However� the two distributions could still be computationally indistinguishable�
Let us consider for two ensembles X and Y � d�Xn� Yn� � maxA�
n j ProbXn�A�� ProbYn�A� j�
It is not di�cult to see that d�Xn� Yn� � ��� �Xn� Yn�� Now� if an adversary circuit C cannot
�nd a set A � �n such that j ProbXn�A��ProbYn�A� j � �� then for him the two distributions
behave as if they had a statistical di�erence bounded from above by ��� Therefore� we say that
G � �short�n� � �long�n� is a pseudo�random generator with security ��� 	� and expansion factor
long�n�� short�n�� if for any circuit C of size 	�n��

j Probx�
short�n��C�G�x�� � ��� Proby�
long�n��C�y� � �� j � ��n��

The randomized version follows the same ideas with the modi�cation that the above relation
is only required to hold with high probability�



De�nition ��� Let �� 	� 
 � N� R� long� short � N� N� M be an oracle machine� and fR
be the function computed by the machine M with oracle R� The function computed by M is a
randomized pseudo�random generator that has security ��� 	� with probability 
 and expansion
long�n��short�n� if �a� M runs in polynomial time on all inputs and with all oracles� �b� fR on
inputs of length short�n� produces outputs of length long�n� for all R� and �c� with probability
of R in Rn at least 
�n� it holds that for any family C � �Cn�n�N of oracle circuits of size less
than 	�n�� the following relation is true for n � N su�ciently large�

j Probx�
short�n��CR
long�n��fR�x�� � ��� Proby�
long�n��C

R
long�n��y� � �� j � ��n��

CR
n denotes the fact that the oracle circuit Cn runs with the function R as the function oracle

�i�e�� if the the input bits at an oracle gate form the string x� then the string R�x� is produced
as the output bits of the oracle gate���

� The naive approach

The naive approach consists of simply taking at random a block from the global random string�
�At random� means that the address of the block is given by the local random string� Let us
�rst observe that this method is not practically feasible� In order to preclude an exhaustive
search of the private string� the current recommendations require a private string of length at
least �
 �and the tendency is to view this length as unsecure nowadays�� Since the private
key is an address in the public string� this implies that the public key should be ��� bits long�
Clearly� producing and distributing such a long string is not doable in the real world� The naive
method is not satisfactory at the theoretical level either as it seems to do the job only in the
case in which the adversary does not have access to the public server� Indeed� let us suppose
that we want to produce random bits of length m that look private to adversaries that have
the computational power of polynomial�size circuits� Let the global random string R consist
of n blocks of length m� where n � �� ! ln���
������	�� Let Y �r� R� be the r�th block in R�
Note that jrj � blognc ! �� The key point is that for almost all R� the distribution of Y �r� R�
�with R �xed and r uniformly at random selected among the strings of length blognc ! ��
cannot be distinguished with enough bias from the uniform distribution on strings of length
m by circuits of size polynomial in m� Indeed� let C be a circuit of size size� We compare
Proby�
m�C�y� � ��� and Probr�
blognc���C�Y �r� R� � ��� Let � � Proby�
m�C�y� � �� and
�i � � if C�Y �ri� R�� � � and �� otherwise� where i � �� � � � � n� The expected value over R of
each �i is �� So� by Cherno� bounds

Prob�j� � �
n

nX
i��

�ij � �� � �e�	��n � �e����ln������ � 
�

Thus� the probability that C can distinguish Y �r� R� from the uniform distribution is less than


� There are less than �
size	�size circuits C of size size� Therefore� if we take 
 � ��	log
�m

and � � �� log�m� we get that with probability greater than �� ��q�m�� where q is an arbitrary
polynomial� for all circuits C of size polynomial in m�

jProby�
m�C�y� � ��� Probr�
blognc���C�Y �r� R� � ��j � �� log�m�

Observe� that by using a local random string r of length � logn � O�log	m� and a public
random string R of length nm� we have produced a string Y �r� R� of length m that can be
used as a private random string against adversary circuits of size polynomial in m� The naive
approach is indeed simple� but the above proof dose not work for the general case in which the
adversaries can see the global random string R� One problem is that the number of functions
computed by such circuits with various R�s is much larger and the proof breaks down�



� Some technical tools

Let X and Y be two distributions on the same sample space S� X and Y are computationally
��close for circuits of size s� if for any circuit C of size s�

 s
comput�X� Y � � jProbx�XS�C�x� � ��� Proby�Y S�C�y� � ��j � ��

When the size s is clear from the context� we drop the superscript s� This concept is extended
in the natural way to the case in which X and Y are ensembles of distributions and C is a
family of circuits�
Let D be a distribution on �n� The maximum mass of D is de�ned to be max�mass�D� �
maxx�
n D�x�� The collision probability of D is ProbD�X � Y � �

P
x�
n D

	�x�� where X and
Y are independent random variables having distribution D� The following facts are well known
�see the Appendix for the proof��

Lemma ��� Let D be a distribution on �n with collision probability at most ��n��! �	�� Then
D is ��close to the uniform distribution on �n�

Lemma ��� Let D be a distribution on �n with max�mass�D� � p��n� Then the collision
probability of D is upper bounded by p��n�

At some point �in Step �� in our construction we will use extractors� An extractor is a bipartite
graph that can be used to reduce the maximum mass of distributions� More precisely� an
�n� k� d�m� ���extractor is a regular bipartite graph having �n nodes in the left�hand side and
�m nodes in the right�hand side� with the degree of each node in the left�hand side equal to d�
and such that if node x is randomly chosen in the left�hand side according to a distribution that
has maximum mass k and y is uniformly at random chosen among the edges going out from x�
the distribution of E�x� y� is ��close to the uniform distribution on �m� �E�x� y� denotes the
node on the right�hand side that is reached from x following y��
Ideally� we would like to be able to e�ectively and e�ciently build extractors� In fact� quite
good extractors have been constructed in recent years 	TS���� 	Zuc��� �see also the survey
paper 	Nis����� However� in the best such extractors� the length of y is polylog in the length
of x and ��� and� since we need to have � � ����jxj�� this is too large for our purposes� In our
setting� y will be part of the local random string� and thus� we would like to use an as short y as
possible� We will achieve jyj � O�jxj� with a small multiplicative constant and � exponentially
small in jxj� as required above�
The key ingredient in this part of the construction is a special type of extractor� which we call
a simple extractor�

De�nition ��� Let G � �V�� V	� E� be a bipartite regular graph with the left�hand side V� � �
n�

the right�hand side V	 � �
m and degree D � �d� The edges are represented by the function

E � �n��d � �m �E�a� y� � b means that starting from a � V� and following the edge y � �d

we reach b � V	�� The graph G is a �n�m� d� ���simple extractor if for all a� a� � V� with a �� a��

Proby�
d�E�a� y� � E�a�� y�� � ��m�� ! ���

The terminology is justi�ed by the following result�

Theorem ��� Let G � �V�� V	� E� be a �n�m� d� ���simple extractor� Then the distribution of
�E�x� y�� y� when x is chosen in V� according to a distribution with maximum mass p��n and y

is uniformly at random chosen in �d� is
q
�! p

	n�m
�close to the uniform distribution� In other

words� G is an �n� p��n� d�m�
q
�! p

	n�m
� extractor�



Proof � We �rst evaluate the collision probability of �E�x� y�� y��

Probx�y�x��y���E�x� y�� y� � �E�x
�� y��� y���

� Proby�y��y � y��Probx�x��y�E�x� y� � E�x�� y��
� �

D
�Probx�x��x � x�� ! Probx�x��y�E�x� y� � E�x�� y� j x �� x����

���

The �rst term is bounded by p��n �we have used the hypothesis on the maximum mass of the
distribution of x and Lemma 
���� We evaluate the second term�

Probx�x��y�E�x� y� � E�x�� y� j x �� x��
�
P

u��u� Proby�E�u� y� � E�u�� y��Probx�x��x � u and x� � u� jx �� x��
� �� ! ����m

P
u ��u� Probx�x��x � u and x� � u� j x �� x�� � �� ! ����m�

We have used the fact that G is an �n�m� d� ���simple extractor� It follows that equation ��� is
bounded from above by

�

D
�
p

�n
! �� ! ����m� �

�

D 	 �m �� ! �
p

�n�m
! ����

Taking into account Lemma 
��� the conclusion follows�
It turns out that a random regular bipartite graph is with high probability a simple extractor�
More precisely� the following theorem holds�

Theorem ��	 Let G � �V�� V	� E� be a random regular bipartite graph with the left�hand side
V� � �

n� the right�hand side V	 � �
m� and degree D � �d � �n�m����	�� Then with probability

of G at least �� ��n� G is an �n�m� d� ���simple extractor�

Proof � For �xed a� a� � �n� with a �� a�� and for each y � �d� let Xy be �� if E�a� y� � E�a�� y��
and �� otherwise� Clearly� Prob�Xy � �� � �

�m and the random variables Xy are independent�
By Cherno� bounds� ProbG��

P
Xy��D 
 ��m�� ! ��� � e����
�����D�	�m � ��
n��� Thus� the

fraction of edges y such that E�a� y� � E�a�� y� is 
 �m�� ! ��� only with probability of G
less than ��
n��� The probability that there is a pair a� a� as above is less than ���n���� The
conclusion follows�
Thus simple extractors are extractors and� as in the case of extractors� a random graph is a
simple extractor� One big advantage of simple extractors is that checking whether a bipartite
graph is a simple extractor can be done in polynomial time� whereas the same operation for
extractors is NP�complete 	Zim���� Thus in practice it is not too di�cult to build good ex�
tractors� One merely generates randomly a graph as in Theorem 
�� and then checks if it is a
simple extractor�
Moreover� for the combination of parameters that we need� we can construct deterministically
a simple extractor in a very simple and e�cient way� Namely� let n�m be two integers such
that n � �m� We construct a bipartite graph G � �V�� V	� E� as follows� We take V� � �

n and
V	 � �

m� We also identify V	 with the �eldGF ��
m�� Each a � V� is viewed as the linear function

pa � GF ��
m�� GF ��m� de�ned by pa�y� � cy!d� where a � cd and jcj � jdj � n�� � m� Each

node a � V� has degree D � �
m and is connected to E�a� y�� � pa�y��� � � � � E�a� y	m� � pa�y	m��

where y�� � � � � y	m are all the elements in �
m � GF ��m��

Lemma ��
 The above graph is an �n�m�m� ���simple extractor�

Proof � Since two polynomials of degree at most one intersect in at most one point� for all
a �� a� � V��

Prob�E�a� y� � E�a�� y�� � �

�m
�



� Construction of the randomized pseudo�random gen�

erator

The construction consists of �ve steps� Since the last two steps do not involve the use of the
private random string and since they closely follow well�known techniques� we focus mainly on
the �rst three steps�
Step � �The goal of this step is the construction of a randomized one�way function� Let R be
the set of all functions R � �n � �n� For each R � R� let

fR�x� � R�x��

Impagliazzo 	Imp��� has shown that for most R fR behaves like a one�way function� More
precisely� let q�n� be an arbitrary polynomial and size� be a bound on the size of adversary
circuits with size� � �an� where a � ���� Then� with probability of R in R at least �� ��q�n�
�a� All strings in �n have at most p � �eq�n� ! n preimages under fR �e � ���� � � � is the

Euler constant��

�b� For t � �size� log �size� ! �q�n�� there are at least �
n � �e	p 	 size� 	 t strings x in �n

that map via fR into strings that are noninvertible by any circuit C of size size�� i�e��
fR�C

R�fR�x��� �� fR�x�� Let c� � � be such that �
�c�n � ��n � �e	p 	 size� 	 t���n�

�c� Let gR�x� s� � �fR�x�� s�� where jxj � n and s � �n� We partition �
n into K � ��
�	b�n

segments each having �	bn elements �b is a constant that will be speci�ed later and that
is less than ������ Then for each i � �� � � � � K�

Probx�
n�s�
�n�gR�x� s� is in the i�th segment� � �

K
!

�

K��b�

�

where b is a positive constant that will be speci�ed in Step �� The proof of the above statements
is provided in the Appendix� LetR� be the subset ofR consisting of the elements R that satisfy
�a�� �b� and �c��

Step � �The randomized one�way function is expanded with some hidden bits�� Let gR�x� s� �
�fR�x�� s�� where jxj � n and jsj � �n� Let bi�x� s� be the inner product modulo � of x and
�si� � � � � si�n���� where si is the i�th bit of s� Let

l � � ! bn�

where b is a constant that will be speci�ed later� and de�ne

b�x� s� � �b��x� s�� b	�x� s�� � � � � bl�x� s���

Then by the results of Goldreich and Levin 	GL
��� the function b�x� s� provides hidden bits
for gR�x� s�� More precisely� there are positive constants b � ���� and c� such that for all
R � R�� �gR�x� s�� b�x� s�� and �gR�x� s�� y� are �

�c�n computationally close for circuits of size
size� � size� 	 ���	�
�c�n working with oracle R� when x� s and y are chosen at random in �n�
�	n� and respectively in �l� The constant c� can be taken such that �

c�n � �����
�c�n 	�l 	��n���
�

Step � �We apply an extractor to gR to obtain a randomized pseudo�random generator that
expands its input by one bit�� From �a� in Step �� it follows that� when x is randomly chosen



in �n and s is chosen randomly in �	n� the maximum mass of gR�x� s� is p��

n� We construct

a random regular bipartite graph H with V� � �

n and V	 � �

�
�b�n as follows� We partition
V� into K � ��
�	b�n segments of equal cardinality that we call V���� � � � � V��K� We do the same
with V	 obtaining V	��� � � � � V	�K� Note that for all i� jV��ij � jV	�ij	 � �	bn� H will only have
edges between V��i and V	�i for i � �� � � � � K� More precisely V��i and V	�i are connected as in
Lemma 
��� ThusH consists ofK copies of a ��bn� bn� bn� ���simple extractor� Taking advantage
of the fact that each segment V��i has� according to the distribution gR�x� s�� probability at most
K��!K����b�
�� we show that when x� s and y are randomly chosen in �n� �	n� and respectively
�bn� �E�gR�x� s�� y�� y� is �

�c�n close to the uniform distribution for some constant c	�

Lemma 	�� Let R be in R�� The distribution �E�gR�x� s�� y�� y� is �
�c�n close to the uni�

form distribution for some constant c	� when x� s and y are randomly chosen in �n� �	n� and
respectively �bn �

Proof � Let w be a string in �
n randomly chosen according to the distribution gR�x� s� de�ned
at Step �� We estimate the collision probability of the distribution �E�w� y�� y��

Probw�y�w��y���E�w� y�� y� � �E�w
�� y��� y��� �

Prob�y � y�� 	 Probw�w��y�E�w� y� � E�w�� y�� �
�
D
�Prob�w � w�� ! Probw�w��y�E�w� y� � E�w�� y� jw �� w����

���

The �rst term in the above sum is bounded from above by p��
n� The second term� denoted
A� is equal to

A �
KX
i��

Probw�w��y�E�w� y� � E�w�� y� and w�w� � segment i j w �� w���

Next�

Probw�w��y�E�w� y� � E�w�� y� and w�w� � segment i j w �� w�� �P
u��u��u�u��segment i Proby�E�u� y� � E�u�� y�� 	 Prob�w � u and w� � u� j w �� w�� �

��bn 	Pu��u��u�u��segment i Prob�w � u and w� � u� j w �� w���

We have used the fact the i�th segments of V� and V	 form a ��bn� bn� bn� ���simple extractor�
Since

Prob�w �� w�� 
 �� p

�
n
�

and X
u�segment i

�Prob�w � u��	 � �Prob�w � segment i��	 � � �
K
!

�

K��b�

�	�

we deduce that Probw�w��y�E�w� y� � E�w�� y� and w�w� � segment i jw �� w�� is bounded from
above by

��bn 	 �� ! p

�
n � p
��
�

K
!

�

K��b�

�	�

Thus� A is bounded from above by

��bn 	 �� ! p

�
n � p
��
�

K
!

�

K��b�

!

�

K���	b��

��

It follows that the relation from equation ��� is bounded from above by

�

D 	 �bn 	K �� ! �
�dn�



for some constant d� Taking into account Lemma 
�� the conclusion follows�
Now take GR�x� s� y� � �E�gR�x� s�� y�� y� bR�x��� We have that for circuits of size size��

 comput�GR�x� s� y�� u�
�b�n���
�  comput��gR�x� s�� b�x��� �gR�x� s�� ul� !  comput��E�gR�x� s�� y�� y�� u
n�bn�jyj��

where uj� for various values of j� denotes an element of length j chosen according to the uniform
distribution�
The �rst term is bounded by ��c�n� and the second term is bounded by ��c�n� Thus� there is
some constant c
 such that for all R � R�� GR�x� s� y� is �

�c�n computationally close to the
uniform distribution� Observe that jxj! jsj! jyj � ����n and that GR outputs a string that is
one bit longer than its input� For simplicity� we assume that jxj! jsj! jyj � ����n�

Step � �Double the extension of the randomized pseudo�random generator�� We de�ne IR �
�
�	�n � �	�
�	�n by

IR�x� � �s�� s	� � � � � s	jxj��

where s�� � � � � s	jxj are bits de�ned inductively as follows� x� � x and for i � �� � � � � �jxj�

si � the �rst bit of GR�xi��� and

xi � the last jxj bits of GR�xi����

Again� by an application of the hybrid method� there exists a positive constant c� such that�
for all R � R�� IR�X� is �

�c�n close to the uniform distribution for circuits of size size	 �
size� � 
�����n�	 	 tG�����n�� where X is the uniform distribution on �
�	�n and tG�����n� is
the size of a circuit that calculates GR on inputs of size ����n� The constant c� can be taken
so that ��c�n � ��c�n���n�

Step 	 �Get a randomized pseudo�random generator with more expansion� Let I��x� and I��x�
be the �rst and respectively the second half of the string IR�x�� Let j � c�n� where c� is a
constant such that � � c� � c�� De�ne FR � �


�	�n � �	c	n as follows� The ���	 � � � �j bit of
FR�x� is the �rst bit of I���I���� � � �I�j �x�� � � ��� The techniques of Goldreich� Goldwasser� and
Micali 	GGM
�� show that for c� � c� � c�� for all R � R�� FR�X� is �

�c
n computationally
close to the uniform distribution for circuits of size size
 � size	���

c	n 	 tI�����n�� working with
oracle R� where X is the uniform distribution on �
�	�n and tI������ is the size of a circuit that
calculates IR on inputs of size ����n�
Observe that for all R � R�� FR takes an input of size ����n and produces an output of size
�c	n that cannot be distinguished by any circuit of size bounded by �an� with a � ���� working
with oracle R�

Consequently we have proved�

Theorem 	�� For every size of adversaries 	�n� with n � 	�n� � �an where a � ���� there
exists a randomized pseudo�random generator that has security �	�n�� ��c
n� with probability
� � ��q�n� and expansion �c	n � ����n� where q is any polynomial and c� and c� are positive
constants� Moreover� every bit of the output can be computed in time polynomial in the length
of the private seed�

Observation 	� At Step �� a universal family of hash functions could have been used to get
about the same e�ect �see 	Gol��� and 	Zim����� The use of extractors reduces the length of
the local random string by almost � times�



Observation 
� It is important to observe that a good public random string can be reused ad
in�nitum� On the other hand� the actual queries should be done over a secure channel� One
simple way to do this is to copy the whole public random string o��line and to make the queries
locally�

Observation �� If we want the pseudo�random generator to produce a string of length m that is
secure against any family of circuits of size polynomial inm then at Step � we should take j � n�

with 
 � �� In this case� the method is using log���m private random bits and approximately
mlog�m public random bits� where � � ��� 
��
�

� Final remarks

As presented� our solution to the privatization problem has no practical signi�cance� By working
through the numerous constants that appear in the construction� we have estimated that one
should use in Step � n � ���� in order to produce a �GB string that cannot be distinguished
with bias at least ��	� from a random string by adversaries capable of doing ��� readings from
the public random string� This means that the public random string should be ���� 	 ��	�� bits
long" Even if we want to produce a �MB string� we still need n � ����
However� if we sacri�ce the provable security� it is plausible that a value of n � �� is good
enough to produce a long string that looks random to powerful adversaries� If n � ��� the
private key is approximately �� bits long and thus the adversary cannot do an exhaustive
search� The bits of the public string are mangled in a complicated manner that is dictated by
the private string and this seems to preclude a smart search strategy� Of course� one can use
any other mixing technique� The current recommendations 	ECS�
� suggest the use of a keyed
hash function �see 	MvOV���� that is based on DES or on a hash function such as MD�� These
functions use tables of constants whose randomness is doubtful �in the case of DES� or that are
obtained using widely used mathematical functions �sin for MD��� Compared to this approach�
the method presented here� scaled down so that to be feasible� does not use any constants and
has some theoretical support� Thus� subject to con�rmation by further studies� it can be a
viable candidate for practical applications�
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A Appendix

We provide the proofs of Lemma 
�� and Lemma 
�� and some more technical details about
Step � of the construction in Theorem ����
Proof of Lemma ���

P
x�
n jD�x�� ��nj �

p
�n
qP

x�
n�D�x�� ��n�	 �Cauchy�Schwartz inequality�

�
p
�n
qP

x�
n D
	�x� !

