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1 Introduction

Resource-bounded measure theory was intro-
duced in [L90a] and has proved to be a useful
tool in complexity theory. Among the reasons for
studying resource-bounded measure, we mention
the following;:

e T'he probabilistic method can be applied only
if there is a meaningful notion of probability
on the underlying space. To show that a set
in E having some property @) exists, it is suf-
ficient to show that the class of sets that do
not have property () has measure zero in E.
(This sometimes presents itself as an easier
task than explicitly building a set in E having
property @.) For example, Lutz and Mayor-
domo [LM] were able to use this version of
the probabilistic method to prove stronger
results concerning the density of hard lan-
guages than had been proved previously.

e Certain interesting notions of intractability
can be formulated only in the context of
resource-bounded measure. Lutz and Juedes
[JL] studied “weakly complete” sets in E,
which are sets in E that are hard for more
than a measure-zero subset of E.

e Many separation results and hierarchy the-
orems in complexity theory have stronger
versions provable in the context of resource-
bounded measure. For example, the <P -
complete sets are a measure-zero subset of
E [JL], and DTIME(2°") is a measure-zero
subset of E [L92]. However, for many other
separations, no corresponding measure result
is known. Often, as in [JL], when a measure-
theoretic strengthening of a separation result
is possible, the proof gives enlightening addi-
tional information concerning the complexity
classes involved.

e Unproven but plausible hypotheses such as
“P # NP” or the stronger hypothesis “the
polynomial hierarchy is infinite” provide
useful information concerning complexity-
theoretic propositions. (That is, “X = the

polynomial hierarchy collapses” is taken as
evidence for =X.) Lutz [L93a] argues that
the hypothesis “NP is not a measure zero
subset of DTIME(Q”O(l))” (a stronger hy-
pothesis than P # NP) is plausible and offers
a great deal of explanatory power.

Unfortunately, the formulation of resource-
bounded measure studied by Lutz and others ap-
plies only to complexity classes at least as large
as E, which greatly limits the range of questions
that can be explored in this framework. The goal
of the work presented here is to remedy this situa-
tion by providing a meaningful notion of measure
for P and other subexponential time classes, and
demonstrate its usefulness.

Section 2 presents Lutz’s definition of resource-
bounded measure, explains why it does not ex-
tend in any obvious way to provide a measure
on smaller classes, and then shows how these ob-
stacles were overcome to provide a measure on P
and other classes. This section concludes with a
discussion of how natural and robust our defini-
tion of measure is, and a comparison of it to the
work of Mayordomo [M, M2], where a measure on
PSPACE is defined.

Section 3 presents our proof that sets that are
hard for BPP are abundant in E, for every ¢ > 0,
as well as related results for PSPACE.

Section 4 presents our results concerning pseu-
dorandom sources for BPP.

Section 5 includes a discussion of whether the
notion of measure introduced in this paper rel-
ativizes in a meaningful way. (That is, we dis-
cuss the question of whether nonrelativizing re-
sults might be obtained using this notion of mea-
sure.)

2 Defining Resource-Bounded Mea-
sure

2.1 Background Concerning Measure

In order to present our new definitions of
resource-bounded measure and explain the ob-
stacles to extending Lutz’s definitions to subex-
ponential complexity classes, it is necessary to



sketch Lutz’s formulation. For more details, con-
sult [L92].

The intuition behind Lutz’s formulation of
resource-bounded measure is that a measure-zero
set is a set such that, for all k£, the set can be cov-
ered by a collection of intervals whose sizes sum
to 27F, where the “intervals” are easy to compute
in some sense.

To make this more precise, fix an enumeration
{s;}22, of all words, and let pos(z) denote the
position of z in this ordering. A language L is
identified with its characteristic sequence: an in-
finite sequence w = (a;) with a¢; = 1 iff 5; € L.
Let w[i..j] denote the string of the ith through
jth bits of w. Let y C w indicate that y is an
initial substring of w.

The sets we will try to measure are sets of lan-
guages (i.e., sets of sequences), and the analogs of
“intervals” in this context are the sets of the form
Cy = {w J 2}, which is called the “cylinder at
2”. (Thus C; is the set of languages with the |z|
initial words according to z and the other words
arbitrary).

The next few definitions describe what it
means in this context for a set to be covered, for
all k£, by a collection of intervals whose sizes sum
to 2%,

Definition 1 A density-system is a function
diy i, {0, 1} — [0, 00), where -

1. The subscripts are natural numbers.

2. The argument is considered a partial charac-
teristic sequence of a language.
3. d()(w) = —d(_)(wo);—d(_) (wl).

(For Lutz’s measure, this definition is equiva-
lent to the definition in [L92]; see also Subsection
2.5.) A density-system is called an n-DS accord-
ing to the number of subscripts. A 0-DS is a
density function. (Note there is no mention here
of resource bounds.)

A density function covers X if X C
Ugw| d(w)>1} Cw- A null cover of X is a 1-DS such
that for all k, dp covers X and dp(\) < 27F. A

set of languages has Lebesgue-measure zero iff it
has a null cover. Of course, all recursive complex-
ity classes are countable and thus have Lebesgue-
measure zero. Thus it was necessary for Lutz to
restrict the class of density systems in order to
define measures on complexity classes.

