Electronic Colloquium on Computational Complezity
ECCC TECHNICAL REPORTS SERIES 1994 REPORT NR: TR94-006

On provably disjoint NP-pairs

Alexander A. Razborovt
Steklov Mathematical Institute
Vavilova 42, 117966, GSP-1, Moscow, RUSSIA

Received November 14, 199/

Abstract. In this paper we study the pairs (U,V) of disjoint NP-sets rep-
resentable in a theory 7" of Bounded Arithmetic in the sense that 7" proves
UNV = 0. For a large variety of theories 7" we exhibit a natural disjoint NP-
pair which is complete for the class of disjoint NP-pairs representable in 7". This
allows us to clarify the approach to showing independence of central open ques-
tions in Boolean complexity from theories of Bounded Arithmetic initiated in
“Bounded Arithmetic and lower bounds in Boolean complexity”. Namely, in or-
der to prove the independence result from a theory T, it is sufficient to separate
the corresponding complete NP-pair by a (quasi)poly-time computable set. We
remark that such a separation is obvious for the theory S(S52) + S5 — PIND
considered in the above-mentioned paper, and this gives an alternative proof of
the main result from that paper.

Keywords: disjoint NP-pairs, Bounded arithmetic, propositional proof systems,
logical independence

' Part of this work was done while the author was visiting BRICS, Basic Research in Computer
Science, Centre of the Danish National Research Foundation. Supported by the grant # 93-
011-16015 of the Russian Foundation for Fundamental Research, and by an AMS-FSU grant.

Online access for ECCC:

FTP: ftp.eccc.uni-trier.de:/pub/eccc/

WWW: http://www.eccc.uni-trier.de/eccc/

Mail to: ftpmailftp.eccc.uni-trier.de,subject "MAIL ME CLEAR”, body "pub/eccc/ftpmail.txt”

1. Introduction

In this paper we study the class of pairs (U,V), where U and V are disjoint NP-sets.
There are at least two good reasons to be interested in this issue.

Firstly, the question of existence of such a pair not separable by a set in P is closely
connected to the existence of public-key cryptosystems [5].

The second motivation comes from the attempts to understand on the formal level the
machinery existing in non-uniform Boolean complexity for proving lower bounds [10, 12,
11]. Of the main importance for this approach is the following observation.

Let U consist of truth-tables of all “simple” Boolean functions, and let

V={res|feU},

where s 1s a supposedly complex function in the same number of variables as f. Then
proving that s is indeed complex is equivalent to showing that U NV = (.

Based upon the notion of a natural proof [12], it was implicitly shown in [11] that if
sufficiently strong pseudo-random generators exist then these I/ and V' can not be separated
by a quasipolynomial time computable set. It was (also implicitly) shown there that if some
particular system S(S3) + S¥5 — PIN D of Bounded Arithmetic can prove that UNV = §
for some NP-pair (U, V) then this pair can not be separated by a quasipolynomial time
computable set. Putting things together, we obtain the independence result modulo the
hardness assumption.

The question if there exist disjoint NP-pairs which can not be separated by a set in
P is open. Moreover, it was shown in [6] that there exists an oracle relative to which
P # NP, and still such pairs do not exist. Thus, the assumption of the existence of
P-inseparable disjoint NP-pairs seems to be stronger than merely P £ NP. It should be
noted, however, that this assumption is implied by both P # UP (see e.g. [13, Theorem
9]) and, for obvious reasons, by P # NP N co — NP.

It is known [5, Theorem 6] that every disjoint NP-pair is many-one reducible to another
disjoint NP-pair in which both components are NP-complete. However, it is open whether
there exists an NP-pair which is complete in the class of all disjoint NP-pairs under a
natural reduction. The reason lies in the highly non-constructive nature of the condition
UNV = 0: eg. we apparently can not enumerate pairs of nondeterministic poly-time
machines producing all disjoint NP-pairs.

In this paper we try to build the hierarchy of disjoint NP-pairs based upon the strength
of logical tools needed for proving the fact U NV = (). Namely, for a variety of systems T' of
Bounded Arithmetic, we consider the class of NP-pairs for which this fact is provable in 7.

We exhibit a natural NP-pair which is complete in this class under the many-one reduction.
Roughly speaking, the first component in this pair consists of all satisfiable CNF, and the
second component consists of those unsatisfiable CNF which allow a short refutation in the
propositional proof system associated with T'. This reduces the approach suggested in [11]
to the very concrete algorithmic question: for which theories T' the associated complete
NP-pair can be separated by a quasipolynomial time computable set? Whenever such a
separation exists, we have the independence of NP Z P/poly from the theory T modulo
the hardness assumption. For the theory S(S;) +SY} — PIND the separating set is fairly
obvious, and this gives us an alternative, and, perhaps, more natural (not to be confused
with the concept from [12]!) proof of the main result from [11].

The paper is organized as follows. In Section 2 we recall necessary facts from Bounded
Arithmetic and propositional calculus. In Section 3 we formulate the main concept of
an NP-pair representable in a theory T" and formulate our main result. In Section 4 we
demonstrate one nice feature of the split versions introduced in [11]: we show that they
allow some sort of elimination of sharply bounded quantifiers. The next section 5 contains
the proof of our main theorem. In Section 6 we show how to reduce the approach to proving
independence results in Bounded Arithmetic to purely complexity questions. The paper is
concluded by a brief discussion of their status in Section 7.

2. Background from Logic

2.1. Systems of Bounded Arithmetic

We assume the familiarity with [1], and use the now-standard notation for denoting various
hierarchies and fragments of Bounded Arithmetic from that book. Ly is the first order
language which consists of the constant 0, function symbols 5, +, -, _%J:j, |z|, and of the
predicate symbol <. L, is obtained from L; by augmenting it with the smash symbol
which has the intended meaning x4ty = 2. [, (a, 8) (k = 1,2) is the first-order
language obtained from L by appending to the latter two new unary predicate symbols
a(a), B(a), and Ly is the second-order language based on Li. To simplify the notation, we
will sometimes be using several predicate symbols (second-order variables in the case of
Ly) like oy, @z, ... or B, Bs,...: they can always be combined into a single « or 3 using an
easy encoding.

The theories we are interested in will be either in the language Li(a, /) or in Ly
(k = 1,2). All they contain the set BASIC) of simple open axioms describing basic
properties of symbols from L;. On the top of it, second-order theories also always include

the comprehension axiom scheme Y§° — C'A. The difference between theories is specified
by the amount of induction allowed.

Behind the standard hierarchy 2, II? of bounded formulae we also need its split version

S¥! SM!in the language La(a, B) [11]. SB§ = STI}, is the set of all bounded formulae which
contain either only occurrences of « or only occurrences of 3. The inductive definition of
SE?+178H26'+1 is the same as for E?+17H?+1-

The hierarchy E;,U; (see e.g. [17]) was defined as the ordinary hierarchy of bounded
formulae in the language of Peano Arithmetic (where we do not have the notion of a
sharply bounded quantifier at all). A bounded formula is D; in a theory 7" if it is provably
equivalent to an F;- and U;-formula in T'. We extend this hierarchy to the language L;(a,)
simply by counting sharply bounded quantifiers exactly as ordinary quantifiers. The split
versions SE;, SU;, S D; of this hierarchy in the language L;(a,) are defined analogously
to SYb STIL.

