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1. Introduction

It is natural to ask what makes lower bound questions such as P ~ PSPACE and P =
NC' so difficult to solve. A non-technical reason for thinking they are difficult might be
that some very bright people have tried and failed — but this is hardly satisfactory. A
technical reason along the same lines would be provided by a reduction to these questions
from another problem known to be really hard such as the Riemann Hypothesis. Perhaps
the ultimate demonstration that P = NP is a hard problem would be to show it to be
independent of set theory (ZFC).

Another way to answer this question is to demonstrate that known methods are inher-

ently too weak to solve problems such as P = NP. This approach was taken in Baker, Gill,
and Solovay [4] who used oracle separation results for many major complexity classes to
argue that relativizing proof techniques could not solve these problems. Since relativizing
proof techniques involving diagonalization and simulation were the only available tools at
the time of their work progress along known lines was ruled out.

Instead, people started to look at these problems in terms of non-uniform (= Boolean)
complexity. Along these lines, many (non-relativizing) proof techniques have been discov-
ered and used to prove lower bounds (see e.g. [7, 1, 27, 10, 31, 32, 28, 2, 25, 29, 33, 24,
5, 30, 18, 19, 11, 9, 13, 20, 3]). These techniques are highly combinatorial; they exist in a
much larger variety than their recursion-theoretic predecessors.

In this paper we introduce the notion of a natural proof. We argue that all lower bound
proofs for non-monotone models known to us in non-uniform Boolean complexily either
are natural or can be represented as natural. We show that if a cryptographic hardness
assumption is true, then no natural proof can prove superpolynomial lower bounds for
general circuits, and show wunconditionally that no natural proof can prove exponential
lower bounds on the circuit size of the discrete logarithm problem.

Natural proofs form a natural hierarchy depending on the degree to which the combi-
natorial property involved in the proof is constructive. We show without using any crypto-
graphic assumption that AC®natural proofs which are sufficient to prove the parity lower
bounds of [7, 27, 10] are inherently incapable of proving the bounds for AC°[q]-circuits of
[33, 24, 5]. We also give a technical argument suggesting one reason that natural proofs
are indeed natural: we show that every formal complexity measure which can prove super-
polynomial lower bounds for a single function, can do so for almost all functions. This is
one of the key requirements for a natural proof in our sense.

One application of natural proofs has been recently given in [23]. Tt was shown that in
certain fragments of Bounded arithmetic any proof of superpolynomial lower bounds for



general circuits would naturalize, i.e., could be recast as a natural proof. Combined with
the material contained in Section 4 of this paper, this leads to the independence of such
lower bounds from these theories (assuming our cryptographic hardness assumption).

1.1. Notation and definitions

We denote by F), the set of all Boolean functions in n variables. Most of the time, it will be
convenient to think of f, € F, just as of a binary string of length 2" called the truth-table
of f,.

The notation AC*, NC* is used in the standard sense for denoting non-uniform classes.
AC ], TC" and P/poly are the classes of functions computable by bounded-depth circuits
allowing MO D —m gates, bounded-depth circuits allowing threshold gates and unbounded-
depth circuits over an unrestricted basis, respectively.

2. Natural proofs

We start by defining what we mean by a “natural combinatorial property”; natural proofs
will be those that use a natural combinatorial property.

Formally, by a combinatorial property of Boolean functions we will mean a set of
Boolean functions {C,, C F,, | n € w}. Thus, some Boolean functions will possess property
(', and some will not. The combinatorial property C), is natural if it contains a subset C*
with the following two conditions:

Constructivity: The predicate f, € C* is in P. Thus, C7 is computable in time which
is polynomial in the truth table of f,,

Largeness: |C| > 2790 . |F,|.
A combinatorial property C,, is useful against P/poly if it satisfies:

Usefulness: The circuit size of any sequence of functions fi, fa,..., fa,..., where f, € C,,
is superpolynomial, i.e., for any constant k, for sufficiently large n, the circuit size of
fn is greater than n*.

A proof that some function does not have polynomial-sized circuits is natural against
P/poly if the proof contains, more or less explicitly, the definition of a natural combinatorial
property C, which is useful against P/poly.



Note that the notion of a natural proof, unlike that of a natural combinatorial property,
is not quite precise. This is because while the notion of a property being explicitly defined
in a journal paper is perfectly clear to the working mathematician, it is a bit slippery to
formalize. When we make general statements about natural proofs (see Section 4), it will
appear only in the context “there exists a natural proof...”
equivalent to “there exists a natural combinatorial property C,...”

and should be understood as

The definitions of natural property and natural proof can be explained much less for-
mally. A proof that some explicit! function {g,} does not have polynomial-sized circuits
must work by stating some combinatorial property of Boolean functions, C,, and proving
that for any f, € C,, the circuit size of f, is superpolynomial in n%. In other words, C,, is
a combinatorial property of Boolean functions which implies that any function with that
property is hard to compute; (), is useful in the sense defined above. The proof would then
continue by proving that g, has property C,; hence {g,} & P/poly. If the function {g,}
was provably in NP, then the proof could also conclude that P # NP.

