Electronic Colloquium on Computational Complezity
ECCC TECHNICAL REPORTS SERIES 1994 REPORT NR: TR94-011

Fault Diagnosis in a Flash

Richard Beigel® William Hurwood? Nabil Kahale’

Received December 14, 1994

Abstract. We consider the fault diagnosis problem: how to use parallel testing
rounds to identify which processors in a set are faulty. We prove that 4 rounds
suffice when 3% or less of the processors are faulty, and 4 rounds are necessary
when any nontrivial constant fraction of the processors are faulty. In addition we
prove that 10 rounds suffice when less than half of the processors are faulty, and
5 rounds are necessary when at least 49% of the processors are faulty.

Keywords: fault diagnosis, parallel algorithm, upper bound, lower bound

! Dept. of Computer Science, Yale University, P.O. Box 208285, New Haven, C'T' 06520-8285,
USA. beigel-richard@cs.yale.edu. Partially supported by NSF grant CCR-8958528.

! Dept. of Mathematics, Yale University, P.O. Box 208283, New Haven, C'T 06520-8283, USA.
willOmath.yale.edu. Partially supported by NSF grant CCR-8958528.

§ XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304.
kahale@parc.xerox.com. Research partially supported by NSF Grant CCR-9404113. Part
of this work was done while the author was at DIMACS.

Online access for ECCC:

FTP: ftp.eccc.uni-trier.de:/pub/eccc/

WWW: http://www.eccc.uni-trier.de/eccc/

Mail to: ftpmailftp.eccc.uni-trier.de,subject "MAIL ME CLEAR”, body "pub/eccc/ftpmail.txt”



1 Introduction

A large modern computer system may consist of thousands or even millions of cooperating
processors. Inevitably some of the processors will fail. Faulty processors need to be identified
so that the system can continue functioning. But when a system has many parts it can be
hard to determine which parts, if any, have failed. What is needed is a method whereby
the system can diagnose itself.

This need has led to the development of system level fault diagnosis. Fach of n atomic
processing elements is assumed to be able to test every other element. But when a faulty
unit carries out a test the result is unreliable. Such testing protocols have been usefully
implemented, see [4, 3].

Preparata, Metze and Chien first proposed a fault diagnosis model in [11]. They sug-
gested viewing the system as a graph with the processors as nodes and the edges represent-
ing tests that had been performed. Nakajima [9] introduced adaptive tests, where the tests
performed in later rounds were chosen after considering the results of the earlier rounds.

This naturally led to asking how many rounds of adaptive tests are needed to carry out
a complete diagnosis. This model was used in [5, 7, 1, 6] in which the upper bound on the
number of rounds of testing as a function of n was eventually reduced from a linear bound,
through logarithmic and doubly-logarithmic bounds to a large constant bound.

In [2] explicit small values were found for the number of rounds needed. In the case where
there was deterministic preprocessing it was shown that 84 rounds suffice for infinitely many
values of n. It was also shown that for sufficiently large n there existed a testing procedure
that would complete diagnosis in 32 rounds.

[1] considered how much information could be gained if only two rounds of adaptive
diagnosis were permitted. In general this is insufficient to carry out complete diagnosis.

This paper will substantially close the gap. We will show that complete diagnosis can be
performed in 13 rounds of testing using deterministic preprocessing, and that there exists
testing procedures that work in 10 rounds. These algorithms will work for any value of n.

We will raise the lower bound from 3 to 5 rounds. So the bounds on the general problem
are closed from 3-32 rounds to 5—10 rounds.

We will also show asymptotically tight bounds on the number of faulty processors that
can be diagnosed in three rounds. We will demonstrate that complete diagnosis cannot be
performed in three rounds with any constant fraction faulty, but that complete diagnosis
can be performed in four rounds when as many as 3% of the processors are faulty.

2 Definitions

We formalize the parallel model of fault diagnosis below:

e T'he computing system is considered to be partitioned into » complex indivisible units
called processors or nodes.

e T'he object of the algorithm is to perform complete diagnosis, that is to determine the
status of all the processors. A processor may be either good or faulty.

e {is a given upper bound on the number of faulty processors.

e A testis an interaction between two processors, a tester and a testee. The tester claims
to determine the status of the testee. If the tester is good then it will correctly diagnose



the testee. But if the tester is itself faulty then it has the option of incorrectly diagnosing
the testee. A processor is not permitted to test itself.

o We call a test goodif and only if the tester reports that the testee was good. Alternatively
we will say that the tester liked the testee.

e In a round of testing, several tests may be performed simultaneously, but each processor
can participate in at most one test. (A round of tests is a directed matching on the
processors, but not necessarily a perfect matching.)

o [t is permitted for the tests performed in a particular round to be chosen in the light of
the results of tests from former rounds. A round is called adaptive, if more information
is used to select its tests, than was used to select the tests of any previous round.

At times we will find it convenient to view the testing process as a contest between a
deterministic controller and an omniscient adversary. The controller decides which tests
to perform, and the adversary places the faulty nodes in such a way as to maximize the
number of rounds needed to complete the diagnosis.

Its easy to see [11] that ¢ < n/2 is a necessary condition for diagnosis to be possible at
all. We shall refer to the case t = [%] — 1 as the general problem.