The following table summarizes the definitions of the theories of Bounded Arithmetic
considered in this paper!':

‘ Theory ‘ Underlying language ‘ Induction scheme ‘

Si(a. B) Ly(o, B) Yo, 3) — PIND
SS: Ly(a, B) SYP—PIND
TEi(a, B) Li(e, B) Ei(a,B)—IND
SIE; Li(a, B) SE;—IND
Ti(o. B) Lo(o, B) (o, B) = IND
ST: Ly(e, B) S —IND
TAo(a, B) Li(a, B) Ao(a,) —IND
Sy(a, B) Ly(e, B) Eb(a,ﬁ) — PIND
Ul L, Y — PIND
Ul Lo >1*— PIND
V! L SIP—IND
V! Lo 1" —IND

Table 1: Summary of fragments of Bounded Arithmetic

'we have introduced the natural notation SS%, ST4 for the theories S(S2) + S¥Y — PIND, S8(S2) +
S¥? — IND from [11] and STE; for the split versions of the theories IE;(a,). Also, % = J;5, Z0.

We will need the following easy generalization of [2, Theorem 5] to our setting (see

[11]):

Proposition 2.1. Fori > 1, SS;T is VSY!, -conservative over ST;.

2.2. Propositional proof systems

In this paper we will be exclusively working with sequential (= natural deduction) proof
systems. The cut rule will be always present.

Different proof systems are usually specified by the syntactic requirements placed on
the sequents allowed in the proof:

e For a fixed constant w > 0, we denote by R, the system of bounded resolutions.
All sequents in the proof must have the form ¢;,...,0, — {y44,...,{,, where {;s
are literals (that is, either propositional variables or their negations) and, moreover,
q < w. Applying cosmetic (—:right) rule, we can always move all literals to the
succedent, after which the cut rule turns into the familiar resolution rule.

o R, resolutions is the same system as R,,, only without any restrictions on the length
of the sequents.

o Fyis the depth-d Frege system: all formulae appearing in the proof must either have

the form
r1 r2(%1) ra(i1yesta—1)

\/ /\ XX b g (1)

11=1 ix=1 tg=1

(X4-formulae) or

r1 r2(%1) ra(i1y-estag—1)

AV ... X b 2)

i1=1 ip=1 ig=1
(I14-formulae), where €;, ;, are literals. The inference rules are modified for un-
bounded fan-in, e.g. (A:right) looks like
I'— A, A(el)
Ir — Nier A A

Note that fy = R.

o [1is the ordinary Frege system. At this point it is no longer important that we work
in the sequential calculus, but we prefer to stick to this for the sake of uniformity.

4

o IF is the extended Frege proof system [18, 4]. Tt additionally allows us to use ez-
tension axioms of the form p = A, where p is a new propositional variable (called
extension atom) which did not appear earlier in the proof.

For an unsatisfiable CNF ¢ = A/ V ey, £i; and a proof system P we denote by
sp(¢) the minimal possible number of logical symbols in a P-derivation of the empty
sequent from the sequents — {¢;; |7 € J;} (1 € I).

2.3. Correspondence between theories of Bounded Arithmetic
and propositional proof systems

For many theories of Bounded Arithmetic T' there exists a propositional proof system Pr
closely associated with T' in the following sense:

a) T proves the soundness of Pr,

b) every proof in T' of a formula A with appropriately low logical complexity can be
efficiently transformed into a short Pp-proof of the propositional variant of A.

In this section we recall those details of this correspondence which will be important in the
sequel.

Let Tr(a,a,B) be the predicate asserting that the truth assignment o makes the
Boolean formula encoded by the string 5(0)...3(a — 1) true (truth definition).

Proposition 2.2 ([7]). Tr(a,,3) has a A}’b-deﬁnition in U} about which U] proves the
usual Tarski’s conditions.

Let T'ry(a, o, 3) be the variant of T'r(a, v, #) in which 3(0) ... #(a—1) encodes a Boolean
formula from ¥; U II;. The following is straightforward:

Lemma 2.3. For any fized d > 0, Try(a,a,3) has a SDyyi-definition in STEy about
which STFEy proves the usual Tarski’s conditions.

Note for the record that this truth definition can also be assumed to satisfy the natural

property

STEyFVr < alag(z) = Bi(z)) D (Tre(a,a,ar) = Try(a, a, 51)). (3)

Let the Yi*-formula Re fp(ag, ar, Bo, f1) assert that the string 3y(0)... Bo(ag — 1) en-
codes an inference of length < ag in the propositional proof system P of the empty sequent
from the clauses of the CNF encoded by 1(0) ... 31(a;—1). The following two propositions
are slight modifications of [7, Theorem 2.4] and [7, Theorem 2.5] respectively (the latter
also follows from earlier results of Cook [3] via the correspondence between PV and S, [1,

Chapter 6] and RSUV-isomorphism [14, 15, 9]):
PrOpOSition 2.4. Ull F RefF(ao, ay, ﬂo, ﬂl) D) —|T7“2(a1, o, ﬁl)
PrOpOSition 2.5. ‘/11 F RefEF(Clo, ay, ﬁo, 5]) D) _‘TT'Q(CL] , O ﬁ])

Paris and Wilkie [8] showed that TAg(e, 3) F Re fr,(ao, a1, Bo, 31) O ~Tra(ar, a, 1) for
any fixed d > 0. We will need the following refinement of their result:

Lemma 2.6. For any fited d > 0, SIE49(a, B) F Refr,(ao, a1, Bo, 1) D =Tre(ar, a, Br).

Proof. Assuming T'ry(ay, e, 1), we prove by induction on ¢ that in ANY one of the first ¢
sequents of the inference encoded by fy there EXISTS either a formula ¢ in the antecedent
such that =T'ry(aq, , ¢) or a formula ¢ in the succedent such that Try(a;, @, ¢). By Lemma
2.3, the formula expressing this fact is in SUjp2, and SUzp2 —IN D is available in STF; ;..

Let us now fix propositional variables p1,pa, ..., Pny. s G1,qa, ...

Definition 2.7 (see e.g. [7]). For every A(d,o,3) € Eé’b, where all free variables are
displayed, and a tuple of integers i we define the propositional formula (A(@))z by induction
on the complexity of A:

a) if A does not contain occurrences of @ and 3, and A(ri) is true [false] on integers then
(A(d))z = 1[0, respectively];

b) if A(@) = a(1(@)) [3(1(@))] then (A(@))s = prs) [qu), respectivelyl;

o
N
QY
S—
*
&
N
Q)
SN
S~
S
T~
N
—~
QY
SN—’
S~
S
*
P
&
—~
Q
S—
S~
31
S
=
*
m
——
>
<
U
e

The following two propositions slightly modify and strengthen [7, Theorems 3.2,3.1]
(the latter also follows from [3]):

Proposition 2.8. Let U, + A(d,«a,3), where A(d,a,3) is a E(l)’b-formula with all free
variables displayed. Then there exists a quasipolynomial time?* algorithm which for any
tuple of integers @i given in the unary form 17 produces an F-proof of the propositional

Jormula (A(d))x.

