ECCC-Report TR19-137https://eccc.weizmann.ac.il/report/2019/137Comments and Revisions published for TR19-137en-usSun, 06 Oct 2019 14:20:34 +0300
Paper TR19-137
| Decision list compression by mild random restrictions |
Shachar Lovett,
Kewen Wu,
Jiapeng Zhang
https://eccc.weizmann.ac.il/report/2019/137A decision list is an ordered list of rules. Each rule is specified by a term, which is a conjunction of literals, and a value. Given an input, the output of a decision list is the value corresponding to the first rule whole term is satisfied by the input. Decision lists generalize both CNFs and DNFs, and have been studied both in complexity theory and in learning theory.
The size of a decision list is the number of rules, and its width is the maximal number of variables in a term. We prove that decision lists of small width can always be approximated by decision lists of small size, where we obtain sharp bounds (up to constants). This in particular resolves a conjecture of Gopalan, Meka and Reingold (Computational Complexity, 2013) on DNF sparsification.
An ingredient in our proof is a new random restriction lemma, which allows to analyze how DNFs (and more generally, decision lists) simplify if a small fraction of the variables are fixed. This is in contrast to the more commonly used switching lemma, which requires most of the variables to be fixed.Sun, 06 Oct 2019 14:20:34 +0300https://eccc.weizmann.ac.il/report/2019/137