In defining notions of measure! for E, ES-
PACE, and other large complexity classes, Lutz
defines a A-measure for various classes of func-
tions A. Roughly, the sets with A-measure zero
are the sets that have a null cover that can be
approximated very closely by a function in A.
If A is chosen to be the polynomial-time com-
putable functions, Lutz obtains a measure on E;
if A is chosen to be the functions computable
in space 9log”) " then he obtains a measure on
DSPACE(Q”O(I)), and in general functions com-
puted in space or time {f(logn) : f € C} for a
sufficiently nice class C of functions yield a mea-
sure on space or time {f(n): f € C}.

In order to justify his claim that the notion
he defines does, in fact, constitute a reasonable
notion of measure on a complexity class X, Lutz
[L92] notes that if A is chosen to be the class of
allfunctions, then his definitions are equivalent to
Lebesgue measure, and he also formulates three
“measure axioms” that his system satisfies:

M 1 Fasy unions of null sets are null.
M 2 Singleton sets of easy languages are null.

M 3 X itself is not null.

Our goal in defining a measure on small complex-
ity classes is to formulate a system that is as sim-
ple and natural as possible, while still satisfying
these axioms.

When faced with the task of defining measure
on classes smaller than E, it is natural to try to

!The classes of sets that we are interested in measur-
ing are complexity classes, which are closed under finite
variants and thus have measure zero or one if they are
measurable at all. For this reason, and for the reason that
an extra layer of complication is involved in making the
notion of measure precise for sets of nonzero measure, we
follow Lutz’s lead in defining only what it means for a set
to have measure zero or one.



modify Lutz’s definitions, merely using smaller
resource bounds C. For instance, to define a
measure on P, one would consider density func-
tions computed in DTIME(log® ") ). This fails
to work, because

¢ The usual convention (see, e.g., [AJ]) for
having sublinear-time Turing machines com-
pute some function f is to have them rec-
ognize the language {z,i,b : bit i of f(x) is
b}. However it is easy to see that the class
of functions computed in this way by, for
instance, polylog-time-bounded machines, is
not closed under addition and subtraction,
which seems to be necessary for many con-
structions. Similar problems arise when one
uses the usual binary notation or scientific
notation for the numeric values of the den-
sity functions. Qur solution is to have the
run time bound the length of the output, and
to express numbers as the difference of two
formal sums of powers of two, which allows
us to perform the necessary arithmetic oper-
ations in the restricted time available.

e Using this representation for numeric values,
one obtains a system that quite possibly does
define a measure on P. It unfortunately seems
quite difficult to verify that P itself does not
have measure zero (which would violate Mea-
sure Axiom 3). This is discussed in more
detail in [AS], but the central problem lies
with an observation made previously in [M]:
the binary sequences that are constructible
in DTIME(log®™" n) correspond not to sets
in P, but rather to “word-decreasing self-
reducible” sets, some of which are hard for
E [Ba]. This motivates our notion of limiting
the dependency set size, which allows us to
obtain subexponential bounds on the com-
plexity.

2.2 Formal Definitions of the Measure

The preceding paragraphs motivate some de-
tailed definitions of a class of functions computed
by sublinear-time Turing machines. In order for
sublinear-time machines to perform interesting

computation, we follow the usual convention of
providing these machines with random access to
their input; that is, the machines have an “ad-
dress tape,” and if 7 is written in binary on the
address tape, then the machine can in unit time
move its read /write head to bit position i of the
input. Among other things, such machines can,
in logarithmic time, compute the length of their
input ([Bu]). In order to avoid uninteresting tech-
nicalities regarding encoding of pairing functions,
we adopt the convention that a machine comput-
ing a k-ary function is provided with k£ input tapes
(with an “address tape” for each input tape). The
running time of such a machine must be polylog-
arithmic in m, where m is the sum of the lengths
of its k inputs. (Note that by choosing a suitable
encoding, such a machine can be simulated by a
machine with a single input tape.) The machines
we consider will write their output on a write-only
output tape; thus the output is restricted to be
of length bounded by the running time.

Given a machine M and natural number n, de-
fine a dependency set Gpr,, € {0,...,n} to be a
set such that for each i € Gar, U {n}, and each
word w of length n, M can compute M (w[0..7])
querying only input bits in Gar, N {0,1,2,...}.
Note that for all M and n, there is a unique min-
imal dependency set for M and n, which can eas-
ily be computed by expanding the tree of queries
that one obtains by assuming both possible val-
ues for each queried bit. In what follows, we let
G, denote this minimal dependency set. Given
a function f computed by machine M, we may
abuse notation and speak of G4, instead of G'ar p,,
where this causes no confusion. Note our conven-
tion about paired inputs to M requires that if
M computes a subscripted function di,, G gets
a cadre of subscripts matching d’s: Gy ||k, for
di,(w). Often in practice Gk, is independent
of £ and r; in that case these subscripts will be
suppressed.