Proposition 2.9. Lel V' b A(d, o, B), where A(d,a,) is in Eé’b. Then there exists a
polynomial time algorithm which for any 17 produces an EF-proof of (A(@)).

9

€ sSame remawns ILrue ajler repiactn an olynomera ime
Th N ¢ t pl N g “‘/1]” by cc‘/2]”} d ccp ly - Z t- by

“quasipolynomial time” .

A similar result about the provability in IAg(a,) was established in [8]. It, however,
requires more serious adjustment to our purposes, so we defer this until Section 5.

3. Representations of disjoint NP-pairs in systems
of Bounded Arithmetic

Definition 3.1. Let U and V be two disjoint sets in NP, and T be either a first-order
theory in the language Li(a, 3) or a second-order theory in the language £y (k = 1,2).

The pair (U, V) is representable in T' if there exist 54 -formulae
A(a,), B(a, 3),C(a,b,a), D(a,b, 3) with all free variables displayed such that:

a) for every w = (wo,wi,...,wn_1) € {0,1}", if w € U then
N EJa(A(N,a) AVi < N(C(N,t,a) = w; = 1)),
and if w € V then

N E3JB(B(N,B)AVi< N(D(N,t,B8)=w;, =1));

b)
TF (A(a,a) A B(a,)) D 3z < a(C(a,z,a) £ D(a,z,3)).

o(1)

2that is with running time 20°87)°"’ The corresponding class of functions/predicates computable in
quasipolynomial time will be denoted by QP.

Informally, condition a) says that A and B specify some UDUand VDV as pro-
jections of P-sets if k = 1 and QP-sets if £ = 2. b) means that UNV =0 is provable in
T.

We exploit the ordinary notion of <P -reducibility in the context of promise problems.
Namely, (U, V) <2 (U’,V') means that there is a polynomially time computable function
f:{0,1}* — {0,1}* such that f(U) C U’ and f(V) C V'. The variant <% of this
reducibility is defined in the same way with the difference that we only require f to be in
QP.

Theorem 3.2. a) Let T be one of the theories
SS;,IEZ, STZZ (Z Z 1)7 [A()(Oé, ﬂ)v SZ(av ﬁ>7 U117 U217 ‘/117 ‘/21'
Then the class of NP-pairs representable in T' is closed under <P -reducibility.

b) If, moreover, T € {8S3,8T;, Sa(a, 3), Uy, Vy'} then this class is closed under <iP-
reducibility.

Proof. a). Assume that (U, V) is representable in 7' via bounded formulae

A(a,), B(a, 3),C(a,b,a), D(a,b,3), and let (U, V') <P (U,V) via a polynomial time
computable function f. Then for a suitable polynomial p(a) we have Zé’b—formulae
Prot(a,~o,7), Output(a,b,v9,71) and Ag-definable in TAy(7p,71) function symbol
Length(a,~o,71) expressing the following:

e Prot(a,vo,71) — “71(0)...7(p(a) — 1) is (the encoding of) the protocol of the poly-
time computation of f on the input string v9(0)...7v(a —1)";

o Length(a,~p,71) is the length of the output of v; if Prot(a,~o,71) and 0 otherwise;

o Output(a,b,~0,71) — “Prot(a,v0,7), b < Length(a,~0,71) and the bth bit of ;’s
output is equal to 17.

We now set:

A'la, a0, a1,2) = Prot(a, a0, a1) N A(Length(a, ag, 1), az)
A Vz < Length(a, ap, a1)(C(a, z, o) = Output(a, z, ag, 1))
B'(a, fo, p1,82) = Prot(a, Bo, 1) N B(Length(a, Bo, 1), 32)
A Yz < Length(a, Bo, $1)(D(a,z, B2) = Output(a,z, Bo, f1))
C'(a,b, g, a1, 09) = ap(b)
D'(a,b, Bo, f1,82) = [Po(b).

‘ T ‘ Pr ‘reducibility‘

SITE; (1 >2) Fis <
STy, SS5H (i > 2) | Fiey <
U, r <m

Vi EF Sh

vy 2 <m

Table 2: (SAT*, REF(Pr)) is complete in the class corresponding to T

We claim that A’, B',C’, D' provide a representation of (U, V') in the theory T.

Condition a) from Definition 3.1 is straightforward.

In order to see b), suppose, arguing informally in T, that Vo < a(ag(z) = Bo(z)),
A'(a, ag, aq, az) and B'(a, By, B1, 32). Applying SU; —IND on ¢ < p(a) (which is available
in T') to the formula Vo < ¢(aq(z) = pi(x)), we find Vo < p(a)(as(z) = fi(x)). Thus,
Length(a,ag,a1) = Length(a, By, 41) and Yz < Length(a, ag, a1)(OQutput(a,z,ap, ay) =
Output(a,z, By, #1)). From the definition of A’, B’ we conclude

Vo < Length(a, ag, a1)(C(a, z, az) = Output(a, z, 5,)),

and this contradicts condition b) for the original pair (U, V) (after substituting a :=
Length(a, ao, 1), o := ag, f:= [a).

Part b) is proved in exactly the same way.m

Let now SAT* = {(¢,1")]| ¢ is a satisfiable CNF}. For a propositional proof sys-
tem P, let REF(P) = {(¢,1')| ¢ is an unsatisfiable CNF and sp(¢) <t}. Obviously,
SAT™, REF(P) € NP and SAT* N REF(P) = (). The following theorem is the main
result of this paper.

Theorem 3.3. Let T be one of the theories in the left column of Table 2, and Pr be the
corresponding proof system in the middle column. Then (SAT*, REF(Pr)) is complete in
the class of disjoint NP -pairs representable in T with respect to the reducibility given in
the right column.

The proof of this theorem will be given in two subsequent sections.

We conclude this section with the following corollary asserting a certain symmetry of

pairs (SAT*, REF(P)):

Corollary 3.4. (REF(Fy),SAT*) <t (SAT*,REF(F;)) (d >0), (REF(F),SAT*) <%
(SAT*, REF(F)), and (REF(EF), SAT*) <2, (SAT*, REF(EF)).

Proof. Tmmediately follows from Theorem 3.3 since the notion of a pair representable in
a theory T is symmetric with respect to the two components U, V.m

4. Elimination of sharply bounded quantifiers in

split versions
Let us consider the analogue EZ#, UZ-# of the hierarchy E;, U; in the language Lj, and its split
versions SEZ#, SUZ-# in the language Ly(ca, 3). Thus, SEZ#, SUZ# differ from SF;, SU; only
in the underlying language, whereas the syntactic inductive definitions for both hierarchies
are the same. The theories I E¥ | STE¥ have the obvious meaning. In this section we prove
the following;:

Theorem 4.1. SIE¥ = ST! for all i > 0.

