Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > ERIC ALLENDER:
All reports by Author Eric Allender:

TR17-073 | 28th April 2017
Eric Allender, Shuichi Hirahara

New Insights on the (Non)-Hardness of Circuit Minimization and Related Problems

The Minimum Circuit Size Problem (MCSP) and a related problem (MKTP) that deals with time-bounded Kolmogorov complexity are prominent candidates for NP-intermediate status. We show that, under very modest cryptographic assumptions (such as the existence of one-way functions), the problem of approximating the minimum circuit size (or time-bounded Kolmogorov complexity) ... more >>>


TR17-072 | 25th April 2017
Eric Allender, Andreas Krebs, Pierre McKenzie

Better Complexity Bounds for Cost Register Machines

Revisions: 1

Cost register automata (CRA) are one-way finite automata whose transitions have the side effect that a register is set to the result of applying a state-dependent semiring operation to a pair of registers. Here it is shown that CRAs over the semiring (N,min,+) can simulate polynomial time computation, proving along ... more >>>


TR15-162 | 9th October 2015
Eric Allender, Joshua Grochow, Cris Moore

Graph Isomorphism and Circuit Size

We show that the Graph Automorphism problem is ZPP-reducible to MKTP, the problem of minimizing time-bounded Kolmogorov complexity. MKTP has previously been studied in connection with the Minimum Circuit Size Problem (MCSP) and is often viewed as essentially a different encoding of MCSP. All prior reductions to MCSP have applied ... more >>>


TR15-145 | 5th September 2015
Eric Allender, Asa Goodwillie

Arithmetic circuit classes over Zm

We continue the study of the complexity classes VP(Zm) and LambdaP(Zm) which was initiated in [AGM15]. We distinguish between “strict” and “lax” versions of these classes and prove some new equalities and inclusions between these arithmetic circuit classes and various subclasses of ACC^1.

more >>>

TR15-018 | 31st January 2015
Eric Allender, Ian Mertz

Complexity of Regular Functions

Revisions: 1

We give complexity bounds for various classes of functions computed by cost register automata.

more >>>

TR14-176 | 16th December 2014
Eric Allender, Dhiraj Holden, Valentine Kabanets

The Minimum Oracle Circuit Size Problem

We consider variants of the Minimum Circuit Size Problem MCSP, where the goal is to minimize the size of oracle circuits computing a given function. When the oracle is QBF, the resulting problem MCSP$^{QBF}$ is known to be complete for PSPACE under ZPP reductions. We show that it is not ... more >>>


TR14-122 | 30th September 2014
Eric Allender, Anna Gal, Ian Mertz

Dual VP Classes

Revisions: 2

We consider arithmetic complexity classes that are in some sense dual to the classes VP(Fp) that were introduced by Valiant. This provides new characterizations of the complexity classes ACC^1 and TC^1, and also provides a compelling example of
a class of high-degree polynomials that can be simulated via arithmetic circuits ... more >>>


TR14-068 | 5th May 2014
Eric Allender, Bireswar Das

Zero Knowledge and Circuit Minimization

Revisions: 1

We show that every problem in the complexity class SZK (Statistical Zero Knowledge) is
efficiently reducible to the Minimum Circuit Size Problem (MCSP). In particular Graph Isomorphism lies in RP^MCSP.

This is the first theorem relating the computational power of Graph Isomorphism and MCSP, despite the long history these ... more >>>


TR13-177 | 10th December 2013
Eric Allender, Nikhil Balaji, Samir Datta

Low-depth Uniform Threshold Circuits and the Bit-Complexity of Straight Line Programs

Revisions: 1

We present improved uniform TC$^0$ circuits for division, matrix powering, and related problems, where the improvement is in terms of ``majority depth'' (initially studied by Maciel and Therien). As a corollary, we obtain improved bounds on the complexity of certain problems involving arithmetic circuits, which are known to lie in ... more >>>