For this proof to be natural against P/poly the property C, used by the proof must be
itself natural, i.e., ), must contain a subset C satisfying the constructivity and largeness
conditions above (it will often turn out that C = (). The largeness condition says
that C} must be true of at least a polynomial (in 2") fraction of the entire universe F,, of
Boolean functions in n variables. The constructivity condition requires that f, € C) can
be decided by a Turing machine with running time polynomial in the truth table for the
function f,, i.e, polynomial-time in 2".

As it turns out, all combinatorial lower bounds for restricted non-monotone models work
in exactly this way. In monotone models, the lower bounds use constructive combinatorial
properties, but there is apparently no formal analogue of the largeness condition®. In
Section 5, we give formal evidence that the largeness condition would apply to any useful
(', from a large class of combinatorial properties by showing that any formal complexity
measure must have it. We have no formal evidence for constructivity, but a plausibility
argument would be that we don’t understand the mathematics of highly non-constructive
(', well enough to use them effectively in a proof. As will become clear in the examples,
computing predicates in time polynomial in the length of truth tables of Boolean functions
is not a strong restriction. It is also worth observing that for any C,, satisfying the largeness
property, to be unnatural means not to contain any large, constructive subset. This is very
similar to the notion of immune set.

1The reader can think of an explicit function as a function in N P.
2Any lower bound proof can be seen in this way, at least in the trivial sense that C,, = {g.}.
31In particular, a useful definition of random monotone function is not evident.



The best example of a (supposedly) unnatural argument is a traditional counting ar-
gument. The combinatorial property C, would just be something asserting that {f,} is
not in P/poly (e.g., Co(fn) = 1 exactly when the complexity of f, is greater than n'°s™).
The proof that (), is large does not give us a least hint as to how to construct a large con-
structive subset C¥ C C,. Moreover, a consequence of Theorem 4.1 is that if a hardness
assumption is true then such C¥ can not exist at alll Thus, a counting argument is pre-
sumably not a natural argument. This poses no problem for us since counting arguments
(closely associated with diagonalization arguments) have yet not proved any lower bounds
for explicit functions.

All the lower bounds we study in this paper plainly state a natural property in their
proofs. Thus, all these examples are natural proofs by our definition. In some cases, the
fact that the stated property is natural is also evident from the original proof. In the less
straightforward cases, the proof needs to be modified so that the new proof makes clear
that the original proof was in fact natural. We will refer to modifying a proof so as to make
clear that its associated property is natural as naturalizing the proof. This sometimes does
require work (see e.g. Section 3.2.1 below). Given C,, one must exhibit C and prove
that it has both the constructivity and largeness conditions. The key to doing this seems
to lie in carefully analyzing the lower bound proof that used C,,. In the case where a
researcher intends to build a lower bound proof around some property C,,, evaluating C,
for naturalness might be non-trivial. In light of our framework, such an evaluation could
be very useful.

For an insightful classification of the lower bound arguments obtained so far for re-
stricted models we need to generalize the notions of natural property and natural proof.

Let T' and A be complexity classes. Call a combinatorial property €, T-natural if it
contains Cf C (), with the following two conditions:

Constructivity: The predicate f, € C is computable in T' (recall, C is a set of truth-
tables with 2" bits),

Largeness: |C| > 2790 . |F,|.
A combinatorial property C, is useful against A if it satisfies:

Usefulness: For any sequence of functions f,, where the event f, € (), happens infinitely

often, {f,} &€ A.*

“Note that for the case A = P/poly this general definition agrees with its more constructive version
given above. A similar remark applies to all classes considered in this paper.
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A lower bound proof that some explicit function is not in A is called I'-natural against A
if it states a ['-natural property C, which is useful against A.

Of interest to us will be proofs that are AC%-natural, 7C%natural, NC*-natural, P-
natural, and P/poly-natural. P-natural proofs will simply be called natural.

3. Examples of naturalizing arguments

3.1. AC" lower bounds for parity: AC’-natural

One of the first combinatorial arguments to give people hope and direction in lower bound
research was [7] where it was shown that PARITY ¢ AC° (independently this result, using
somewhat different machinery, was discovered in [1]). Substantial technical improvements
to their bounds were subsequently given by [27, 10]. All these proofs are AC -natural.

The C), used by these arguments simply says that there does not exist a restriction
of the variables with the appropriate number of unassigned variables which forces f, to
a constant function. The “appropriate” number of unassigned variables is different in
[7, 27, 10] and determines the bounds obtained.

All three papers argue explicitly that C,(f,) = 1 implies that {f,} ¢ AC?, in other
words, that C, is useful against AC°. (), is a natural property. In fact, we can choose
Cr=0C.

A simple counting argument shows that C is true of a random function (C} has the
largeness condition).

C*is in AC°! (CF has constructivity). Indeed, suppose k is the “appropriate” number
of unassigned variables. Given the truth table for f, as input, we compute C(f,) as
follows. List all (Z) 27—k = 20(") restrictions of n — k variables. For each one there is a
circuit of depth 2 and size 290" which outputs a 1 iff that restriction does not leave f, a
constant function. Output the AND of all these circuits. The resulting circuit has depth
3 and is polynomial-sized in 2.