Given a complexity class C of the form
DTIME(F) (where we will always assume that
F is a set of time-constructible functions such
that f(n) € F = (f(n))* € F), let A(C) be

the class of functions computed by Turing ma-



chines running in time f(logn) for some f € F,
and let I'(C) be the class of functions d;, . ; (w)
computed by machines whose runtime and depen-
dency set size are both bounded by functions of
the form f(log(i¢1 +...4+4+]|w|)) for some f € F.

Note that if the functions in F are at least ex-
ponential, then A(C) = I'(C), and hence our defi-
nitions coincide with those of [L92] for complexity
classes at least as large as E.?

If fis a function in I'(C), where f: {0,1}* —
{0,1}, then f defines a constructor §, where
0(w) = wf(w). A constructor specifies the se-
quence that is the limit as j — oo of 8/()). This
gives rise to the class R(I'(C)), which is the class
of languages whose characteristic sequences are
given by some constructor in I'(C). The defini-
tions presented above were designed to maintain
the following important property of the system
developed in [1.92]:

Proposition 1 R(I'(C)) =C.

Proof. Any language in C has a trivial construc-
tor that ignores all but the length of its input, so
we have C C R(I'(C)).

On the other hand, given such a constructor §,
we can decide if z € R(6) as follows: Start run-
ning § on w = 6P°5®)=1(X). When § needs bit i
of w, recursively call ¢ on w[0,..i — 1] to gener-
ate that bit. Unwinding this recursion effectively
generates the dependency set G ||, which by hy-
pothesis has size at most f(log|w|)~ f(|z]). For

20ne technicality that needs to be addressed concerns
the manner in which machines determine the length of
their input. If one were to use the usual binary search
approach to determine the length of the input, then the de-
pendency sets cannot be kept small while allowing any sort
of interesting computation. Our approach to this problem
is to have the length of the input be given explicitly as
an argument to the machine. We follow the (useful) con-
vention of [L.92] that “subscripts” to density functions are
presented in unary; however the reader should note that
providing the length of a unary argument obviates any
need to provide the argument itself. We continue to de-
termine the complexity as if the subscripts were presented
in unary. Since all but one of the inputs to the machine
are in unary, the dependency set is only of interest for this
one non-unary input. However, the dependency set size is
allowed to depend on the length of the unary inputs.

each string y in the dependency set, we require
at most time f(|y|), for total computation time
about (f(|z|))*, which is in F by the assumed

closure properties. |

We now make precise the notion of a density
system (DS) being easy to compute. A I'(C)-
computation of an n-DS d;,..;, is an (n + 1)-
subscripted function d}-l,...,in,r satisfying

ie}

o d;, ..i, -(w)is computable in I'(C), (and nu-
meric output is represented as a pair (a,b)
representing the dyadic rational ¢ — b, where
each of a¢ and b are represented as a formal
sum of powers of 2).

i |d2—17"'7in(w) - d "7Z-n77l(lw)| S 2_T'

21,

Note that a I'(C)-computation does not have to
satisfy the average law (item 3 of Definition 1),
though it has to be close, depending on 7.

For any complexity class C, we say that a set X
is I'(C)-null if there is a I'(C)-computation of a 1-
DS di(w) covering X such that for all &, dig(\) <
2=k In this case we write® trey(X) = 0.

If a class X has nonzero measure, we can talk
about another set Y having “measure 0 in X,”
and we write prc)(Y[X) = 0,if prey(Y NX) =0
or “measure 1in X,” ur)(Y|X) = 1,if ppey (X'
Y)=0.

2.3 The Measure Axioms Are Satisfied

A set X is a C-union of T'(C)-null setsif X =
UjZo Xj, and there is a 2-DS d;x so that d;
covers X; with value 27%, and d;; has a T'(C)-
computation d]-,k,,.

Theorem 2 For each . € C, the singleton set
{L} is I'(C)-null.

Theorem 3 If X is a C-union of I'(C)-null sets,
then X is T'(C)-null.

#This is a slight change of notation from that used by
Luutz and others. For example, if C is taken to be E, then
A(C) = T(C) is the class of functions computed in poly-
nomial time, and if X is a measure-zero subset of E, we
would express that as prm)(X) = 0, while [L92] would
express this as p,(X) =0.



Theorem 4 pr)(C) # 0.

Proof. (of Theorem 2). Given a language L € C,
we will construct a null cover di(w) of the sin-
gleton set {L} as follows: Decide membership of
each word z such that pos(z) is a power of 2 and
is at most |w|. Suppose there are s of these. Out-
put 2°=F if bits 1,2, 4, ...2° of w are all consistent
with L, and output 0 otherwise.

It is easy to check that this yields a cover; we
show here that d € T'(C). Since L € C by hy-
pothesis, we can check membership of any single
word z in time f(|z|) for some f € C. (This in-
volves no queries to the input w of d). We can
in polylog time check all log-many words whose
lexicographic position is a power of 2. Also, we
query the input at the bits whose positions are
powers of 2, generating log-many points in the
dependency set. Note that the transitive closure
of this set of bits is trivial; no more points are

added. ]

Proof. (of Theorem 3). Let d;; be a 2-DS wit-
nessing that X is a C-union of I'(C)-null sets. Let

d;c(,w) = Z dj,k+2J _|_1(w).
7=0

We will show d' is a I'(C)-null cover of X.

