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1 Introduction

We examine in this paper the computational power and learning complexity of high
order analog feedforward neural nets N, i.e. of circuits with analog computational
elements in which certain parameters are treated as programmable parameters. We
focus on neural nets A of bounded depth in which each gate g computes a function
from R™ into R of the form < y1,...,ym > — ¥9(Q%(y1,...,ym)). We assume that
for each gate g , 747 is some fixed piecewise polynomial activation function (also called
response function). This function is applied to some polynomial Q?(y1,...,ym) of
bounded degree with arbitrary real coefficients, where y1,. .., y,, are the real valued
inputs to gate ¢g. One usually refers to the degree of the polynomial ()¢ as the
“order” of the gate g. The coefficients (“weights”) of Q)¢ are the programmable
variables of N/, whose values may arise from some learning process.

We are primarily interested in the case where the neural net N computes (re-
spectively learns) a boolean valued function. For that purpose we assume that the
real valued output of the output gate g,.; of N is “rounded off”. More precisely, we
assume that there is an “outer threshold” T,,; (which belongs to the programmable
parameters of ) such that the output of A is “1” whenever the real valued output
z of gou satisfies z > Ty, and “07 if z < T,y In some results of this paper we
also assume that the input < zi,...,z, > of N is boolean-valued. It should be
noted, that this does not affect the capacity of N to carry out on its intermediate
levels (i.e. in its “hidden units”) computation over reals, whose real-valued results
are then transmitted to the next layer of gates.

Circuits of this type have rarely been considered in computational complex-
ity theory, and they give rise to the principal question whether these intermediate
analog computational elements will allow the circuit to compute more complex
boolean functions than a circuit with a similar layout but digital computational ele-
ments. Note that circuits with analog computational elements have an extra source
of potentially unlimited parallelism at their disposal, since they can execute opera-
tions on numbers of arbitrary bit-length in one step, and they can transmit numbers
of arbitrary bit-length from one gate to the next.

One already knows quite a bit about the special case of such neural nets A" where
each gate g is a “linear threshold gate”. In this case each polynomial Q?(y1,...,ym)
is of degree <1 (i.e. a weighted sum), and each activation function ¢ in N is the
“heaviside function” (also called “hard limiter”) H defined by

)1, ify >0
H(y)_{O,ify<0

(e.g. see [R], [Ni], [Mu], [MP], [PS], [HMPST], [GHR], [SR], [SBKH], [BH], [A],
[L]). The “analog versus digital” issue does not arise in this case, since the output
of each gate is a single bit. Still, it requires some work to bound the potential



power of arbitrary weights (in the weighted sums) for the computation of boolean
functions on such circuit. Since there are only finitely many boolean circuit inputs,
it is obvious that only rational weights have to be considered. The key result for
the analysis of these circuits was the discovery of Muroga et. al. (see [Mu]) that
it 1s sufficient to consider for a linear threshold gate with m boolean inputs only
weights ay,...,a, and a bias ao that are integers of size 20(7mlog™) (this upper
bound is optimal according to a recent result of Hastad [Has]). With the help of
this a-priori-bound on the relevant bit-length of weights it is easy to show that the
same arrays (F,) N of boolean functions F, : {0,1}" — {0, 1} are computable by
arrays (N”)neN of neural nets of depth O(1) and size O(n°) with linear threshold
gates, no matter whether one uses as weights arbitrary reals, rationals, integers, or
elements of {—1,0,1}; see [Mu], [CSV], [HMPST], [GHR], [MT]. The resulting class
of arrays (F,), N of boolean functions is called (nonuniform-) TC® (([HMPST], [J]).

In comparison, very little is known about upper bounds for the computational
power and the learning complexity of feedforward neural nets whose gates ¢ em-
ploy more general types of activation functions 49. This holds in spite of the fact
that “real neurons and real physical devices have continuous input-output relations”
(Hopfield [Ho]). In the analysis of information processing in natural neural systems,
one usually views the firing rate of a neuron as its current output. Such firing rates
are known to change between a few and several hundred spikes per second (see ch.
20 in [MR]). Hence the activation function 47 of a gate ¢ that models such a neuron
should have a “graded response”. It should also be noted that the customary learn-
ing algorithms for artificial neural nets (such as backwards propagation [RM]) are
based on gradient descent methods, which require that all gates ¢ employ smooth
activation functions ~9.

In addition, it has frequently been pointed out that it is both biologically plau-
sible and computationally relevant to consider gates ¢ that pass to «¢ instead

m

of a weighted sum Y a;y; + ap some polynomial Q9(yi,...,y,) of bounded de-
i=1

gree, where yq,..., Y, are circuit inputs or outputs of the immediate predecessors

of g. Such gates are called sigma-pi units or high order gates in the literature
(see p. 73 and ch. 10 in [RM], also [DR], [H], [PG], [MD]). From the point of

view of approximation theory there has been particular interest in the case where

Q4 (Y1, ym) = 2 i(ys — ¢;)? measures a “distance” of its input < y1,...,y, >
from some “center” < ¢, ..., ¢y > (the latter may be determined through a learning
process). Apparently Theorem 3.1 and Theorem 4.3 of this paper provide the first
upper bounds for the computational power and learning complexity of high order

feedforward neural nets with non-boolean activation functions.

The power of feedforward neural nets with other activation functions besides
‘H has previously been investigated in [RM] (ch.10), [S1], [S2], [H], [MSS], [DS],
[SS]. Tt was shown in [MSS] for a very general class of activation functions 79 that
neural nets (Nn>nEN of constant depth and size O(n°(")) with real weights of size
O(n°M) and output-separation Q(1/n°M)) (between the un-rounded circuit-outputs
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for rejected and accepted inputs) can compute only boolean functions in TC". Tt
follows from a result of Sontag [S2] that the assumptions on the weight-size and
separation are essential for this upper bound: he constructed an arbitrarily smooth
monotone function © (which can be made to satisfy the conditions on 49 in the
quoted result of [MSS]) and neural nets N, of size 2 () with activation function
O such that A, can compute with sufficiently large weights any boolean function

F,:{0,1}" — {0,1} (hence N, has VC-dimension 2").

These results leave open the question about the computational power and learn-
ing complexity of feedforward neural nets with arbitrary weights that employ “nat-
ural” analog activation functions 79. For example there has previously been no
upper bound for the set of boolean functions computable by analog neural nets with
the very simple piecewise linear activation function = defined by

0, ify<0
my)=qy, f0<y<1
1, ify>1

([L] refers to a gate g with 49 = 7 as a “threshold logic element”). On the other
hand there exist results which suggest that such upper bound would be non-trivial.
It has already been shown in [MSS] that constant size neural nets of depth 2 with
activation function = and small integer weights can compute more boolean functions
than constant size neural nets of depth 2 with linear threshold gates (and arbitrary
weights). [DS] exhibits an even stronger increase in computational power for the
case of quadratic activation functions.

Hence even simple non-boolean activation functions provide more computational
power to a neural net than the heaviside-function. However it has been open by
how much they can increase the computational power (in the presence of arbitrary
weights). E. Sontag has pointed out that known methods do not even suffice to show
for a constant depth neural net N, of size O(no(l)) with n inputs and activation
function =, that there is any boolean function F, : {0,1}" — {0,1} that can not be
computed on N, with a suitable weight-assignment. Correspondingly no better up-
per bound than the trivial 2" could be given for the VC-dimension of such NV, (with
n boolean inputs). From the technical point of view, this inability was caused by the
lack of an upper bound on the amount of information that can be encoded in such
neural net by the assignment of weights. For the case of neural nets with heaviside
gates this upper bound on the information-capacity of weights is provided by the
quoted result of Muroga et. al. [Mu]. However this problem is substantially more
difficult for neural nets with piecewise linear activation functions. For this model
it is no longer sufficient to analyze a single gate with boolean inputs and outputs.
Even if the inputs and outputs of the neural net are boolean valued, the “signals”
that are transmitted between the hidden units are real valued. Furthermore one
can give no a-priori bound on the precision required for such analog signals between
hidden units, since one has no control over the maximal size of weights in the neural
net. Obviously a large weight will magnify any imprecision. Note also that a com-
putation on a multi-layer neural net of the here considered type involves products of
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weights from subsequent levels. Hence, if some of the weights are arbitrarily large,
one needs arbitrarily high precision for the other weights.

