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Abstract

We present three explicit constructions of hash functions, which exhibit a trade-off between
the size of the family (and hence the number of random bits needed to generate a member of
the family), and the quality (or error parameter) of the pseudo-random property it achieves.
Unlike previous constructions, most notably universal hashing, the size of our families is
essentially independent of the size of the domain on which the functions operate.

The first construction is for the mizing property — mapping a proportional part of any
subset of the domain to any other subset. The other two are for the extraction property —
mapping any subset of the domain almost uniformly into a range smaller than it. The second
and third constructions handle (respectively) the extreme situations when the range is very
large or very small.

We provide lower bounds showing our constructions are nearly optimal, and mention some
applications of the new constructions.
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1 Introduction

In 1979, Carter and Wegman introduced the notion of universal hashing functions [7]. Though
these functions were introduced with data storage application in mind, they found many appli-
cations to complexity theory [29, 31, 34, 17, 16, 20, 21, 18, 19, 26, 27, 37]. This wide range of
applications owns its existence to two related ‘random’ properties of these succinct and efficiently
computable functions: the extraction and the mizing properties.

For a family F of functions, each mapping n-bit strings to m-bit strings, the extraction
property asserts the following. Every subset of K - 2™ strings in the domain {0, 1}", is mapped
almost uniformly to the range {0,1}™, by all but a small fraction of the functions in the family.
The parameter K > 1 determines the quality of the approximation to the uniform distribution
and the fraction of bad functions in F' (i.e. those that don’t achieve this approximation). The
extraction property is the heart of the Leftover Hash Lemma [20] and its precursors, which were
key to numerous results, e.g. in saving randomness [21], weak random sources [37], pseudorandom
generators [16, 20] and interactive proofs [17]. (Alternative function families with extraction
property were previously constructed in [28], with a variety of other applications.)

The mizing property is meaningful also in case m = n, and in fact it is usually used with
this choice. Hence, we assume for simplicity that m = n. Loosely speaking, the mixing property
asserts that, for all but a small fraction of the functions f in the family F, the membership in
A x B of a pair (a, f(a)) with a being a random element from the domain, is essentially the
same as that of a random pair (a,b) of elements. The prime use of the mixing property is in the
logspace pseudorandom generators [26, 27].

In the definitions above, there is an error parameter € (e.g. the fraction of bad functions,
the distance from the uniform distribution etc.), which determines the quality of the mixing
or extraction achieved by the family F. All the applications mentioned above take F’ to be a
universal family of hash functions. This family achieves the best possible quality parameter: ¢ is
exponentially small in m. However, while small enough for these applications, a universal family
has to be large: exponential in n.

But in some applications we may be content with a larger € (i.e. lower quality), say constant or
1/poly(n). Can we use much smaller families F' in this case and achieve similar random properties?
A straightforward counting argument shows that there exist families F' of size poly(1/e€) (resp.
poly(n/e)) achieving the mixing (resp. extraction) properties with quality e. Note that these
bounds depend essentially only on the quality required, and not on the size of the domain.

The main contribution of this paper is in presenting explicit constructions of such families, thus
yielding a trade-off between the size of the family and the desired quality. The first construction
is for mixing, where we obtain a complete trade-off. The second and third constructions are for
extraction, where we (respectively) handle two extreme cases: when n—m < n and when m < n.
Our constructions are relatively simple. The first two of them combine universal hashing and
expander graphs. (It is interesting to note that despite the similarity in these two constructions,
the proofs are completely different). An alternative to the second construction, which is often



more efficient, uses the extractors of [28] instead of universal hashing. The third construction
uses small-bias probability spaces of small size. We provide lower bounds to show that the first
construction is nearly optimal, and the third is nearly optimal for sufficiently small m. By nearly
optimal here we mean that the number of bits needed to describe a member of the family in our
constructions is within a constant factor of the lower bound. The second construction uses a
number of random bits which is at most quadratic in the lower bound.

Using the first construction we reduce the randomness complexity of two generic procedures
as follows:

1. For sampling procedures, which use an asymptotically optimal number of sample points,
the amount of randomness required to generate the sample points is reduced by a factor
of 2, yielding an optimal result upto a small additive term; and

2. The randomness complexity of Nisan’s “generalized logspace” generator [26], is reduced by
a logarithmic factor.

The second construction implies a randomness—efficient leftover hash lemma, which is particularly
appealing in case n —m < n. The third construction turned out to be the main technical tool in
the recent advances on constructing optimal extractors for any m = ©(n), on which we elaborate
below.

Previous, Concurrent and Subsequent Work

Despite the general interest in reducing the size of sample spaces achieving various random prop-
erties, very little was done for the properties provided by universal hashing. The only previous
result achieving such a quality-size trade-off is by Nisan and Zuckerman [28]. They deal with the
extraction problem in the difficult range m = ©(n) (which we cannot handle), via an ingenious
construction, following earlier work of Zuckerman [37]. In addition, they applied their extrac-
tors to show that poly(.S) many random bits add no power at all to space(5) Turing machines.
(Actually, they showed how to simulate poly(.S) many random bits, in space(S) computations by
O(S) many random coins.)

Srinivasan and Zuckerman have independently discovered a construction similar to our third
construction. Furthermore, they have used such a construction as the main technical tool in
reducing the size of extractors for the range m = ©(n) to nearly optimal.

Recently, Zuckerman [38], using ideas from [36, 33], obtained the optimal results for the
extraction problem in the range m = O(n). This construction has numerous applications which
we shall not elaborate here.

We stress that although all the above results improve on our second construction in case
m = O(n), our construction is better in case n — m < n (i.e., in case n —m < O(log 1/¢)).



Organization

The following three sections are devoted to the corresponding three constructions mentioned
above. Each section starts with a brief intuitive summary of the results obtained. Next, comes a
formal statement of the result, a description of the construction which achieves it and an analysis
of this construction. We conclude each section with a relevant lower bound. In addition, for the
first construction, we describe two applications.

In Appendix A we detail the technical tools used in the proofs. Details for the sampling
application (of the first construction) are given in Appendix B.