TR12-054 | 2nd May 2012
Eric Allender, Harry Buhrman, Luke Friedman, Bruno Loff

Reductions to the set of random strings:the resource-bounded case

Revisions: 1

This paper is motivated by a conjecture that BPP can be characterized in terms of polynomial-time nonadaptive reductions to the set of Kolmogorov-random strings. In this paper we show that an approach laid out by [Allender et al] to settle this conjecture cannot succeed without significant alteration, but that it ... more >>>


TR12-028 | 30th March 2012
Eric Allender, George Davie, Luke Friedman, Samuel Hopkins, Iddo Tzameret

Kolmogorov Complexity, Circuits, and the Strength of Formal Theories of Arithmetic

Revisions: 1

Can complexity classes be characterized in terms of efficient reducibility to the (undecidable) set of Kolmogorov-random strings? Although this might seem improbable, a series of papers has recently provided evidence that this may be the case. In particular, it is known that there is a class of problems $C$ defined ... more >>>


TR12-027 | 29th March 2012
Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis Papakonstantinou, Bangsheng Tang

Time-space tradeoffs for width-parameterized SAT:Algorithms and lower bounds

Revisions: 2

A decade has passed since Alekhnovich and Razborov presented an algorithm that solves SAT on instances $\phi$ of size $n$ having tree-width $TW(\phi)$, using time (and space) bounded by $2^{O(TW(\phi))}n^{O(1)}$. Although there have been several papers over the ensuing years building on the work of Alekhnovich and Razborov there has ... more >>>


TR11-083 | 22nd May 2011
Eric Allender, Fengming Wang

On the power of algebraic branching programs of width two

We show that there are families of polynomials having small depth-two arithmetic circuits that cannot be expressed by algebraic branching programs of width two. This clarifies the complexity of the problem of computing the product of a sequence of two-by-two matrices, which arises in several
settings.

more >>>

TR10-139 | 17th September 2010
Eric Allender, Luke Friedman, William Gasarch

Limits on the Computational Power of Random Strings

Revisions: 1

Let C(x) and K(x) denote plain and prefix Kolmogorov complexity, respectively, and let R_C and R_K denote the sets of strings that are ``random'' according to these measures; both R_K and R_C are undecidable. Earlier work has shown that every set in NEXP is in NP relative to both R_K ... more >>>


TR10-138 | 17th September 2010
Eric Allender, Luke Friedman, William Gasarch

Exposition of the Muchnik-Positselsky Construction of a Prefix Free Entropy Function that is not Complete under Truth-Table Reductions

In this paper we give an exposition of a theorem by Muchnik and Positselsky, showing that there is a universal prefix Turing machine U, with the property that there is no truth-table reduction from the halting problem to the set {(x,i) : there is a description d of length at ... more >>>


TR10-070 | 17th April 2010
Eric Allender, Klaus-Joern Lange

Symmetry Coincides with Nondeterminism for Time-Bounded Auxiliary Pushdown Automata

We show that every language accepted by a nondeterministic auxiliary pushdown automaton in polynomial time (that is, every language in SAC$^1$ = LogCFL) can be accepted by a symmetric auxiliary pushdown automaton in polynomial time.

more >>>

TR10-069 | 17th April 2010
Eric Allender, Vikraman Arvind, Fengming Wang

Uniform Derandomization from Pathetic Lower Bounds

Revisions: 1 , Comments: 1

A recurring theme in the literature on derandomization is that probabilistic
algorithms can be simulated quickly by deterministic algorithms, if one can obtain *impressive* (i.e., superpolynomial, or even nearly-exponential) circuit size lower bounds for certain problems. In contrast to what is
needed for derandomization, existing lower bounds seem rather pathetic ... more >>>


TR10-055 | 31st March 2010
Eric Allender

Avoiding Simplicity is Complex

Revisions: 2

It is a trivial observation that every decidable set has strings of length $n$ with Kolmogorov complexity $\log n + O(1)$ if it has any strings of length $n$ at all. Things become much more interesting when one asks whether a similar property holds when one
considers *resource-bounded* Kolmogorov complexity. ... more >>>


TR09-051 | 2nd July 2009
Eric Allender, Michal Koucky, Detlef Ronneburger, Sambuddha Roy