Let T; denote the directed graph which has an edge from node a to node b iff processor a
tested processor b at some point during the first ¢ rounds. Let T; denote the corresponding
undirected simple graph.

Let G; and G; be the subgraphs obtained from 7; and T; by restricting the edge set to
consist solely of those edges that correspond to good tests.

3 Upper Bounds

In this section we will give new algorithms for performing the diagnosis which substantially
lowers the constant number of testing rounds needed from 32 given in [2], to 10.

The idea is to build supernodes. A subset of the processors, U, can be viewed as a super-
node in round 7+ 1, if GG; induces a strongly connected graph on U. This couldn’t happen if
U contained both good and faulty processors, since the strongly connected condition means
that there would have to be some test of a faulty processor by a good processor.

A supernode can be viewed as a single processor (because all the processors in it have the
same status) that can participate in |U| tests in a single round (because all the processors in
it can test or be tested independently). We shall refer to a supernode as good if its elements
are all good, as faulty if all its elements are faulty.

We will use pairing to quickly group the processors into large supernodes. Then we can
apply the non-adaptive phases of the existing fault diagnosis algorithms in a single round on
the supernodes. This will reduce the number of rounds needed to complete the diagnosis.

We will proceed as follows: First we build up supernodes that are large enough to quickly
perform the existing algorithms, and find some known good nodes. In the process we will
have to set aside processors which failed to join together in supernodes. We shall show that
we can exploit information gained during the construction phase to quickly diagnose all the
set aside processors using the known good processors, even though most of the processors
may have been set aside.



3.1 Building the Supernodes

First we pair the nodes off, possibly having to leave one unpaired node out. Suppose that
{a,b} is one of the pairs of nodes. Then for round 1 processor a will test processor b
and for round 2 processor b will test processor a. If both tests were good then {a,b} is
a supernode of order 2. If this doesn’t happen then one or other of ¢ and b is a faulty
processor, possibly both of them are. We set the pair a to b aside for the time being. Later
we will show what to do with these discards.

Since a strict majority of the original processors were good, and at least half the dis-
carded nodes were faulty, a strict majority of the remaining nodes (the supernodes and
possibly an unpaired node) are good. So at least half the supernodes are good.

In round 3 the supernodes are paired together, again leaving possibly one unpaired
supernode. Since the supernodes can engage in two testing operations per round, only one
round is needed to test both ways within each pair. As before it either yields a new larger
supernode of order 4, or the pair must contain at least one faulty supernode. Again we set
aside the pairs that didn’t form order 4 supernodes.

We proceed similarly in the following rounds. By the end of round 6 the remaining
supernodes will contain 32 ordinary nodes each. Let D denote the set of processors that we
have kept, C be the discarded processors. A strict majority of D consists of good processors.

3.2 Diagnosing the Supernodes

The object of this section is to show how we can diagnose the processors in D using only
two rounds of testing. We are given a set D of N supernodes, each of order 32.

D might also contain a single supernode of order 16, one of order 8, etc. Let J denote
the largest supernode, if any, in D whose order is less than 32. Since a strict majority of
the nodes in D are good, either a strict majority of the order 32 supernodes are good; or
exactly half of the order 32 supernodes are good, whence J must exist and must be good.

We start by diagnosing the order 32 supernodes in D, assuming that a strict majority
of them are good. If in fact exactly half of them are good, they will be divided into two
classes, one good and one faulty. Since J is then good, this situation is resolved by having
J test a single processor from some order 32 supernode. If J likes that processor, it must
be good, and so it belongs to the good class. Otherwise it must belong to the faulty class.
We say that we are using J as a judge.

We distinguish between two cases. First suppose N < 16. Then in a single round, every
order 32 supernode can test, and be tested by every other order 32 supernode. Simultane-
ously, J can test all the smaller unpaired supernodes, if there were any.

Since all possible tests between the order 32 supernodes have been carried out, and since
the good nodes like each other, they will form a new giant supernode containing at least
half of the order 32 supernodes. If there is only one such giant supernode, it must contain
the good processors, and we can use it in the second round to test the unpaired supernodes
in D. If there are two giant supernodes we can use J as a judge as we have just described.
Either way the diagnosis of D is finished after two rounds.

Otherwise we have N > 16. In this case we diagnose the supernodes by adapting the
algorithm from [2]. This algorithm has two phases. First it performs the tests given by
a fixed regular testing graph. The graph chosen is guaranteed to induce precisely one big



component (a component of size larger than N/6) on the good nodes, but it may also induce
several big components on the faulty nodes. Second these components test each other, and
also test any processors that are not in any big components.

Both of these phases can be done with non-adaptive tests. In our case we shall perform
each phase as a single round of tests on our supernodes. So we must show that the original
algorithm can be done with at most 32 rounds of non-adaptive tests for each phase.