2 Tiny Families of Functions with Mixing Properties

Recall that a function f is mixing for subsets A, B of the domain, if membership in A X B of a
pair (a, f(a)), with a being a random element in the domain, occurs roughly as often as it would
for a random pair (a,b) of elements. The main result of this section is the explicit construction of
an e-mixing family of size poly(1/¢). Here € stands both for distance from truly random behavior,
as well as the fraction of bad functions which do not achieve this distance. We state the precise
theorem, then describe the construction. We prove that our family has optimal size up to a
polynomial, and present two applications; one to saving randomness in sampling procedures and
the other for saving randomness in the generalized logspace model of [26]. We conclude with a

different perspective of this result, advocated by Linial.

2.1 Main result

—-Q(n

Theorem 1 For every € > 2 ), there exists a family of functions, each mapping {0,1}" to

itself, satisfying the following properties.

e succinctness: the family contains a polynomial in % number of functions, and each function
is represented by a unique string of length I(e) = O(log 1).

o efficient evaluation: There exists a logspace algorithm that, on input a description of a
function f and a string x, returns f(z).

e mixing property: For every two subsets A, B C {0,1}", all but an € fraction of the functions
[ in the family satisfy

|Prob(U, € AN f(U,)€B) — p(A)p(B)| < 2¢

where p(.S) o |2%| denotes the densily of the set S and U, is a random variable uniformly
distributed over {0,1}".

As an immediate corollary we get



Corollary 2 Let F be as in Theorem 1. Then, for every subset S C {0,1}", all but an € fraction
of the functions f in F satisfy

[Prob(f(U/,)€ ) — p($)] < 2¢
where p and U, are as in the theorem.

This corollary is all we need for the application to sampling.

2.2 The Construction

The construction makes used of two basic tools which are frequently used for saving randomness:
universal hashing functions and expander graphs.

We start by setting the parameters for the expander graph and the universal hashing family
to be used. First, let G be an expander graph of degree d, second eigenvalue A, and vertex set
{0,1}", so that 4 < €?. Such expander graphs are easily constructible for d = <5 (cf., [15]).!
Assume, without loss of generality, that d is a power of 2. For every i € [d] ot {1,2...,d} and
v € {0,1}", denote by g¢;(v) the vertex reached by moving along the ¢*" edge of the vertex v.

We next consider a universal family, denoted H, of hash functions, each mapping [ o
41og,(1/€)-bit long strings to [d] (where [d] = {0,1}™, for some m). Namely, a uniformly chosen
function h € H maps each string a € {0,1}" uniformly into [d] so that every two strings are
mapped in an independent manner.

We now define the functions in our family, denoted F. For each hashing function 2 € H, we
introduce a function f € F defined by

def
J(®) = gntsbio)(v)
where Isb(v) returns the [ least significant bits of v € {0,1}". Namely, f(v) is the vertex reached
from v by following the i™ edge of v, where i is the image of the [ least significant bits of v under
the function h. (We remark that our choice of using the [ least significant bits is arbitrary and
any other efficient partition of {0,1}" into 2' parts, of approximately the same size, will do.)

2.3 Analysis

The main technical tools used in our analysis are the Expander Mixing Lemma and the pairwise
independence of images under Universal Hashing functions.

Clearly, the family F' satisfies the succinctness and efficiency requirements (of Theorem 1).
We now turn to prove that it satisfies the mixing property. It suffices to consider sets A of density
> € (otherwise the claim holds trivially).

! Actually, using Ramanujan Graphs, it suffices to have d = ;% (cf., [23]). One may prefer the Gaber—Galil
expander since it allows to avoid problems such as generating large primes and embedding {0,1}"” in GF(p), for a

suitably large prime p.



We first observe that by the Expander Mixing Lemma, it holds that

|[Prob(U, € A A gp(U,)€B) — p(A)p(B)| < = < €

Ul >

where D is a random variable uniformly distributed over [d], and A, B and U, are as in the
statement of the theorem. Rewriting the above we get

Z Prob(gp(a) € B) — p(B)-|A|| < € - 2" < €| A| (1)

acA

Before continuing with the proof let us provide an overview. Eq. (1) states that Y, 1p;(A, B)
def

is a good approximation of p(A)p(B), where p;(A, B) = Prob(U, € A A ¢;(U,) € B). If, for
most ¢ € [d], each p;(A, B) were a good approximation to p(A)p(B) then we would be done.
But, we don’t know whether this property hold. Instead, we partition A into a small number of
subsets, A,, associate a random i, € [d] for each such A, and consider how well 3~ p; (A,, B)
approximates >, p(A,)p(B) = p(A)p(B). Specifically, the partition is to poly(1/¢) many subsets
and none of them is larger than poly(e€)-2". We show that when the i,’s are chosen in a pairwise
independent manner the approximation is good with high probability. We conclude by noting
that for a randomly chosen h € H, setting i, = h(a), yields a sequence of pairwise independent

14'S.

Returning to the formal proof, we consider a partition of A into L ' 9 subsets so that
A = Ugeqo111Aa and A, is the set of strings in A containing only those strings v with Isb(v) = a.
We now make the following mental experiment. We consider L pairwise independent random
variables uniformly distributed in [d]. These random variables are indexed by strings in I o
{0,1}! and are denoted by &g, ..., 8. We now define I, additional random variables, Yy, ..., Y1,
so that Y, represents the cardinality of the set of a € A, for which g¢s_(a) € B. Since both D and

d,, are uniformly distributed over [d], we get
Exp(Ya) = Exp([{a € Aq:gp(a)eB}|)
= Y Prob(gp(a)€B)

a€Aq

and rewriting Eq. (1), we get

< €Al (2)

> Exp(Y.) - p(B)-|A]

a€el

However, a bound on the behavior of the expectation of the Y, ’s does not suffice for our purposes.
We rather need a bound on the probability that their sum deviates significantly from p(B)-|A|.
Such a bound is readily obtained by using the Chebyshev Inequality

p» = Prob ( SV, =D Exp(Y,)| > €|A|)
aed a€el
2
. Tl
= T eAp



The sum of squares, Y. |A,|?, is maximized at the boundaries and is thus bounded by 21‘4'.