The main technical contribution of this paper are two new methods for reducing
nonlinear problems about weights in multi-layer neural nets to linear problems for
a transformed set of parameters. These two methods are presented in the sections
2 and 3 of this paper. We introduce in section 2 of this paper a method that allows
us to prove an upper bound for the information-capacity of weights for neural nets
with piecewise linear activation functions (hence in particular for x). It is shown
that for the computation of boolean functions on neural nets N, of constant depth
and polynomially in n many gates (where n is the number of input variables) it is
sufficient to use as weights rational numbers with polynomially in n many bits. As
a consequence one can simulate any such analog neural net by a digital neural net
of constant depth and polynomial size with the heaviside activation function (i.e.
linear threshold gates) and binary weights (i.e. weights from {0,1}). This result
also implies that the VC-dimension of A, can be bounded above by a polynomial
in n.

In section 3 we introduce another proof-technique, that allows us to derive the
same two consequences also for neural nets with piecewise polynomial activation
functions and nonlinear gate-inputs Q?(y1, ..., ym) of bounded degree. These results
show that in spite of the previously quoted evidence for the superiority of non-
boolean activation functions in neural nets, there is some limit to their computational
power as long as the activation functions are piecewise polynomial. On the other
hand the polynomial upper bound on the VC-dimension of such neural nets may be
interpreted as good news: It shows that neural nets of this type can in principle be
trained with a sequence of examples that is not too long.

We conclude in section 4 with a positive result for learning on neural nets in
Valiant’s model [V] for probably approximately correct learning (“PAC-learning”).
We consider the problem of learning on neural nets with a fixed number of analog
(i.e. real valued) input variables. We exploit here the implicit “linearization” of the
requirements for the desired weight-assignment that is achieved in the new proof-
techniques from sections 2 and 3. In this way one can show that such neural nets
are properly PAC-learnable in the case of piecewise linear activation functions, and
PAC-learnable with a hypothesis class that is given by a somewhat larger neural net
in the case of piecewise polynomial activation functions.

The results of this paper were first announced in [M 92], and an extended abstract
of these results appeared in [M 93a]. Another result of [M 93a], the construction
of neural nets whose VC-dimension is superlinear in the number of weights, has
subsequently been improved to apply also for depth 3. A full version of that proof
appears in [M 93b].

Definition 1.1 A network archilecture (or “neural net”) N of order k is a
labelled acyclic directed graph (V, E). Its nodes of fan-in 0 are labelled by the input




variables 1, ..., z,. Fach node g of fan-in m > 0 is called a computlation node (or
gate), and is labelled by some activation function v9 : R — R and some polynomial
Q%(y1y- -, Ym) of degree < k. Furthermore N has a unique node of fan-out 0, which
is called the output node of N' and which carries as an additional label a certain real
number Ty (called “the ouler threshold ofN”).

The coefficients of all polynomials Q*(y1,...,ym) for gales g in N and the outer
threshold T,y are called the programmable parameters of N'. Assume that N has w

programmable parameters, and that some numbering of these has been fized. Then
each assignment o € R" of reals to the programmable parameters in N defines an
analog circuit N2, which computes a function x — N%(z) from R" into {0,1} in
the following way: Assume that some inpul x € R" has been assigned to the input
nodes of N'. If a gate g in N has m immediate predecessors in (V, E) which output
Yiy- - Ym € R, then g outpuls v9(Q(y1,- .., ym)). Finally, if gous is the oulput gate
of N and g, gives the real valued oulpul z (according to the preceding inductive
definition) we define
1 ) ZfZ 2 Tout

NHa) ‘:{ 0, if 2 < Tt

where T,y is the ouler threshold that has been assigned by a 1o Gous -
Any paramelers that occur in the definitions of the aclivation functions 49 of N
are referred to as architectural parameters of N.

Definition 1.2 A function v : R — R is called piecewise polynomial if there
are thresholds ty,...,1, € R and polynomials Py, ..., Py such that t; < ... < 1
and for each 1 € {0,... .k} : t; <z < liy1 = y(z) = Pi(z) (we sel lg := —oo and
tptr 1= oo)

If k is chosen minimal for v, we refer to k as the number of polynomial pieces of

v, to Py, ..., Py as the polynomial pieces of v, and to tq,... tx as the thresholds of
~. Furthermore we refer to ty, ... 1y together with all coefficients in the polynomials
FPo,..., P. as the parameters of v. The maximal degree of Py, ..., Py is called the
degree of ~. If the degree of v is < 1 then we call v piecewise linear, and we refer

to Py, ..., Py as the linear pieces of .
If v occurs as activation function 49 of some network archilecture N, then one
refers to the parameters of v as architectural parameters of N.

Note that we do not require that ~ is continuous (or monotone).

Definition 1.3 Assume that N is an arbilrary network archilecture with n inputs

and w programmable parameters, and S C R" is an arbitrary set. Then one defines
the VC-dimension of N over S in the following way:

VC-dimension(N,S) 1= max{|S'| |S" C S has the property that for every function

F 8" — {0,1} there exists a parameler assignment

a € RY such thatV z € S"(N%(z) = F(z))}.




Remark 1.4 “VC-dimension” is an abbreviation for “Vapnik-Chervonenkis di-
mension”. It has been shown in [BEHW] (see also [BH], [A]) that the VC-dimension
of a neural net A essentially determines the number of examples that are needed to
train NV (in Valiant’s model for probably approximately correct learning [V]). Sontag
[S2] has shown that the VC-dimension of a neural net can be drastically increased by
using activation functions with non-boolean output instead of the heaviside function

H.

2 A Bound for the Information - Capacity of
Weights in Neural Nets with Piecewise Linear
Activation Functions

We consider for arbitrary a € N the following set of rationals with up to a bits
before and after the comma:

a—1
Qa;:{reQ‘ p=se S b2 for b€ {0,1}, i=—a,...,a—1and

1=—a

s e {-1, 1}}

Note that for any r € Q, : |r| < 2* < 2% . min{|r| | ¥ € Q, and ' # 0}.

Theorem 2.1 Consider an arbitrary network architecture N of order 1 over a
graph (V, E) with n inpul nodes, in which every computation node has fan-out < 1.
Assume thal each activation function 9 in N is piecewise linear with parameters
from Q,. Let w:= |V|+ |E|+ 1 be the number of programmable parameters in N

Then for every a € RY there exisls a vector o/ =< 2L,... 2 >¢ Q" with inte-
gers si, ..., Su,t of absolute value < (2w +1)! 222G+ sych that Va € QZ( ) =

./\/'gl(g)). In particular N¥ computes the same boolean function as N2

Remark 2.2 The condition of Theorem 2.1 that all computation nodes in N
have fan-out <1 is automatically satisfied for d < 2. For larger d one can simulate
any network architecture ' of depth d with s nodes by a network architecture N’
with < 2. s < %sd_1 nodes and depth d that satisfies this condition. Hence
this condition is not too restrictive for network architectures of a constant depth d.

It should also be pointed out that there is in the assumption of Theorem 2.1
no explicit bound on the number of linear pieces of 49 (apart from the requirement
that its thresholds are from Q,). For example these activation functions may consist
of 2% linear pieces (with discontinuous jumps in between). Furthermore 49 is not
required to be monotone.

Finally it should be mentioned that a corresponding version of Theorem 2.1 also
holds for rational numbers that do not have a finite binary representation, i.e. for
all rationals from Q! := {r € Q : r is the quotient of integers of bit-length < a}
instead of Q,.



Remark 2.3 Previously one had no upper bound for the computational power
(or for the VC-dimension) of multi-layer neural nets A" with arbitrary weights and
analog computational elements (i.e. activation functions with non-boolean output).
Theorem 2.1 implies that any A of the considered type can compute with the help

of arbitrary parameter assignments a € R" at most 20(aw?logw) {ifferent functions

from QJ into {0,1}, hence VC-dimension (N, Q%) = O(w*(a + log w)) (see Remark
3.4 for a slightly better bound, and for a related bound for the case of inputs from
R").

Furthermore Theorem 2.1 implies that one can replace all analog computations
inside N by digital arithmetical operations on not too large integers (the proof gives
an upper bound of O(wa+w log w) for their bit-length). It is well-known that each of
these digital arithmetical operations (multiple addition, multiplication, division) can
be carried out on a circuit of small constant depth with O(a®®.w°®)) MAJORITY-
gates, hence also on a network architecture of depth O(1) and size O(ao(l) : wo(l))
with heaviside gates and weights from {—1,0,1} ([CSV], [PS], [HMPST], [GHR],
[SR], [SBKH]). Thus one can simulate for inputs from {0, 1}" any depth d network
architecture A/ as in Theorem 2.1 with arbitrary parameter assignments o € R" by
a network architecture of depth O(d) and size O(a®®) - w?(M) with heaviside-gates
and weights from {—1,0,1}. The same holds for inputs from Q7 if they are given
to NV in digital form.