It is immediate that d’ is a 1-DS, and that
di(\) < 27%. Now, to see that d’ covers X,
note that if w is any sequence in X, then w is
in some X;, and for all £ there is a wy C w
and d;r(wg) > 1. Now note that for all £,
di(Wgy9iyq) > 1, and thus d’ is a null cover of
X. It remains only to show that ' has I'(C)-
computations.

Define the computation

log (r+|w|)

A;c,'/‘(w) = Z (jj,k+23+1,7‘+23+2(w)'
i=0

If d is computable in time f(log n) with depen-
dency set size also bounded by f(logn), then d’
is computable in time O(log n(f(logn))?*), and is
in I'(C) by the closure properties assumed of F.

Modifying [1.92], one can let

log(r+|w])
g = Z d-7k+2;+1(w),
=0

and show |d}(w) — 0| and |o — (iﬁw(wﬂ are each
at most 27("+1), |

Proof. (of Theorem 4). We show that if d is any
I'(C)-computable density function with d(\) < 1
then we can construct a language in C not covered
by d.

As in [L92], find ¢, such that

dN) <g<qg+27' <1

Let a(z) > |z| + 1 4 3, and define the desired
language L by
sy =4 1 i dy oy (w0) > dyy(w) + 2172w
0 otherwise.
Note that ¢ is clearly a constructor in I'(C),
and thus defines a language I in C.
Finally, we have to show L is not covered by

d, i.e., for all n we have d(6"(A)) < 1. Here the
inductive argument of [L92] works unchanged.

Note that one can also define a measure anal-
ogous to our measure on time-bounded classes,
using space bounds, as opposed to time bounds.
In this way, one can obtain a measure urpspack)
for PSPACE. Mayordomo has previously defined
a notion of measure for PSPACE, where, rather
than limiting the size of the dependency sets for
the machines computing the density functions,
instead she requires that the density functions
be computed by polylogspace-bounded machines
with one-way access to the input [M]. Let us de-
note her measure N@(PSPACE)'

2.4 Elementary Facts Concerning the

Measure

We have established that our notion of measure
satisfies the measure axioms, but the reader may
wonder if enough sets are measurable for the mea-
sure to be useful in any setting. Indeed, we show



in this subsection that the class of P-measurable
sets is an extremely limited class. However, the
following theorem and its corollaries (and also the
results of the next section) show that measure-
zero results can be established for some important
classes of sets.

Theorem 5 LetC = DTIME(F). If f € F, then
prey(DTIME(f) = 0.

Proof. It will suffice to express DTIME(f(n))
as a C-union of I'(C)-null sets. But this is

easy. Let My, Ms,... be a clocked enumeration
of DTIME( f(n)) machines, and let

if any bits of w in posi-
tions numbered {1, 2,
4, ..., 2F} is inconsis-

dj,k('w) = tent with L(J\/[j)

olloglwl] =k Gtherwise.

The result follows. [ |

Corollary 6 For all k, ,ur(p)(T)TIME(nk)) = 0.

Corollary 7 Let 0 < n < ¢, and let E. denote
Us<e DTIME(2"). Then pp,)(E,) = 0.

It is also important for our applications to note
that the “Borel-Cantelli-Lutz Lemma” (see [L92])
holds also for our measure:

Lemma 8 Let C = DTIME(F), where F con-
tains no superexponential function. Let {X;} be
a collection of (not-necessarily null) sets, where
X; is covered by d; for d € I'(C). Suppose m (a
“modulus of convergence”) is an increasing func-
tion of the form f(logn) for some f € F, and for
all k we have

o0

Y odi(n) <27,

j=m(k)

Then

oo 00

urey(() U X5) = 0.

t=0 5=t

The proof of this is the same as in [L92],
but it is important here to note that for subex-
ponential complexity classes it seems unavoid-
able that the modulus be sublinear. Thus, for
the Borel-Cantelli-Lutz Lemma to be applied to
subexponential-time classes, the sets X; must
be covered by a “rapidly-vanishing” collection of
covers. This restriction that the values d;(\) tend
so rapidly toward zero makes it far from obvious
that any such functions in I'(C) can exist; a con-
crete example is presented in the proof of The-
orem 11. The restriction that F contain no su-
perexponential functions is necessary; the claim
is in fact false for F = 229, (The proof in
[L.92] requires the resource-bounding functions to
be closed under composition.) It is possible to
formulate conditions on m and d that allow the
lemma to apply to more general classes of re-
source bounds.

Due to the extremely limited computation
power of sublinear-time machines, it is often quite
easy to prove that certain sets are not I'(P)-null.
Below, we present one concrete example.

Theorem 9 The set SPARSE, of languages hav-
ing at most a polynomial number of words of any
given length, is not I'(P)-null in P.