3.2. A(C"[q] lower bounds: N(C?-natural

In this subsection we look at the proofs from [33, 24, 5] of lower bounds on the size of
ACP[q]-circuits, ¢ being a power of a prime. The naturalness of these proofs is especially
transparent in the framework of [33]. Namely, we have a GF[2]-linear mapping M from F,
to a matrix space, and we simply take C to be the set of all f,, € F, for which tk(M(f,))
is large. After reading the argument in Section 3.2.1 below, it will be an exercise to show



that Cx(f,) = 1 for at least 1/2 fraction of all f, € F,. Since computing the rank is in
NC?, we see that the proof is NC?matural. Smolensky’s proof [24] is analyzed below.

We will show in Section 4 that there is no AC®-natural proof against AC°[2]. Along
with the previous subsection, this gives the insight that [33, 24, 5] had to require arguments
from a stronger class than those of [7, 27, 10].

3.2.1. Smolensky’s proof: a non-trivial example of naturalization

The argument given in Smolensky [24] is a perfect example of a natural circuit lower bound
proof, but this is not immediately obvious. We will outline a special case of his argument:
a proof that parity does not have small AC°[3] circuits.

First, we recall the notion of polynomial approximation of a Boolean function. Think
of the Boolean value TRUE as corresponding to the field element —1 and the Boolean
value FALSE as corresponding to the field element 1. Let f be a Boolean function and
p be a polynomial over 735 where f and p have an identical set of variable names. Any
assignment A to f can be viewed as an assignment to p; in the case p(A) and f(A)
evaluate to corresponding values we consider them equal on this assignment. Otherwise,
we consider them to differ. The better p approzimates f, the fewer assignments on which
they differ. Since we will only be interested in the values polynomials take on {—1,1}
(Boolean) assignments, we will consider polynomials to be multi-linear by default (no
variable gets raised to a power greater than one).

Proof outline: Smolensky’s proof has two main pieces. (1) Any function computed by
a “small” ACY[3] circuit can be “reasonably” approximated by a “low” degree polynomial
over Zs. (2) The parity function in n variables can’t be “reasonably” approximated by a
“low” degree polynomial over Z3. The proof of (1) is not important here and is omitted.
(2) is proved by contradiction. Suppose there were a “low” degree (degree d) polynomial p
which agrees with the polynomial zizyx3 - - x, (the parity function) on all but a “small”
number of Boolean assignments. Let W be the set of Boolean assignments on which they
differ. Let N = 2". Let w be the size of the set W. We will assume that n is odd and
use [; and [, to denote polynomials of degree less than n/2. Every multi-linear polynomial
g can be written in the form zq---x,[; + [3. This means that, ignoring the inputs in W,
every Zs-valued function on {—=1,1}"\ W (and there are 3¥=" of them) can be represented
in the form ply + ;. This representation has degree (n — 1)/2 4+ d which by a counting
argument can’t represent as many as 3V =" functions. Contradiction.

This proof might seem to be exploiting a very particular fact about how the parity
function is expressed as a polynomial; it is not obvious how this same proof would apply
to a large fraction of functions. However, the proof technique is by its nature applicable



to a large fraction of functions.

There is one choice of ), clear from the proof: C,(f,) = 1 if f, can’t be reasonably
approximated by a low degree polynomial over Z; (for the appropriate definitions of reason-
able and low). Part (1) of Smolensky’s argument proves that C,, is useful against AC?[3].
Why is C),, natural? To see it we have to make a choice of C.

The simple choice is C = C,. It is fairly obvious that C satisfies the largeness
condition. But what about constructivity? It is not clear at all.

Thus we sink deeper into the proof and try to put

C*(fn) = 1 if every polynomial ¢ can be written in the form f,l, + I, (1)

where f, is the unique multi-linear polynomial representing f,. Then we have construc-
tivity.

In order to see this, denote by L the vector space of all polynomials of degree less than
n/2, and by T the complementary vector space of all (multi-linear) polynomials without
monomials of degree less than n/2. The whole polynomial space is then represented as
the direct sum L & T and also, since n is odd, we have dim(L) = dim(7T") = N/2. Now,
C*(f.) = 1iff the linear mapping 7y, : L — T taking [ € L to the projection of f,l € L&T
onto 7' is one-to-one (the reader can check his understanding at this point by verifying that
the parity function has this property). Thus checking that C*(f,) = 1 amounts to checking
that a matrix easily computable from f,, is non-singular which can be done in NC?.

For so chosen (7 the largeness condition also looks plausible. But we have no easy
proof of it.

We turn around this difficulty by trying to extend the definition of (1) as much as we
can (so that we’ll have more functions satisfying it) while preserving its spirit (so that
constructivity will also be preserved) and keeping the lower bound provided by it. A short
examination shows that the definition

Cx(fn) = 1iff dim(fu L+ L) > N(1/2+¢) (2)

which for € = 1/2 is the same as (1), is actually as good as (1) itself for arbitrary fixed
¢ > 0. Indeed, (2) implies that at least 3V0/2¥9=% functions on {—1,1}" \ W can be
represented by a degree (n — 1)/2 4+ d polynomial, and the same counting argument still
works.