Proof. Since SEZ# C 8¢, it suffices to show that SIEZ-# F 82 — IND. This will be

(%

immediately implied by the following

Claim 4.2. Let 0 < 5 < i. Then every SE(]’--formula is equivalent in S]Eﬁ# to a SE]#-
formula.

Proof of Claim 4.2. W.l.o.g. we may assume that A € SE? contains only connectives
{=, A, V} and, moreover, that negations appear on atomic subformulae only. Now we apply
induction on (j, |Al).

Base j = 0 is obvious since SX} = SES#.

Inductive step. Let j > 0 and A € SE?. If A€ SH?_I, we convert (—A) into the
equivalent form A € SE?_I obeying the above restrictions, and apply to A the inductive
assumption with y := j — 1. If A= B+ C or A = (Jz < 1)B(z), the inductive step is
obvious (SE]# is closed under these operations).

The only nontrivial case is A = (Vo < |t])B(z). By the inductive assumption, B(a) is
equivalent in SIEZ-# to a SE]#—formula, and we can further assume that this formula is in
the prenex normal form. That is to say,

SIEF F A=Va < |ty < s1...3y < V2D <D QA < AN (2, 7,29, ..., 7))

Y

10

where €' is a Boolean combination of S E¥ -formulae. The crucial point is that since STE¥
contains S1, it can also define all ¥}-definable in S} function symbols. Moreover, usage of
this symbols does not increase the logical complexity of formulae in terms of the hierarchy
SE¥# (remember that SE¥ consists of all bounded formula either not containing a or not
containing f3).

We claim that the formula®

D(a,b) =V < |a|v7® < 7@ Q79 < DO (x, (b1)og1, s (be)agr, 22, ..., 29)

is equivalent to a formula in SEJ#. This is obvious if j > 2 (in fact, D is even in SUﬁl).

—

If j =1, we can represent C'(a,b) in the equivalent form
Cla,b) = A (Clla,b,0) Vv CY(a,b,5)),

and we are left to show that Vz < |a] (Cf(a,g, a)V Cf’(a,g,ﬂ)) is equivalent to a SEi#—
formula. The required formula is simply
Jy' < 4aFy" < 4@(\V/l‘ < a|(Cl(x, g, a) = Bit(z,y'))
A Vo < a|(C](x, b, B) = Bit(z,y")) ANVz < |a|(Bit(z,y') =1V Bit(z,y") = 1))

Now, when we know that D(a, g) is provably equivalent to a SE]#—formula, we can apply
SEJ# — PIND on a to the formula (Jy; < S¢Bd(a,s1))...(3ye < SqBd(a,se))D(a,y) to
see that STE¥ - A = (3y, < SqBd(t,s1)) ... (3ye < SqBd(t,s,))D(L, 7).

This completes the proof of Claim 4.2.m

As we noted above, Theorem 4.1 follows.m

?

Remark 4.3. Tt is worth noting that the similar question T = T E¥ is open.

5. Proof of Theorem 3.3

We start by showing that (SAT*, REF(Pr)) is representable in T (this part is easier). It
is sufficient to consider the cases (T, Pr) = (STE;, F;—s),(Uy, F) or (V{', EF) (in fact, for

3to avoid collision with another usage of 3, we denote the xth member of a sequence b by (b), rather

than by 3(x,b)

11

the second case we will be able to show that (SAT*, REF(F)) is representable already in
Ul). This is actually almost explicitly contained in Propositions 2.4, 2.5 and Lemma 2.6.

Formally, we construct the representation A(a, g, @), B(a, Bo, 3),C(a,b,a), D(a,b, 3)
of (SAT*, REF(Pr)) in T as follows:

o A(a,ap,a) asserts that the string a(0)...a(a— 1) encodes a pair of the form (¢, 1%),
where ¢ is a CNF such that T'ry(|¢], ao, ¢);

e B(a, By, B) asserts that the string 5(0)...8(a — 1) encodes (¢, 1), where ¢ is a CNF
such that Refp,(t,|d], Bo, ¢);

e C(a,b,a)= ab);
e D(a,b,3) = p(b).

Then condition a) of Definition 3.1 is straightforward. Condition b) is also easy to see:
arguing informally in 7', if we have Vz < a(a(z) = (z)), where a(0) ... a(a — 1) encodes
a pair (¢, 1), and $(0)...5(a — 1) encodes a pair (¢g, 1'7), then |¢,| = |¢g| and Vz <
|6al(Pa(z) = ¢p(x)). This, along with Try(|dal, o, ds), implies by (3) Tra(|osl|, ao, d35),
and now we only have to apply Lemma 2.6, Proposition 2.4 or Proposition 2.5 (depending
on T') with ag :=t,ay := |¢g|, B := ¢5.

Now we prove the second part of Theorem 3.3. Namely, assume that (U, V) is repre-
sentable in T, where T' is one of the theories in the left column of Table 2. We want to
show that (U, V) is reducible to (SAT*, REF(Pr)).

For this we need to modify Definition 2.7. Firstly we enlarge our alphabet of proposi-
tional variables. Now it will consist of all variables of the form ps(a,a)7, ¢B(a,s),7, all free
variables in A, B € Zé’b being displayed, and we identify original pn, ¢, With pa(a)n, Ga(a)n-
Note that this time we have two different alphabets corresponding to the languages L1, Ls;
it will be always clear from the context which one is used. Also we assume for simplicity
that A and B contain the connectives from {—, A, V} only.

We define the modification {A(a@)}, of (A(@))s by extending item b) in Definition 2.7
to

b)* if A(d,«) [B(d,B)] contains occurrences of o [B] bul does not contain occurrences
of B [a] then {A(d, @)} ; = pa@a)a {B(@,B)}; = qB(ap),, respectively].

In accordance with this, items c)-f) are restricted to the case when the formula on the
left-hand side contains occurrences of both o and f3.

12

Denote be Def,, the following set of propositional sequents, where A, B run over all

¥’ (a)-formulae, and ¢ runs over all first-order terms*:

PA(@),7 — PA(@)VB(a),#;

o

-
)

=
o
3
B
=
b
C
<
©
o

P@as<a)A(zp) ot — 7 PA@p),00m 0 Pa(ap)nm (4)

, . n.
D~ P@Er<a)A(z,B),n! i (n <n');

.
Pva<a)a(e s~ Paai)mm (7S 100);

- 9 - —_ p

Paap)0m 0 Paa,B)mm (Vo<a)A(z,B),n,m" (5)

Defjs is defined in the same way.

We also consider the variant ¥/, I/ of the hierarchy ¥4, II; of Boolean formulae (see
Section 2.2) by allowing ¢;, ;, in (1), (2) to have the form p* ¢, where * € {A,V}, and p, ¢
are propositional variables from the corresponding alphabets. Let Fj be the variant of the
proof system F; in which we allow the formulae from ¥/, U II; in the proofs.