Proof. Let d be a I'(P) density function with
d(A) < 1. We will construct a sparse set in P
that is not covered by d. For clarity of exposition,
assume here that d = dT; the general case is not
significantly more complicated. (Also, it is shown
in [AS2] that any I'(P) null cover can be replaced
by one satisfying this condition; this is discussed
more in Subsection 2.5.)

First we show that for any word w, if 7 is the
maximum element of Gg,|, then d(w[0..1]) =
d(w[0..7]) for any j in the range i < j < |w|.

Fix w = wy, and let wy = w[0..7] (see Figure 1).
Let T be the complete tree at wy of height |w|—1;
we will show that d is constant on I". By definition
of dependency set, d is constant on the leaves of T,
and by the average law at wy this common value
equals d(w;). For each w3 € T, we have d(ws) is
at least the average of d over the leaves succeeding
ws, i.e., d(ws) > d(wsy). If d(wsz) > d(wsy) then by



Figure 1: Tree in Theorem 9
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the average law at wy there’s wy at the same level
as w3 such that d(w4) < d(wz), a contradiction.
Since Gq,; C Gy |, it is now easy to see that
for all j & Gy |, d(w[0..5 — 1]) = d(w[0..5]).
Since the language I € P constructed in the
proof of Theorem 4 excludes z on the all-but-
polylog-many places where d(L[0..pos(z)—1]0) =
d(L[0..pos(z) — 1]1) and therefore have common
value d(L[0..pos(z)—1]), we conclude L is sparse.
|

Note this says more than “no T'(P) density-
system covers SPARSE;” since we constructed
an uncovered language in P, we conclude that
no I'(P) density-system covers the smaller set
SPARSENP,i.e., that SPARSE has nonzero mea-
sure in P. A closer look at this argument also
shows that the sparse set that is constructed is,
in fact, P-printable ([HY],[AR]), and hence also
the class K[log, poly] of languages containing only
strings of low time-bounded Kolmogorov com-
plexity [BB, HH] does not have measure zero in P.
In contrast, a direct argument shows that for all
k, the set of n*-sparse languages (including the
set of all tally languages) is I'(P)-null.

Observe also that the proof of Theorem 9 works
equally well for space-bounded machines, and

thus SPARSE is not a measure zero subset of
PSPACE using the I'(PSPACE) measure. On the

other hand, SPARSE is easily seen to be null us-
ing the pugpPspack) measure of [M]. The subject
of the relation between our PSPACE measure and
that of [M] is taken up again in Section 2.5.
Theorem 9 also has the following corollary.

Theorem 10 P-uniform ACY is not I'(P)-
measurable.

Proof. Since the class of P-printable sets is con-
tained in P-uniform ACY, we conclude that P-
uniform AC® (and therefore non-uniform ACY) is
not I'(P)-null. It remains only to show that P-
uniform ACY does not have measure one in P.
Consider any I'(P) density system covering the
PARITY language. An argument similar to that
of Theorem 9 shows that thereis a set L in P that
differs from PARITY only on a sparse set, such
that L is not covered. No set that differs from
PARITY only on a sparse set can be in AC?, and
thus this shows that no I'(P) density system can
cover P\ ACY. n

It follows from this that I'(P) density functions
satisfy the measure axioms even on P-uniform
AC? and hence notions of measure can be de-
fined even on intuitively small subsets of P. (Re-
cently and independently, Regan and Sivakumar
have given a very different argument showing that
non-uniform AC® does not have measure zero in
P [RS].)

We do not view this limitation of our mea-
sure as a drawback. Indeed, we conjecture
that even NTIME(logn) (a proper subset of
Dlogtime-uniform ACY) is not a measure-zero
subset of P. Backing up our conjecture is the
fact that, although NTIME(log®(") n) is prop-
erly contained in DTIMEEQIOgO(])n), it is easy to
show that if NTIME(log®(") n) has measure zero
in DTIME(QIOgO(l)"), then NP has measure zero

in DTIME(Q”O(I) ), which seems to be an unlikely
consequence [KM, 1.93a]. Of course, proving that
NP does not have measure zero in DTIME(Q”O(U)
entails proving that P # NP. However, we antic-
ipate that due to the severely limited computa-
tional power of I'(P) machines, it should be pos-
sible to show that some other interesting classes
of sets are not I'(P)-null.



2.5 Robustness, Alternative Formula-

tions and Auxiliary Axioms

There are many choices that must be made in
making the notion of a measure precise. The defi-
nitions in the preceding subsections reflect one set
of choices, but it is instructive to consider other
ways a definition could have been formulated, to
see if the class of measure-zero sets varies under
these changes.

Juedes, Lutz and Mayordomo have previously
shown that their notion of resource-bounded mea-
sure is robust in the face of many modifications
of the definition of covers. As a practical matter,
when trying to show that a class does not have
measure zero in F, or some larger complexity class,
it is very useful to know that, in that setting, a
null cover can be assumed without loss of gen-
erality to satisfy all of the following “niceness”
conditions [JLM][JL2][M]:

o A density system dj is ezactly computable if
di = dg,,.

o A density function is conservative if it sat-
isfies the following “conservation” property:
d(w) = w. Although our Defini-
tion 1 in this paper* requires density func-
tions to be conservative, other papers, such
as [1.92], for example, require density func-

tions to satisfy only the weaker condition
d(’UJ) > d(w0)+d(wl
- 2 .

o If the density system dj is of the form dj =
2=%d for some density function d, then we
say that di is derived from the martingale
d. (Many authors require a martingale to be
conservative; we will consider both conserva-
tive and nonconservative martingales.) Note
that the condition that di be a null cover of
w is equivalent to saying that there is no fi-
nite upper bound on {d(w): w C w}, so the
lim sup of this sequence is infinite.