But if we define C as in (2) with € = 1/4, we also have largeness! This immediately
follows from the fact that for every f, € F, either C}(f,) =1or C}(z1&-- Sz, B f,) =1
(cf. the proof of Theorem 5.2 a) below).



To show this fact, note that if dim (fnL + L) > 3N/4 then C*(f,) = 1. Otherwise we

have

v an L T/ TaL) >
vy an Lt oL+ D)/ (fal+ 1)) =

(the first equality here comes from the observation that (fn)? = 1 and thus multiplying by
fn defines an automorphism of L & T'). This gives us C¥(z1 & ... Sz, & f,) = L.
So, €, is an N(C*natural property.

Smolensky’s proof is the most difficult example of naturalization we have encountered
in our analysis. On the other hand, it perfectly illustrates the general empirical idea of
“adjusting” ), in both directions in order to come up with required C7.

3.3. Perceptron lower bounds for parity: P-natural

In [3], it is shown that a small constant-depth circuit (over {A,V,—}) which is allowed a
single majority gate can’t approximate the parity function. They did this by first showing
tight lower bound on the degree of a perceptron required to approximate parity to within
a given €. Their argument is natural.

Some definitions from [3]. A real polynomial p strongly represents a Boolean function®
f just in case sgn(p(z)) = f(x) for all input vectors z; such a polynomial is also called
a perceptron to compute f. Let p weakly represent f just in case p is not the constant
zero function on {—1,1}", and sgn(p(z)) = f(z) for all z where p(z) is nonzero. The weak
degree, d,,(f), is defined as the least k for which there exists a non-zero degree k polynomial
which weakly represents f.

A natural C, stated in the paper is that f, can’t be well approximated by the sign
of a low degree polynomial. Tt is explicitly shown that any f, with property C, can’t
be approximated by a small, constant-depth circuit with one majority gate, i.e., C, has
usefulness. To see that (), is natural one must exhibit a proper subset C7.

Let Cx(f,) = 1 if d,(f,) is greater than the appropriate threshold. [3] explicitly
showed that C}(f,) = 1 implies that a polynomial must have appropriately high degree to

%in this section we, similarly to 3.2.1, represent Boolean functions as mappings from {—1,1}" to {—1, 1},
and fg stands for the point-wise product which is the same as f @ g in the {0, 1}-notation



approximate f,, with its sign, i.e., C*(f,) = 1 implies that C,(f,) = 1. d,, is computable in
polynomial-time using linear programming. This shows that C has constructivity. Since
the linear programming seems essential it is doubtful that anything substantially more
constructive than C could be found in the above argument, e.g., an NC-natural property
for example.

To argue that (¥ has the largeness property, we can show the following improvement

of an Q(n/logn) lower bound from [3]:

Theorem 3.1. For almost all f, € F,, d,,(f,) > n/20.

Proof. We use the following well-known facts:

Proposition 3.2. Let ay,...,an € R. Then there exist af,...,ay € Z such thatl |a}| <
exp(O(Nlog N)) (1 <i < N), and for every x; € {—1,1}V,

N N
Sgn (Z ail'i) = Sgn (Z a;l'Z) .
=1 =1

Proposition 3.3. FEvery integer polynomial p(x,...,x,) of degree d which is not an iden-
tical zero on {—1,1}", differs from zero on at least 2% points from {—1,1}".

The proof of Proposition 3.2 can be found e.g. in [16]; Proposition 3.3 is folklore.

Now, if f, is weakly represented by a polynomial p of degree at most n/20, we firstly
apply Proposition 3.2 to the vector of coefficients of p. The length N of this vector
is Z?z/éo ;L < 2n(H1/200+0() - \where H(e) is the entropy function. We find that p

can be replaced by a polynomial p’ with integer coefficients whose bit size is at most
1) (N2 log N) < on(2-H(1/20)+0(1))

fn can be uniquely retrieved from the pair (p/, f}), where f] is the list of values of f,
on zeros of p' (arranged, say, in the lexicographic order). From Proposition 3.3 we know
that the bit size of f/ is at most 2" — 219297 thus the bit size of the pair (p/, f!) is at
most 27 — 219/20n 4 on(2H(1/20)+0(1)) - Gipce 2 - H(1/20) < %, the proof is completed by the
standard counting argument.m



3.4. Lower bounds on formula size: AC’-natural

Andreev [30] gives a promising lower bound for the formula size of an explicit function. His
bound was subsequently improved in [18, 19]. Finally, Hastad [11] gave a nearly optimal
lower bound (almost n”) of the formula size for Andreev’s function.

Andreev’s function is a Boolean function Ay, on 2n bits: ay,as,...,a,; b1, b9, ...,0,.
The a’s are partitioned into logn groups of size n/logn each. Let h; be the parity of the
bits in the yth group. The bits hy, ha,. .., hiogn index a number ¢ from 1 to n. The value
of the function As, is the bit b;.