The test graph, denoted Hig, is obtained by randomly selecting 16 Hamiltonian cycles,
and superimposing them. Fach edge must be tested both ways, so 32 rounds of non-adaptive
testing are needed to check the edges in the graph. From [2, theorem 3] we have

Theorem 1 The probability that a randomly selected graph of type Hy fails to induce exactly
one large good component of size larger than N /6, regardless of how the good nodes are

arranged, is at most ]
_ vy (LGN DUEND)!
P(N) =2 " ( N!([%N-\)! )

For d = 16 this gives us a bound that is strictly smaller than 1 for all N > 16, so there
must be some choice of Hqg which induces a large component on the good nodes.
To perform the second phase of [2] in one round we use the following lemma:

Lemma 2 Suppose that N processors, of which a strict majority are good, have been divided
into components such that there is precisely one good component of size greater than N /6.
Then the diagnosis can be completed in eight non-adaptive rounds.

Proof: Let Ay, Ag,... A, denote the strongly connected components of size greater
than N/6 induced by the testing graph. We have r < 3 since there are at most two
faulty components of size greater than N/6.

Let B be the set of processors not in any of the A;. Since |B| < % it is clear that
5 rounds of non-adaptive testing suffice for a component A; to test each node in B. Another
3 rounds will let each processor in B test some processor in A;. Since we can partition B
into five parts, each part smaller than N/6, we can carry out all these tests simultaneously.

Let B; be the processors in B which A; considers to be good, and which consider A; to
be good as well. Then the processors in B; have the same status as A;. So there will only be
one 7 for which |A; U B;| > % This set must be precisely the set of good processors. a

This completes the diagnosis of D. Since this second round requires at most 8 testing
operations per order 32 supernode, the supernodes can simultaneously test the unpaired
nodes in D. Each of the (at most 3) big components can test unpaired supernodes of
orders 4, 8 and 16, ensuring that they have been tested by a good node. We also require J
to test some order 32 supernode, in case it is needed to be used as a judge.

But if there are unpaired supernodes of order 1 or 2, it is not possible to ensure that
they are tested by all the big components and we might have to leave them for another
round. However if there is only one big component, it has to be good and it can test them.

In summary, if |D| < 16 -32 + 31 = 543, or if less than 1/6 of the processors are faulty
then we can completely identify all the processors in D in two rounds. But in any case we
can identify all of the processors, except possibly for three of them. Two tests are needed
to identify these last three.
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Figure 1: Chain testing pattern
3.3 Chains

We now have some order 32 supernodes that have been diagnosed as good. Now we wish
to use those nodes to diagnose the pairs in C. We shall improve on an idea from [1].

The key idea is to use the chain testing pattern shown in figure 1. Fach pair {a;,b;} in
the chain is a pair of nodes (or supernodes) which were discarded together. If two processors
in the figure are connected by an edge then they should test each other, both ways.

The construction guarantees that at least one node in every pair is faulty. Suppose for
a given chain we have that exactly one node from every pair is good. Each good node will
determine which of the two nodes in the subsequent level is good. So in this case we can
diagnose the entire chain, just by diagnosing the top two nodes, a; and b;.

Even if the chain did contain a few faulty—faulty pairs the good nodes in it would form
large strongly connected components. So if we tested the large components first we would
quite likely find several good components.

Let m = |DJ, and k£ = |C|]. Suppose all the pairs in C have been arranged into one long
chain, and that all the edges in the chain have been tested both ways. The chain is divided
into a number of strongly connected components, which we shall refer to as fragments.

Define g to be the surplus good nodes in D, and b to be the surplus faulty nodes in C,
where g and b are defined by

g =|{a€D:agood} - |{a€D:affaulty}
b =1{a€eC:afaulty}| — |{a €C:agood}

Since a strict majority of the nodes are good ¢ > b.

Since each faulty—faulty pair in the chain contributes two surplus faulty nodes, there are
exactly b/2 faulty—faulty pairs. Now consider the good fragments in the chain. Each good
fragment must be separated from the following one by a faulty—faulty pair. Since g > b
there are at most 1(g + 1) good fragments.

The number of good processors available from D is %(m-l—g) > ¢g. Spend round 9 testing
the g biggest fragments. Let r be the number of nodes in the smallest fragment tested. Let



a be the number of these fragments that are faulty, so ¢ — a are good.

Thus there are at most (g + 1) — (¢ — a) = a + (1 — g) good fragments that are not
tested, and these contain at most ra + (1 — ¢) good processors, since the largest untested
fragment has size r. There are 2(k — b) good processors in the chain, so we must have
discovered at least %(k —b—2ra—r+rg) good processors.

Since there are %(k + b) faulty nodes, and we’ve already found at least ra faulty nodes,
there remain at most 3(k + b) — ra faulty nodes to test. In total the number of untested
nodes (good and faulty) is at most 1(k+b+r — gr).

In round 10 we can use the good processors found in round 9 to examine the untested
nodes. By subtracting, we find that the number of nodes left over is at most b+r(a—g+1).

Provided that o < ¢ (that is, we found at least one good fragment in round 9) the
multiplier of r is negative or zero. But we have at least g good processors in D, which we
can also employ in round 10. Since g > b we have enough good processors to test all the
untested nodes. So complete diagnosis is finished in 10 rounds. (We cover the case a = g
at the end of Appendix A.)

The details of actually building the chain are in Appendix A.

3.4 Constructive Algorithm

The previous sections showed that for all n there exists an algorithm which will complete
the diagnosis in few rounds. But the algorithm wasn’t explicitly found, since it depended
on finding Hig. Here we will show that given a finite amount of pre-processing, a suitable
test graph can be found in polynomial time for all n.

