Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with MAX Problem:
TR95-057 | 24th November 1995
Dima Grigoriev, Marek Karpinski, A. C. Yao

An Exponential Lower Bound on the Size of Algebraic Decision Trees for MAX

We prove an exponential lower bound on the size of any
fixed-degree algebraic decision tree for solving MAX, the
problem of finding the maximum of $n$ real numbers. This
complements the $n-1$ lower bound of Rabin \cite{R72} on
the depth of ... more >>>

TR99-020 | 9th June 1999
Marek Karpinski

Randomized Complexity of Linear Arrangements and Polyhedra

We survey some of the recent results on the complexity of recognizing
n-dimensional linear arrangements and convex polyhedra by randomized
algebraic decision trees. We give also a number of concrete applications
of these results. In particular, we derive first nontrivial, in fact
quadratic, ... more >>>

ISSN 1433-8092 | Imprint