Proof of Theorem 2.1: In the special case where 4? = H for all gates in NV
this result is well known ([Mu]). It follows by applying separately to each gate in
N the following result.

Lemma 2.4 (folklore; see [MT] for a proof) Consider a system Az < b
of some arbitrary finite number of linear inequalities in [ variables. Assume that all
entries in A and b are integers of absolute value < K.

If this system has any solution in R', then il has a solution of the form
(&,...2), where s1,...,s;,1 are integers of absolute value < (214 1)1 K'+1,

Sketch of the proof for Lemma 2.4: Let & be the number of inequalities in
Az < b. One writes each variable in z as a difference of 2 nonnegative variables, and

one adds to each inequality a “slack variable”. In this way one gets an equivalent
system

(1) Az’ =b , 2>0

over ' := 2] + k variables, for some k x [’ matrix A’. The k columns of A’ for the
k slack-variables in z’ form an identity matrix. Hence A’ has rank k.

The assumption of the Lemma implies that (1) has a solution over R. Hence
by Caratheodory’s Theorem (Corollary 7.1i in [Sch]) one can conclude that there is
also a solution over R of a system

(2) A//_II — é , £// 2 Q



where A” consists of k linearly independent columns of A’. Since A” has full rank,
"

(2) has in fact a unique solution that is given by Cramer’s rule: 27 = det(AY)/det A"

for j =1,...,k, where A7 results form A" by replacing its jth column by b. Since
all except up to 2[ columns of A” contain exactly one 1 and else only 0’s, we can
bring each of the matrices A", A7 by permutations of rows and columns into a form

7= (o)

where C' is a square matrix with 2/ 4+ 1 rows. Hence the determinant of B is an
integer of absolute value < (2[ + 1)! K21, [ |

The difficulty of the proof of Theorem 2.1 lies in the fact that with analog com-
putational elements one can no longer treat each gate separately, since intermediate
values are no longer integers. Furthermore the total computation of V" can in general
not be described by a system of linear inequalities, where the w variable parameters
of N are the variables in the inequalities (and the fixed parameters of A" are the
constants). This becomes obvious if one just considers the composition of two very
simple analog gates g; and g, on levels 1 and 2 of A/, whose activation functions
Y1, 72 satisfy v1(y) = 72(y) = y. Assume z = Zn: a;z; + ag is the input to gate g,

i=1

and g, receives as input ) oy; 4+ aj where y; = 41(x) = x is the output of gate g;.
J=1

Then ¢, outputs o - <

o, + a()) + 3 oz;-yj + af. Obviously this term is not linear

in the weights o, a, ..., a,. Hence if the output of gate g, is compared with a fixed
threshold at the next gate, the resulting inequality is not linear in the weights of
the gates in V.

If the activation functions of all gates in N were linear (as in the example for ¢
and g;), then there would be no problem because a composition of linear functions
is linear. However for piecewise linear activation functions it is not sufficient to
consider their composition, since intermediate results have to be compared with
boundaries between linear pieces of the next gate.

We introduce in this paper a new method in order to handle this difficulty. We
simulate N'¢ by another neural net J\A/’[Q]E (which one may view as a “normal form”
for N'¢) that uses the same graph (V, E) as N, but different activation functions
and different values (3 for its variable parameters. The activation functions of N[g]

V1 which we call scaling parameters in the

depend on |V| new parameters ¢ € R
following. Although this new neural net has the disadvantage that it requires |V|
additional parameters ¢, it has the advantage that we can choose in N[g] all weights
on edges between computation nodes to be from {—1,0,1}. Since these weights
from {—1,0,1} are already of the desired bit-length, we can treat them as constants
in the system of inequalities that describes computations of N[g] Thereby we can
achieve that all variables that appear in the inqualities that describe computations

of N[g] (the variables for weights of gates on level 1, the variables for the biases of
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gates on all levels, the variable for the outer threshold, and the new variables for the
scaling parameters ¢) appear only linearly in those inqualities. Hence we can apply
Lemma 2.4 to the system of inequalities that describes the computations of N for
inputs from Q7, and thereby get a “nice” solution 3, ¢’ for all variable parameters

in V. Finally we observe that we can transform N[g’]gl back into the original neural
net N with an assignment of small “numbers” o/ to all variable parameters in NV,

We will now fill in some of the missing details. Consider the gate function v of
an arbitrary gate g in N. Since 7 is piecewise linear, there are fixed parameters
by < -0 <, agy...,ak, bo,..., by in Q, (which may be different for different gates
g) such that with tg := —oo and {341 := 400 one has y(z) = a;z + b; for z € R with
ti <a <tliy1;t=0,..., k. For an arbitrary scaling parameter ¢ € R* we associate
with « the following piecewise linear activation function 4°: the thresholds of ~¢ are
¢-ty, -, c -ty and its output is v°(z) = a;x + ¢ b; for v € R with ¢-¢; < & < ¢-tiyq;
i =0,...,k (set ¢- 1y := —00, ¢ lg41 := +00). Thus for all reals ¢ > 0 the function
7¢ is related to v through the equality: Vo € R (7°(c- z) = ¢ - y(x)).

Assume that a € R" is some arbitrary given assignment to the variable para-
meters in A, We transform N« into a “normal form” N[c]? in which all weights on
edges between computation nodes are from {—1,0,1}, such that Vz € R”( 2z) =
./\A/'[g]@(g)) We proceed inductively from the output level towards the input level.

m

Assume that the output gate g,,; of N receives as input > a;y; + ap, where
=1

Qi,...,Qn,ap are the weights and the bias of g, (under the assignment o) and

Y1,-- -, Ym are the (real valued) outputs of the immediate predecessors g1, ..., gm of

g. For each ¢ € {1,...,m} with a; # 0 such that g; is not an input node we replace

the activation function v; of ¢; by fy!ai'

3

, and we multiply the weights and the bias of
gate ¢g; with |o;]. Finally we replace the weight o; of gate g, by

1 , if a; >0
sgn(as) =3 Ty a; < 0.

This operation has the effect that the multiplication with || is carried out before
the gate g; (rather than after g;, as done in N'2¢), but that the considered output
gate g, still receives the same input as before. The analogous operation is then
inductivily carried out for the predecessors g; of ..+ (note however that the weights
of g; are no longer the original ones from N2, since they have been changed in the
preceding step). We exploit here the assumption that each gate has fan-out < 1.

Let 3 consist of the new weights on edges adjacent to input nodes, of the

resulting biases of all gates in N, and of the (unchanged) outer threshold T,..
Let ¢ consist of the resulting scaling factors at the gates of /. Then we have

Ve e R" (Ve(z) = V[d(x)).

Finally we have to replace all strict inequalities of the form “s; < s,” that are
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needed to describe the computation of ./\A/[g]ﬁ for some input z € Q by inequalities
of the form “s; +1 < s3”. This concerns inequalities of the form s < ¢-1;, where ¢-;
is the threshold of some gate ¢ in N[g] and s is its gate input, inequalities of the form
s < T,,; where s is the output of ¢,., and inequalities of the form 0 < ¢ for each
scaling parameter ¢. In order to achieve this stronger separation it is sufficient to
multiply all parameters 3, c in N by a sufficiently large constant K. For simplicity
we write again 3, ¢ for the resulting parameters. We now specify a system Az < b of
linear inequalities in w variables z that play the role of the w parameters 3, ¢ in the
computations of ./\A/[g]g for all inputs z from Q). The constants of these inequalities
are the coordinates of all inputs z € Q7 the parameters of the activation functions v
in AV, the constants —1, 1 that occur in N as weights of edges between computation
nodes, and the constants 1 that arise from the replacement of strict inequalities
“s1 < 83”7 by “s14+1 < 897

For each fixed input z € Q) one places into the system Az < b up to two linear
inequalities for each gate g in . These inequalities are defined by induction on
the depth of ¢g. If ¢ has depth 1, #{; < --- < t; are the thresholds of its activation

functions v in A, and its input Y. o;z; + ag in ./\A/[g]@ satisfies ¢+ 1; < 3~ a2, + ap

and > a;z; + apg+ 1 < ¢ 141, then one adds these two inequalities to the system
=1

(more precisely: if 7 = 0 or j = k then only one inequality is needed since the other
one is automatically true).