Lemma 5.1. Let T' be one of the theories in the left column of Table 2. Assume thatl
T+ 37 < {d@)(A(@, 7, 0) A B(@, 7, B)),

where A, B € Eé’b with all free variables displayed, and {(5) are arbitrary terms of the
underlying language. Then there exists a polynomial or quasipolynomial, depending on
the entry in the right column, algorithm which for every tuple of inlegers n wrilten in
unary produces a proof of the empty sequent in the system F!_,, F or EF determined by
the middle column from the set of axioms

Def,, Defﬁ, {—> pA(d‘7g’a)’ﬁ7ﬁ7 9B(a5,8),7m m < t(ﬁ) } . (6)

*we will use the notation T «—— A for denoting the pair of sequents T — A and A — T

13

Proof. We start with the case of second-order theories (lines 3-5) as it rather easily
follows from known results. Namely, we can construct in polynomial or quasipolynomial
(depending on the underlying language) time F-proofs

—

Def, - (A(d, b, a))n

-

= Pa(apa)nm

EN
Il

and

Def = (B(d, b ,B))am =g 9B(2,5,8),7,

Using these, we construct F-proofs of the formulae (=(A(d, Z_;
it

3.*

from the axioms (6). Then we construct, using Proposition
proof, depending on the theory T, of the formula (37 < t(c_i)(
apply a sequence of cuts to derive the empty sequent.

Assume now that 7' is a first-order theory from the first two lines of Table 2. If T' comes
from the second line, then we can, using Proposition 2.1 and Theorem 4.1, replace it by
S]EZ-#. Now, the theories STFE; and S[EZ# differ only in the underlying language, and the
rest of the proof is absolutely identically for them. So, we consider only the case of STF;.

Every SE;-formula (j > 1) is equivalent to a formula in the prenex normal form and
it is easily seen to be further equivalent in STFy to a formula of the form

370 < t()‘v’x)< 1(@)...QzV ()<5(J() (7)
(C@z,...,#9,a)« D@ a",...,79,8)),

=

where * € {A,V}. Denote by SE] the class of formulae having the form (7), and let SU}
be the dual class. For ' € SE! [C € SU;] we denote by C the dual formula in C' € SU’
[C € SE, respectively] loglcally equivalent to (=C). Note that for C'(a@) € SU/_, and
every tuple i1, the propositional formula {C(d)} is in IT}_,.

For C(d) € SE;_\SU/_,; C(d) = (37 < f(d’))D(EL’, Z), where D(d, Z;) is in SU!_,, denote

—

by I'c(z), the cedent consisting of the formulae {D(&, Z_)')}* L (m <t(m)). If C(d) € SUL_,,
we let T'e(z),7 consist of the single formula {C'(d)} . ’

For C(d@) € SU/\ SE!_,; C(d) = (VZ < 1(d@))D(a,
by Gc(a),# the collection of sequents {—) I, D(a,B) 7
we let Geoay,n consist of the single sequent — T'o(ay 7.

The following two statements are proven by an easy induction on the logical complexity

of C:

), where D(d, b) is in SE;_,, denote

} In the case C(d) € SE!_,

VAN
“-1

14

Statement 5.2. For every C(d, g) € SU!_, and terms F(EL') there is a polynomial time
algorithm which for any tuple of integers n (written in unary) produces an F!_,-proof of

{C(c—i, g)}ﬁ) — {C(&',f‘(c_i))}ﬁ from Def,, Defg.

Statement 5.3. Let C'(a) € SE]_;.

a) There exisls a polynomial lime algorithm which for any 17 and any formula L €
Lcay,n produces an Fi_,-proof

Defa, Defﬁ, gc‘«(do)’ﬁ l_ L —_— .

b) There exists a polynomial time algorithm which for any 17 and any sequent (— T') €
Ge(a),m produces an F/_y-proof

Def,, Defs F— To(@@)a, I

We are going to prove the following generalization of Lemma 5.1:

Statement 5.4. Suppose that
(8)

where Av,..., Ag, Biyr, ..., Bs € SU!; By,..., By, Apyr, ..., Ar € SE., and all free vari-

ables are explicitly displayed. Then there exists a polynomial time algorithm which for

any tuple of inlegers i written in unary and any cedents Ty,... Ty, where (— T,) €
O, @ f1<v<{
OB, if {+1<v<s,

produces an F!_,-proof

Defa, Defﬁ, gAl(g)ﬁ, e ,gAk(,-l‘)’ﬁ, ggk_kl(&o)ﬁ, e ,gﬁr(-‘)ﬁ |_—> F], ey Fs. (9)

Proof of Statement 5.4. As we noticed above, every S F;-formula is equivalent in STFj
to an SFE/-formula. Thus we can assume that SE; — IND in the proof (8) is applied only
to SE/-formulae. By the Cut Elimination Theorem (see e.g. [1, Theorem 4.3]) we can
also assume that all formulae appearing in this proof belong to SE! U SU!. Let P be this
reduced proof.

15

Now we apply induction on the number of inferences in P. As usual, the argument
splits into many cases depending on the final inference (the case when P consists of a
single axiom is completely trivial). Most of these cases are straightforward, so we consider
explicitly only a few of them. We can assume w.l.o.g. that the final sequent of P has the
form A(d),..., A.(d) — Bi(d), ..., Bs(d), where Aq,..., A, By,..., By € SU!. Suppose
that we are given integers 77 and (— T',) € gBy(a)ﬁ (1 < v <s), and we have to construct
efficiently an F/_,-proof (9).

(V:left). Assume that the final inference of P has the form

AN@), Ag(@), . .., A(@) — Bu(@),..., Bs(@) A"@),..., (@) — By(@), ..., By(d)
A(@)V A"(@), Ay(@), ..., A(@) — Bi(d),. .., B,(d) '

Due to the syntactic structure of SU/-formulae, (A’(@)V A”(@)) € SUJ. Hence, by induction
hypothesis we have F!_,-proofs of the sequent — T'y,...,I's from both

Def,, Defs, {A'(@)},Ga, ..., Gr

and

Def,, Defs, {A"(@)}., G2, ..., Gr.
We modify the first proof by adding {A'(@)}; to antecedents of all its sequents. This will
result in an F;_,-proof of {A'(@)}, — T'1,..., [y from axioms Def,,Defg, Gs,...,G,. A
similar procedure applied to the second proof gives us a proof of {A"(d)}, — Ty,..., T
from the same axioms. The sequent — {A'(d)},,{A"(d)};, however, has an obvious proof
from Def,, Defg, {A'(d) V A”(d)};. Applying twice the cut rule, we will find the desired
proof Def,, Defs, {A'(d)V A"(d)}.,Gsy...,G, F— T'q,..., . It is easy to see that the

whole construction is polynomial time computable.
(V <:left). Assume that the final inference of P has the form

A@, (@), Ay(@), ..., A@) —> Bu(@), ..., B,(d)
7) < s(a), (Ve < s(@))A(d@, z), Ag(@), ..., A (@) — Bi(d), ..., Bs(a)’

t(a
If t(77) < s(17) is false, everything is obvious. Otherwise, it is easy to see that every sequent
in G a(ap),a,0(7) has a short proof from Def,, Def 3, G(vz<s(a)) 4(a,0),7, and, by Statement 5.2, the
same is true for every sequent in G 4(z,4(z)),7- Hence we can apply the inductive assumption.