Using the assumption |A| > €2” and the definition of L, we get
Al 1 1

< —5 =€

L eAR T Le

Combining the bound for p with Eq 2, we get

Prob (

Since H is a family of universal hashing function, it follows that the sequence of h(a)’s is pairwise

S Y. - p(B)-|A

agl

> 26|A|) <e (3)

independent and uniformly distributed in [d]. Consequently, the Y,’s considered in the mental

experiment actually represent the cardinality of the set {a € A, : gya)(a) € B}, when h is
uniformly chosen in H. Using Eq. (3), we get

Prob ( A|) < e

where the probability is over all possible choices of h € H, with uniform probability distribution.
Observing that

S H{a€ At gnar(a) € BY| = p(B)-|Al| > 2¢

a€el

Z |{a€Aa :gh(a)(a)EBH = |{(Z€A : gh(lsb(a))(a)EBH

ael

Theorem 1 follows. |

2.4 Lower Bound

Theorem 3 A family with mixing property of accuracy ¢, must have size at least \/g.

proof: Otherwise, let F' = {f; : 1<i<t} be a family of functions over {0, 1}", contradicting the
claim. We construct a graph with vertex set {0,1}"” and edges set {(z, f(z)): 2 €{0,1}" A f€ F'}.
Clearly, the graph has an independent set of size N/t¢, where N Lo, Comnsequently, there are
two sets, A and B, each of cardinality N/2¢, so that there exists no function f € F for which

both z € A and f(z) € B. The theorem follows (in a strong sense!). W

2.5 Application to Sampling

In many settings repeated sampling is used to estimate the average value of a huge set of values.
Namely, there is a value function v defined over a huge space, say v : {0,1}" — [0,1], and
one wishes to approximate v wef 2% > zefo1}n v(z). To this end, one may randomly select a small
sample set S and compute ﬁ > ses V(). Using a sample of O(1/€*) uniformly and independently
selected points, one gets, with constant probability, an approximation that it within an additive
factor of € from the correct average. In fact, a set of O(1/€?) points selected in a pairwise-

independent and uniform manner yields the same quality of approximation. Whereas generating



t totally independent random points in {0, 1}" requires ¢ - n unbiased coin flips, one can generate
t pairwise-independent random points using only 2 - n unbiased coin flips [10]. Using the new
family of functions, we further reduce the randomness complexity of the approximation problem
to n 4+ O(log(1/¢)), while almost maintaining the number of sample points.

Definition 1 (sampler): A sampler is a randomized algorithm that on inputl parameters n (length),
€ (accuracy) and ¢ (error), and oracle access to any function v :{0,1}" — [0,1], outputs, with

probability at least 1 — §, a value that is at most € away from v. Namely,
Prob(|sampler’(n,€,6) — 0| > €) < &
Theorem 4 (One Point Based Sampling): There exists a poly(n,e=t, §~1)-time sampler which
o makes O(55) oracle queries; and

o tosses n+ O(log(1/¢€)) 4+ O(log(1/6)) coins.

The proof of this Theorem 4 is given below. We remark that samplers for Boolean functions can
be obtained in a more direct way; and furthermore, these samplers use only n coin tosses (see
appendix B). Using the result of Bellare et al [5], we get the same reduction in the randomness

complexity, while reducing the number of sample points.

Corollary 5 There exists a poly(n,e=',log(1/é))-time sampler which
o makes O(lﬁg%@) oracle queries; and

o tosses n+ O(log(1/¢€)) 4+ O(log(1/6)) coins.

The last sampler is optimal (up to a multiplicative factor) in its sample-complexity, and among
the samplers with nearly optimal sample complexity the above is optimal (up to the additive
logarithmic factors) in its randomness-complexity [6]. Previously, efficient samplers with optimal
sample-complexity were known only for twice the randomness-complexity [5] (vet, [6] have proved,
via an non-constructive argument, that “samplers” with sample and randomness complexities as
in the corollary do exist?). The known results are summarized in Figure 1.

proof of Theorem 4: The idea is to use a sequence of approximately pairwise independent
random sample points. These sample points are generated by selecting a sequence of pairwise
independent functions from a family as in Corollary 2 and applying each function to a single
string that is uniformly selected in {0,1}". (We remark that the constructions of almost k-wise
independent sample spaces, and specifically the ones in [25, 3, 14, 13], are of no help here as they
would all require O(n) random bits.)

We begin by considering the special case of Boolean functions; namely, we assume that
v:4{0,1}" — {0,1}. Next, we define S = {z : v(z) = 1}. Hence, the problem reduces to

2 Actually, the non-constructive upper bound is slightly better than the result of Corollary 5.



lower bound [6] ‘ upper bound [6 ‘ algorithm (this paper) ‘

Boolean | n +log,(1/6) n+210g2(2/6) n + O(log(1/6)) (Thm. 11)
functions —2log,(1/€) — O(loglog(1/6))

general | n+ log,(1/6) n + 2log,(2/6) n + O(log(1/6))

functions —2log,(1/€) — O(loglog(1/6)) + log, log,(1/¢) +0(log(1/¢)) (Cor. 5)

Figure 1: The randomness complexity of samplers which make @(%) queries.

approximating p(.5) ! |S|/N, where N € on, Using a family of functions, F', guaranteed by
Corollary 2 (while replacing € by ¢ to be determined later), we know that all but an ¢ fraction
of the f € F satisfy

|Prob(f(U,)€S5) — p(9)] < 2¢

where U, is a random variable uniformly distributed in {0,1}". One can easily conclude that for
all but a 2¢ fraction of the pairs, (f, f'), of functions in F it holds

|Prob(f(U,)ES A f((U,)€S) — p(5)?] < 4¢

% and randomly selecting a sequence of pairwise independent functions,

fises fm € F, we get that with probability at least 1 — m?¢, for every pair of functions f;, f;

)

Hence, setting m =

[Prob(fi(U,) €5 A [;(Un)€S5) = p(S)] < 4¢ (4)

At this point, we set € so that m?¢ < §/4 and 4¢’ < €2§/4. Note that ¢ = poly(e,d) will do, and
consequently log(1/¢') = O(log(1/¢)) + O(log(1/9)).

The algorithm is now obvious. We pick uniformly in {0, 1}" a seed, denoted s, and indepen-

dently of it, we generate an m-long sequence of pairwise independent functions, fi,..., f,, € F.
Our sample is the sequence s, .. sm, where s; = f;(s). As our estimate, we output the average
of v over this sample; namely, pEL ~ iz, v(s;). To analyze the performance of this algorithm,

we use an analysis analogous to the one used for pairwise independent sampling. Namely, we

define a sequence of m random variables, (i, ..., (,,, so that

Ci:{ L if fi(Un) €5

0 otherwise

Namely, ¢; = v(f;(U,)). Using the Chebyshev Inequality, we get

Prob(|p —v| >¢€) = Prob ( i iEXp G)| > em)
Var($, 6)
(em)?