All these proofs work by using a shrinkage factor T" which is successively improved in
the last three papers until T = Q(n?). (€ is the “soft Omega” notation which is like Q but
ignores multiplicative factors of (logn)* for constant k.)

The meaning of T' is that when a formula is hit by a random restriction it is almost
certain to shrink by a factor of T. Thus, to prove a formula lower bound just show that
a formula must have size s after being hit by a random restriction and it follows that the
original formula had size around sn?.

The natural property Csy, is that there is a restriction of 8’s such that any of its exten-
sions leaving at least one unrestricted variable in each group of a’s induces a formula of
complexity Q(n/logn). This property is useful since a random restriction leaving (logn)*
unrestricted variables leaves at least one such variable in each group: for any fixing of
b’s, a random restriction to the a’s will shrink the formula to Q(n/logn). Obviously, Ay,
has Cy, (simply restrict b’s so that they will encode the most complex function in logn
variables) which implies that it must have formula complexity at least Q(n?’)

We can choose O3, = Cy,. The fact that (', has largeness is easy to prove. Con-
structivity is also easy if we observe that there are only 2°(" formulas of size less than

n/log n.

3.5. Lower bound against 2-levels of threshold functions: 7'C?-
natural

Hajnal et al. [9] show that the MOD-2 inner-product function requires depth-2 threshold
circuits of exponential size. Any Boolean function can be viewed as a Boolean matrix by
dividing the inputs into two equal sets with the left half indexing the rows and the right
half indexing the columns. Seen in this way the inner-product function is a Hadamard
matrix. Their proof shows that any matrix with low discrepancy can’t be computed by
small depth-2 threshold circuits. Choose C), to be true of all functions whose matrices have
low discrepancy. Their main lemma shows that any Hadamard matrix has low discrepancy.
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The same argument shows that any matrix which is almost Hadamard in the sense that
the dot product of any two rows or any two columns is small also has the low discrepancy
property. Thus, the C suggested by their proof is to check that the function viewed as a
matrix is almost Hadamard, for the appropriate definition of almost. It is possible to define
“almost” so as to guarantee that Cf has largeness and preserves usefulness. Constructivity:
For each of the 2°(") dot products, feed the pairs of AND’s into a threshold gate; feed the
outputs of the threshold gates into a large fan-in AND. This is in T'C°.

3.6. Lower bounds against switching-and-rectifier networks:
AC-natural

It was shown in [34] that any switching-and-rectifier network (in particular, any nonde-
terministic branching program) for a large variety of symmetric functions must have size
Q(na(n)), where a(n) is a function which slowly grows to infinity. A similar result was
proven in [14] for &-branching programs.

The proofs are based upon a purely combinatorial characterization of the network size
in terms of particular instances of the MINIMUM COVER problem. Let C), be the set of
those functions f, for which the size 7(f,) of the minimal solution to the corresponding
instance is Q(na(n)).

The key lemma in these proofs says that if f, outputs a 1 on any input with s(n) ones,
and outputs a 0 on any input with s(n) — d(n) ones, then 7(f,) > Q(na(n)) (s(n) and
d(n) are functions which slowly grow to infinity.)

Denote this property by A,. It obviously violates the largeness condition. We circum-
vent this by letting C* be the set of those functions for which any restriction p assign-
ing n/2 variables to zero can be extended to another restriction p’ by assigning to zero
(n/2 —loglogn) additional variables in such a way that the induced function has Ajglogn-

To see C C C,, recall from [34, 14] that every covering set §; (A) has its associated
variable z; such that restricting this variable to 0 kills §; .(A). Now, for any collection of
o(na(n)) covering sets we simply assign n/2 most frequently represented z;’s to 0, and this
leaves us with a collection in which every variable corresponds to at most o(a(n)) sets.
Hence, for every extension p’ of this restriction, the size of the resulting collection will be
o(loglogn - a(n)). Thus, by the above lemma, this collection (and hence the original one)
does not cover all the points from the universe (a(n) and a(loglog n) differ by at most 1).

C*is in AC? (cf. Section 3.1).

To see the largeness condition, note that for every p we can choose n®/? extensions
Pis- s Pha 50 that the sets of variables unassigned by every two different pi, p’; from this
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list have at most one variable in common. Hence, the events “f, restricted by p! has
Aloglogn” are independent (here f,, is a random function from F},), and we can apply the
standard counting argument.

4. Inherent limitations of natural proofs

In this section, we argue that natural proofs for lower bounds are almost self-defeating.
The idea is that a natural proof that some function f is not in P/poly has an associated
algorithm. But just as the proof must distinguish f from a pseudo-random function in
P/poly (one being hard the other not), the associated algorithm must be able to tell the
difference between the two. Thus, the algorithm can be used to break a pseudo-random
generator. This is self-defeating in the sense that a natural proof that hardness exists
would have as an automatic by-product an algorithm to solve a “hard” problem.