(V <:right). Assume that the final inference of P is

b< (@), A1(@),..., A@) — Bu(@),..., By (@), B@b)
(@) A(@) — Ba@) . Bos (7). (V2 < @) B(@.0)

If (Vo < t(@))B(d,z) € SE!_, then it is actually in SU!_,. By inductive assumption,
we have efficient F/_,-proofs Def,, Defg, Gy,...,G, F— T'y,... sy, {B(d,b)},, for all
m < t(r). Applying (5) followed by a sequence of cuts in the case B(d,b) € S‘Ué, and
(A:right) otherwise, we find an efficient proof of — T'y,...,T's_y, {(Va < t(a@))B(d,)}
from the same axioms.

If (Ve < t(d))B(d,z) ¢ SE{_, then (— T5) € Gp(ap),am for some m < {(77), and we
simply use the proof of — I'y,...,T';_;, 'y available by inductive assumption.

(3 <:left). The final inference has the form

b < 1(@), A(@,b), Ay(@),. Ar(a) — By(@), ..., B,(d)
Ge < 1(3)A(G,2), M@, Ald) — Ba(@), . BT

(Jz < t(d))A(d, x) should necessarily belong to SE;_,, hence Gaz<y(a)a(a,e),n and Ga(ap),im
consist of single sequents with empty antecedents. Denote by A and A,,, respectively, thelr
succedents.

By inductive assumption, for any m < (i) we have an F/_,-proof Def,, Defg, (—
Ay),Ga .., G, F— Ty, ..., T's. These proofs give raise to proofs

Defa,Def@,L,gg,...,gr F Fl,...,Fs

for every L € Up<sn) Dm- Also, — Ao, Ay, ..., Ayy has an efficient proof from
Def,, Defg, (— A). Now we argue as in the case (V:left).

(SE! — IND). The last inference has the form

Ai(d), . .., Ar(d), A(d, b)
AL(@), ..., A(@), A(@,0) — A(@, (@), Bu(a), ...,

— A(d,b+ 1), Bi(d),...,Bs(a)
Bi(d)
where A(d,b) is in SE!. Replacing A(a@,b) by A(d,t(@)=b) if necessary, we may assume

that A is instead in SU! and, moreover, one of the following is true:

a) A(d,0)is on the list Aq,..., A, Big1, ..., Bs, and A(d,1(d)) is on the list
Bl,...,Bg,A]H_l,...,AT in (8),

b) A(d,0), A(d,t(@)) are on the same list, and A € SFE!_,.

Let us first analyze case a).

Denote by D,, the set of sequents G4(ap)im- Then we know from the inductive as-
sumption that for every m < (i) and every (— A1) € Dy, the sequent —
Apy1, T, ..., T has an efficient F/_,-proof from the axioms Def,, Defg, Gy,...,G,, D

17

Appending to the succedents of all sequents in this proof I'y,...,T's, we will construct
F!_,-proofs

Def,,Defg, Gi, ..., G, {— A, Ty, s [(— Ap) €Dy} F— Apyr, Ty T,
Now we combine these proofs together and get a polynomially time constructible proof
Defa, Defﬁ, Ql, . ,QT, {—> Ao, Fl, ey Fs | (—> Ao) € D())} |_—> At(ﬁ)7 Fl, ey FS

for every (— At(ﬁ)) € Dym). This completes the analysis of the induction rule in the
case when A(d,0) is on the list Ay, ..., A, Bey1, ..., Bs in (8), and A(d,¢(d)) is on the list
Bl,...,Bg,Ak_H,...,AT.

In the remaining case b), A is in SE/_;. This implies that D,, consists of a single
sequent (— A,,), and we have already constructed above a proof

Defa,Def,@,gl, .. .,QT, (—> AO) F— At(ﬁ), Fl, ey Fs. (10)

Let D,, = Ga(ap.tm. Then, depending on which one of the two lists in (8) contains the

(@b),1,
formulae A(d,0), A(d,t(d)), we have to construct efficiently either a proof

Def,, Defg, Gy, ..., G, (— Ao),@t(ﬁ) F—s T'y,..., T
or proofs)
Defa,Defﬁ,g],...,gT l_—) Ao,At(ﬁ),F],...,Fs

for all (— Ag) € Dy. These modifications of (10) are easily obtained using Statement
5.3.

This completes the proof of Statement 5.4.m

In order to get Lemma 5.1 for the remaining case T' = ISFE;, we only have to apply
Statement 5.4 with k:=r =1, s := 0, A(d) = V7 < {(EL')(A(EL', Z,a)V B(d,Z,3)) (for
¢ > 2 notice that axioms (6) imply {A;(@)}, via one application of (A:right)). Thus, the
proof of Lemma 5.1 is also completed.m

Now we are ready to finish the proof of Theorem 3.3. Recall that we have an NP-pair
(U, V) representable in T', and let A(a, «), B(a,3),C(a,b,a), D(a,b, 3) be the correspond-
ing formulae from Definition 3.1. Then

T F dJz<a+13dy < 1(($ <aANy=0AC(a,z,a) N ~D(a,z,f))
Viz<ahy=1A=C(a,z,a)A\ D(a,z,[))
V(z=aA-Ala,))V(z=a+1A ﬁB(a,,B))).

18

We apply to this proof Lemma 5.1 and find, within (quasi)polynomial in N time a propo-
sitional proof Py

Def,, Defg, pa(a), Ny 4B(a),N> (— Pc(ap),Nis D(ab),N,i) (2 < N),
(— Pe(ap),N,is AD(ap),N,i) (20 < N) F—

in the corresponding system F/ ,, F or EF. Let {(N) be the size of Py, and let Def'%N be
the CNF which is obtained by taking sequents in Def,, actually used as axioms in Py, and
moving their antecedents to the right-hand side with the (—:right) rule.

Now we are ready to describe the reduction from (U, V) to (SAT*, REF(Pr)). Namely,
this reduction takes a binary string w = (wow; ... wn—1) of length N to (¢(w), 1t(N)>, where
é(w) is the CNF obtained from Def;’N by applying to it the restriction p,, assigning pa(.),n
to 1 and assigning all pe(ap),n,: to w; (1 < N).

Assume that w € U. Then, by Definition 3.1 a), there exists &« C N such that
N = A(N,«) and for every ¢ < N, N | C(N,i,a) = w; = 1. The total assignment of
ps which sends every pgzq),7 to 1 if N |= FE(77,) and to 0 otherwise, satisfies DefﬁhN and
extends p,,. Thus, ¢(w) € SAT.

Assume that w € V, and take 8 C N so that N = B(N,3) and for every i < N,
N E D(N,:,8) = w; = 1. Hit the proof Py with the restriction which extends p,, by
additionally sending every qgz,),7 to 1 if N |= E(7,) and to 0 otherwise. This restriction
assigns the same values to po(a),n,i and go(ap), v, hence it forces to 1 all axioms of P except
for, possibly, those in Def’a’N. Thus we get a proof of the empty sequent from the clauses
of ¢(w), and its size is at most ¢{(N). For the first-order case we additionally note that
every F!_,-proof becomes an F;_y-proof if we assign truth values to all g-variables. Hence
(p(w), ')y € REF(Py).