*An earlier version of this paper did not require the
density functions to be conservative; the subtle role that
this condition plays in the proof of Theorem 9 did not
become clear until later.

o A set A is covered in the limit if there is a
martingale d such that, for all w € A, the
sequence (d(w[0..n]) has a limit of infinity,
instead of merely an infinite lim sup.

o A density system is regular if di(z) =1 and
z C w imply di(w) = 1.

When considering measure on subexponential
complexity classes, there are additional choices
involved in the definition, concerning how (or if)
the length of the input is provided, questions con-
cerning how dependency sets should be defined,
etc. Several of the proofs of [JLM, JL.2, M] show-
ing that their notion of measure is robust under
these changes do not translate directly to our set-
ting on small measure, which raises the spectre
that each of the 2% combinations of the niceness
conditions listed above (not counting additional
choices concerning providing the input length,
etc.) would give rise to a different notion of mea-
sure.

We show in [AS2] that, in fact, only two no-
tions of measure on P can be defined by varying
these parameters. It turns out that any null set
can be covered by an exactly-computable martin-
gale, but surprisingly, assuming any of the other
niceness conditions is equivalent to assuming all
of them.

That is, it is shown in [AS2] that the no-
tion of measure defined in this paper is equiv-
alent to the definition that results from having
the measure-zero sets be covered in the limit
by exactly-computable conservative martingales,
where the machines that compute the martingales
are even more limited than the machines that are
considered in this paper. On the other hand,
SPARSE is covered (in the lim sup sense) by a
non-conservative martingale, so two distinct no-
tions of measure do result.

It is also shown in [AS2] that the plogon mea-
sure ®(PSPACE) of [M] is strictly richer that the
conservative version of our space measure, but
®(PSPACE) is incomparable with the nonconser-
vative version of our space measure.

The set studied in Section 3 is shown to be
null in the most restrictive sense of measure, so



the results of that section hold for all the other
measures mentioned here.

3 Hard Sets for BPP

It was shown in [BG] that for almost every
A, BPPA = PA. In [L93] it was shown that al-
most every set in ESPACE has this property, and
thus in particular almost every such set is hard
for BPP. Note, on the other hand, that only a
measure zero set of languages is hard for X (as-
suming BPP # X%), and thus the “reason” that
a PSPACE-complete set is hard for BPP is in a
fundamental way quite different from the “rea-
son” that a random set is hard for BPP.

In this section, we improve the results of [L93]
by showing that almost every set in PSPACE and
in E, for € > 0is hard for BPP, because almost ev-
ery such set “looks random enough”. As in [1.93],
we make use of the pseudorandom generators of
[NW], although our construction differs from that
of [L.93] in several fundamental ways.

Theorem 11 For almost every A € E. we have
BPP C P4

Proof. Define H, to be the set of languages L of
hardness 27". That is, for sufficiently large n any
circuit of size 27" errs on at least 27~1(1 — 27")
of the words of length n. For a fixed n, we let
H,(n) denote the set of languages satisfying this
condition at least at the given n.

Fix positive €. We show that for almost every
A € E, and every n < min{e, 1/3} we have E4 N
H, # 0. It follows from Lemma 12 that BPP C
P4 for any such A, and hence for almost all A €
E..

Lemma 12 [f B4 N H, # 0, then BPP C P4,

Proof. This is a “partially” relativized version of
[NW, Theorem 3]. )

Let 0 < n < min{e,1/3}, and let b > 1/e. Let
F(A) denote the language

{u: 02"y € A}

Then F(A) € E4. We will show that for almost
all A € E, F'(A) has hardness 27",

Fix a circuit v with n inputs. For a word «
of length n, the set {A u € F(A)iff y(u) =
1} has (Lebesgue) measure 1/2. That is, if we
choose A at random, the circuit y(u) is too small
to query 02" € A, so with probability 1/2 we
have (u € F(A)) iff (7 accepts u). The events in
{(u € F(A))iff (v accepts u)}|yj=, are mutually
independent, so we can apply the Chernoff bound
to get

v(u) computes F(A) on at

At east 27=1(1 4 27"") words
u

has measure less than

e_(zn—nn)2/2n S 2_2n/3 (1)

for all sufficiently large n. Finally, considering all
circuits of size 2" and having n inputs, the set

some 7(u) computes

X, = A F(A) on at least
27=1(1427"") words
u
= { 4 F(A)=n ¢ Hy(n) }

has measure at most 22" times (1), which is less
than 2-2"" for all large n. Let Ch, denote the
value 2-2"/*

The set X = limsup X, contains the A for
which F'(A) ¢ H,(n) for infinitely many n, and
we wish to show X is null.