As in [2] the procedure will be basically the same, only instead of using Hy, we shall use
the Cayley graphs G, of Lubotzky, Phillips and Sarnak, see [8]. As in the last sections we
will build supernodes and chains. We’ll apply the test graph to the supernodes, and recover
some known good processors from them. These will be used to diagnose the remaining
Processors.

The problem is that G, doesn’t exist for every value of n. We fix a prime p, with p
congruent to 1 modulo 4. Then there is a (p+1)-regular graph G,, with ¢(¢?—1)/2 vertices,
for any prime ¢ satisfying (%) = 1, ¢ congruent to 1 modulo 4. The second largest (in
absolute value) scaled eigenvalue of this graph is at most 2,/p/(p + 1).

If there is no suitable ¢ define G, to be the graph ,,» along with n —n’ isolated vertices,
where n’ is chosen to be the largest integer smaller than n for which a suitable graph exists.
Lemma 3

!
lim 2~
n—00 n

=0

Proof: The lemma follows from considering the distribution of primes in an arithmetic
progression. See eg [12, page 214] for more details. |
So the procedure is as follows. We choose ng large enough that for n > ng the fraction of
isolated vertices in G, is less than e. In this case at least 1/2 — ¢ fraction of the non-isolated
vertices must be good nodes.
[2] shows that provided

a2
V(l=a)(1=0) p+1




then G,y will induce an edge between sets of vertices A and B where |A| = an’ and |B| = bn/.

Lemma 6 will show how we can use this condition to induce a large component. A
suitable choice of values is to take ¢ = 1/30, and let the extreme values for @ and b be
(7/30) + (1/30) and (7/30) — (1/30) respectively. (This corresponds to A = 7/15 and
¥ = 1/7 in the lemma.) Then G, will induce a component consisting of at least (1/15)n’
good nodes, provided p > 37.

Since we need to test both ways, to test the undirected degree-38 graph G,, we will need
order 128 supernodes. Complete diagnosis can be performed in 8 + 2 + 3 = 13 rounds.

If we want to perform diagnosis for a set of supernodes with n < ng we use the method
described in the proceeding sections. Since this is only a finite number of cases, we can use
preprocessing to find suitable Hyg.

4 Lower Bounds

In this section we will first consider what can be done with three rounds of testing. It will
turn out that the largest ¢ for which complete diagnosis is possible, is when ¢t = O(y/n). In
particular complete diagnosis is impossible if ¢t = en for any € > 0, for sufficiently large n.

Then we shall consider permitting 4 rounds of testing. We will show by exhibiting an
algorithm, that with 4 rounds, complete diagnosis is possible when ¢ < (.03)n. But we will
prove that if ¢ > (.49)n then complete diagnosis cannot be carried out for large enough n.
So the lower bound for the general diagnosis problem is at least five rounds.

4.1 Three rounds of testing

First we give a strategy by which the adversary can prevent diagnosis from being completed
after three rounds. Initially the adversary will consider every processor to be good. As the
testing proceeds the adversary may announce that some processors are in fact faulty. Every
processor will always report that any processor that has been announced to be faulty, is in
fact faulty, and it will claim that every other processor is good.

The adversary will ensure that whenever a processor is announced to be faulty, all the
processors which tested it in previous rounds have also been declared as faulty. At the end
of the third round it will ensure that there is at least one processor which has never been
tested by a non-faulty processor. So there will be no way that the controller can deduce
the status of this single processor. In detail the adversary’s strategy is as follows:

Round 1 The adversary reports that all the tests were good.

Round 2 The undirected graph, T, of all tests performed has maximum degree 2. So its
components are all paths or cycles.
The adversary chooses an integer z. It wants to make sure that G5 has no components
larger than x. It provisionally places as few faulty processors as possible, so that the
longest path in 75 containing no faulty processors is z — 1. Let F be the set of faulty
processors chosen.
If @ € F and a was in fact tested in round 1 the adversary replace @ with the processor
which tested it. This ensures that no processor in F' was tested earlier but means that
now the longest path in 7', with no faulty processors is at most z + 1.



The adversary wants to ensure that there is at least one processor b, not declared to be
faulty, which has either not been tested by the end of round 2, or that was tested by a
faulty node. If necessary it will add one more processor to F', to ensure that there is a
processor available with these properties.
The adversary announces test results consistent with /' being the set of faulty nodes.
Round 3 If the testing graph for round 3 doesn’t test b, or tests b with a processor that has
been declared to be faulty then the controller cannot diagnose b.
If b is tested by some node ¢ then the adversary decides that c is faulty, and also that
all the processors in the component of T, that includes ¢ are faulty. It announces the
results of all new tests truthfully with respect to this selection of faulty nodes.
Complete diagnosis will be impossible, since all the processors that tested b are declared
faulty, and so the controller cannot trust them.

Theorem 4 Complete diagnosis cannot be performed in three rounds if t > 2v/2n.

Proof:  We just count up the number of faulty processors that the adversary could need
to carry out the algorithm just described.

In round 2 it is in general only necessary to place one faulty processor for every =z
processors along a path. But two faulty processors are needed for a cycle of length = + 1.
So at most anﬁ + 1 processors are needed at this stage.