For a pseudo-random generator &, : {0,1}" — {0,1}*" define its hardness H(G,,) as
the minimal S for which there exists a circuit C of size < S such that

1

[PIC(Gu(@)) = 1] = P[Cly) =1]| = 5

(cf. [6]). Here, as usual, @ is taken at random from {0,1}", and y is taken at random from

{0,1)%",

Theorem 4.1. ¢ Assume that there exists a lower bound proof which is P/poly-natural
against P/poly. Then for every polynomial time computable Gy = {0,1}F — {0,1}%*,
H(Gy) < 22

Equivalently, if 2" -hard functions exist then there is no P/poly-natural proof (against
P/poly).
Proof. Let C, be the P/poly-natural combinatorial property associated with the proof,
and C C (), satisfy the constructivity and largeness conditions. W.l.o.g. we may assume
from the very beginning that C = C,,.

We use a slightly modified construction from [8]. Let Gy : {0,1}* — {0,1}* be a
polynomial time computable pseudo-random generator, and € > 0 be an arbitrary constant.
Set n = [k°]. We use GG : {0,1}* — {0,1}* for constructing a pseudo-random function

6Razborov [23] has observed that a straightforward extension gives the same result for proofs using prop-

erties possessing largeness and computable by non-uniform circuits of size gn (that is, quasipolynomial
in 27)
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generator f : {0,1}* — F, in the same way as in [8]. Namely, let Gy, G, : {0,1}F —
{0,1}* be the first and the last k bits of G, respectively. For a string y € {0,1}" we define
Gy {01} — {0,1}* by Gy, = G, 0 G, 0+ -0y, and for x € {0,1}* let f(x)(y) be
the first bit of G ().

Note that f(z)(y) is polynomially time computable, hence for any fixed = € {0, 1}, the
function f(z) € F, is computable by polynomial size circuits. Hence, from the definition
of a proof natural against P/poly, f(z) ¢ C, (for sufficiently large k). This implies that
C, is a statistical test for f(@) computable by circuits of size 2°(™ and such that

[PCo(f) = 1] = P[Ca(f()) = 1]| = 2790, (3)

Here f is a random function from F,.
Constructing from this a statistical test for strings in our case is even simpler than in
[8]. Namely, we arrange all internal nodes of the binary tree T' of height n:

U1,02,... 7U(2n_1)

in such a way that if v; is a son of v; then ¢ < j. Let T; be the union of subtrees of T' made
by {vi,...,v;} along with all leaves. For a leaf y of T' let v;(y) be the root of the subtree
in T; containing y. Let G, = Gy, 0---0 Gyn—h(i,y)-{-l’ where h(z,y) is the distance between
vi(y) and y. Finally, define the random collection f; by letting f;(y) be the first bit of
Giy (zvui(y) , where &, are taken from {0, 1}* uniformly and independently for all roots v

of trees from 7.
Since fo is f, and fy._; is f(@), we have from (3) that for some ¢,

PICa(£) = 1] = P[Culfira) = 1]] = 2700,

Fixing all 2, but x,,,, while preserving the bias, we see that H(Gg) < 20(n) < 90(k)  Ag
¢ was arbitrary, the result follows.m

The assumption that 2* -hard functions exist is quite plausible. For example, despite
many advances in computational number theory, multiplication seems to provide a basis
for a family of such functions (known factoring algorithms are sufficiently exponential).

Based upon lower bounds for the parity function, Nisan [17] constructed a very strong
generator secure against AC%-attack. In fact, an easy analysis of his generator from the
point of computability gives the following:

13



Theorem 4.2. For any integer d, there exists a family G, s C F,, where s is a seed of
size polynomial in n such that G, s € AC°2] and G, s looks random for 2007) _size depth-d
circuils, i.e., for any polynomial-size (in 2") depth d circuit family C,, : F, — {0, 1},

IP[C,.(f) = 1] = P[Cp(Ghs) = 1]] < 274 (4)
Here f is a random function from F, and s is a random seed of the appropriate size.

Theorem 4.3. There is no lower bound proof which is AC°-natural against AC[2].

Proof. Assume, on the contrary, that such a proof exists, and let C',, has the same meaning
as in the proof of Theorem 4.1. Let d be the depth of a size 2°(") circuit to compute C,,.
Let G, 5 be the generator which is pseudo-random against depth-d 2°("-sized circuits from
Theorem 4.2. From the definition of a proof natural against AC°[2], for sufficiently large
n, Cp(Gys) = 0. Now, (4) immediately contradicts the largeness condition.m

In fact, it is clear from the above proof that whenever a complexity class A contains
pseudo-random function generators that are sufficiently secure against I'-attack, then there
is no I'-natural proof against A.

4.1. Natural proofs are nor applicable to the discrete logarithm
problem

It is possible (though we are unaware of any such examples) that a lower bound proof
for restricted models might be natural, but can not be applied to any explicit function.
In other words, the proof might simply argue that many functions are complex without
providing us with any explicit examples of such functions. Given our hardness assumption,
no natural proof can prove lower bounds against P/poly whether or not the proofs makes
explicit what the hard function is. Avi Wigderson has pointed out that if we restrict
ourselves to certain explicit functions, we can prove unconditional results in the style of
Theorem 4.1. A good example of such a function is the discrete logarithm. The key point
is that the discrete logarithm is known to be hard on average if and only if it is hard in
the worst case. In this section, we prove that there is no natural proof that the discrete
logarithm requires exponential-sized circuits.