This completes the proof of Theorem 3.3.

6. Application to independence results

The purpose of this section is to recast one approach to proving independence results in
Bounded Arithmetic in purely complexity terms.

Let us fix an integer-valued superpolynomially-growing function ¢(n) computable in
time 200", Denote by STM PLE, the language consisting of truth-tables of those Boolean
functions f, which have circuit size at most ¢(n), where n is the number of variables of
fn- Obviously, SIMPLE, € NP. It turns out that the computational hardness of this
language to a certain extent captures the hardness of proving lower bounds on the circuit
size of explicit functions.

19

For example, in [12] Razborov and Rudich introduced the notion of a natural proof
justified by a careful analysis of existing proofs for restricted models. This notion can
be reformulated in terms of purely structural properties of SIMPLFE;: a natural proof
(against the class P /poly) consists of a set L € P such that L N SIMPLE; = { for some
superpolynomial function ¢(n), and L is “dense” in the sense that P[f, € L] > 279,
where f, is the random function in n variables. The main result from [12] says that if
there exists a pseudo-random number generator with hardness 27" then there exists no L
with these properties even in P/poly (and it was observed in [11] that this further extends
to sets L computable by quasipolynomial size circuits).

Let s = {s,|n €w} be any sequence of Boolean functions from the class E (=

DTIME(2°M)). We define SIM PLE?* as the language
{fn®sp|n€w, f, e SIMPLE,}.

Note that STMPLE®® is in NP.

If SIMPLE,NSIMPLE?® = () then, in particular, s, € SIMPLE; for all n. On the
other hand, if STMPLE, N SIMPLE®® # (, and f, belongs to the intersection, then we
can combine the two size-t(n) circuits for f,, and f, ® s, with a single PARITY gate at the
top to get a size-O(4(n)) circuit for s,. This means that, roughly speaking, the function s
is hard if and only if SIMPLE; N SIMPLE” = .

Let now T be one of the theories of Bounded Arithmetic considered in this paper.
We additionally assume that the function ¢* given by t*(N) = (| N|) and the predicate
S*(N.a) = syj(a) = 1 can be defined by bounded formulae of the underlying language.
Let LB;4(N,7) be a B¢ ~formula asserting that 4 does not encode a circuit of size t(|N]) =
t*(N) computing sjn| (our LB;,(N,7) corresponds to LB(1, s*,7) in the notation of [11]).
Thus, VLB, (21, ¢) exactly expresses the fact s, ¢ SIMPLE,. Let SLB; (N, a,p3)
assert that @ and 3 do not encode circuits of size ¢(|N|) each such that the PARITY of their
outputs is s|y). Thus, VoV SLB; (2" =1, ¢, 1)) means that STMPLE; N SIMPLE? = .
Since the argument from the above paragraph is easy to formalize, we can study the
provability of SLB; (N, a,) instead of LB;(N,v) (and the split versions were designed
in [11] exactly for this purpose). Given Theorem 3.3, we can now reduce the question
about provability of SLB; (N, a,) in T to the purely complexity question

(SIMPLE,, SIMPLE®) <,, (SAT*, REF(Pr)), (11)

where <,, is the appropriate reducibility.
The following easy result (implicit in [11, Proof of Theorem 6.1]) shows that this com-
plexity question is at least not meaningless:

20

Proposition 6.1. [If there exists a pseudo-random number generator with hardness A
then for any t,s with the above properties the pair (SIMPLE,, SIMPLE?®) can not be

separated by quasipolynomial size circuils.

Proof. Assume that £ = {En c o, 1}(2") n € w} is such a separator: SIMPLE; C F,
ENSIMPLE? = (. Then for any n either |E,| > 3 -2*" or |E,| < -2, In the

first case we let L, = (FE, @ s,), and in the second case we let L, = {0, 1}(2") \ E,.

Then L = U,e, Ln is computable by quasipolynomial size circuits since one extra bit of

information telling us which of the two cases takes place can be hardwared into the circuit.
Also, LN SIMPLE; = 0 and P[f, € L] > 1/2. As we noticed above, this contradicts the

main result from [12].m

For completeness we also include an unconditional form of this proposition based upon
[12, Theorem 4.4]. Recall [12] that a non-decreasing integer-valued function ¢(n) is half-

exponential if
10 < oflog t(n)

for every C' > 0, where
t_l(n) = max{z|t(z) <n}.

It is easy to see that any half-exponential function has superpolynomial rate of growth.
Let us call t(n) strongly half-exponential if it satisfies

17! (n%) < (log t(n))""
for every C' > 0.

Theorem 6.2. Let t(n) be any half-exponential function, and s = {s,|n € w} be such
that for some sequence of primes {p, |n € w} and some primitive roots g, mod p,, s, is
poly-time nonuniformly Turing reducible to computing discrete logarithm mod p, base g¢,.

Then there is no E € P such that SIMPLE, C E and SIMPLE? NE = 0. Moreover,
if t(n) is strongly half-exponential, then no such E exists even in QP.

Proof. Assuming the contrary, we, like in the previous proof, would have a natural proof
L € P/poly with the additional property s, € L for all n € w. It can not exist (without any
unproven assumptions!) by [12, Theorem 4.4]. It is also easy to see that if {(n) is strongly
half-exponential then [12, Theorem 4.4] extends to L computable by quasipolynomial size
circuits.m

21

Proposition 6.1 and Theorem 6.2 show that in order to prove the independence of
SLB; (N, a,3) from a theory T, it is sufficient to separate the pair (SAT*, REF(Pr)) by
a (quasi)polynomial time computable set. We conclude this section by showing another
proof of the main result from [11] which goes exactly along these lines.

Lemma 6.3. If a pair (U, V) of disjoint NP -sets is representable in SIEy [SS3] then there
exists a constant w > 0 such that (U, V) <P (SAT*, REF(R,))
(U, V)< (SAT*, REF(R,)), respectively].

Proof. By modifying the proof of Lemma 5.1 for the case STF;. Namely, we replace the
axioms (4),(5) by

(Vo<a)A(z,b),0,M
(a,

Pyz<a)A(z,B) w0 PA(ad — P

b),n+1,17 VrSa)A(r,g),n-l-lm'i

so that all sequents in Def,, Defs have bounded length. The important point is that if we

can deduce (n 4+ 1) sequents I' — P aa) A in R, then we can

,b),0,77°
deduce I' — P(v<a) Al By mi A in R,y for some w' depending only on w, and similarly for
F’p(flxga)A(x,g),n,'r?L — A. For C(d) € SE, the cedent T'c(z)7 in our case always consists
of the single formula {C(d@)}

With these observations in mind, it is easy to see that the procedure described in the
proof of Statement 5.4 for ¢ = 2, actually gives in the case : = 1 a resolution proof in which
the length of all clauses is bounded by some absolute constant (depending on the original

proof P in SITFE;). The only additional remark which should be made is that the “bad”
rules (3 <:left), (3 <:right) now simply do not occur in the proof.m

A;...;F—)pA(ag)

70
)0)y mym

.
mn

Lemma 6.4. For every fized constant w > 0, SAT* and REF(R,,) can be separated by a

poly-time computable sel.