In round 3 the adversary may have to place a further z 4+ 1 faulty nodes, since this is
the size of the largest possible component of Gy. There must be at least one more possible
faulty node, so that the controller can’t deduce the status of b by a counting argument. So

the adversary needs
n

z+1
Choosing z + 1 to be [t/2] we get

2

+1+(z4+1)+1<1

8n < t? — 4t

Hence provided ¢ > 2v/2n the adversary can prevent diagnosis from occurring in three
rounds. O

Let 7(n) denote the largest possible value of ¢ for a given n such that complete diagnosis
can be performed in three rounds. Then we have the following

Theorem 5 The mazimum number of faults that can be tolerated for three round diagnosis

to be possible satisfies T(n) = O(y/n).

Proof: We already have that 7(n) < \/g\/ﬁ For the converse suppose first that ¢ is odd.
For rounds 1-2 build as many cycles as possible with length ¢ + 1. Up to ¢ processors may
be left over. Since a cycle cannot consist entirely of faulty nodes, any cycle which contains
some faulty node must also have at least one faulty test.

In round 3 use the known good cycles to test the faulty cycles, and any node which isn’t
in a cycle. This completes the diagnosis.

If ¢ is even the cycles are given length ¢ + 2. Then provided t satisfies 2t + 61 + 2 < n
complete diagnosis is performed in three rounds. a



4.2 Completing diagnosis with four rounds

The last section showed that for any ¢ > 0, complete diagnosis couldn’t be performed in
three rounds, with ¢ = en. In contrast, if ¢ = 0.03 diagnosis can be performed in four
rounds. We shall use a similar algorithm to that in section 3.

Rounds 1-2 Divide the nodes up into cycles of size 2d. Have each processor test the status
of its successor in its cycle. (We assume that 2d | n). Since there is an even number of
processors in each cycle this can be done in two rounds.

Any cycle in which every test was good can be viewed as a supernode.

Round 3 Each supernode can participate in 2d testing operations during this round. So we
can apply a d-regular testing graph, Hg, to the supernodes.

Hy will induce a strongly connected component on some subset of the good supernodes.

Round 4 This good component now tests every processor whose status is still in doubt. (We
assume that it is large enough for this to only take one round.)

We have to show that d,e and H; can be chosen in such a way to be certain that this
procedure will always work. This can be done using a result similar to that in [2], which is
extended from a lemma of Erdés and Rényi, (see for example [10, p. 45]).

Lemma 6 Let G = (V, F) be a directed graph of order m. Let 0 < X\,v < 1. Suppose that
Jor every pair of sets A,B CV, AN B =10, |A|+|B| = Am and |A|,|B| < 22X m, there
are edges in G directed from A to B and from B to A. Then G induces a strongly connected
component of size at least yAm on any subgraph of order Am.

Proof: lLet H bethe subgraphinduced by C on a set of r = Am vertices. Let Cy,Cs,...C)
be the strongly connected components of H.

We may order these components so that if there is an edge (; — C; then i < j.

Let C} be the largest component, and assume that |C| < yr. Then we must have that
either

]§|C|<1_7T or zl:|0|<1_77‘
i=1 T2 i=k+1 T2
Hence taking A to be either UX_,C; or UL_,C;, as appropriate, and letting B be the
remainder of the vertices of H, contradicts the premise. So we must have a strongly con-
nected component of the required size. |
The techniques of [2] show how to select Hy so that it will satisfy the conditions of the
lemma. We find that a suitable H; exists for all sufficiently large n when ¢ = .03 and d = 4.
Hence, unlike the three-round case, it is possible to perform complete diagnosis in four
rounds when ¢ is a constant fraction of n.

4.3 In general, diagnosis requires at least five rounds

In this section we shall extend the ideas of section 4.1 to show that it is impossible to
perform complete diagnosis in four rounds, given only that ¢ < [%].

The adversary will place faulty nodes so as to ensure that Gz has a constant bound,
independent of n, on the number of vertices in a component.



Unfortunately we need to delete many more vertices from a max degree 3 graph, than
we did from a max degree 2 graph to disconnect it. Also we have to ensure that those
processors that are declared faulty in round 3 were only tested by other faulty nodes.

The adversary places faulty nodes in round 2 to ensure that the maximum size of a
connected component in Gy is 3 vertices. Let Cy,Cy,...C, be the components of G that
do not consist of declared faulty nodes.

The adversary then treats round 3 as being a max degree 3 testing graph, 7", on the (.
Since no test was performed between in the C; in rounds 1-2, the adversary is free to declare
any individual C}; to be faulty.

First we need some graph theoretic theorems, which show that we can separate a max

49

degree 3 graph into bounded size components by deleting at most 755 of the vertices.

Theorem 7 If G is an undirected graph, of mazimum degree 3, then G can be separated
into components that each contain at most one cycle by deleting an % fraction of its vertices.

Proof: The proof is by induction on the order of the graph. Consider the shortest cycle
in the graph, and delete the vertices adjacent to it, and in some cases a few additional
vertices. A detailed proof is given in Appendix B. a

Lemma 8 A maz degree 3 graph K which contains at most one cycle can be separated into
components of size at most 199 vertices each, by deleting a llﬁ fraction of its vertices. None
of the vertices removed had degree 1 in K.