If ¢’ is a successor gate of g, it receives from ¢ for some specific j € {0,...,k}
an output of the form a; - (Y a;x; 4 ap) + ¢+ bj (where ¢ is the scaling factor of gate
=1

g)- Note that this term is linear, since a;, b; are fixed parameters of gate ¢’. In this
way one can express for circuit input z the input I(z) of gate ¢’ as a linear term in
the weights, biases and scaling factors of its preceding gates (we exploit here that in
N the weight on the edge between ¢’ and each predecessor gate is a fixed parameter
from {—1,0,1}, not a variable). If this input I(z) satisfies in N[Q]Q the inequalities

-ty <I(z) and I(z) + 1 < ¢ - 4, (where t] < ... < 1}, are the thresholds of ¢’

in V, and ¢ is the scaling factor of ¢’ in ./V), then one adds these two inequalities
to the system Az < b (respectively only one if j/ = 0 or ' = k’). Note that all
resulting inequalities are linear, in spite of the fact that it contains variables for the
biases of all gates. It should also be pointed out that the definition of this system of
inequalities is more involved than it may first appear, since the sum of terms I(z)
depends on the chosen inequalities for all predecessor gates (e.g. on j in the example
above). Hence a precise definition has to be similar to that of the proof of Theorem

3.1.

It is clear that the resulting system Az < b has a solution in R", since z := (f3, ¢)
is a solution. Hence we can apply Lemma 2.4, which provides a solution 2’ of the

form (2£);—; .. with integers s1,...,5,,t of absolute value < (2w + 1)! 92a(2w+1)

Let J\A/’[Q']El be the neural net N with this new assignment <3/,g'> = 2" of “small”
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parameters. By definition we have Yz € QI(N2(z) = /\A/[g’]ﬁl). We show that
one can transform this neural net ./\A/[g’]@l into a net N2 with the same activation
Junctions as N but a new assignment o' of “small” parameters (that can easily
be computed from ', ¢'). This transformation proceeds inductively from the input

level towards the output level. Consider some gate g on level 1 in AN that uses
(for the new parameter assignment ¢’) the scaling factor ¢ > 0 for its activation
function v°. Then we replace the weights aq, ..., a, and bias aq of gate ¢g in ./\A/[g’]@l
by 2, 22 20 and 4° by 5. Furthermore if r € {—1,0,1} was in N the weight
on the edge between g and its successor gate g, we assign to this edge the weight
c¢-r. Note that ¢’ receives in this way from ¢ the same input as in ./\A/[g’]@/ (for every
circuit input). Assume now that o, ..., o), are the weights that the incoming edges
of ¢’ get assigned in this way, that of is the bias of ¢’ in the assignment 2z’ = (3', ),
that ¢ > 0 is the scaling factor of ¢’ in N[c/]2. Then we assign the new weights
o O

“m and the new bias (i—}l) to ¢’', and we multiply the weight on the outgoing

PRI

edge from ¢’ by ¢'.

By construction we have that Vx € R" (/\/gl(g) = ./\A/'[g']ﬁl(g)), hence
Vo e Qp (V¥ (z) = N(z)). N

3 Upper Bounds for Neural Nets with Piecewise
Polynomial Activation Functions

Theorem 3.1 Consider an arbitrary array (N”)neN of high order network ar-
chitectures N, of depth O(1) with n inputs and O(n°M) gates, in which the gate
function 49 of each gate g is piecewise polynomial of degree O(1) with O(n°™)) poly-
nomial pieces, with arbitrary reals as architectural parameters.

Then there exvists an array (N”)nEN of first order network architectures N, of

depth O(1) with n inputs and O(n°M) gates such that each gate g in N, uses as
its activation function the heaviside function H (i.e. g is a linear threshold gate),
and such that for each assignment a, of arbitrary reals to the programmable para-
meters in N, there is an assignment &, of O(n°W) numbers from {—1,0,1} to the
programmable parameters in N, such that Yz € {0,1}" (N (z) = ./\N/ng”(g))
Hence for any assignment (Qn)neN of real valued parameters the boolean func-

o2

tions that are computed by (N )nEN are in TC®. In particular VC-dimension
(N, {0,1}7) = O(n®0).

Remark 3.2 Theorem 3.1 yields no bound for the computational power of neural
nets with the activation function o(y) = 1/(1+¢7¥). However it provides bounds for
the case where the activation functions are spline approximations to o of arbitrarily

high degree d, provided that d € N is fixed.
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Proof of Theorem 3.1: This proof is quite long and involved, even for the
simplest nonlinear case where the activation functions consist of 2 polynomial pieces
of degree 2. Note that in contrast to the model in [SS] the magnitude of the given
weights in V,, may grow arbitrarily fast as a function of n.

We first note that one can eliminate all nonlinear polynomials Q? as arguments
of activation functions by introducing intermediate gates with linear gate inputs
and quadratic activation functions. One exploits here the obvious fact that y - z =
%((y +2)—y?— 22). In this way one can transform the given network architectures
into first order network architectures which still satisfy the assumptions of Theorem

3.1.

Subsequently we transform each given network architecture N, into a normal
form N, of constant depth and size O(no(l)) in which all gates g have fan-out <1,
and in which all gates g use as activation functions 49 piecewise polynomial functions
of the following special type: 49 consists of up to 3 pieces, of which at most one is not
identically 0, and in which the nontrivial piece outputs the constant 1, or computes
a power y — y* (where k € N satisfies k = O(1)). The preceding “normalization”
of activation functions is easy to achieve, since every activation function of a gate in
N,, can be written as linear combination of activation functions of this “normalized”
type. The transformation from N, to N,, can be carried out in such a way that for
every assignment o, of real values to the programmable parameters of N, there
exists an assignment 3 of real numbers to the programmable parameters of N,
such that B

Va € {0, 11" (V& (2) = N (),

and such that any strict inequality “s; < s3” that arises in the computation of /\A/n@"
for some input z € {0,1}" (when one compares some subresult of that computation
with a threshold of the activation function of some gate, or with the outer threshold

of /\Afnﬁ") can be replaced by the stronger inequality “s; +1 < s5”.

It would also be possible to push all nontrivial weights to the gates on level 1,
in correspondence to the construction in the proof of Theorem 2.1. However in the
present context this additional operation does not eliminate non-linear conditions on
the weights. Assume for example that ¢ is a gate on level 1 with input oz + asz;
and activation function 49(y) = y?. Then this gate g outputs ajzi + 20,027,722 +
aix?. Hence the variables aj, a3 will not occur linearly in an inequality which
describes the comparison of the output of ¢ with some threshold of a gate at the

next level.

Although it does not eliminate non-linear conditions on the weights if one pushes
all weights towards level 1, the resulting network provides some notational advantage
because all weights between computation nodes can be treated as constants (with
three possible values). Therefore this approach has been chosen in [M 92] and [M
93a]. However this approach is disadvantageous if one wants to apply the method of
this proof in the context of agnostic PAC-learning on analog neural nets ([M 93c]).
In this application one has to be able to control the bit-length of the (rational)
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weights. Therefore one cannot afford to push all weights towards level 1, since this
may increase the bit-length of weights in an unbounded manner. For example if one
pushes the weight 2 through a gate g with activation function 49(y) = y?, then this

weight is changed to /2 (since 297(y) = v9(v/2 - ).

Since the non-linearity of the conditions on the weights cannot be eliminated in
the same way as for Theorem 2.1, we have to introduce an alternative method. We
fix an arbitrary assignment 3 of real numbers to the programmable parameters of

N,,. We introduce for the system of inequalities L(./\A/ng", {0,1}") (that describes the
computations of ./\A/’ng" for all inputs z € {0,1}") new variables v for all nontrivial

parameters in ./\A/nﬁ" (i.e. for the weights and bias of each gate g, for the outer
threshold T,,: and for the thresholds 17,15 of each gate g). In addition we introduce
new variables for all products of such parameters that arise in the computation of

./\A/’ng". We have to keep the inequalities linear in order to apply Lemma 2.4. Hence
we cannot demand in these inequalities that the value of the variable v, (that
represents the product of of and ) is the product of the values of the variables v{
and v (that represent the weights of respectlvely a3). We solve this problem by

describing in detail in the linear inequalities L(N, n,‘”, {0,1}") which role the product

of of and of plays in the computations of /\Afnﬁ" for inputs from {0,1}". Tt turns
out that ’rhiq can be done in such a way that it does not matter whether a solution

A of L( B ;{0,1}") assigns to the variable v 9 9 a value A(v,s ) that is equal to
the product of the values A(v{) and A(vj) (that are assigned by A to the variables
v{ and v§). In any case -A(va,ug) is forced to behave like the product of A(v{) and

A(v]) in the computations of /\Afnﬁ".