Recall from [6] that for a prime p and a generator g for Z7, the predicate B, ,(z) on Z
is defined to be 1 iflog, < (p—1)/2 and 0 otherwise. B, ,(x) was shown in [6] to be a hard
bit of the discrete logarithm problem. We consider B, ,(z) as a Boolean function in [log p|
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variables (extended by, say, zeros on those inputs = which do not represent an integer in

the range [1,p — 1]). Our principal goal in this section is to show that no P/poly-natural
g P p pal g poty

proof against “sufficiently large” Boolean circuils can be applied to B, ,(z).

We need a couple of technical definitions. For an integer-valued function t(n), let
STZE(t(n)) be the complexity class consisting of all functions {f,} which have circuit size
O(t(n)). Let

t7'(n) = max{z |t(z) <n}.

We say that ¢(n) is half-exponential if it is non-decreasing and
17 (n%) < oflogt(n)) (5)

for every ' > 0. The meaning of this definition is that, roughly speaking, the second
iteration of ¢(n) should grow faster than the exponent. For example, {(n) = 27" is half-
exponential, whereas t(n) = 2(logn)” {5 not.

Theorem 4.4. Let C, be any P/poly-natural combinatorial property useful against
SIZE(t(n)), where t(n) is an arbitrary half-exponential function. Then U, ¢, Cn may con-
tain only finitely many functions of the form B, ,(x).

Proof. Assume the contrary, and let { B,, 4, } be an infinite sequence contained in ¢, C»
such that [logp;| < [logps] < ... Let k, = |logp,]. Applying the usefulness condition
to the sequence f, obtained from {B,, ,, } by letting f, = 0 for those n which are not of
the form |log p, |, we will find in {B,, 4, } an infinite subsequence where all functions have
the circuit size at least ¢(k,). W.l.o.g. we may assume that this is the case for our original
sequence.

Let G, : {0,1}2k” — {0,1}4k” be the standard pseudo-random generator from [6]
based upon {B,, ,, }. It is easy to check that the proof of [6, Theorem 3] actually extends
to showing that the circuit size of {B,, ,, } is polynomial in H(G,) + k,. Thus, we have

t(k,) < (H(G,) + k)00 (6)

Now we convert (&, into the pseudo-random function generator f, : {0, 1}%" — F,,
as in the proof of Theorem 4.1, where n, will be specified a little bit later. f,(z)(y) is
computable by circuits of size (k, + n,)% for some C > 0. Let n, = 7' (k{*") + 1.

(5) implies that t(k,) > kUO'H for almost all v, since otherwise we would have k, <
11 (kf"'l) <logt(k,) < (C + 1)logk,. Hence n, < k,. Now we have that for almost all

v every function in the image of the generator f, has circuit size at most (k, + ny)c <
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(2k,)° < kS*! < t(n,). Applying the usefulness condition again, we find that for almost
all v, the image of the generator f, has the empty intersection with C,,. Arguing as in the
proof of Theorem 4.1, we get from this

H(G,) < 200), (7)
Finally note that C, # 0 for almost all n (from largeness) and, thus,

t(n) <27 (8)

(again, for almost all n.)
The required contradiction is now obtained simply by combining the inequalities (5)

(with n:=k,, C :==C+1), (6), (7), (8):

n, = t_l(k‘yc"'l) + 1 < o(logt(k,)) <o(log H(G,) + logk,) < o(n,) + o(log k,) < o(n,).

Corollary 4.5. Let C, be any P/poly-natural combinatorial property useful against
Neso DTIME (2”6). Then U,e., Cn may contain only finitely many functions of the form

By y(z).

Proof. (o DTIME (2) 2 SIZE (22V‘°g ) and 1(n) = 22" is half-exponential.m

It is easy to see that the above proofs are actually valid for an arbitrary collection
{fp.q} of functions poly-time nonuniformly Turing reducible to the corresponding discrete
logarithm problem in place of {B,,}.

5. One property of formal complexity measures

A formal complexily measure (see e.g. [26, Section 8.8], [21]) is an integer-valued function
poon F, such that u(f) <1 for f € {—ay,...,72y,z1,...,2,} and p(f *g) < p(f) +
p(g) for all fig € F, and ¥+ € {A,V}. The meaning of this definition is that for every
formal complexity measure g, p(f) provides a lower bound on the formula size of f, and
actually many known lower bounds, both for monotone and non-monotone formulae, can
be viewed from this perspective. See the above-cited sources for examples. Also, for any
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approximation model I (see [22] for the most general definition), we have p(f * g,9) <
p(f,9) + p(g,9M) + 1, hence p(f, M) + 1 is a formal complexity measure.

In this section we show that any formal complexity measure p which takes a large value
at a single function, must take large values almost everywhere. In particular, every combi-
natorial property based on such a measure automatically satisfies the largeness condition
in the definition of natural property.

