Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR26-007 | 2nd January 2026
Yaroslav Alekseev, Nikita Gaevoy

New Polynomial-Depth Res(+) Lower Bounds

Res($\oplus$) is the simplest fragment of $\text{AC}^0[2]\text{-Frege}$ for which no super-polynomial lower bounds on the size of proofs are known. Bhattacharya and Chattopadhyay [BC25] recently proved lower bounds of the form $\exp(\tilde\Omega(N^{\varepsilon}))$ on the size of Res($\oplus$) proofs whose depth is upper bounded by $O(N^{2 - \varepsilon})$, where $N$ is ... more >>>


TR26-006 | 5th January 2026
Lijie Chen, Yichuan Wang

Separating RAM and Multitape Turing Machines with Short Random Oracles

We prove that relative to a random oracle answering $O(\log n)$-bit queries, there exists a function computable in $O(n)$ time by a random-access machine (RAM) but requiring $n^2/polylog(n)$ time by any multitape Turing machine. This provides strong evidence that simulating RAMs on multitape Turing machines inherently incurs a nearly quadratic ... more >>>


TR26-005 | 13th January 2026
Matt Kovacs-Deak, Daochen Wang, Rain Zimin Yang

Rational degree is polynomially related to degree

We prove that $\mathrm{deg}(f) \leq 2 \, \mathrm{rdeg}(f)^4$ for every Boolean function $f$, where $\mathrm{deg}(f)$ is the degree of $f$ and $\mathrm{rdeg}(f)$ is the rational degree of $f$. This resolves the second of the three open problems stated by Nisan and Szegedy, and attributed to Fortnow, in 1994.

more >>>


previous PreviousNext next


ISSN 1433-8092 | Imprint