We define a density system d,(w) that for all
large n is an upper bound for the conditional
probability that a random A satisfies F(A) ¢
H,(n) given A € C,,. For short w, i.e., |w| <
pos(02"0") = p, define d,(w) to be Ch,,. If |w| >
p, then we will exhaustively generate all exten-
sions of w corresponding to elements of F(A) of
length n (i.e., all extenstions up to pos(Oanln)),
and for each such extension simulate all circuits
of size 2"" on all strings (inputs) of length n, and
count the number of extensions that can be ap-
proximated in that way, to compute the condi-
tional probability. That is, we compute the exact



value of Pr(F(A) ¢ Hy,(n)|Cy). If we were to
set dy(w) to this value, it would define a non-
conservative density system; thus it remains only
for us to patch this so that the conservation ax-
iom is satisfied, at the one place where it may fail:
the “seam” between the crude Chernoff bound for
short w and the precise conditional probability for

large w. Let a be defined as:
& = Chy, = Pr(F(A) ¢ Hy(n)] Cupopoa).

Note that a depends on n but not on w. For
|w| > p, define d,(w) to be

dn(w) = o+ Pr(F(A) & Hy(n)|Cy)

Observe that if [w| > pos(02""17), then the con-
ditional probability is either 0 or 1, and it follows
easily that d, covers X,.

It remains to show that d,(w) has compu-
tations, which we do in pieces. First consider
Pr(F(A) ¢ Hy(n)|Cy), for |w| > p. There are at
most 22" = 2108'" 1wl extensions and 22" circuits
to consider, and each simulation takes time 277,
Thus the total time to do all simulations is less
than 2108 1vl The dependency set G 4 |uw|,n cONSists
of the polylog(|w|)-many positions of all words of
the form 02!
also.

Next we consider Ch,,. It is not the case that
Ch,, is exactly computable, since Ch, = -2/
requires n/4 4+ O(1) bits to write down as a “for-
mal sum of powers of two.” However, we can
write

v, so the dependency bound is met

o~ H nf4.
Gl () = { Ch, if r > 27/4;

0 otherwise.

If » > 27/4 then expressing 2-2""" in the desired
format requires only writing the exponent —27/4,
and hence requires at most logr bits to write
down, and if r < 27/4 then

271./4

|Ch,, — Chy, . (w)] = Ch, = 272" < 27",

Then set

(Zn,r('w) = {

Chyp(w) if |w] < p,
dp(w) otherwise.
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Finally, we apply the Borel-Cantelli-Lutz
Lemma to the density system d,,, using modulus
m(n) = 1+ 4logn. That is, putting j = 27/4,

o= Y 2 <y e <o
n=m/(k)

n>4logk 7>k

so we conclude pr,)(limsup X,) = 0. n

Note that any improvement to a time class
smaller than all ¥ ’s would involve showing that
each language in BPP has subexponential time
complexity.

A similar theorem holds for space bounds:

Theorem 13 For almost every A € PSPACE we
have BPP C P4,

Proof. The proof is similar to the proof in the
time-bounded case. We note that a machine for
d only needs bits in positions pos(02”0") through
pos(02”"17), and a space-bounded machine can
store all of these bits. |

The following corollary of Theorems 11 and 13
was pointed out to us by Jack Lutz:

Corollary 14 Let C be any of the classes E,
EXP, PSPACE or Ec. If pry(NP[C) # 0 then
BPP C PNF. ]

We also show that almost every set A in E sat-
isfies BPP4 = P4, improving the result of [L.93]
from ESPACE to E.

Theorem 15 For almost every A € E,BPP4 =
pA.

Proof. The proof of this theorem is essentially
the same as the proofs of Theorems 13 and 11; the
only modification is to replace H, in those proofs
with H7‘74: the set of languages I of “relativized”
hardness 27", using oracle A. That is, for any
Ae H;;‘, for sufficiently large n any circuit of size
27" agrees with F(A) on at most 2”_1(] + 277
of the words of length n, where the circuits are
now allowed to have “oracle” gates that query the
oracle A. |

We do not know if the condition of Theorem
15 holds also for PSPACE or any E..



4 Pseudorandom Sources

In [L.90], Lutz proposed a notion of source for
BPP. He gave a criterion for a particular sequence
to be useful as a substitute for the sequence of in-
dependent unbiased coin flips used by a BPP ma-
chine. Based on this work, we formulate three in-
tuitive properties a notion of source should have:

Universality A single source should “work” for
all BPP languages.

Abundance The set of sources should have mea-
sure 1 at some level of resource-boundedness.
This implies that a random sequence of coin
flips is a source with probability 1.

Hardness If the bits of a source can be obtained
in polynomial time, then P = BPP.

The definition in [L.90] captures the first two prop-
erties, but lacks the third, as one can construct
sources in ACY without showing P = BPP [S].

We seek an alternate criterion for a particu-
lar computable sequence to be “random enough.”
We will capture universality, abundance, and
hardness.

