ECCC-Report TR17-143https://eccc.weizmann.ac.il/report/2017/143Comments and Revisions published for TR17-143en-usWed, 27 Sep 2017 04:45:27 +0300
Revision 1
| Relaxed Locally Correctable Codes |
Tom Gur,
Ron Rothblum,
Govind Ramnarayan
https://eccc.weizmann.ac.il/report/2017/143#revision1Locally decodable codes (LDCs) and locally correctable codes (LCCs) are error-correcting codes in which individual bits of the message and codeword, respectively, can be recovered by querying only few bits from a noisy codeword. These codes have found numerous applications both in theory and in practice.
A natural relaxation of LDCs, introduced by Ben-Sasson et al. (SICOMP, 2006), allows the decoder to reject (i.e., refuse to answer) in case it detects that the codeword is corrupt. They call such a decoder a relaxed decoder and construct a constant-query relaxed LDC with almost-linear blocklength, which is sub-exponentially better than what is known for (full-fledged) LDCs in the constant-query regime.
We consider an analogous relaxation for local correction. Thus, a relaxed local corrector reads only few bits from a (possibly) corrupt codeword and either recovers the desired bit of the codeword, or rejects in case it detects a corruption.
We give two constructions of relaxed LCCs in two regimes, where the first optimizes the query complexity and the second optimizes the rate:
1. Constant Query Complexity: A relaxed LCC with polynomial blocklength whose corrector only reads a constant number of bits of the codeword. This is a sub-exponential improvement over the best constant query (full-fledged) LCCs that are known.
2. Constant Rate: A relaxed LCC with constant rate (i.e., linear blocklength) with quasi-polylogarithmic query complexity. This is a nearly sub-exponential improvement over the query complexity of a recent (full-fledged) constant-rate LCC of Kopparty et al. (STOC, 2016).Wed, 27 Sep 2017 04:45:27 +0300https://eccc.weizmann.ac.il/report/2017/143#revision1
Paper TR17-143
| Relaxed Locally Correctable Codes |
Tom Gur,
Ron Rothblum,
Govind Ramnarayan
https://eccc.weizmann.ac.il/report/2017/143Locally decodable codes (LDCs) and locally correctable codes (LCCs) are error-correcting codes in which individual bits of the message and codeword, respectively, can be recovered by querying only few bits from a noisy codeword. These codes have found numerous applications both in theory and in practice.
A natural relaxation of LDCs, introduced by Ben-Sasson et al. (SICOMP, 2006), allows the decoder to reject (i.e., refuse to answer) in case it detects that the codeword is corrupt. They call such a decoder a relaxed decoder and construct a constant-query relaxed LDC with almost-linear blocklength, which is sub-exponentially better than what is known for (full-fledged) LDCs in the constant-query regime.
We consider an analogous relaxation for local correction. Thus, a relaxed local corrector reads only few bits from a (possibly) corrupt codeword and either recovers the desired bit of the codeword, or rejects in case it detects a corruption.
We give two constructions of relaxed LCCs in two regimes, where the first optimizes the query complexity and the second optimizes the rate:
1. Constant Query Complexity: A relaxed LCC with polynomial blocklength whose corrector only reads a constant number of bits of the codeword. This is a sub-exponential improvement over the best constant query (full-fledged) LCCs that are known.
2. Constant Rate: A relaxed LCC with constant rate (i.e., linear blocklength) with quasi-polylogarithmic query complexity. This is a nearly sub-exponential improvement over the query complexity of a recent (full-fledged) constant-rate LCC of Kopparty et al. (STOC, 2016).Tue, 26 Sep 2017 22:57:20 +0300https://eccc.weizmann.ac.il/report/2017/143