This lemma is proved in Appendix B. Together the theorem and lemma imply

Theorem 9 An undirected maz degree 3 graph G can be separated into components of

mazimum size 400 vertices by deleting at most 22

o5 Jraction of the vertices.

?he % fraction can certainly be improved, but for our purposes any number smaller than

5 is sufficient. The following adversary argument proves the lower bound.

Round 1 The adversary reports that all tests were good. Since the controller cannot possibly
gain by not carrying out as many tests as possible on each round, we shall assume that
T, is a complete matching. (The possibility that n is odd causes no extra difficulty,
except that it complicates the explanation.)

Round 2 The adversary considers all the connected components of Ty. Each component is
either a cycle or a path with an even number of vertices. A case by case examination
shows that in each component it is able to place faulty nodes so that

e None of these faulty nodes were tested in round 1.

o At most % of the nodes of each component are declared faulty.

o The faulty nodes separate the apparently good nodes, so that each connected component
C'; of G5 has size at most three.

o Any C; of size 3, take the form of a path of length 3, not a 3-cycle.

e The adversary could declare one of the nodes in each C; of size 2 or 3 to be faulty, and
it still would have declared at most half the vertices of T, to be faulty.



Some example arrangements that satisfy these conditions are shown in figure 2. Note
that no C; can be a cycle of length 3 because GGy has no cycles of odd length.

The adversary than announces its choice, F,, of faulty nodes and gives test results
consistent with that set.

Round 3 The adversary constructs a graph G, on the C;, by connecting C; to C; if and only
if there is a test between them in 75. So G has maximum degree 3. By theorem 9 the
adversary selects a set W from the vertices of G, where |[W| < 75|G| and deleting W
separates (G into components of at most a constant size.

Lemma 8 shows that without loss of generality, all C; € W satisfy |C;| > 1. We can
also assume that no processor in a C; € W tested another processor in the same C; in
round 3.

The adversary now forms F3, the set of additional processors it declares to be faulty in
round 3. It cannot take F5 to be all the processors making up W, since this might mean
that more than half the processors are declared to be faulty.

Instead if C; € W has |C;| = 2 then both processors in C; are included in F5. If C; € W
has |C;| = 3 then two processors from C; are selected for Fj3. Since C; isn’t a 3-cycle, we
can ensure that the processor in C; which isn’t declared to be faulty has never tested
either of the other two processors. Thus consistency in maintained.

The adversary announces test results consistent with £y U F3 being the set of faulty
Processors.

Round 4 As with the previous algorithm, the adversary can easily ensure the existence of
a node, b, which was only tested by declared faulty nodes in rounds 1-3. Suppose b is
tested in round 4, by a node ¢ which hadn’t been declared faulty.

Then the adversary declares all the nodes in the component C' of T3 which contains ¢
to be faulty. C' has bounded size, independent of n.

Let K be the component of G\ W which contains the C which includes ¢. Then K
contains at most 199 of the C; each of which contains at most 3 processors.

Since for C; € W with |C;] = 3 we only declared two of the three processors to be faulty,
there could be a processor in C' for each element of W adjacent to K in G. This leads
to at most 201 extra processors in C. In total we have |C'| < 798.

The adversary adds C to its set of declared faulty processors, and returns test results
consistent with this.

Complete diagnosis will be impossible if n is sufficiently large that we can declare all of
C' to be faulty, and still have declared less than one half of the processors to be faulty. In
rounds 1-3 at most % of the processors are declared to be faulty. Thus, if 798 < —-n, i.e.,

100
if n > 79800, complete diagnosis requires at least five testing rounds.
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A Building the Chain

We show how to construct the chain so that it is ready for use in round 9.

Since each node in a chain is involved in eight tests, the chain could be built in eight
rounds. Unfortunately eight rounds are not available.

In round 1 we test the processors in pairs. If one processor doesn’t like it pair we know
immediately that this pair will go into C. There is no need to carry out the test the other
way.

So after round 1 we have some number of pairs in C and we have seven rounds to
construct a chain from them. In four rounds we can carry out all the forward tests down
the chain. We only need to test the reverse direction of those forward tests that were good.
If a processor likes both of its successors we know it is faulty, (since one of its successors
must be faulty), and so there is no need to carry out any more tests involving this processor.
So the edges which need to be reverse tested form a binary tree, and so are the union of
three matchings. Thus all the reverse tests can be done in only three more rounds.
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After round 2 there may be some more pairs {a,b} for C. But in each of these pairs a
liked bin round 1 and b didn’t like @ in round 2. So @ must be faulty. Its easy to carry out all
the remaining tests to form a second chain in only four rounds. We can also link this chain
in with the first chain by ensuring that the bottom processors from the first chain don’t
attempt to test there successors until round 3 by which time we know which processors are
in the second chain.

Hence by round 9 we can construct a single chain containing all the simple pairs in
C. Unfortunately although the processors added to C in later rounds are grouped into
supernodes and so can carry out more tests per round, we are unable to link these chains
in with this single chain.

So we cannot avoid having two chains. This causes a problem because the split between
the chains means that there could be one more good fragment than in the above analysis,
and this prevents the diagnosis from working.

But if we make both chains into closed loops (that is have tests between the top and
bottom pairs in the chain as well) then we get exactly as many possible good fragments as
before, and the analysis works.