Zie[m]EXp(Cf)JrZZ#Je (Exp(¢i€;) — Exp(Gi) - Exp((;))

e2m? €e2m?




The first term in the last expression is bounded by é/2, since Exp(¢?) < 1 and m = 2/(8¢?). To
bound the second term note that Exp((;) = p(.9) and Exp((;(;) = Prob(f;(U,)€S A f;(U,)€S),
for every 4, j. Using Eq. (4) for most of choices of the f;, f; pairs and adding an error term for the
remaining others (i.e., an m?¢’ < ¢ /4 fraction), we bound the second term in the above expression
by é/2. This concludes the analysis of the simple case of Boolean functions.

We now generalize the proof to deal with arbitrary functions v, rather than Boolean ones.
We use the same algorithm, except for a different setting of the parameter ¢/, and analyze it with

more care. The definition of the random variables, (;, is modified as follows. Let ¢ = [L]+1. We

define ¢ + 1 sets S, = {z : % Sv(z) <z} for 1<r<g+1, and set ¢; = =Lif £;(U,) € S,. We

q
proceed by considering only functions v:{0,1}"— {% :1<r<g+ 1}, rounding-up any other

function in the obvious manner. This, by itself, introduces an €/2 error in the approximation.
As before, for the functions we consider we have (; = v(f;(U,)).
Following the same ideas as before, we show that for all but a 2¢%¢ fraction of the pairs, (f, f'),

of functions in F it holds for every 1<r,1' <y
|Prob(f(U,) €S, A f(U,)ESy) — p(Sr)p(S)| < 4€
Here we will require that m?-2¢%¢ < §/4 and 4¢’ < €26/4¢*. The rest of the analysis now follows
as before, since again we will have
> iz Exp(GiGy) — Exp(G) - Exp() < (m?/2)-(€6/4) + 6

)
e2m? e2m? 4 2

The theorem follows. |

2.6 Application to Generalized Random Logspace

In [26], Nisan considered the problem of saving randomness in a context in which m randomized
algorithms are executed and their output is fed to an s-space machine which then produces a
final Boolean output. (Actually, the problem is not affected if the s-space machine is allowed to
have output of length bounded by O(s).) For simplicity, assume that each of the algorithms uses
n coin flips. The obvious way of running the entire procedure requires m - n coin flips. In case
we are willing to tolerate an € additive error (respectively, deviation) in the final output, more
randomness-efficient solutions are possible. In particular, Nisan showed [26] that the randomness

complexity can be decreased to
O(max{n, s + log(m/e)} - logm)

Replacing the universal hash functions used in [26] by our family of mixing functions, we show

that the above problem can be solved with randomness complexity
n+ O((s 4 log(m/e)) - logm)

We remark that in many applications n > s+ log(m/€). For these cases, our improvement yields
a logarithmic reduction in the randomness complexity. We also remark that Theorem 4 follows

as a special case of the above (alas with a more complicated construction).



2.7 A Different Perspective

The mixing property of families of functions should not be confused with the mixing property of
graphs. Yet, the two are related as we shall see below. We say that a graph has a good mixing
property if for every two subsets of vertices the fraction of edges connecting these subsets is
approximately equal the product of the densities of these subsets. Clearly, a family of functions
over {0,1}", with good mixing, induces a regular multi-graph® with good mixing. The converse
is not obvious. Specifically, it was not even known whether the edges of some small degree graph
with good mixing property (e.g., an expander) can be so colored that they induce a family of
functions with a good mixing property.

Let us try to clarify the nature of this problem. Consider a d-degree expander with vertex-set
v {0,1}", and some d-coloring of its edges. For every two sets of vertices, A and B, denote by
E;(A, B) the set of edges of color ¢ that connect a vertex in A to a vertex in B. By the Expander
Mixing Lemma (see Appendix A.2), it follows that the average of [E(AB) {aken over all 1<i<d,

vl
is approximately f%[ . ll%t. The question is whether Jﬂ”%)l is approximately f%[ . {%L, for almost

all 1 <i<d. One can easily verify that, in general, the answer is negative. Specifically, for Cayley
Graph expanders (e.g., [24, 4, 23]), there are sets A and B for which there exist no i such that
|E"|éiB>| approximates % . %. The problem raised by Nati Linial was to construct an expander
for which the mixing property holds for most colors (and not only on the average).

We resolve Linial’s problem by presenting a transformation which takes an arbitrary (edge-
colored) expander and produces an (edge-colored) expanders for which the mixing property holds
for most colors (as required above). Our transformation preserves the vertex set and the expansion
properties of the original expander, but increases the degree by a polynomial factor (i.e., from
d to poly(d)). Although the transformation is not explicitly presented in this paper, it can be

easily derived from the description above.

3 Tiny Families Extracting High Min-entropy

Recall that the extraction property, for a family of functions each mapping n-bit strings to m-bit

strings, means that each subset of K -2™ strings in {0, 1}" is mapped almost uniformly to {0,1}"”,

by all but a small fraction of the functions in the family. We consider the extraction problem in

two special cases: the case where m is very small (in the next section) and the case m is very

close to n (in this section). Actually, we consider a generalization of the extraction problem to
1

random variables with an upper bound, of =, on the probability function. Such a bound is

called min-entropy (cf., Chor and Goldreich [9]).

Definition 2 (min-entropy): Let X be a random variable. We say that X has min-entropy k if
Prob(X =z) < 27% for each z.

? A multi-graph is a graph in which parallel edges are allowed.
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Here we treat the case of random variables with min-entropy n — k with & < n. We construct
a family of poly(2*/¢) functions mapping {0,1}" to {0,1}™, where m = n — O(k). For each such
random variable, all but a ¢ fraction of the functions, when applied to it, yield a random variable
which is e-close to uniform (in norm-1). Loosely speaking, this means that these functions are
able to “smooth” almost the entire min-entropy; specifically, min-entropy n — k is mapped to
almost uniform distribution over the strings of length n — O(k).

In a typical use of this extraction, most notably the applications of the leftover hash lemma,
e = 27%F) Tn these cases the size of our family is poly(1/¢) which is optimal by the lower bound
we give.