We would like to emphasize that the parameters 3 do not occur as constants

in the system L( Ang", {0,1}") of inequalities. They are also replaced by variables.
The reason why the real valued parameters 3 occur nevertheless in our notation

L(./\A/nﬁ", {0,1}") of inequalities is the following. These inequalities consist of condi-
tions which demand that for any input z € {0,1}" the computation on the neural
net proceeds exactly as for the parameter assignment 3 (i.e. the same inequalities
with thresholds of the piecewise polynomial activation functions are satisfied and the
same pieces of the activation functions are used at each gate as in the computation
with parameter assignment ﬁn)

In more abstract terms, one may view any solution A of L( Aé_i", {0,1}") as a
model of a certain “linear fragment” L(Ny N, = ,{0,1}") of the theory of the role of the

parameters 3 in the computations of N‘” on inputs from {0,1}". Such model A
(which will be given by Lemma 2.4) is some type of “nonstandard model” of the

theory of computations of N‘ , since it replaces products of weights by “nonstandard
products”. Such nonstandard model A does not provide a new assignment of (small)
weights to the network architecture ./\/n, only to a “nonstandard version” M4 of the
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neural net Nng". However the linear fragment L(Nn@", {0,1}") can be chosen in such

a way that M#A computes the same boolean function as N.=m. Furthermore, if A
consists of a solution with “small” values as given by Lemma 2.4, then M# can be
simulated by a constant-depth polynomial-size boolean circuit whose gates g are all

MAJORITY-gates (i.e. g(y1,...,ym) = 1if % yi > m/2, otherwise g(y1,...,ym) =
=1

0). This implies that the boolean functions that are computed by (Mﬁ)neN are
in TC% However by construction these are the same boolean functions that are

computed by (N >n€N'

We will now describe the details of the previously sketched proof of Theorem
3.1. We will simply write N instead of ./\A/nﬁ" (where 3, is some assignment of real

numbers to the programmable parameters of the network architecture Nn) We will

define for each gate g in A/ by induction on the depth of g¢:

— in Definition 3.3 a set V9 of variables and a set M9 of formal terms that are
needed to describe the operation of gate g.

[The intuition is here that one writes for any network input z the output of ¢ as
a sum of products (of programmable parameters, architectural parameters, and
of components of z). Which of these terms will occur for a specific circuit input
z will depend on the course of the computation in N up to gate g: for different
inputs the involved gates may use different pieces of their activation function.
The set M9 contains a separate formal term for each product that may possibly
occur in this sum. Each term in M9 consists of a variable w € V9 (that
represents a programmable or architectural parameter of A, or some product
of these) and of a product P = + @' ... @i of input variables @, ..., x,.]

— in Definition 3.4 for any fixed network input @ € R" a set L9(z) of linear
inequalities associated with gate ¢ (with variables from VN = U{V ¢ is a
gate of N'}), that hold for the computation of N on input z if all formal terms
t € MY are replaced by their actual value W(t,z) for the given parameter
assignment in N5 we also define in Definition 3.4 a set S9(z) of formal terms
whose sum represents the input of g, and a set T9(z) C MY of formal terms
whose sum represents the output of ¢ for circuit input z.

[L9(z) specifies in particular which piece of 47 is used by gate g for network
input z.]

— in Definition 3.6 for any input set S C R", any solution A of the resulting
system L(N,S) := U{L¢az) |z € S and g is a gate in N'} of linear inequal-
ities, and any term ¢ € M9 a network architecture Mﬁt that decides for any
network input z € S whether ¢ occurs as a summand in the output of g in V.

[For any input z € S the network architectures (Mﬁt)teMg together com-
pute the characteristic function of the set 79(z) C M9 which represents the
output of gate ¢ in A. In this way one can replace in a recursive manner
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the analog computations in N by digital manipulations of formal terms, with
“nonstandard products” of weights in place of real products.]

One verifies in Lemma 3.5 that L(N,S) describes correctly the role of the pa-

rameters ,3 in the computations of N := N -" for inputs z € 5. Unfortunately

LV, S) does not provide a complete description of the properties of the parameters
B in these computations, since it represents only a “linear {ragment” of their the-
ory. Nevertheless one can prove with the help of Lemma 3.7 and Lemma 3.8 that
for any solution A of L(N,S) the network architectures A/lﬁt carry out a truthful
simulation of the corresponding initial segments of N

We would like to point out a difference to the proof of Theorem 2.1 regarding the
treatment of architectural parameters. In the proof of Theorem 3.1 the program-
mable parameters a,, of Ni* and the architectural parameters of the given network
architecture NV, (the thresholds of activation functions 49, and the coefficients of
the polynomial pieces of 79) are all changed simultaneously in the transformation
to /\A/n@" Consequently 8 denotes the values of all nontrivial parameters in /\A/n@"
(i.e. of all programmablz and architectural parameters). As a consequence of this
treatment of parameters one can allow in the given network architectures NV, of
Theorem 3.1 arbilrary reals as architectural parameters (i.e. for the thresholds and
coefficients of the polynomial pieces of the given activation functions ~7).

We refer to an analog network architecture A with the properties of NTLQ" as a
network architecture in normal form. This means that N is a first order network
architecture whose gates have fan-out < 1, all gates g in A use as activation function
~? a piecewise polynomial function that consists of 3 pieces, of which at most one
piece is not identically 0, and in which the nontrivial piece (if it exists) outputs the
constant 1 or computes a power y — y* for some k € N.

In order to simplify our notation, we assume that for a network architecture
N in normal form the nontrivial piece of the activation function 4 of each gate
g is defined over a half-open interval [¢],¢) with certain reals ¢] < 3. It is easy
to see that the subsequent proof can also be carried out without this simplifying
assumption. We also assume w.l.o.g. that A is levelled, i.e. each gate g in A has
the property that all paths in N from an input node to ¢ have the same length.

Definition 3.3: Assume thalt N is a network architecture in normal form with n
input variables xy, ..., x,, where arbitrary reals have been assigned to all parameters

of N'. We define by induction on the depth of g for each gate g in N a set V9 of

variables, a value W(v) for each variable v € V9 (thal arises from the assignment

B in ./\A/nﬁ” =: N), and a set M? of (formal) terms. Fach element of M9 is of the

Jorm v - P, where v € V9 is a variable and P is some formal polynomial term of

the form + &' - ... @, with ji,...,j, € N. The here occuring formal variables
x,...,x, for the inpul components should be distinguished from the concrete values
T1,...,2, € R for these variables that are considered later (starting in Definition
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We consider first the case where g has depth 1. If 49 gives on its nontrivial piece
[t9,19) the constant 1 as oulpul, we sel
VQ = {Ug, s '?U;CZL} U {vgonst} U {0?71)?[} and M7’ := {Ugonst}'
We define W(v}) := o for v = 0,....n, W(vl,s) = o, W(v]) := t{, and
W(vy) =5 (of,..., a2 are the weights and of is the bias of gate g in N, o is
the weight on the edge thatl leaves g, and t9,15 are the thresholds of the activation

Junction ). In the other case 49 compules a power y — y* on ils nonltrivial piece.
Then we introduce for each k-tuple (w1 - P, ... ,wy - Pp) € ({v§} U {ov] - @1,... 0o
k

k . . .
®,})" anew variable v, in V7 and a term vf, - T P in M?. We assume
=1

here that a formal multiplication P - P' for formal terms P, P' of the form + :E{l :
..~ @ is defined in the obvious way. We define

Vo= {of, 0 U {of, ot U ol | (o) € {0d, 0} )
k
We set W (03, wk) = [ W(w;), and we define W(v) for the other variables as
o u
before. We define
k
M9 = vg)l,...,wk ’ H P | <w1 'Pla---awk'Pk> S ({vg} U {vf'm17"'7vg'mn})k} :
1=1

m
[The terms in M? denote the summands that one gets from the output (af + > of -
=1

z;)* of 49 by multiplying this output with the weight o on the next edge, and then
rewriting it as a sum of products.]

We now consider the case where g is a gate on level [+ 1, with edges from the
gates giy...,gm on level 1 leading into g. Assume that of,...,a? are in N the
weights on these edges, that of is the weight on the edge out of g, and that of is the
bias of g. If g is an outpul gale (i.e. g has fan-out 0) then we set af := 1. If 49
outputs the constant 1 on its nontrivial piece, we sel

Vg = {Iug7lugonst} U {'UL??U?I} and M? := {'Ugonst}'
We set W(vi) = o, W(v,e) = of, W(v)) = t{, and W(v]) = t§. If 49

computes the power y — y* on ils nontrivial piece, we introduce for each k-tuple

<w1'P17"'7wk'Pk> € ({Ug} U UMQ])]C
7=1

a new variable vy,

k
) g g . g g
ey UM V9 and a term (O Zl:[l P in M9. Thus we set

Ve o= {og} U {0t U
'Uqul,...,wk | (wi - Pryooywi - Pe) € ({0} U U *ngyc’
7=1

for arbitrary polynomial terms Py, ..., Py

and variables w; € ({v§} U |J V¥)}.
7=1
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We define W(vl, ) i= a7~ [1 W(w), W(§) i= of, W(of) i= #, W(vh) =
1.