The Pervasive Reach of Resource-Bounded Kolmogorov Complexity in Computational Complexity Theory

We continue an investigation into resource-bounded Kolmogorov complexity \cite{abkmr}, which highlights the close connections between circuit complexity and Levin's time-bounded Kolmogorov complexity measure Kt (and other measures with a similar flavor), and also exploits derandomization techniques to provide new insights regarding Kolmogorov complexity.
The Kolmogorov measures that have been ... more >>>


TR08-038 | 4th April 2008
Eric Allender, Michal Koucky

Amplifying Lower Bounds by Means of Self-Reducibility

Revisions: 2

We observe that many important computational problems in NC^1 share a simple self-reducibility property. We then show that, for any problem A having this self-reducibility property, A has polynomial size TC^0 circuits if and only if it has TC^0 circuits of size n^{1+\epsilon} for every \epsilon > 0 (counting the ... more >>>


TR05-149 | 7th December 2005
Eric Allender, David Mix Barrington, Tanmoy Chakraborty, Samir Datta, Sambuddha Roy

Grid Graph Reachability Problems

Revisions: 1

We study the complexity of restricted versions of st-connectivity, which is the standard complete problem for NL. Grid graphs are a useful tool in this regard, since
* reachability on grid graphs is logspace-equivalent to reachability in general planar digraphs, and
* reachability on certain classes of grid graphs gives ... more >>>


TR05-148 | 6th December 2005
Eric Allender, Samir Datta, Sambuddha Roy

The Directed Planar Reachability Problem

Revisions: 1

We investigate the s-t-connectivity problem for directed planar graphs, which is hard for L and is contained in NL but is not known to be complete. We show that this problem is logspace-reducible to its complement, and we show that the problem of searching graphs of genus 1 reduces to ... more >>>


TR05-126 | 5th November 2005
Eric Allender, Lisa Hellerstein, Paul McCabe, Michael Saks

Minimizing DNF Formulas and AC0 Circuits Given a Truth Table

For circuit classes R, the fundamental computational problem, Min-R,
asks for the minimum R-size of a boolean function presented as a truth
table. Prominent examples of this problem include Min-DNF, and
Min-Circuit (also called MCSP). We begin by presenting a new reduction
proving that Min-DNF is NP-complete. It is significantly ... more >>>


TR05-037 | 8th April 2005
Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, Peter Bro Miltersen

On the Complexity of Numerical Analysis

Revisions: 1 , Comments: 1

We study two quite different approaches to understanding the complexity
of fundamental problems in numerical analysis. We show that both hinge
on the question of understanding the complexity of the following problem,
which we call PosSLP:
Given a division-free straight-line program
producing an integer N, decide whether N>0.
more >>>


TR04-108 | 24th November 2004
Eric Allender, Samir Datta, Sambuddha Roy

Topology inside NC^1

We show that ACC^0 is precisely what can be computed with constant-width circuits of polynomial size and polylogarithmic genus. This extends a characterization given by Hansen, showing that planar constant-width circuits also characterize ACC^0. Thus polylogarithmic genus provides no additional computational power in this model.
We consider other generalizations of ... more >>>


TR04-100 | 23rd November 2004
Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, Heribert Vollmer

The Complexity of Satisfiability Problems: Refining Schaefer's Theorem

Revisions: 1

Schaefer proved in 1978 that the Boolean constraint satisfaction problem for a given constraint language is either in P or is NP-complete, and identified all tractable cases. Schaefer's dichotomy theorem actually shows that there are at most two constraint satisfaction problems, up to polynomial-time isomorphism (and these isomorphism types are ... more >>>


TR04-044 | 1st June 2004
Eric Allender, Harry Buhrman, Michal Koucky

What Can be Efficiently Reduced to the Kolmogorov-Random Strings?