3.1 Main Result

Theorem 6 Let k < n, m < n —k and ¢ > 2=(n=m=0k)N/OW) " (Typically, m = n — O(k) and
€ = 2=9(0=m) y There exists a family of functions, each mapping {0,1}" to {0,1}™, salisfying the
following properties.

e succinctness: the family contains a polynomial in % number of functions, and each function
is represented by a unique string of length I(k,e) = O(k +log L).

o efficient evaluation: There exists a logspace algorithm that, on input a description of a
function f and a string x, returns f(z).

e extraction property: For every random variable X € {0,1}" of min-entropy n — k, all but
an € fraction of the functions [ in the family satisfy

> [Prob(f(X)=a)~ 5| <«

agf{0,1}™

3.2 The construction

Again, we use universal hashing functions and expander graphs. This time we use an expander
graph, G, degree d (power of two), second eigenvalue X, and vertex set {0,1}™, so that & < 5.

(Recall that such an expander can be constructed for d = poly(%).) As before, for every ¢ €
def

[d] = {1,2...,d} and v € {0,1}™, denote by g¢;(v) the vertex reached by moving along the i
edge of the vertex v. The universal family, denoted H, contains hash functions each mapping
(n — m)-bit long strings to [d].

We now define the functions in our family, denoted F. For each hashing function h € H, we
introduce a function f € F defined by

J(2) E gagiob(ay (msb(z))

where Isb(z) returns the n — m least significant bits of z € {0,1}", and msb(z) returns the m
most significant bits of 2. Namely, f(z) is the vertex reached from the vertex v ! msb(z) by
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following the *® edge of v, where i is the image of the n — m least significant bits of # under the
function h. (Again, our choice of using the n — m least significant bits is arbitrary.)

We remark that one may use any family of extractors with the appropriate parameters instead
of the universal family H used above. In fact, in preliminary versions of this work we have used
the extractors of [28] in order to derive alternative constructions with size k°U1°8(1/¢) However,
these alternative constructions are subsumed by Zuckerman’s recent work [38].

3.3 Analysis

Despite the apparent similarity to the construction for mixing, the analysis of the current con-
struction is completely different. It is based on “stronger” technical tools: the Expander Smooth-
ing Lemma and the Leftover Hash Lemma.

Clearly, the family F satisfies the succinctness and efficiency requirements. We now turn to
prove that it satisfies the extraction property. We fix an arbitrary random variable X € {0, 1},
of min-entropy n — k, and consider the distribution (f, f(X)), when f is randomly chosen in F.
Once we bound the statistical difference between (f, f(X)) and (f,U,) by €, where U, is the
uniform distribution over {0,1}"”, the theorem follows (by a counting argument).

Let Z be a random variable representing the distribution on the m most significant bits of X;
ie., Z = msh(X). For each z € {0,1}™, let Y, be a random variable representing the distribution
on Isb(X') conditioned on Z = z;i.e., X = Yy - Z. We call bad those z’s in {0,1}™ for which Y,
has ‘too small’ min-entropy. Namely, for § > 0 to be fixed later, let the set of bad prefixes be
denoted by

def

Bs = {z€{0,1}™ : Jy s.t. Prob(Y, =y) > 6}
The reader can easily verify, using the min-entropy bound on X, that

Qm—(n—k)

Prob(Z € Bs) < “——— (5)
Also, it can be verified that for every z
Prob(Z =2) < 27(m=#) (6)

We now turn to bound the statistical difference between the distributions (f, f(X)) and (f, Uy,),
where f is uniformly distributed in F. Denote the statistical difference between distributions D,

and Dy by A[Dy, D, (i.e., A[Dy, D] o =3 . |Prob(D;=a) — Prob(D,=a)|. Then

Al S, (LU = Expyep(AL(X), Unl) (7)
< Expyer(AL(X), Un)) + ALX, X (8)

where X’ is the random variable induced by X conditioned on Z ¢ Bs. By Eq. (5), A[X, X'] <
w, and it is left only to bound the other term in Eq. (8).
Let A be the matrix representing the transition probabilities in a random step on the graph

G;i.e., Ap describes the probability distribution after one random step on the graph G, starting

12



with the distribution p. Here and in the sequel, we abuse notation and refer to random variables
and distributions as to vectors in the natural manner (i.e., the i*" component of the vector p
is p(¢) and the "™ component of the vector X is the probability that X = 7). Each column in
A has d non-zero entries and each such entry holds the value %. For every h € H, let A, be
the matrix that results from A by modifying the non-zero entries as follows. The ™ non-zero
entry in column z is changed from 1 to Prob(h(Y,)=1). Note that A,Z equals gpy,)(Z) which
in turn equals f(X) for the function f associated with the hashing function h. Thus, letting

7" = msh(X’), we get

EprEF(A[f(X/)7Um]) = EXPheH(A[Ah‘ZlyUm]) (9)
< A[AZ U, + ExpheH(A[AhZ’,AZ’]) (10)
< A[Z',Z]+ AJAZ,U,,] +ExpheH(A[AhZ’,AZ’]) (11)

The first term in Eq. (11) is bounded by Eq. (5). Fixing 6 = % and using the Leftover Hash

Lemma Universal Hashing we get, for each z ¢ Bs,
Expren(A[R(Y?), D]) < Véd = ¢

where D is uniformly distributed over {1,...,d}. Recalling the definition of A;, this means that
the expected difference between corresponding entries in the matrices A and A, is at most e.
Thus, for every probability vector p (and in particular for p induced by Z'),

Expyen(A[Anp, Ap]) < €

This yields a bound on the third term in Eq. (11). It is left to bound the second term; that is
A[AZ,U,,)]. This is done using the Expander Smoothing Lemma, while relying on the min-entropy
bound of Eq. (6). We get

A[AZ, U, < %-\/27< ¢
Combining all the above bounds, we get

2—(n—m—k)

Al S(X)), (f,Un)] < 2 -

+e+e€ (12)

Substituting é for %, d= (%)" and using n —m — k = 24 ck + (44 ¢) -log(1/¢), the first term

in Eq. (12) is bounded by € too, and we are done. The theorem follows. W

3.4 Lower Bound

We conclude with the lower bound. It shows, that for € = 27**), our first construction is optimal.
It also shows that in the general, the number of bits used in the alternative construction is at
most quadratic away from optimum. We stress that the bound holds even when trying to extract

just one bit.
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Theorem 7 A family of functions from {0,1}" to {0,1}, with extraction property of accuracy
€ < 1 with respect to random variables of min-entropy n — k < n — 1, must have size al least

max{k +1,(1/¢)—1}.

proof: Let F' = {f; : 1 < i<t} be a family of Boolean functions as in the hypothesis of the
theorem. First, we assume, on the contrary that ¢ < k. Our argument proceeds in { iterations.
In the first iteration we consider the function f; and omit all the strings « € {0,1}" which are
mapped by f, to the value with less preimages. In the ¢"" iteration we omit the strings according
to the mapping by f;. Thus, in each iteration, we omit at most half of the remaining strings
while preserving that the remaining strings have the same image under each function considered
so far. After ¢ iterations we are left with a set B of at least 22—7; < 2"~% strings such that for every
z,y € B and f € F it holds that f(z) = f(y). Considering the uniform distribution on B, we
derive a contradiction (as long as € < 1).

We now turn to the second inequality. Assume, on the contrary that ¢ < (1/¢). Without loss
of generality, we assume that ¢ is odd (otherwise consider ¢ — 1 of the functions in F'). It follows
that for every z, there exists a bit o, so that Probsep(f(z)=0) > w > % Thus, there

exists a bit o, so that for at least half of the 2’s (in {0,1}") the above holds. Letting X be a

14
<.
Since X has min-entropy at least n — 1 and the family is not e-extracting (for X) we reach a

random variable uniformly distributed on these “bad” z’s, we get Exp;cp(Prob(f(X)=0) >

contradiction and the theorem follows. |

4 Tiny Families Extracting Low Min-Entropy

Here we treat the case of random variables with min-entropy k, with £ < n. we construct a
family of poly(2¥n/e€) functions mapping {0,1}" to {0,1}™, where m = Q(k). (Again, € is the
accuracy parameter.) Loosely speaking, this means that these functions are able to “smoothen”
a constant fraction of the min-entropy; specifically, min-entropy & is mapped to almost uniform
distribution over the strings of length Q(k).

4.1 Main Result

Theorem 8 Let 5m < k < n and € > 2~&=5™)/3 (Typically, m = % and € = 27™.) There exists

a family of functions, each mapping {0,1}" to {0,1}™, satisfying the following properties.

e succinctness: the family contains a polynomial in 2= number of functions, and each func-

tion is represented by a unique string of length I(£=2) = O(m + log 2).

o efficient evaluation: There exists a logspace algorithm that, on input a description of a

function f and a string x, returns f(z).
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e extraction property: For every random variable X € {0,1}" of min-entropy k, all but an €
fraction of the functions f in the family satisfy

> IProb(f(X)=a) ~ 5| <«

ae{0,1}m™
4.2 The Construction

We use a construction of small probability spaces with small bias. In particular, we consider a
prime p =~ 2™ and a construction of ¢ Lt Z random variables, (i, ..., &), each distributed over

G F(p) with the following small bias property:

for every t-long sequence (ay, ..., a;) of elements in G F(p), so that not all a;’s are zero,
the random variable Y";_, ¢;§; is almost uniformly distributed over GF(p) (i.e., its

statistical distance from uniform is small).

Typically, such random variables are defined by the uniform distribution over some sample space
S C GF(p)', and they can be shown to satisfy also a related technical condition (see section A.3).

We will use such a sample space, 5, for bias ¢ = ;—z. (Hence, using the sample space of [3, 13],

|| = poly(2Z).)

The functions in our family, denoted F, correspond to the samples in the small-bias space.
Namely, for each (s, ...,s;) € S, we introduce the function f € F' defined by

flz)= Zsz%

where z; is the i™ coordinate in © € GF(p)" and the arithmetic is in GF(p). The functions,
so defined, map GF(p)' to GF(p). Standard modifications can be applied to derive functions
mapping {0, 1}" to {0,1}™ (recall p ~ 2™).

4.3 Analysis

Our analysis uses the fact that the construction of small-bias spaces of [3, 13] satisfies a bound
on an exponential sum related to the above intuitive motivation to small-bias spaces (see Ap-
pendix A.3). We then prove a Lindsey-like lemma on near-orthogonal vectors and combine it
with the bound above to give the result.

Suppose, on the contrary to the extraction property, that for some random variable X =
(X1, ..., X;) with min-entropy k, for an ¢ fraction of the f’s in F, the random variable f(X) is
e-away (in norm-1) from the uniform distribution. Then, it follows that there is a subset 5’ C §

of €|9] sequences so that, for each 3 ! (81,...,8) € ', the tandom variable 32/_, X;s; is e-away
from the uniform distribution. Namely, for every 3 o (S15..0,8) €57,

1= ! 1

2 JXI:O Prob (;Xisi :]) - ; > € (13)
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Let v be a sum-zero p-dimensional vector with norm-1 greater than € (here v represents the
difference between the probability function of Zzzl X;s; and the uniform distributional function).
Then, the norm-2 of v & (v1,...,0p) is at least ¢/p. Passing to the Fourier basis (i.e., in which the
J™ vector is (wf,w?, ...,wP?) with w being a p' root of unity), we represent v by ¢ = (44, ..., 7,),
where ¢; = ﬁ >, w' - v;. Clearly, the norm-2 of v and ¢ are equal, and thus the max-norm of %
is at least ¢/p'®. It follows that there exists a j so that \/p- = || 3 viw??|| > €/p and this j
cannot be p (since Y, v;w* = Y, v; = 0). Thus, for every 3 = (81,...,8;) € 5 there exists some
jeA{l,...,p—1},so that

Y

AN i €
[Exp(e? 2om o) >

where ||¢|| denotes the norm-2 of the complex number ¢. It follows means that for some j (w.l.o.g.,
j = 1) there exists a subset 5" C 5" of cardinality §|S|, so that for every s ! (81,...,8) € 5"

. i (54 6
[ Exp (e’ 2om Xe5)|| > . (14)

By partitioning these sequences according to the approximate direction of the exponential sum
and applying a pigeon-hole argument?, we obtain a set B C S” of cardinality Q(¢|S]|/p) so that

1
| B

> Explwden X)) = 0(e/p) (15)
(81,...,81)€B
Contradiction follows by contrasting Eq. (15) with the following lemma, which generalizes Lind-
sey’s Lemma (cf., [12, p. 88] and [2]).

Lemma 1 Lel A be an N-by-M matriz of complex numbers, so that each row has inner-product®
equal to M and each pair of different rows have inner-product bounded (in norm-2) by ¢ M. Let

u be an N -dimensional probability vector with each components bounded above by &, and v be an
L

7 or zero. Then,

M -dimensional probabilily vector with each components being either

M

AvT|| < "4+ 6
lude™ || < /(e +8) - —

Lindsey’s Lemma is obtained from the above by requiring the rows of A to be orthogonal (i.e.,
¢ = 0) and considering only flat distributions (i.e., each u; being either § or 0).

proof: Denote, A o |luAvT||. Then, using Cauchy Schwartz Inequality, we get

A’ < <f'vT>-<<uA>-<uA>T>

- = ((Z w; A;) - (Z u; A;)")

*E.g., partition the vectors according quarters of the plain and consider the direction which resides in the middle

of the quarter with the largest number of vectors.
®Note that inner-product of complex vectors is defined as component-wise complex multiplication of one vector
by the conjugate of the other.
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where A; is the i*® row of the matrix A and u; is the 7*® entry of the vector u. Using the hypothesis
concerning the inner-product of the rows of A we obtain the bound

N

1
A? < = (Z uiuje'JM+Zu?]W)
(

i#j i
M

—. (e’Zuiuj + Zuf)
ij i

=

Using )7, ; wju; = (32, w;)* = 1 and maximizing )~ u? over all admissible u’s (i.e., 37, u; = 1 and
0 < u; < 6 for each 7), we get A? < % (€ 4+ ¢) and the lemma follows. O

Contradiction to Eq. (15) follows by considering the p'-by-|S| matrix with rows corresponding
to elements of GF(p)" and columns corresponding to elements of §. The (4,7)™ entry in the
matrix consists of wE:c:l“sk, where (21, ...,2,) is the i™ sequence in GF(p)" and (si,..., ;) is
the 7*® sequence in S. Let u be a vector describing the probability distribution of the random
variable X (i.e., u, = Prob(X =z)) and § = 2% (the upper bound on probability for X). Let v
be the (normalized) vector characterizing the set B (i.e., v; equals ﬁ if i € B and 0 otherwise).
Note that the inner-product of different rows corresponding to sequences z = (z1,...,2;) and
Yy = (Y1,...,y:) equals Y g wZ;=1(“_y’°)s’°, which, by construction of the sample space S, has

norm-2 bounded by €¢|S5]|. Applying Lemma 1 and using the definition of ¢, §, M and K (i.e.,

3

¢ = ;—z, §=2"F<B3.275m ;—5, |M| = 15| and K = |B| = Q(€|S|/p) we get
1 : M
= > Bxplwkes | < (@4 8) -
|B| (s1,...,81)EB K

O(¢/p%)

which contradicts Eq. (15). The theorem follows. W

4.4 Lower Bound

To illustrate that this construction is near optimal when & = O(logn) we restate Theorem 7 with
the necessary change of parameters. We note that the BPP simulation of [33] mentioned in the
introduction indeed uses this construction for this value of the parameter k.

Theorem 9 A family of functions from {0,1}" to {0, 1}, with extraction property of accuracy
€ < 1 with respect to random variables of min-entropy k < n—1, must have size at least max{n —

k+1,(1/e)—1}.
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A  Technical Tools

A.1 Universal Hashing

Loosely speaking, universal families of hashing functions consist of functions operating on the
same domain-range pair so that a function uniformly selected in the family maps each pair of

points in a pairwise independent and uniform manner. Specifically, a family, H, ,,, of functions
from {0, 1}" to {0,1}™, is called universal if for every z # y € {0,1}"” and o, 5 € {0,1}™ it holds

Prob(h(z)=a A h(y)=3) = 27"

where the probability is taken over all choices of h € H, ,, with uniform probability distribution.

Several efficient families of universal hashing functions are known [7]. The functions in these
families can be described using O(n 4+ m) bits and posses an efficient (e.g., polynomial-time
and even logspace) evaluating algorithms. The two main facts we will use about universal hash

families are:

Pairwise Independence

Lemma 2 The set of random variables {h(z)|z € {0,1}"} defined by a random h € H are

pairwise independent and uniformly distributed in {0,1}™.

Leftover Hash Lemma
This fundamental lemma of [20] asserts that a random hash function from a universal family
will smooth min-entropy k& (recall definition in the previous section) whenever the range M is

smaller than k. More precisely

Lemma 3 (Leftover Hash Lemma [20]): Let X be any random variable on {0,1}" with min-
entropy k. Then the distribution (h,h(X)), with h chosen at random from H, ., has (norm-1)

distance 2083 from the uniform distribution.

A.2 Expanders

The Expander Mixing Lemma

The following lemma is folklore and has appeared in many papers. Loosely speaking, the
lemma asserts that expander graphs (for which d > X) have the property that the fraction of
edges between two large sets of vertices approximately equals the product of the densities of these

sets. This property is called mizing.

Lemma 4 (Expander Mixing Lemma): Let G = (V, E) be an expander graph of degree d and A
be an upper bound on the absolute value of all eigenvalues, save the biggest one, of the adjacency
maltriz of the graph. Then for every two subsets, A, B CV, it holds

((AxB)nE| Al |B]| _ AVIAl-|B]

A
Pl 2V L o
2] VIS T d vl S
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def

Proof: Let A, B C V be two sets and denote N %' |V, p(A) | A|/N and p(B) = |B|/N.
Denote by M the adjacency matrix of the graph GG, and let us denote it eigenvalues by Aq, ..., Ay,
where |A;| > |Ai41]. Note that A\; = d, whereas, by the statement of the lemma, A > |X,|. Hence,

the claim of the lemma is restated as

(AxB)nE|
d-N

We proceed by bounding the value of [(A x B)N E| (from both directions). To this end we let @
denote the N-dimensional Boolean vector having 1 in the i"® component iff i € A. The vector b
is defined similarly. Clearly, |(A x B)N E| equals aMbT. We consider the orthogonal eigenvector
basis, ey, ..., e, where e;e] = N for each 7, and write each vector as a linear combination of the
vectors in the basis, denoting by a; the coefficient of @ in the direction of e; (i.e., @ = Y, a;¢;).
One can easily verify that a; = p(A) and Y1, a? = p(A). Similarly for b. Tt now follows that

(Ax Byn E| = aMb'

N
= aM(be] + Zbie;)

=2

N
= d-p(B)-|Al+a)_ Nbie]

i=2

N

i=2

m

N
p(B)p(A)-dN £ X- N> ab;

i=2
Using Yo, a? = p(A) and i, b7 = p(B), and applying Cauchy-Schwartz Inequality, we bound
S, aib; by /p(A)p(B). The lemma follows. i

The Expander Smoothing Lemma
The following lemma follows easily by the standard techniques of dealing with random walks

on expander graphs.

Lemma 5 (Expander Smoothing Lemma): Let G = (V, E), d and X be as in the previous lemma.
Let X be a random variable, distributed over V', so that Prob(X =v) < %, for every veV, and

Y denote the vertex reached from X by following a uniformly chosen edge. Then
1

Z Prob(Y=v) - —| < - VK -1
= V| d
Proof: Let N & |V|], and = denote the N-dimensional probability vector defined by X (i.e.,

z; & Prob(X =1)). Let A denote the Markov process defined by traversing a uniformly selected

edge in G; namely, the matrix A is the adjacency matrix of the graph GG, normalized by division
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A
d’
i > 1. We consider the orthogonal eigenvector basis, ey, ..., ey, where e;¢] = % for each 7, and

)

by d. Denote the eigenvalues of A by Ay,...,An, and note that Ay = 1 and || < for every

write each vector as a linear combination of the vectors in the basis. Denote by ¢; the coefficient
of z in the direction of ¢;. We start by bounding ", ¢ as follows

Yy = (Ceel) - (Ceel)

= a:-mT
= Ya?

N <A)2
< - [ =
= K \N

getting >, ¢ < K. Tt is also easy to see that ¢; = 1. We now consider the differences vector,
denoted z, representing the deviation of the random variable Y from the uniform distribution.

def
2T E Az —e]

= A(Z ciei)' — el
= Z Aiciei
i>1
Recall that the lemma claims an upper bound on the norm-1 of z. Instead, we start by providing
a bound on its norm-2:

2 _ 22 T
g z; = E Ajciee;
i

i>1
A2 1
< (Bged
d i>1 N
< <,\>2 K-1
- \d N
Maximizing the sum of the |2|’s, subject to the above bound, the lemma follows. i

A.3 Small Probability Spaces with the Small Bias Property

The following definition of small-bias sample spaces implies the informal presentation in Section 4.
Clearly, both are legitimate generalizations of the definition of small-biased sample spaces for the

binary case (and indeed they are equivalent for p = 2).

Definition 3 Let k be an integer, p be a prime and w be a p™ root of unity (in the complex field).
A set S C GF(p)' is said to have € bias (sample space for GF(p)") if, for every t-long sequence
(ai,...,a;) of elements in GF(p), so that not all a;’s are zero, the expectation of (the norm-2 of)

wzz:l“’s’, taken over all (s1,...,8;) € S with uniform distribution, is bounded above by e.
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The following theorem, due to G. Even [13], is obtained by generalizing a construction of Alon
et. al. [3]. Specifically, Even generalizes the LFSR construction by considering sequences over

GF(p) (rather than over GF(2)).

Theorem 10 [13, 14]: For every integer t, prime p and € > 0, there exists an efficiently con-
structible e-bias sample space of size (ip/e)? for GF(p)'.

The extra p factor in the expression is due to round-up errors. We need to set an integer m,
determining the size of the shift register, so that -= < ¢ and this yields a sample space of size

o
p

2m

B A Simpler Sampler for the Boolean Case

For the case of Boolean functions, a much simpler sampler, meeting the complexity bounds of
the sampler presented above, exists. In fact, this simpler sampler has even lower randomness
complexity (specifically n instead of n4 O(log(1/€))). Our sampling procedure is exactly the one
that was presented by Karp, Pippinger and Sipser for hitting a witness set [22], yet the analysis
is somewhat more involved. Furthermore, to get an algorithm which samples the universe only
on O(é/€*) points, it is crucial to use a Ramanujan graph in role of the expander in the Karp-
Pippinger-Sipser method. Again, we present a sampler for constant § and derive the result for
general § using the method of Bellare et. al. [5]. Namely,

Definition 4 (Boolean sampler): A Boolean sampler is a randomized algorithm, denoted A,

which satisfies

Prob(|A"(n,€,6) — v >€) < 6
for every Boolean function v:{0,1}"—{0,1}.
Theorem 11 There ezists a poly(n, e *,log(1/8))-time Boolean sampler which
o makes O(lﬁg%m) oracle queries; and

o tosses n+ O(log(1/6)) coins.

B.1 Construction

As said, the sampling algorithm uses, in an essential way, an explicit construction of a Ramanujan
(expander) graph [23]; namely, expanders with second eigenvalue, A, satisfying A\ < 2v/d, where
d denotes the degree. Specifically, we use an expander of degree d = 4/§¢* and associate the
vertex set of the expander with {0,1}". The sampling algorithm consists of uniformly selecting
a vertex, v, (of the expander) and averaging over the values assigned (by v) to the neighbors of

v; namely,

~det 1
U= p Z v(u)

where NV (v) denotes the set of neighbors of vertex v.
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B.2 Analysis

We denote by B the set of bad choices for the algorithm; namely, the set of vertices that once
selected by the algorithm yield a wrong estimate. That is, v € B if

1
p Z v(u) —v| > ¢
ueN(v)
Denote by B’ the subset of v € B for which
1 _
7 S ovuw)>v+e (16)
uEN(v)

It follows that each v € B’ has ed too many neighbors in the set A % {u: v(u)=1}; namely,
H{ueN(v):ue A} > (p(A;) +€)-d (17)

where p(A) = % and N & o, Using the Expander Mixing Lemma ones gets that

B[ - (p(A) + €)d

e-p(B) = ) p(a)
‘|(B'><A)mE|_@ 1B|
: 7 v v
< A VAL B
- d N

2
< —=- A) - p(B'
< g VetA) (B

and p(B') < 6p(A) follows. Using a similar argument, we can show that and p(B — B') <
0(1 — p(A)). Thus, p(B) < 6 and the claim follows. W

B.3 A different perspective on the general sampler

In retrospect, one can described the construction employed in the proof of Theorem 4 as follows.
We start with an explicit construction of an expander with vertex set {0, 1} and degree poly(1/¢).
The sampler consists of uniformly selecting a vertex of the expander and considering a pairwise
independent O(1/€?)-long sequence of the neighbors of this vertex. The output of the sampler is
merely the average of the function value on these neighbors.