We set

M? = {Ugn,...,wk ' ]___[P7 |<w1 ' Pla"'awk ' Pk> € ({Ug} U U *ng>k}

i=1 7=1
[The argument of «? is a sum of of and of summands that are denoted by terms

m

in J MY%. Hence the terms in M9 correspond to the summands that one gets by
J=1

multiplying the output of 47 with the weight on the next edge, and then rewriting

this product as a sum of products by “multiplying out”.]

Finally, for the outpul gate g,u of N, we place into V9 in addition the variable
vieut . We define W(v?>) as the value of the outer threshold of N.

Definition 3.4: Assume that N is a network architecture in normal form with
n inpul variables and some fixed assignment of reals to its parameters. Let x € R"
be a fized input for N'. We define for each gate g in N by simultaneous induction
on the depth of g

- a set L9(z) of inequalities (that are linear in the variables from V9)

- a set S%(z) of formal terms (whose sum represents the argument of ~9 for
network input z)

- a set T9(z) C MY (whose sum represents the output of g for network inpul x
after mulliplication with the weight on the next edge).

Since x is now a fized element of R", one can assign a specific value W(P,z) € R
to each term P of the form £ 'L'{l oo @ that occurs in a formal term of the preceding
definition. Hence one can assign to any formal term t = v- P (that belongs to some
M?) a specific value W(t,z) := W(v) - W(P,z). For a set S of formal terms we
define W(S,z) := Zq W(t,z). For the case S = ¢ we set W(¢,z) = 0.

tel

The value W(t,z) of a formal term t reflects the value of this term for network
input  under the fived parameter assignment in N'. These values W (t,z) are needed
Jor the definition of the systems L9(z) and L(N,z) of linear inequalities that describe
the computation of N .

If g has depth 1, then we define
S9z) = {vi} U {v] @ |i=1,...,n}.

Assume thal g is a gate on level | + 1 with edges from gates ¢y, ...,q, on level |
leading into g. Then we sel

o) = () U UTo().
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We define L9(z) and T9(z) as follows for any gate g in N'. If W(S5%(z),z) < t1,
then L9(x) contains the inequality [3- S7(z) + 1]z]z] < vf. If W(S%x),z) > t3, then

L9(z) contains the inequality [ S (z)|g[z] > v} In either case we set T(z) := ¢.
[We use here and in the following the notation [H]g[z] for any sum H of formal

terms to indicate that each variable @; in H is replaced by the value of the i-th

coordinate x; of the concrete input x € R". Note that the only variables that are

g

left in [H]g[z] are the variables of the form vZ,,., v} or v3 .y~ This substitution

is necessary to make sure that the only variables that occur in the resulting system
L(N,S) of linear ineaualities are of this type, or are variables of the form vf, v{.]

Ift] < W(S9z),z) < 13, then LI(z) contains the inequalities v7 < [} 5(z)]=[z]
and [32 59(z) + l]glz] < vf. If 77 gives on ils nontrivial piece a constant a? as oul-
pul, we sel in this case Tg(g) = {0l et If 9 computes on ils nontrivial piece a
power y — y*, we set

k
T(z) = {vl, e [T P (o Py Py € ({08} U {ol 2, o) 20 })")
=1

if g has depth 1, and in the general case

T(2) = (o TP o Prcown B € (408} 0 () 902"

Finally, if g is the output gate gour of N and W (T (z),z) < W (v%), we
add to L9 (z) also the inequality [ T9 (z) + 1]g[z] < v9eut. If W(T9(z),z) >
W (v%u), we add to L9 (x) also the inequality [y T (x)]z[z] > vIou.

We define

LN z) := U{Lg(g) | g is a gate of N'},

and for S C R"
LN, S) = | J{L(NV,z) |z € S}.

The following Lemma verifies that for any 2 € R” the system L(N,z) of in-
equalities provides a truthful description of the computation of N for input z.

Lemma 3.5: Assume that N is a network archilecture in normal form with n
input variables and some arbitrary assignment to its parameters, and that x € R"
is an arbitrary concrele inpul.

Then we have for any gate g in N :

W(S9(z),z) is the input, and W(T9(z),z) is the oulput of gate g (multiplied with
the weight on the next edge) in the computation of N for input x. Furthermore:

W(S () 2) < 6 & “S0) +ala] < of” € LV,2)
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W(S(z),z) < 15 & “[S%z) +1]zlz] < of” € LN, z)
W(S%z),z) > 17 & “[5(x)|ez] > vi” € LN, z)
W(S(z),z) > t5 < “[5(x)]a]z] > v%”e LN, z).

Proof: The claim about L(N,z) follows immediately from the definition of
L(N,z) in Definition 3.4.

One shows by induction on ¢ that for any network input z the input of ¢ in N/
is equal to W(S9(z),z), and the output of g in A (after multiplication with the
weight on the next edge) is equal to W(T9(z), z).

If g is of depth 1 then we have by the definition of S9(z) in Definition 3.4 and by
the deﬁnltlon of the values W(t, z) for terms ¢ in Definition 3.3 that W(S9(z),z) =

of + Z of - x;, where ay,...,a¢ are the weights and «of is the bias of gate ¢ in
N under the given parameter assignment in A'. Hence W(S9(z ),g) is equal to

the input of ¢ in N for network input z. Furthermore if of + Z o cx; < 1 or
=1

CVo‘l‘Z o -z, > 15 then T9(z) = ¢, hence W(T9(z),z) = 0. If ] < ozg—l—i oz, < 1
=1
then W(Tg( ),z) = af if 49 outputs the constant 1 on its nontrivial piece (where

a? is the weight on the edge out of g). If 49 computes y — y* on its nontrivial
piece, then W(T?9(z),z) = o - S ({ad} U {a? -z, |i = 1,...,n})*. In either case
W(T4(z),z) is equal to the output of g in V' (multiplied with a?) for network input
x.

If ¢ is of depth [+ 1 with immediate predecessors g1, ..., g, then W(S9(z),z) =

ad + Z W (T9%(z),z). By induction hypotheses this value is equal to the input of
J=1

gate g in A/ for network input z. In the most interesting case, where gate g applies

the polynomial piece y — y* to this input, its output (multiplied with a?) is equal
to

ot (o§+ 35 W(To(z),z))" =
VT
ad - Z{ H W (w; - PZ',£>‘<U)1 Py wy e P € ({”o} U U T9 (z ) } —

k

..... w1 W(Psz)| (w1 - Pr,.. k)E({vg}UjL:Jngf(g))k}z

=1

Definition 3.6 Assume that N is a neural net in normal form with n inpuls.
Furthermore assume that S C R™ and A: VN — R is an arbitrary solution of the
system LN, S) of inequalities with the variable set VN .= U{V9 | g is a gate in N'}.
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We define by induction on the depth of gate g in N for each term t € M9 a first
order network archilecture M;‘ Together the network architectures (M;‘t)fezwg
mimic the initial segment of N between the input and gate g. The first order nel-
work architecture ./Mﬁt consists of gates with activation functions from the class
{heaviside ,y — vy, y — y*}. For any circuit inpul x € S the oulpul of the first
order network architecture /\/iﬁt will be 1 ift € T9(z), otherwise it will be 0.

One associales with each network architecture Mﬁt for t € MY of the form

. P another network architecture MA

= ot thal oulpuls for any network inpul
x € S the real number

Al) - W(P,z) , if Myy(z) =1
At z) =

0 ? ZfM;‘,t(£> = O ’

The extension from MA to ./\/lgt is done in a canonical manner with the help of
subcircuils that 5imulate product gates via the equalily y -z = —((y +2)? —y? —2?%).
Obmously MA Just has to compute the product of A(v), W (P, z), and of the output
ofM for network input x.

The definition of a value A(t,z) for each term t and each x € S is extended in
a canonical way to arbitrary sets M of terms:

M, z):= ZA(t,g), A(g,z) == 0.
teM
We consider first the case where g has depth 1. Let HY be a linear threshold gale
that checks whether A(vy) < A(S%(z),z), and let H] be a linear threshold gate that
checks whether A(S%(z),z) +1 < A(v})). For each term t € M? we define M, to
be the AND of H{ and Hj.

Assume then that g is a gale on level | + 1 with edges from the
gates gy, ..., ¢qm on level I leading into g. According to Definition 3.4 we have in this

case S9(z) = {vi} U G T9(z) for every x € S. By induction hypothesis we have

already defined network archztectuves MA and hence also network architectures

g5,t7
gg‘ﬂf forallt € M%, 3 =1,...,m. For each term t € M? the network architecture
MAt employs two linear threshold gates HY and Hj, which receive their inpuls from

the network architectures MA dJorte M%, 5 =1,....m. The linear threshold gate
HY has the task to check for any x € S H)thhf’T’ .,4(1)[) < A(SY(z),z). Obviously il
can easily accomplish this task provided that for inpul x the network architectures
/\;l;;’t Jort € M% (5 =1,...,m) give as outpul the value A(t,z). Analogously the
linear threshold gate HY has the task to check whether A(S%(z),z) +1 < A(v).

s defined as the

const

If 49 outputs the constant 1 on ils nontrivial piece, A/i

AND of H} and Hj.

,U

If 49 computes y — y* on its nontrivial piece, then each t € M? is of the form
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this case Mﬁt is defined as the AND of HY, HY, and of the outpuls of the network
architectures A/l;é’wz__ﬂ_ Joralli e {l,....k} and y € {1,...,m} with w; - P, € M%.

k m
vd -~ I1 P; for some k-tuple {(wy - Pr,...,w,- P) € ({v§} U U M%) In
i=1 7=1

[A word of caution: Although the variable vg, —is supposed to play the role

of the product of wy,...,w; and o (where of is the weight on the edge out of g),
k
= (%) 11 A(w)]

the assignment A will in general not satisfy A(vg, ., )
Finally we define the network architecture M by using as components the net-
work architectures M;tut,t for all t € M%ut. The output of MA is given by a linear
threshold gate H that checks whether > A(t,z) > A(v9).
tMA  (z)=1

Youtt

Lemma 3.7 Assume that S C R" and A is an arbitrary solution of L(N,S).
Then the following holds for any gate g in N, for any term t € M9, and any input
x€S:

a) For network input x the gate Hi in A/lﬁt outputs 1 if and only if 1 <
W(S9(z),z). Similarly the oulpul of the gale HY in A/lﬁt is 1 if and only
if W(S7(2),2) +1 < 1,

b) teT9(z) = (Mﬁt oulputs 1 for network input ).

c) A;lﬁt oulputs A(t,z) for network input z.

Proof: The proof proceeds by induction on the depth of gate g. The claim is
obvious from the definition if ¢ is of depth 1. If ¢ is of depth [+ 1 > 1 we exploit the
induction hypothesis for the network architectures Mﬁﬂf and ./\;i;;‘jﬂ5 with £ € M9%
(for the immediate predecessors g; of gate g). Hence we may assume that gate HY
in Mﬁt outputs 1 if and only if A(v}) < A(S9(z),z). Since A is a solution of
L(N,S), the latter inequality holds if and only if L(N,S) contains the inequality
v] < [S9(2)]elz]. By Lemma 3.5 this holds if and only if { < W(S9(z),z). The

claim for HY is verified analogously.

The least trivial case for part b) of the claim is the case where 79 computes

k
y +— y* on its nontrivial piece. Then each ¢+ € M9 is of the form Vwy o 11 P
=1

for some k tuple (wy - Pp,...,wy - Py) € ({i)g} U G Mgi)k. By definition of T9(z)
7=1

we have t € T9(z) if and only if t] < W(S9(z),z) < t§ and w; - P, € T9(t) for all
i€{l,....k}and y € {1,...,m} with w; - P, € M9%. By construction of Mﬁt and
by the induction hypothesis we have that Mﬁt outputs 1 for network input z if and
only if all of the preceding conditions are satisfied.
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Part ¢) of the claim for gate g follows immediately from part b) and the definition
of Mﬁt. |

Lemma 3.8 Assume that N is a network archilecture in normal form with n
input variables, S C R" is an arbilrary set of inputs, and A is an arbitrary solulion

of LN, S). Then N and M* compute the same function from S into {0,1}.

Proof: This is an immediate consequence of Lemma 3.5 and Lemma 3.7. By
the definition of M the output of M# for any network input z € S is 1 if and only
if > A(t,z) > A(v). By Lemma 3.7 we have that MA (z)=1&1t¢€

MA )=t ot
T (z). Hence, since A is a solution of L(N,S), the preceding inequality holds if
and only if L(NV,S) contains the inequality [} 79" (z)]z[z] > v?. By definition
of L(N,S) the latter holds if and only if W(T%"(z),z) > W(v%"). By Lemma
3.5 the value W(T9"(z),z) is the output of g, in N for network input z. Hence

W (T (z),x) > W(v?") holds if and only if N outputs 1 for network input z. B

We are now in a position where we can complete the proof of Theorem 3.1. As-
sume that a given array (N”)neN of neural nets satisfies the assumption of Theorem
3.1, and that (gn)neN is an arbitrary array of real valued assignments a,, to the vari-

able parameters in V,. One can transform the given neural nets (Nng")nEN into an
array (/\Afnﬁ")nEN of neural nets in normal form (with properties as specified above)

such that NTLQ" computes the same boolean function as AMz". We then apply the
machinery from the definition and Lemmas 3.5 to 3.8 to each neural net N := N 77E "
with S := {0,1}". By construction of ./\75" the resulting system L(N,{0,1}") of

inequalities has some solution over R. We exploit here in particular that 3 was

chosen so that all relevant strict inequalities “s; < s3” in computations of /\A/'nﬁ" on
inputs z € {0,1}" were strengthened to “s; +1 < s5”. Since |U{M? | ¢ gate in

Ng"} | = O0(n°W), it follows that the number of gates in M+ is bounded by
O(n°M).

The number of variables in L(N, {0,1}") is polynomial in n and it only contains
small constants . Hence by Lemma 2.4 there is a solution A of L(N,{0,1}") that
consists of rationals of the form 2 (with a common integer ¢) such that s and ¢

n@W) By Lemma 3.8 the constructed network architecture
MA computes the same boolean function as A'. Furthermore all constants and
parameters in M+ are quotients of integers with polynomially in » many bits.

Thus (see [SBKH], [SR]) one can carry out all arithmetical operations in M* for

are integers of size 20

inputs from {0,1}" by polynomial size digital subcircuits of constant depth with
linear threshold gates (or equivalently: with MAJORITY-gates, see [CSV]). In the
resulting circuit all parameters from A are replaced by corresponding sequences of
bits. Hence one gets in this way neural nets NV, which satisfy the claim of Theorem
3.1. |

22



Remark 3.9 Sontag [S3] suggested using the “quasi-linearization” that is achieved
in the proof of Theorem 3.1 in order to also get upper bounds for the VC-dimension
over R", by counting the number of components into which the weightspace is par-
titioned by the hyperplanes that are defined by some arbitrary finite set S C R" of
inputs.

By letting o, vary and keeping the neural net A, and the input z € S fixed one
gets up to 20(°"M) different systems L(./\A/ng”,g) in the proof of Theorem 3.1 . Hence
the total number [, of linear inequalities that arise in this way for different z € S
and different parameters a,, is bounded by [S] - 20(n?M),
number w,, of variables that occur in these [, inequalities is bounded by O(no(l)).
Therefore the hyperplanes that are associated with these [, inequalities partition

wn k . 1
the range R"" of the variables into at most }_ > (w"_z) ( bn ) = |S|O(”O( ) faces

k=0:=0 k=i Wn =t
(Theorem 1.3 in [E]). Each A € R"" gives rise to at most 20(n°D) Jifferent net-
work architectures M# when N, and S are kept fixed, but the parameters o, vary.
Thus each A € R"" can be used to compute at most 20(n)
S — {0,1} on the resulting circuits. Furthermore, if A and A belong to the same
face of the partition of R*" then for all a, the network architectures M# and MA
compute the same function S — {0,1}. Hence if S is shattered by N, (i.e. any

Furthermore the total

different functions

function S — {0,1} can be computed by Ni" for suitable parameters o) then
2151 < |S|O("‘O(l)) - 200°") hence S| = O(n°M). This implies that VC-dimension
(Vo R™) = 0(nO0)),

One can apply in a similar fashion the “linearization” that is achieved in the
proof of Theorem 2.1. Consider a neural net A" over a graph (V, E) as in Theorem
2.1, but allow that each activation function +9 consists of < p linear pieces with
arbitrary fixed real parameters. Then one can show that VC-dimension (M, R") =
O(w?*logp), where w := |V| + |E| + 1 is the number of variable parameters in
N. Tt is sufficient to observe that for different z € S and different initial assign-
ments a altogether at most | S| - 20(21987) linear inequalities arise in the description
of the computations of the associated nets /\A/[g]E for input z. The associated hy-
perplanes partition the “weight space” R"™ for the variable parameters 3, c into
< |§)90w) . 20(w*logD) faces, The vectors from each face can be used to compute
at most 20" different functions S — {0,1} (note that in general more than one
function S — {0,1} can be computed because of different weights from {—1,0,1}
between computation nodes). Hence 215 < [§]0(w).20(w* logp) . 90() if § is shattered

by N, thus |S| = O(w? log p).

Subsequently to this observation from [M 92| and [M 93a] our polynomial up-
per bound for the VC-dimension of analog neural nets of constant depth has been
extended to neural nets of unbounded depth via an application of a well-known the-
orem of Milnor ([GJ]). In [M 93¢]| this result has been further generalized to yield
a polynomial upper bound for the pseudo-dimension (see [H]) of analog neural nets
of arbitrary depth, which takes over the role of the VC-dimension in the case of
learning on analog neural nets with real-valued outputs.
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4 PAC-Learning on Analog Neural Nets

We now turn to the analysis of learning on analog neural nets in Valiant’s model [V]
for probably approximately correct learning (“PAC-learning”). More precisely we
consider the common extension of this model to real valued domains due to [BEHW].
Unfortunately most results about PAC-learning on neural nets are negative (see
[BR], [KV]). This could either mean that learning on neural nets is impossible, or
that the common theoretical analysis of learning on neural nets is not quite adequate.

We want to point here to one somewhat problematic point of the traditional
asymptotic analysis of PAC-learning on neural nets. In analogy to the standard
asymptotic analysis of the runtime of algorithms in terms of the number n of input
bits one usually formalizes PAC-learning on neural nets in exactly the same fash-
ion. However in contrast to the common situation for computer algorithms (which
typically receive their input in digital form as a long sequence of n bits) for many
important applications of neural nets the input is given in analog form as a vector
of a small number n of analog real valued parameters. These relatively few input
parameters may consist for example of sensory data, or they may be the relevant
components of a longer feature vector (which were extracted by some other mech-
anism). If one analyzes PAC-learning on neural nets in this fashion, the relevant
asymptotic problem becomes a different one: Can a given analog neural net with
a fixed number n of analog inputs approximate the target concept arbitrarily close
after it has been shown sufficiently many training examples?

We show that for those types of neural nets which were considered in the pre-
ceding sections the previously discussed PAC-learning problem has in fact a positive
solution:

Theorem 4.1 Let N be an arbilrary nelwork architecture of order 1 as in Theo-
rem 2.1, where the fived parameters of the piecewise linear activation functions may
now be arbitrary reals. Let Cy := {C C R"| Ja € R"Vz € R" (xco(z) = N2(x))} be
the associated concept class, where x¢ is the characteristic function of a concept C'.
Then Cy is properly PAC-learnable.

This means that there exists a learning algorithm LAY for N such that for any
distribution @ over R", any targel concepl Ct € Cyr, and any given £,6 € RT the
learning algorithm LAN with inputs e and 6 carries oul in O (i)o(l), (%)O(l)) com-
pulations steps (w.r.t. the uniform cost criterion on a RAM) the following task: It
computes a suitable number m and draws some sequence S of m examples for Cr
according to distribution ). Then it computes from S an assignmenl ag € R" for
the programmable parameters of N such that Q [{z € R"| xc,(z) #N%s(2)}] < ¢
with probability > 1 — 6.

Proof: We have VC-dimension (Cy) < oo by Remark 3.9. Hence according
to [BEHW] it suffices to show that for any given set S of m examples for Cp one
can compute from S within a number of computation steps that is polynomial in
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m, -,z an assignment ag € R" to the programmable parameters of N such that
Va € S(xcop(z) = N2s(z)). The construction in the proof of Theorem 2.1 implies
that it is sufficient if one computes instead with polynomially in m, é, % :
steps an assignment 3, ¢g of parameters for the associated neural net N such that

Ve € S (XCT(Q) = ./\A/[QS]QS(Q)). The latter task is easier because the role of the

parameters 3, c in a computation of N for a specific input z can be described by
linear inequalities (provided one knows which linear piece is used at each gate).

computation

Nevertheless the following technical problem remains. Although we know which
output N[QS]ES should give for an input = € 5, we do not know n which way this
output should be produced by N[QS]ES. More specifically, we don’t know which
particular piece of each piecewise linear activation function 9 of N will be used
for this computation. However this detailed information would be needed for each
z € 5 and for all gates ¢ of N in order to describe the resulting constraints on the
parameters 3, c by a system of linear inequalities.

However one can generate a set of polynomially in m many systems of linear in-
equalities such that at least on of these systems provides for all z € S satisfiable and
sufficient constraints for 3,c. By definition of Cx we know that there are parame-
ters 3., cr such that N[QT]@T computes x¢,. Consider any inequality I(3,¢,z) < 0
(with I(3, ¢, z) linear in 3, ¢ for fixed z, and linear in z for fixed §,¢) as they were
introduced in the proof of Theorem 2.1 in order to describe the comparison with a
threshold at some gate g of N. The hyperplane {z € R"| 1(B,,¢cr,2) = 0} defines
a partition of S into {z € S| I(QT,Q, z) <0} and {z € S| I(QT,Q, z) > 0}. Hence it
suffices to produce (e.g. with the algorithm of [EOS]) in polynomially in m many
computation steps all partitions of S that can be generated by as many hyperplanes
as there are linear inequalities I(3, ¢, z) < 0 in the proof of Theorem 2.1. One of
these partitions will agree with the partition of S that is defined by the hyperplanes
{z € R"| I(éT,gT,g) = 0} for the “correct values” B
these partitions corresponds to a “guess” which linear pieces of the activation func-

cr of the parameters. Each of

tions 49 of AN are used for the different inputs z € 5, and hence it defines a unique
system of linear inequalities in 3, ¢ (with the inputs z € S as fixed coefficients).
Furthermore it is guaranteed that one of these “guesses” is correct for 3., cp.

For each of the resulting polynomially in rm many systems of inequalities we apply
the method of the proof of Lemma 2.4 (i.e. we reduce the solution of each system of
inequalities to the solution of polynomially in m many systems of linear equalities),
or we apply Megiddo’s polynomial time algorithm for linear programming in a fixed
dimension [Me] in order to find values 8 ¢, for which /\A/[gs]ﬁs gives the desired
outputs for all x € S. By construction, this algorithm will succeed for at least one
of the selected system of inequalities. |

Remark 4.2 Assume N is some arbitrary network architecture of order 1 ac-

cording to Definition 1.1 with arbitrary piecewise linear activation functions, and A
does not satisfy the condition that all computation nodes of N have fan-out < 1.
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Then Theorem 4.1 does not show that Cy is properly PAC-learnable. However it
implies that Cyr i1s PAC-learnable, with Cy for a somewhat larger network architec-
ture N’ of the same depth used as hypothesis class (see Remark 2.2 for the definition
of N).

Note that this result may lead towards a theoretical explanation of an effect that
has been observed in many experiments: One often achieves better learning results
on artificial neural nets if one uses a neural net with somewhat more units than
necessary (i.e. necessary in order to compute the target concept on the neural net).

Theorem 4.3 Let N be an arbitrary nelwork architecture with arbitrary piece-
wise polynomial activation functions and arbitrary polynomial gate inputs Q9 (y1,. .., Ym).
Then the associated concept class Cp is PAC-learnable with an hypothesis class of
the form Cy for a somewhat larger nelwork architecture N.

Proof: One can reduce this problem to the case of network architectures with
linear gate inputs as indicated at the beginning of the proof of Theorem 3.1. One
uses as hypotheses sets which are defined by a network architecture A" of the same
structure as the network architecture M+ in the proof of Theorem 3.1. For this
network architecture AV one can express the constraints on the assignment A by
linear inequalities. Remark 3.9 implies that VC-dimension (/\7, R") < cc.

One applies the method from the proof of Lemma 2.4 in a manner analogous
to the proof of Theorem 4.1, or linear programming in a fixed dimension [Me] to
polynomially in m many systems of linear inequalities. There is one small obstacle
in generating the associated partitions of 9, since the corresponding inequalities are
not linear in the circuit inputs z. One overcomes this difficulty by going to an input
space of higher dimension. [

Remark 4.4 Tt is shown in [M 93c] that the positive learning results of this
section can be extended to analog neural nets with real valued outputs. Furthermore
it is shown in that paper that these learning results can be extended to Haussler’s
refinement [H] of Valiant’s model [V], where no a-priori assumptions about the
target function are required and where arbitrary noise in the training-examples is
permitted.
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