P
x�
n �

�	n � � 	 ��nPx � �nD�x�

� p
�n
q
��n�� ! �	�� ��n � ��

Proof of Lemma ��� The collision probability of D is
P

x�
n D
	�x�� Since

P
x�
n D�x� � �

and D�x� � p��n� this expression is maximized for distributions D allocating p��n probability



mass to �n�p elements in �n and � to the rest of the elements� In this case� the collision
probability is �n�p�
Step � is based on the following facts proven by Impagliazzo 	Imp����

Fact A�� With probability of R � Rn at least � � ��	q�n�� no string in �n has more than
�eq�n� ! n preimages under fR�

Proof of Fact A��� Take p � �eq�n� ! n� By Markov�s inequality� the probability over R
that a �xed y in �n has p preimages under fR is at most the expected number of sets A of
size p such that all elements in A map to y� The number of these sets is

�
	n

p

�
� Thus the

above expected value is
�
	n

p

�
��np � �e�n�p�p��np � �e�p�p � �����	q�n��n� Summing over all y

in �n� the probability that there is one string with more than p preimages is at most ��	q�n��

Let C be an oracle circuit that attempts to invert fR and let size � �an� with a � ���� be its
size� Without loss of generality we can assume that CR�y� outputs z only if fR�z� � y� We say
that CR inverts y if fR�C

R�y�� � y and that CR inverts a set T � �n if it inverts all elements
of T �

Fact A�� With probability of R � R at least � � ���t�	size log 	size�� no oracle circuit C of size
size inverts a set with �e	 	 size 	 t elements�

Proof of Fact A��� Let T be a set of size t� The probability that CR inverts T is at most�
t�size
t

�
�t��n�t� Indeed� the probability that a queried string � satis�es fR��� � T is t��n� The

probability that for all y in T � CR�y� �nds a query � such that fR��� � T is bounded from
above by the probability that t questions out of the possible t 	 size total number of questions
are mapped by R into elements in T and this latter probability is

�
t�size
t

�
�t��n�t�

Thus� the expected number of sets T of cardinality t that are inverted by CR is at most�
	n

t

��
t�size
t

�
�t��n�t � �e�n�t�t�et 	 size�t�t�t��n�t � �e	 	 size�t def

� 	�

The probability that a set U of cardinality u � �e	 	 size 	 t is inverted by CR is equal to the

probability that all subsets T � U of cardinality t are inverted� There are
�
u
t

�

 �u�t�t def

� k
such sets� By Markov�s inequality� the probability that k subsets of cardinality t are inverted
is at most 	�k � �e	 	 size 	 t�u�t � ��t�
There are less than �
 	size	�size oracle circuits of size size� Therefore the probability that there
is a circuit of size size that inverts a set of cardinality �e	 	 size 	 t is at most �	size log 	size��t �
���t�	size log 	size��
We can now �nalize the proof of statements �a� and �b� from Step �� Take t � �size log �size!
�q�n�� By Fact A�� and Fact A��� with probability of R � Rn at least � � ���t�	size log 	size� �
��	q�n� 
 � � ��q�n�� no circuit of size size can invert more than �e	 	 size 	 t elements and
each element in �n has at most �eq�n� ! n preimages under fR� Thus �a� and �b� are proved�
For part �c�� partition �
n into K segments called segment �� � � � segment K� We focus on
segment i and consider the random variables Xy� with y � �
n de�ned by Xy � � if gR�y�
is in segment i� and � otherwise� Clearly the expected value of any Xy is ��K� and thus� by
Cherno� bounds� the probability that the fraction of Xy that are equal to � di�ers from ��K
by more than 
 is less than

�e�
������n

���K������K� �

Taking 
 � K����b�
� it follows that the probability that segment i has probability more than
K�� !K����b�
� is less than ��	n� The probability that there is segment with probability more
than K�� !K����b�
� is less than K��	n � and thus� part �c� follows�


