FElectronic Colloquium on Computational Complexity
ECCC TECHNICAL REPORTS SERIES 1994 REPORT Nr: TR94-003

Symmetric Logspace is Closed Under
Complement

Noam Nisan' Amnon Ta-Shma¥

Received November 6 1994

Abstract. We present a Logspace, many-one reduction from the undirected st-
connectivity problem to its complement. This shows that SL = co— SL.

t Institute of Computer Science, Hebrew University of Jerusalem. email: noam@cs.huji.ac.il. This work
was supported by BSF grant 92-00043 and by a Wolfeson award administered by the Israeli Academy
of Sciences. The work was revised while visiting BRICS, Basic Research in Computer Science, Centre
of the Danish National Research Foundation.

Institute of Computer Science, Hebrew University of Jerusalem. email: am@cs.huji.ac.il. This work
was supported by BSF grant 92-00043 and by a Wolfeson award administered by the Tsraeli Academy
of Sciences. The work was revised while visiting BRICS, Basic Research in Computer Science, Centre
of the Danish National Research Foundation.

-

Online access for ECCC:

FTP: ftp.eccc.uni-trier.de:/pub/eccc/

WWW: http://www.eccc.uni-trier.de/eccc/

Mail to: ftpmailftp.eccc.uni-trier.de,subject "MAIL ME CLEAR”, body "pub/eccc/ftpmail.txt”
followed by an empty line, for help

1 Introduction

This paper deals with the complexity class symmetric Logspace, 5L, defined by Lewis and
Papadimitriou in [LP82]. This class can be defined in several equivalent ways:

1. Languages which can be recognised by symmetric nondeterministic Turing Machines
that run within logarithmic space. See [LP82].

2. Languages that can be accepted by a uniform family of polynomial size contact schemes
(also sometimes called switching networks.) See [Raz91].

3. Languages which can be reduced in Logspace via a many-one reduction to USTCON,
the undirected st-connectivity problem.

A major reason for the interest in this class is that it captures the complexity of USTCON.
The input to USTCON is an undirected graph G and two vertices in it s,¢, and the input
should be accepted if s and ¢ are connected via a path in GG. The similar problem, STCON,
where the graph G is allowed to be directed is complete for N I, non-deterministic Logspace.
Several combinatorial problems are known to be in S or co — S, e.g. 2-colourability is
complete in co — SL [Rei82].

The following facts are known regarding 5L relative to other complexity classes in “the

vicinity”:
ICSLCRLCNI.

Here, I is the class deterministic Logspace and R/ is the class of problems that can be
accepted with one-sided error by a randomized Logspace machine running in polynomial
time. The containment S1 C R is the only non-trivial one in the line above and follows
directly from the randomized Logspace algorithm for USTCON of [AKL*79]. It is also
known that S7 C SC [Nis92], SL C @ L [KW93] and SL C DSPACE(log'”n) [NSW92].

After the surprising proofs that N L is closed under complement were found [Imm88,
Sze88], Borodin et al [BCDT89] asked whether the same is true for SZ. They could prove
only the weaker statement, namely that 57 C co— R, and left “ST. = co— SL?” as an open
problem. In this paper we solve the problem in the affirmative by exhibiting a Logspace,
many-one reduction from USTCON to its complement. Quite surprisingly the proof of our
theorem does not use inductive counting, as do the proofs of NI, = co — N L, and is in fact
even simpler than them, however it uses the [AKS83] sorting networks.

Theorem 1 SIL =co— SL.

It should be noted that the monotone analogues (see [GS91]) of SL and co — SL are
known to be different [KW88].

As a direct corollary of our theorem, we get that L5 = SIS = SI, where L5 is the
class of languages accepted by Logspace oracle Turing machines with oracle from S'I, and
S 15" is defined similarly, being careful with the way we allow queries (see [RST84]).

Corollary 1.1 L5V = §15F = §1,

In particular this shows that both “symmetric Logspace hierarchies”, (the one defined by

alternation in [Rei82], and the one defined by oracle queries in [BALPS94]) collapse to SL.

2 Proof of Theorem

2.1

Overview of proof.

We design a many-one reduction from co— USTCON to USTCON. We start by developing,
in subsection2.2, simple tools for combining reductions. In particular these tools will allow
us to use the AKS sorting networks in order to “count”. At this point, the main ingredient of
the reduction will be the calculation of the number of the connected components of a graph.

An upper bound to this number is easily obtained using tarnsitive closure, while the main

idea of the proof is to obtain a lower bound by computing a spanning forest of the graph,
which is done in subsection 2.3. In subsection 2.4 everything is put together.

2.2 Projections to USTCON.

In this paper we will use only the simplest kind of reductions, i.e. LogSpace uniform projec-
tion reductions [SV85]. Moreover, we will be interested only in reductions to USTCON. In
this subsection we define this kind of reduction and we show some of its basic properties.

NoTAaTION 2.1 Given f : {0,1}* — {0,1}* denote by f, : {0,1}" — {0,1}* the restriction
of f to inputs of length n. Denote by f, 1 the k’th bit function of f,, i.e. if f, : {0,1}" —
{07 l}k(n) then fn = (fn,h ERERE fn,k(n))

NOTATION 2.2 We represent an n—node undirected graph G using (%) variables ¥ = {x; j}1<icj<n
s.t. x;; is 1 iff (i,5) € E(G). If f(Z) operates on graphs , we will write f(G) meaning that
the input to f is a binary vector of length (7)) representing G.

We say that f: {0,1}* — {0,1}* reduces to USTCON(m) if we can (uniformly and in

LogSpace) label the edges of a graph of size m with {0, 1, z;, 72 }1<i<n, s.t. fop(Z) =1 <=
there is a path from 1 to m in the corresponding graph. Formally,

DEFINITION 2.1 We say that f :{0,1}* — {0,1}* reduces to USTCON (m) ,m = m(n), if
there is a uniform family of Space(log(n)) functions {0, x} s.t. for all n and k:

o Oy is a projection, i.e.: 0n 1 is a mapping from {i,j}1<icj<m t0 {0,1, 24,2} 1<i<n

o Given ¥ define Gz to be the graph Gz = ({1,...,m}, E) where
E=A(i,7)| oni(i,j)=10r 0,4(i,5) = 2; and x; = 1 or 0, 1(i,7) = —2; and x; = 0}.

o foi(¥) =1 <= there is a path from 1 to m in Gzy.

If o is restricted to the set {0, 1, 2;}1<i<n we say that f monotonically reduces to USTCON (m).

Lemma 2.1 [f f has uniform monotone formulae of size s(n) then f is monotonically re-

ducible to USTCON (O(s(n))).

Proof: Given a formula ¢ recursively build (G, s, 1) as follows:

o If ¢ = z; then build a graph with two vertices s and #, and one edge between them

labelled with z;.

o If ¢ = ¢y A ¢g, and (G}, s4,1;) the graphs for ¢;, i = 1,2, then identify s, with ¢; and
define s = 81,1 = 5.

o If ¢ = ¢y V ¢g, and (G}, si,1;) the graphs for ¢;, i = 1,2, then identify s; with ¢; and
sy with ¢ and define s = sy = t; and ¢t = sy = 5.

U
Using the AK S sorting networks [AKS83], which belong to NC' | we get:

Corollary 2.2 Sort : {0,1}* — {0,1}* (which given a binary vector sorts it) is monotoni-
cally reducible to USTCON (poly).

Lemma 2.3 If f monotonically reduces to USTCON(m4) and g reduces to USTCON (my)
then f o g reduces to USTCON(m3 - my) , where o is the standard function composition
operator.

Proof: f monotonically reduces to a graph with my vertices, where each edge is labelled
with one of {0,1,2;}. In the composition function f o g each z; is replaced by z; = ¢:(¥)
which can be reduced to a connectivity problem of size mgy. Replace each edge labelled z;
with its corresponding conmnectivity problem. There can be m? edges, each replaced by a
graph with my vertices, hence the new graph has m? - my vertices. L]

2.3 Finding a spanning forest.

In this section we show how to build a spanning forest using USTCON. This basic idea was
already noticed by Reif and independently by Cook [Rei82].

Given a graph G index the edges from 1 to m. We can view the indices as weights to the
edges, and as no two edges have the same weight, we know that there is a unique minimal
spanning forest /. In our case, where the edges are indexed, this minimal forest is the
lexicographically first spanning forest.

It is well known that the greedy algorithm finds a minimal spanning forest. Let us recall
how the greedy algorithm works in our case. The algorithm builds a spanning forest /' which
is at the beginning empty F = V. Then the algorithm checks the edges one by one according
to their order, for each edge e if e does not close a cycle in F then e is added to the forest,
ie. F'=FU{e}.

At first glance the algorithm looks sequential, however, claim 2.3 shows that the greedy
algorithm is actually highly parallel. Moreover, all we need to check that an edge does not
participate in the forest, is one st connectivity problem over a simple to get graph.

DEFINITION 2.2 For an undirected graph G denote by LF' F(G) the lexicographically first span-
ning forest of G. Let

SF(G)— A0, 1}(;) be:

0 (i,j)e LFF(G)
SE(G) = { 1 otherwise

Lemma 2.4 SF reduces to USTCON (poly)

Proof: Let F be the lexicographically first spanning forest of G. For e € F define G, to
be the subgraph of GG containing only the edges {¢’ € I | indez(e') < index(e)}.

Claim: e=(i,j)€ F <= e€ F A iisnot connected to j in G..

Proof: Let e = (i,5) € E. Denote by F, the forest which the greedy algorithm built at the
time it was checking e. So e € I/ <= e does not close a cycle in F.

(=) e € I and therefore e does not close a cycle in F., but then e does not close a cycle
in the transitive closure of F., and in particular e does not close a cycle in G..

(<=) e does not close a cycle in G, therefore e does not close a cycle in F, and e € F. [J

Therefore SF; ;(G) = —x;; Vi is connected to j in G(i,j)'

Since —z; ; can be viewed as the connectivity problem over the graph with two vertices
and one edge labelled -z, ; it follows from lemmas 2.1,2.3 that SF reduces to USTCON.
Notice, however, that the reduction is not monotone.

O

2.4 Putting it together.

First, we want to build a function that takes one representative from each connected com-
ponent. We define LI;(G) to be 0 iff the vertex i has the largest index in its connected
component.

DEeFINITION 2.3 LI(G) — {0,1}"

0 ¢ has the largest index in its connected component

LI;(G) = { |

otherwise

Lemma 2.5 LI reduces to USTCON (poly)

Proof:
LI;(G)=V7]_;y1 (iis connected to j in G).

So LI is a simple monotone formula over connectivity problems, and by lemmas 2.1,2.3
L1 reduces to USTCON. This is, actually, a monotone reduction.

O

Using the spanning forest and the LI function we can exactly compute the number of
connected components of G, i.e.: given G we can compute a function NCC; which is 1 iff
there are exactly ¢ connected components in G.

DEeFINITION 2.4 NCC(G) — {0,1}"

1 there are exactly v connected components in GG
0 otherwise

NCCi{(G) = {

Lemma 2.6 NCC reduces to USTCON (poly)

Proof:

Let F' be a spanning forest of GG. It is easy to see that if G has k connected components
then |F| =n — k.

Define:
f(G)= Sorto LI(G)
g(G) = Sort o SF(G).

Then:

i(G)=1 = k<
gi(G)=1 =n—-k<i =k>n—i.

and thus: NCCi(G) = fi41(G) A gn—i+1(G)
Therefore applying lemmas 2.1,2.2,2.3,2.4,2.5 proves the lemma.
L

Finally we can reduce the non-connectivity problem to the connectivity problem, thus
proving that SL = co— SL.

Lemma 2.7 USTCON reduces to USTCON (poly)

Proof:
Given (G, s,t) define G to be the graph G U {(s,1)}.
Denote by #CC(H) the number of connected components in the undirected graph H.

s is not connected to ¢t in G S
#CCGH)=#CC(G)-1 <=
\/2-:27.“% NCCZ'(G) A LVCC¢_1(G+).

Therefore applying lemmas 2.1,2.3,2.6 proves the lemma.]

3 Extensions

Denote by L5" the class of languages accepted by Logspace oracle Turing machines with
oracle from SL. An oracle Turing machine has a work tape and a write-only query tape
(with unlimited length) which is initialised after every query. We get:

Corollary 3.1 15" = §1I..

Proof:

Let Lang be a language in L5 solved by an oracle Turing machine M running in L%,
and fix an input ¥ to M.

Look at the configuration graph of M. In this graph we have query vertices with outgoing
edges labelled “connected” and “not connected”. We would like to replace the edges labelled
“connected” with their corresponding connectivity problems, and the edges labelled “not
connected” with the connectivity problems obtained using our theorem that SL = co— SL.

However, there is a technical problem here, as the queries are determined by the edges
and not by the query vertices. We can fix this difficulty by splitting each query vertex to its

“yes” and “no” answers, and splitting each edge entering a query vertex to “connected” and

“not connected” edges. Now we can easily replace each edge with a connectivity problem,
obtaining an undirected graph which is st connected iff ¥ € Lang, and therefore Lang € SL.

O

As can easily be seen the above argument applies to any undirected graph with USTCON
query vertices, thus, if we carefully define SL5" (see [RSTS84]) we get that:

Corollary 3.2 S1°F = §1,.

4 Acknowledgements

We would like to thank Amos Beimel, Allan Borodin, Assaf Schuster, Robert Szelepcsényi,
and Avi Wigderson for helpful discussions.

References

[AKL*T79] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz, and C. Rackoff. Random walks,
universal sequences and the complexity of maze problems. In Proceedings of the
20th Annual IEEE Symposium on the Foundations of Computer Science, 1979.

[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi. An O(nlogn) sorting network. In Proc.
15th ACM Symposium on Theory of Computing (STOC), pages 1-9, 1983.

[BALPS94] Y. Ben-Asher, K.-J. Lange, D. Peleg, and A. Schuster. The complexity of recon-
figuring network models. Manuscript, 1994.

[BCD*89]

[GS91]

[Imm8&8]

[KW8S]

[KW93]

[LPS2]

[Nis92]

[NSW92]

[Raz91]

[Rei82]

[RST84]

[SV85]

[Sze88]

A. Borodin, S.A. Cook, P.W. Dymond, W.L. Ruzzo, and M. Tompa. Two appli-
cations of inductive counting for complementation problems. SIAM Journal on

Computing, 18(3):559-578, 1989.

Grigni and Sipser. Monotone separation of logspace from ne'. In Annual Con-
ference on Structure in Complezity Theory, 1991.

Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17, 1988.

M. Karchmer and A. Wigderson. Monotone circuits for connectivity require

super-logarithmic depth. In Proc. 20th ACM Symposium on Theory of Compul-
ing (STOC), pages 539-550, 1988.

Karchmer and Wigderson. On span programs. In Annual Conference on Structure
in Complexity Theory, 1993.

Lewis and Papadimitriou. Symmetric space-bounded computation. Theoretical
Computer Science, 19, 1982.

N. Nisan. RL C SC. In Proc. 24th ACM Symposium on Theory of Computing
(STOC), pages 619-623, 1992.

N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in O(log'*n)
space. In Proc. 33th IEFE Symposium on Foundations of Computer Science
(FOCS), pages 24-29, 1992.

A. Razborov. Lower bounds for deterministic and nondeterministic branching
programs. In Proceedings of the 8th FCT, Lecture Notes in Computer Science,
529, pages 4760, New York/Berlin, 1991. Springer-Verlag.

J. H. Reif. Symmetric complementation. In Proc. 14th ACM Symposium on
Theory of Computing (STOC), pages 201-214, 1982.

Ruzzo, Simon, and Tompa. Space-bounded hierarchies and probabilistic compu-
tations. Journal of Computer and System Sciences, 28:216—-230, April 1984.

Skyum and Valiant. A complexity theory based on boolean algebra. Journal of
the ACM, 1985.

Szelepcsenyi. The method of forced enumeration for nondeterministic automata.
Acta Informatica, 26, 1988.