Intuitively, a sequence A is a pseudorandom
sequence if it is possible to use A in place of a
sequence of random bits to recognize each BPP
language (where it is crucial to the definition
that this simulation would work if A were re-
placed with a random sequence). Formally, we
will say that a sequence A = (a;) is a pseudo-
random sequence for BPP if for each L. € BPP,
there is a bounded-error probabilistic polynomial-
time machine accepting L such that, for each z,
M(z,A) =1 & 2 € L, where “M(z,A)” de-
notes the result of running machine M on input
z along the path given by taking the result of the
ith coin flip to be @;. That is, on each input z,
the first polynomially-many bits of the sequence
A are used in place of probabilistic bits.

Stated another way, A is a pseudorandom se-
quence for BPP if the set T(A) = {0%a; = 1}
is hard for BPP under </ reductions, where the
machine M that reduces BPP language L to T'(A)
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also accepts I when M is viewed as a BPP ma-
chine (i.e., where queries to the oracle are an-
swered randomly). That is, A is not only hard for
BPP, but it is hard because it “looks random.”
It follows from [BG] that almost all sequences are
pseudorandom sequences for BPP.

Theorem 16 Almost every A € ESPACE is a
pseudorandom sequence for BPP.

Proof. Theorem 13 shows that for most A in
PSPACE, the language F(A) = {u : 02"y € A}
has hardness 27™. An essentially equivalent way
of restating this is to say that for almost all A
in PSPACE, for almost all m, the function f :
™ — {0,1} defined by f(u) = x4(0™+*) has
hardness 27", Thus, informally, almost all tally
sets in PSPACE look “random enough” to serve
as sources for BPP. Since tally sets in PSPACE
are essentially the same thing as sets in ESPACE,
a direct argument patterned after the proof of
Theorem 13 can be used to show that almost all
sets in ESPACE are pseudorandom sequences for
BPP. |

Theorem 16 is in some sense analogous to the
main result of [L90], but note that in contrast to
[L.90], we can make a limited claim of optimal-
ity, in the following sense. Theorem 16 shows
that there are sources in DTIME(QQO(H)). If
there is any source A in DTIME(F(n)) for some
F(n) € 2 then T(A) € DTIME (22"}, and

hence simulating any n*-time bounded BPP ma-
chine would require at most time nkQ(”k)o(l), and
thus every language in BPP would have time com-

plexity gn)

5 Conclusions

5.1 Does this Relativize?

What is “relativized one-way polylogarithmic
space”? One’s initial response is likely to be that
this is a ludicrous notion, and that attaching ora-
cles to such limited automata would probably not
give rise to a very meaningful class. If followed



further, this line of reasoning suggests that non-
relativizing results might be obtained by studying
Ko (PsPACE)-measure, and similar observations ap-
ply to the similarly-limited prp)-measure. Might
one be able to show that most sets in P are hard
for BPP? Such a result would, of course, require
nonrelativizing proof techniques, but if the notion
of measure on P does not relativize in a meaning-
ful way, then perhaps it could be used to obtain
results of this sort.

Unfortunately, it turns out that these notions
of measure do relativize in a natural way. When
one is dealing with extremely weak models of
computation, the question of how to provide
access to the oracle is often rather controver-
sial. (A survey of papers discussing the issues
involved may be found in [A90].) It is easy
to see that, for instance, if one were to use
the so-called “Ruzzo-Simon-Tompa” relativiza-
tion method [RST], then there are oracles A rela-
tive to which P4 would have measure zero in P4,
and thus this does not constitute a meaningful no-
tion of measure on P4, On the other hand, if one
adopts the convention® that a DTIME(log®™") n)
machine is permitted to write only queries of
length logo(l)n on its query tape, then it is
straightforward to show that one obtains a mea-
sure on PA. Similar observations hold for the
measures on other subexponential time classes

and on PSPACE.

Although this rules out the prospect of obtain-
ing nonrelativizing results via this notion of mea-
sure, a compensating factor is that one obtains
measures for PSAT and for all of the other A;
levels of the polynomial hierarchy. One can also
define a measure on the Eg N Hg classes, by using
covers d having EI,; machines such that some path
outputs, and all non-aborting paths output d(w).
(For related observations concerning exponential-
time classes, see also [M]).

5Tn most other settings, allowing only short queries to
the oracle does not provide a satisfactory notion of rela-
tivization, because one cannot reduce the set A to itself
(because one cannot write the input on the query tape).
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5.2 Summary

Lutz’s resource-bounded measure forms the ba-
sis for a large and growing body of interesting
work. A limitation of Lutz’s notion of measure is
that it does not apply to P and other important
subexponential time classes. We have remedied
that situation by providing a notion of measure
that does apply to these classes, and we have used
this measure to show, among other things, that
almost all sets in E. are hard for BPP, substan-
tially improving a result of [1.93].

It is worth noting that Lutz’s definitions of
resource-bounded measure have evolved some-
what over the years. Similarly, we may expect
that as experience is gained, alternative formula-
tions of measure on small time classes may arise.
However, we have established that interesting re-
sults can be obtained with our current notion of
measure, and we look forward to further work in
this area.
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