We investigate the question of whether one can characterize complexity
classes (such as PSPACE or NEXP) in terms of efficient
reducibility to the set of Kolmogorov-random strings R_C.
We show that this question cannot be posed without explicitly dealing
with issues raised by the choice of universal
machine in the ... more >>>


TR02-028 | 15th May 2002
Eric Allender, Harry Buhrman, Michal Koucky, Detlef Ronneburger, Dieter van Melkebeek

Power from Random Strings

Revisions: 1

We consider sets of strings with high Kolmogorov complexity, mainly
in resource-bounded settings but also in the traditional
recursion-theoretic sense. We present efficient reductions, showing
that these sets are hard and complete for various complexity classes.

In particular, in addition to the usual Kolmogorov complexity measure
K, ... more >>>


TR01-041 | 23rd May 2001
Eric Allender, Michal Koucky, Detlef Ronneburger, Sambuddha Roy, V. Vinay

Time-Space Tradeoffs in the Counting Hierarchy

We extend the lower bound techniques of [Fortnow], to the
unbounded-error probabilistic model. A key step in the argument
is a generalization of Nepomnjascii's theorem from the Boolean
setting to the arithmetic setting. This generalization is made
possible, due to the recent discovery of logspace-uniform TC^0
more >>>


TR01-033 | 27th April 2001
Eric Allender, David Mix Barrington, William Hesse

Uniform Circuits for Division: Consequences and Problems

Integer division has been known to lie in P-uniform TC^0 since
the mid-1980's, and recently this was improved to DLOG-uniform
TC^0. At the time that the results in this paper were proved and
submitted for conference presentation, it was unknown whether division
lay in DLOGTIME-uniform TC^0 (also known as ... more >>>


TR00-065 | 7th September 2000
Eric Allender, David Mix Barrington

Uniform Circuits for Division: Consequences and Problems

Comments: 2

The essential idea in the fast parallel computation of division and
related problems is that of Chinese remainder representation
(CRR) -- storing a number in the form of its residues modulo many
small primes. Integer division provides one of the few natural
examples of problems for which ... more >>>


TR99-012 | 19th April 1999
Eric Allender, Andris Ambainis, David Mix Barrington, Samir Datta, Huong LeThanh

Bounded Depth Arithmetic Circuits: Counting and Closure

Comments: 1

Constant-depth arithmetic circuits have been defined and studied
in [AAD97,ABL98]; these circuits yield the function classes #AC^0
and GapAC^0. These function classes in turn provide new
characterizations of the computational power of threshold circuits,
and provide a link between the circuit classes AC^0 ... more >>>


TR99-010 | 1st April 1999
Eric Allender, Igor E. Shparlinski, Michael Saks

A Lower Bound for Primality

Comments: 1

Recent work by Bernasconi, Damm and Shparlinski
proved lower bounds on the circuit complexity of the square-free
numbers, and raised as an open question if similar (or stronger)
lower bounds could be proved for the set of prime numbers. In
this short note, we answer this question ... more >>>


TR99-008 | 19th March 1999
Eric Allender, Vikraman Arvind, Meena Mahajan

Arithmetic Complexity, Kleene Closure, and Formal Power Series

Revisions: 1 , Comments: 1

The aim of this paper is to use formal power series techniques to
study the structure of small arithmetic complexity classes such as
GapNC^1 and GapL. More precisely, we apply the Kleene closure of
languages and the formal power series operations of inversion and
root ... more >>>


TR98-057 | 10th September 1998
Manindra Agrawal, Eric Allender, Samir Datta, Heribert Vollmer, Klaus W. Wagner

Characterizing Small Depth and Small Space Classes by Operators of Higher Types

Motivated by the question of how to define an analog of interactive
proofs in the setting of logarithmic time- and space-bounded
computation, we study complexity classes defined in terms of
operators quantifying over oracles. We obtain new
characterizations of $\NCe$, $\L$, $\NL$, $\NP$, ... more >>>


TR98-023 | 16th April 1998
Eric Allender, Shiyu Zhou

Uniform Inclusions in Nondeterministic Logspace

We show that the complexity class LogFew is contained
in NL $\cap$ SPL. Previously, this was known only to
hold in the nonuniform setting.

more >>>

TR98-019 | 5th April 1998
Eric Allender, Klaus Reinhardt

Isolation, Matching, and Counting

We show that the perfect matching problem is in the
complexity class SPL (in the nonuniform setting).
This provides a better upper bound on the complexity of the
matching problem, as well as providing motivation for studying
the complexity class SPL.