Proof. The separator is
{<¢>, 1') | there is no derivation of the empty sequent from ¢ in the system Ru,} .

It is poly-time computable simply by producing the list of all sequents of length at most
w which can be derived from ¢.m

22

Theorem 6.5. A disjoint NP-pair is representable in STE, [S5] if and only if it can be
separated by a polynomial [quasipolynomial, respectively] time computable set.

Proof. Immediate from Theorem 3.2, Lemma 6.3 and Lemma 6.4.m

The first part of the following theorem is exactly [11, Theorem 6.4]:

Theorem 6.6. If there exists a pseudo-random number generator with hardness Q”Q(l),

then for any t,s with the properties stated at the beginning of this section,
SS3 1t/ SLB; (N, a,).

If, in addition, t is half-exponential [strongly half-exponential], and s is reduced to the
discrete logarithm problem as described in the statement of Theorem 6.2, then STFE, tf
SLB;s(N,a,B) [SS2t/ SLB:s(N,a,), respectively] without any unproven assumptions.

Proof. Immediate from Theorem 6.5, Proposition 6.1 and Theorem 6.2.m

7. Discussion

This paper brings to attention the question for which propositional proof systems P the
pair (SAT*, REF(P)) can be separated by a (quasi)polynomial time computable set. In
this section we try to locate this question with respect to more familiar hypothesis.

Let us first point out that the affirmative answer implies the following alternative:

Theorem 7.1. Assume thal for some proof system P, SAT* and REF(P) can be sepa-
rated by a poly-time computable set. Then one of the following is true:

a) P =NP,
b) the proof system P is not optimal in the sense thatl the function

sp(n) = max {sp(¢)| ¢ is an unsatisfiable CNF of length < n}

is not bounded by any polynomial.

23

Proof. TLet SAT* C L; LN REF(P) = {; L € P, and assume that b) does not take
place. Then sp(n) < p(n) for some polynomial p, and ¢ € SAT = (¢, 17D} € L. Thus,
SAT ¢ P.m

This theorem might be taken as an evidence that any attempts to prove the existence
of the separator by known methods are doomed to fail. We should be, however, somewhat
careful with this conclusion. For example, the proof of Lemma 6.4, whatever simple, still
does not tell us which of the two alternalives a) and b) is true for the system R,. Of
course, we know that b) is true, and, moreover, R, is not even complete — but this has
to be proved separately. Thus, simply knowing that either a) or b) is true might be
surprising approximately to the same extent as knowing that one of the two alternatives

LOGSPACE # P or P # PSPACE is true.

But, of course, we can not hope to show by the existing methods that (SAT*, REF(P))
(as well as any other disjoint NP-pair) is not separable. So, if we are interested in evidence
toward the negative solution, the best we can hope for is to reduce to (SAT*, REF(P))
another pair which is believed to be hard.

I do not know of any example of a reduction from a presumably hard NP-pair to
(SAT*, REF(EF)), which is the same, due to our main result, as an example of such pair
representable in V'

There is, however, a number of “plain” reductions from (U, V) to (SAT*, REF(EF)),
where (U, V) is separable but this fact is highly non-trivial. The best example of this
kind (in the sense that it is applicable to the weakest system P) is provided by [11, Ex-
ample 1]. Namely, let CHR = {< G,s > |G is an s — colourable graph }, and C'L* =
{< G,s > | G contains a clique of size s*}. Then (CHR,CL?) is representable in ST
and, thus, (CHR,CL?*) <% (SAT*, REF(F})). On the other hand, the known poly-
time computable separator for (CHR,CL?) is based upon very deep combinatorial ideas
[16].

I do not know of any evidence of this sort that (SAT*, REF(R)) is hard. This could

be the next accessible question.

8. Acknowledgement

[am indebted to Jan Kraji’éek for his initial suggestion to look for a propositional counter-
part of the machinery from [11]. My thanks are also due to Sgren Riis and Alan Selman
for several useful remarks.

24

References

1]
2]

S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

S. R. Buss. Axiomatizations and conservations results for fragments of Bounded
Arithmetic. In Logic and Computation, Contemporary Mathematics 106, pages H7-84.
American Math. Society, 1990.

S. A. Cook. Feasibly constructive proofs and the propositional calculus. In Proceedings

of the Tth Annual ACM Symposium on the Theory of Computing, pages 83-97, 1975.

S. A. Cook and A. R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44(1):36-50, 1979.

J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems.

SIAM Journal on Computing, 17(2):309-335, April 1988.

S. Homer and A. L. Selman. Oracles for structural properties: The isomorphism
problem and public-key cryptography. Journal on Computer and System Sciences,
44(2):287-301, April 1992.

J. Kraji’éek. On Frege and extended Frege proof systems. Manuscript, 1993.

J. Paris and A. Wilkie. Counting problems in bounded arithmetic. In Methods in
Mathematical Logic, Lecture Notes in Mathematics 1130, pages 317-340. Springer-
Verlag, 1985.

A. Razborov. An equivalence between second order bounded domain bounded arith-
metic and first order bounded arithmetic. In P. Clote and J. Krajicek, editors, Arith-
metic, Proof Theory and Computational Complexity, pages 247-277. Oxford University
Press, 1992.

A. Razborov. Bounded Arithmetic and lower bounds in Boolean complexity. To
appear in the volume Feasible Mathematics 11, 1993.

A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of

Bounded Arithmetic. To appear in lzvestiya of the RAN, 1994.

A. Razborov and S. Rudich. Natural proofs. Preliminary version appeared in Pro-
ceedings of the 26th ACM Symposium on Theory of Computing, pp. 204-213, 1994.

25

[13]

[14]

[15]

[16]

[17]

A. L. Selman. Complexity issues in cryptography. Proceedings of Symposia in Applied
Mathematics, 38:92-107, 1989.

G. Takeuti. S and ‘C}Q(BD). Archive for Math. Logic, 29:149-169, 1990.

G. Takeuti. RSUV isomorphisms. In P. Clote and J. Krajicek, editors, Arithmetic,
Proof Theory and Computational Complexity, pages 364-386. Oxford University Press,
1992.

E. Tardos. The gap between monotone and nonmonotone circuit complexity is expo-
nential. Combinatorica, 8:141-142, 1988.

G. Wilmers. Bounded existential induction. The Journal of Symbolic Logic, 50(1):72—
90, March 1985.

I'. C. Hetitur. O caoXKHOCTU BHIBOJA B UCUUCIEHUN BhICKasbiBauuii. In A. O.
Cuaucenxo, editor, Heeaedosanus no KoOHCMPYKMUeHOT MAMEMAMUKE U MAMEMA-
muveckol nozuke, 11; Janucky Haywunr cemurnapose JOMHU, m. 8§, pages 234-259.
Hayxa, Jlemmurpan, 1968. Engl. translation: G. C. Tseitin, On the complexity of
derivations in propositional calculus, in: Studies in mathematics and mathematical

logic, Part II, ed. A. O. Slissenko, pp. 115-125.

26