Provided that there are an even number of pairs (after both round 1 and round 2)
assigned to C the construction above can be used to make a loop instead of a chain. So we
can make a single chain, but maybe four processors are left out of it.

Meanwhile after round 3 we are given some pairs of order 2 supernodes to add to C.
Again setting one pair aside if necessary we can suppose that there are an even number of
pairs.

Since these nodes can carry out two tests per round, we can perform all the necessary
tests in four rounds. Since there are an even number of pairs in the chain we can ensure
that both the top and bottom pairs in the chain are not needed to perform any tests in
either round 7 or round 8.

Similarly after round 4 we have order 4 supernodes. In two rounds we can test all the
edges between them to get a chain whose top and bottom pairs are free in round 7 and
round 8.

The order 8 and order 16 supernodes only need one round to construct the chain from
them, so they cause no problem.

So in round 7 we have up to 4 lengths of chain, and each length has at least two free
processors available in its top and bottom supernodes. Thus in two rounds we can link the
lengths together, to construct a closed loop for round 9.

So it is possible to construct our two closed loop chains, but up to eight processors may
have been set aside.

There are still a few exceptional cases to consider. First it is possible that we didn’t
manage to completely diagnose D by the start of round 9. But we have seen this can only
happen if at most 5/6 of the processors in D are good, and |D| > 543. Thus g < %m Since
we only need g good processors in D for the algorithm and there really are %(g + m) good
processors we have at least 100 extra processors. We can spare ten processors in round 9
to complete the diagnosis of D.

Second we have to test any processors from C that didn’t get into the chain. If we
have the extra processors described in the last paragraph, we have enough spare good
processors to test these as well. If this doesn’t occur, then examination of the algorithm
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which diagnosed D shows that some extra good processors have been diagnosed by round 7
(or even earlier if m < 32) and we can use them in round 8.

Finally, it is possible that no good fragments are found in round 9 at all. (In the analysis
we assumed that one good fragment was found.) In this case it is easy to show that r =1
and conclude that there are enough good processors in D to diagnose all except possibly two
processors from C even if every fragment contains one processor. The previous paragraph
shows that we can do a few extra tests before round 9. All that is required is that two
processors from the chain are tested by good nodes.

B Proof of Theorem 7 and Lemma 8

Theorem 7 If (G is an undirected graph, of maximum degree 3, then G can be separated
into components that each contain at most one cycle by deleting an 18—7 fraction of its vertices.

Proof:  We shall use induction on the order of G.

Let G = (V, F) be a max-degree 3 graph, and suppose the theorem has been shown for
all graphs of lower order.

For any graph G’ let z(G") denote a subset of the vertices of G’ which have the separating
property required. Let ((G’) be the fraction of the vertices of G’ that appear in the smallest
possible choice of z(G").

If G is a forest, the theorem trivially holds for G.

Otherwise, let M C V be a cycle of minimum length.

Let D C V be the vertices adjacent to M but not in the cycle. Let A be the vertices
adjacent to D in V\ (M UD). Let B=V \ (M U DU A), the remainder of the vertices of
G.

Tet Ay, Ag,... A, be the components of the graph G restricted to A.

Va € Adv € D s.t. av is an edge

Thus each component graph A; is either a cycle or a path.

Given GG we will construct a smaller graph G’, which we can apply the inductive hypoth-
esis to. The vertices that we remove from G are divided into two classes: Z, the vertices
that we intend to delete, and U vertices that we remove to construct G’ but which will still
be used when G is separated. We say that the vertices in U are used.

In order to ensure that at most 18—7 of the vertices of G are deleted, we need that

8
< — ).
12 < (121 +1U1)

We need to insure that the vertices in U will either be disconnected from G’ once Z has
been deleted, or that if they remain connected to some component of G’ they cannot add a
cycle to this component.

We will always delete D, and since this disconnects M from the rest of the graph, in a
component that contains a single cycle we can include M in U. The bound on the degree
of G implies

D] <

M.
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Hence taking D = Z and U = M would give us a bound, ((G) < 5. But we need a bound
strictly below half, and so we must include some more vertices in

We will try to add some vertex from some A; to U.

1
3
U.

Consider a component A;. Suppose that A; is a cycle. Then deleting D will disconnect
A; from the rest of the graph. Hence we could take Z = D and

U=MUA

to get a valid decomposition. G’ will just be G restricted to V' \ (U U Z).

Otherwise A; must be a path, say ajay ...a;. Either of its end points could be connected
to B in the original graph G.

Suppose that only one end point a1, has a connection to some z € B. Then we can set
U= MU A,. Take z(G) = 2(G') U D. Since A; is just a path with a connection to B at
only one end, adding A; to the component of G'\ z(G') which contains & cannot introduce
a new cycle in this component. So the induction goes through.

Otherwise A; is connected to B at both ends in G. Suppose that in G we have the path
rajay...qy where z #y, z,y € Band | > 2.

Then take

U=MU{as,as,...ar}

and Z = D. As before G’ is G restricted to the remaining vertices, but we also add an edge
a1y to G'. (We can do this without violating the max degree 3 condition since we have
deleted adjacent vertices to both @y and y.)

Set 2(G) = z(G") U D. Since the path azas...a; is inserted between two vertices that
are connected in G’ it cannot add any extra cycles.

We can deal with the case that A; is connected to the same vertex 2 € B at both ends,
and has length at least 3 in a similar fashion.

If A; is a single vertex a, connected to non-adjacent x and y in B, then we can put
a € U. In this case we connect z and y in G’ to ensure that adding @ to the components of
G'" won’t add a cycle.

Finally suppose that none of the A; have one of these forms. Then every A; is either a
single vertex a connected to an adjacent z and y in B, or A; is a pair ayay which are both
connected to the same z in B.

In these cases we set X,Y to be all the vertices referred to as z, y in the above paragraph.
Let Z=DUX,and U =M UAUY. Its immediate to check that this is a valid choice of
vertices to use and to delete, since the presence of a triangle in G implies that |M| = 3.

Suppose |M| < 8 and that we use one of the constructions given above. In each case we
get at least one more vertex in U. So we have

2l 8 8

Z[+ U] = 8+9 17

We deal with the possibility A = (), by listing all the possible graphs for M U D, with
|M| < 9, and checking each one has the correct property.

Finally we suppose that |[M| > 9. Its no longer enough to just use one of the A;. We
must check that using several of them together cannot interfere with each other.
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We can use cycles in A; and paths connected at one end as before. The problem is
that we might try to create a multiple edge in G’ by connecting x to y twice. This doesn’t
happen since G has no length four cycles.

So we can use all the A;. Finally we need to check that there are enough vertices in A.
Suppose a € A. Then there is one path of length 2 from a to M, since if there were two
paths we would violate the assumption that M is the shortest cycle in the graph.

Take D' = {d € D:3a € A,ad € E}. There is no need to delete vertices from D which
have no neighbors in A, since the subgraph on M U (D \ D’) will have only one cycle and
8o it is a permitted component.

Then we have |A| > |D'|. We set Z = D’ and U contains at least one half of A,
depending as to how the components are arranged, as well as all of M.

Then

7] 2
7 < Z
[zl + U] =5
since |U] > [M] + 34] > |D'| + 4|1,
In each case the induction carries through, and the theorem follows. O

Note: its easy to modify the theorem to get a bound of %.

Lemma 10 Let G = (V, F) be a tree with n vertices, and r be some positive integer. Then
there exists a subset 7 of the vertices of G such that |7Z| < n/r and the subgraph induced
by G on the vertices in V' \ Z has no components with more than r — 1 vertices.

Proof: Let Gy denote the subgraph induced by G on U, for any U C V.

The proof will be by induction on n. It will suffice to show that there exists a suitable
vertex z € V, where a vertex z is said to be suitable if at least 7 —1 of the vertices of Gy _(,y
are contained in components of size at most r — 1.

We will proceed by defining a set £ of pairs (L, v) associated with G, where . C V
and v € V \ L. Each pair is required to satisfy that the vertices of L form a connected
component of Gy _y,y and that [L] < r — 1. Let

uvic)y= |J ¢

(Lw)eLl

Initially set £ = (. Now extend £ as follows. Since G is a tree, Gy\u(cy is a forest. Let
us suppose that we can find 2 € V, a non-isolated leaf of this forest. Then there is a single
vertex y adjacent to z in Gv\p(g)-

Let (Ly,v1),...,(Lp,v,) be the set of pairs in £ with v; = 2. It is possible that p = 0 if
there are no such pairs. Let L = L; U...U L, and set a = |L|.

If a > r—1 then z is suitable and we can complete the lemma by erasing = and applying
the induction hypothesis. Otherwise @ < 7 — 1 and so |L U{z}| < r — 1. Hence we can
extend £ by adjoining (L U{z},y) to it.

We claim that this method of extending £ will in fact always result in finding a suitable z.

By induction of [U(L)| we can see that Gy\p(z) will be connected. Initially £ = 0,
so U(L) = 0 and so Gy\y(cy = G which is connected. The extension of £ by (L U {z},y)
will always have the effect of adding @ to U(L), where = was a leaf of Gv\u(r)- S0 Gv\u(c)
will remain connected.
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Since extending £ in this manner increases |U(L)| by one, eventually we will have that
Gv\u(c) is a single vertex z. Then either z is suitable, or V| < r—1. In either case the
lemma is completed. |

Suppose a graph G has n vertices and G' has at most one cycle. We want to erase
vertices of GG so that each component has size at most r — 1. By the lemma if GG is a tree
then we can do this be erasing at most k/r vertices. If n < r — 1 then no vertices need to
be erased at all.

Otherwise we have n > r, and GG contains a cycle. Delete one vertex from the cycle in GG
to get a tree G'. By the lemma we can reduce G’ to components of size at most r — 1 by
deleting at most (n — 1)/r vertices.

Hence the total number of vertices deleted is at most ”T;l +1< ”;1 + % < 27” In
conclusion we have

Lemma 11 Let G = (V, E) be a graph with at most one cycle, |V| = n, and v be some
positive integer. Then there exists a subset 7 of the vertices of G such that |Z| < 2n/r
and the subgraph induced by G on the vertices in V '\ Z has no components with more than
r — 1 vertices.

Lemma 8 is just a special case of this lemma with » = 200.
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