Using similar ... more >>>


TR97-016 | 29th April 1997
Manindra Agrawal, Eric Allender, Samir Datta

On TC^0, AC^0, and Arithmetic Circuits

Continuing a line of investigation that has studied the
function classes #P, #SAC^1, #L, and #NC^1, we study the
class of functions #AC^0. One way to define #AC^0 is as the
class of functions computed by constant-depth polynomial-size
arithmetic circuits of unbounded fan-in addition ... more >>>


TR97-014 | 25th April 1997
Klaus Reinhardt, Eric Allender

Making Nondeterminism Unambiguous

We show that in the context of nonuniform complexity,
nondeterministic logarithmic space bounded computation can be made
unambiguous. An analogous result holds for the class of problems
reducible to context-free languages. In terms of complexity classes,
this can be stated as:
NL/poly = UL/poly
LogCFL/poly ... more >>>


TR96-048 | 12th September 1996
Eric Allender, Klaus-Jörn Lange

StUSPACE(log n) is Contained in DSPACE((log^2 n)/loglog n)

We present a deterministic algorithm running in space
O((log^2 n)/loglog n) solving the connectivity problem
on strongly unambiguous graphs. In addition, we present
an O(log n) time-bounded algorithm for this problem
running on a parallel pointer machine.

more >>>

TR96-024 | 21st March 1996
Eric Allender, Robert Beals, Mitsunori Ogihara

The complexity of matrix rank and feasible systems of linear equations

We characterize the complexity of some natural and important
problems in linear algebra. In particular, we identify natural
complexity classes for which the problems of (a) determining if a
system of linear equations is feasible and (b) computing the rank of
an integer matrix, ... more >>>


TR96-023 | 21st March 1996
Eric Allender

A Note on Uniform Circuit Lower Bounds for the Counting Hierarchy

Comments: 1

A very recent paper by Caussinus, McKenzie, Therien, and Vollmer
[CMTV] shows that ACC^0 is properly contained in ModPH, and TC^0
is properly contained in the counting hierarchy. Thus, [CMTV] shows
that there are problems in ModPH that require superpolynomial-size
uniform ACC^0 ... more >>>


TR96-002 | 10th January 1996
Manindra Agrawal, Eric Allender

An Isomorphism Theorem for Circuit Complexity

We show that all sets complete for NC$^1$ under AC$^0$
reductions are isomorphic under AC$^0$-computable isomorphisms.

Although our proof does not generalize directly to other
complexity classes, we do show that, for all complexity classes C
closed under NC$^1$-computable many-one reductions, the sets ... more >>>


TR95-043 | 14th September 1995
Eric Allender, Jia Jiao, Meena Mahajan, V. Vinay

Non-Commutative Arithmetic Circuits: Depth Reduction and Size Lower Bounds

We investigate the phenomenon of depth-reduction in commutative
and non-commutative arithmetic circuits. We prove that in the
commutative setting, uniform semi-unbounded arithmetic circuits of
logarithmic depth are as powerful as uniform arithmetic circuits of
polynomial degree; earlier proofs did not work in the ... more >>>


TR95-028 | 9th June 1995
Eric Allender, Martin Strauss

Measure on P: Robustness of the Notion

In (Allender and Strauss, FOCS '95), we defined a notion of
measure on the complexity class P (in the spirit of the work of (Lutz,
JCSS '92) that provides a notion of measure on complexity classes at least
as large as E, and the work of (Mayordomo, Phd. ... more >>>


TR94-004 | 12th December 1994
Eric Allender, Martin Strauss

Measure on Small Complexity Classes, with Applications for BPP

We present a notion of resource-bounded measure for P and other
subexponential-time classes. This generalization is based on Lutz's
notion of measure, but overcomes the limitations that cause Lutz's
definitions to apply only to classes at least as large as E. We
present many of the basic properties of this ... more >>>




ISSN 1433-8092 | Imprint