More specifically, we have the following:

Theorem 5.1. Let p be a formal complexity measure on F,, and u(f) = t for some
feF,. Then:

a) for at least 1/4 fraction of all functions g € F,,, u(g) > t/4;

b) for any ¢ = ¢(n) we have that for at least (1 — ¢) fraction of g € F,,

t

Q -
1(g) > (n los %)2

— n.

In fact, the main argument used in the proof of this theorem is valid for arbitrary
Boolean algebras, and we formulate it as a separate result since this might be of independent
interest.

Theorem 5.2. Let B be a finite Boolean algebra with N atoms and S C B.

a) if |S| > 2|B| then every element of B can be represented in the form

(s1 As2)V(s3Asqa); s €85 (1 <i<4; (9)

b) assume additionally that S contains all atoms and coatoms of B. Then every element
of B can be represented in the form

.\/ /\ Sijs (10)

where s;; € S and { < O (log m).

5]
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Proof of Theorem 5.1 from Theorem 5.2. Let S = {g¢| u(g) < t/4} for part a), and
plg) <6 ( :

S \:\ {.q 7L+10g1;>2

that in part b) we may assume that é-

}, where 6 is a sufficiently small constant, for part b). Note

t
n-l-log%)
prove. Since g (A=, p;i) < n and g (Vi p;) < n, where p; is either z; or =, this implies
that S contains all atoms and coatoms of F),, the latter being viewed as a Boolean algebra.

Now, if [S| > 2|B| in part a) or [S| > ¢|B| in part b), then we would apply Theorem
5.2 and represent f in the form (9), (10) respectively. This representation in both cases
would imply the bound p(f) < ¢, the contradiction.m

> > n+ 1 since otherwise there is nothing to

Now we prove Theorem 5.2. Denote by b a randomly chosen element of B.

Proof of Theorem 5.2 a). Fix by € B and consider the representation
bo=(bA(=b&S b))V (-bA(bSDb)).

As all four random variables b, (=b @ bg), =b, (b & by) are uniformly distributed on B and
|S] > 2| B, for at least one particular choice b of b we have b, (—b & b), =b, (b @ by) € S.m

For proving part b) of Theorem 5.2 we need the following

Lemma 5.3. Let B be a finite Boolean algebra with N atoms and S C B. Then there
exists a subset Sy C S of cardinality O(log N) such that ASy contains al most O (log %)

atoms.

Proof of Lemma 5.3. Let us call an atom a good if Pla < s] < 2/3 and bad otherwise.
Here s is picked at random from S.
Now, the standard entropy-counting argument gives us that there are at most

B
0] (log H)

bad atoms. An equally standard argument implies that if we take a random subset Sy C §
of cardinality C'log N, the constant C' being sufficiently large, then for any good atom a,
Pla < ASy] < N~'. Hence, for at least one particular choice Sy of Sy, ASy contains only
bad atoms, and the lemma follows.m

Proof of Theorem 5.2 b). Denote % by e. Once again, fix by € B. Let us call

¢ < by good if P[b € S|bAby=c|> 5 and bad otherwise. Note that b A by is uniformly
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distributed on the Boolean algebra By = {c|c¢ < by}. Hence
Plc is good] > %, (11)

where e is chosen from By at random.

Now, fix a good ¢ € By. The set B(¢) = {b€ B|bAby=c} is a Boolean algebra.
Applying to this algebra and to S := S N B(c¢) Lemma 5.3, we come up with Sy C S of
cardinality O(log N) such that ¢ < ASp and (ASp\¢) has at most O (log %) atoms. We
extend Sy by including to it the corresponding coatoms and find that every good ¢ € By
can be represented in the form /\fz1 sj, s, €5, L<0 (log %)

Next we apply the dual version of Lemma 5.3 to the Boolean algebra By and S :=
{c € By|cis good}. In view of (11), the same argument as above yields that by = V‘_, ¢;,
where ¢; are either good or atoms. The statement follows.m

6. Conclusion

We do not conclude that researchers should give up on proving serious lower bounds. Quite
the contrary, by classifying a large number of techniques that are unable to do the job we
hope to focus research in a more fruitful direction. Pessimism will only be warranted if a
long period of time passes without the discovery of a non-naturalizing lower bound proof.

As long as we use natural proofs we have to cope with a duality: any lower bound proof
must tmplicitly argue a proportionately strong upper bound. In particular, we have shown
that a natural proof against complexity class A implicitly shows that A does not contain
strong pseudo-random function generators. In fact, the proof gives an algorithm to break
any such generator. Seen this way, even a natural proof against NC' (or TC?) becomes
difficult or impossible. In [12] it is argued based on the hardness of subset sum that a
pseudo-random function exists in TC? C NC'. Consider the plausible conjecture that
there exists a (pseudo-random) function f € NC' (or TC") such that G, s(z) = f(s#z) is
a pseudo-random function generator. A natural proof that P # NC" or P # TC"° would
give an algorithm to break it. Thus, we see that working on lower bounds using natural
methods is like breaking a secret code determined by the class we are working against!

With this duality in mind, it is no coincidence that the technical lemmas of [10, 24, 33]
yield much of the machinery for the learning result of [15].
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