Electronic Colloquium on Computational Complezity
ECCC TECHNICAL REPORTS SERIES 1994 REPORT NR: TR94-013

Complexity Theory and Genetics

(extended abstract)

P.Pudlak
Mathematical Institute
Academy of Sciences
Prague 1

Received December 15, 1994

Abstract. We introduce a population genetics model in which the operators are
effectively computable — computable in polynomial time on Probabilistic Turing
Machines. We shall show that in this model a population can encode easily large
amount of information from enviroment into genetic code. Then it can process
the information as a paralel computer. More precisely, we show that it can sim-
ulate polynomial space computations in polynomially many steps, even if the
recombination rules are very simple.

! An essential part of this research has been done while visiting Fachbereich Informatik, Uni-
versitit Dortmund as a a Humboldt Fellow.

Online access for ECCC:

FTP: ftp.eccc.uni-trier.de:/pub/eccc/

WWW: http://www.eccc.uni-trier.de/eccc/

Mail to: ftpmailftp.eccc.uni-trier.de,subject "MAIL ME CLEAR”, body "pub/eccc/ftpmail.txt”

1 Introduction

The evolution of life is surely one of the most in-
teresting questions in science. Mathematical genetics
is a growing field and has produced deep mathemat-
ical results. Nevertheless very little has been done
from the point of view of complexity theory. This is
paradoxical, since the main problem is essentially a
question about the complexity: how is it possible that
highly organized (complex) organism have evolved? In
mathematical population genetics evolutionary oper-
ators are studied from the point of view of dynamics
without considering their computational complexity.
In this paper we will consider some consequences of
the assumption that the evolutionary operators are
efficiently computable (in polynomial time on Proba-
bilistic Turing Machines).

We know that the present organisms have evolved
by natural selection. We know also basic facts about
the mechanism by which the information about the
organisms is stored and passed to new generations. It
is based on the genetic code represented by a small
number of DNA’s, where each DNA can be thought of
as a string in a finite alphabet. There are essentially
two mechanisms by which new codes can be generated:
crossing-over and random mutations. The presently
accepted theory is that new genes (parts of the genetic
code) are formed by mutations and then, provided
they improve the fitness, they are spread through the
population.

Consider a (population of a) species as one sys-
tem and the environment in which it lives as another.
Let us think of the species as frequencies of particu-
lar codes and a mechanism to produce new ones. In
this setting the species receives information about the
changing environment by ”seeing” that for some codes
the frequency is growing and for others decreasing.!
The species reacts by changing frequencies and, in
particular, producing new codes. The reaction may
be very simple: let the selective forces act freely, ex-
cept that some mutation ratio is kept. The mutations
are needed to keep some variability of the species, so
that it can adapt, if the environment changes and also
for evolution of better adapted organisms. It is how-
ever conceivable that the species has already recorded
some changes of environment and has developed bet-
ter reactions to its changes.

The purpose of this article is to ask the question,
whether it is possible that species use some less triv-
ial reactions which require some computation using

I'We shall show in Section 3 that theoretically the informa-
tion about the frequency of a particular trait can be computed
and spread through the population very fast.

the information obtained from the environment as an
input. To this end we shall present a model which
reflects the real heredity mechanism and show that
very complex computations are possible in it. Once
the possibility of computations on the level of genetic
code 1s shown theoretically, we can look for such com-
putations in Nature.

As we want to compare ”genetic” computations
with computations on classical devices, the inputs
must be given in the same way. The environment is,
however, an essentially different form of input, the in-
teraction may be very complex and there is no obvious
way to identify it with a sequence of 0’s and 1’s. There-
fore we shall first show that for any string, say of 0’s
and 1’s, natural selection can change the population
so that this string appears on a particular site of the
code in almost all organisms. Then we shall confine
myself to the situation where only this part of the code
is used as input and ignore the environment. There
are probably many other ways in which the species can
get information. We shall show another one, namely
that it can compute with high precision the frequency
of occurrences of particular pieces of the code in the
same sense as above, 1.e. the number will be encoded
in almost all organisms.

We shall introduce a model, which we call Genetic
Turing Machines, and compare it with the standard
mathematical model of computation the Turing Ma-
chine. Roughly speaking a Genetic Turing Machine is
a population of tapes with an evolutionary operator
which is computable by a Probabilistic Turing Ma-
chine in polynomial time. Initially the tapes contain
the input string at the beginning and the rest is filled
uniformly with one symbol from the finite alphabet.
The population develops in discrete generations (com-
putation steps) according to the evolutionary opera-
tor. The mating is completely random and the popu-
lation is considered to be infinite. Both assumptions
are, of course, unrealistic, however they simplify the
computations considerably. The concept of Genetic
Turing Machines is interesting also from purely math-
ematical point of view, since it naturally generalizes
Probabilistic Turing Machines by replacing a liner op-
erator by a quadratic one.

Then we shall consider the sets computable in small
number of steps on Genetic Turing Machines, where
small 1s represented as polynomial in the length of the
input. We shall show that the class of such sets is
equal to PSPACE, the class of sets computable on
Turing Machines with polynomial restriction on the
tape. Though unproven, it is generally assumed that

PSPACE is a much larger class than P, the class of

sets computable on Turing Machines with polynomial
restriction on time, which is accepted as a good math-
ematical approximation of efficiently computable sets.
This 1s also true for the probabilistic version of P, de-
noted by BPP, where the machine can use random
bits in the computation. The larger power of Ge-
netic Turing Machines is, of course, enabled by the
fact that the population is large (note that exponen-
tially large finite population would suffice). We can-
not use the simulation of PSPACE to design better
computers etc. The meaning of this result is differ-
ent: it shows that the kind of parallelism that Genetic
Turing Machines use is positively correlated with ef-
ficiency, namely, if we increase the population we get
more power. In particular, in Nature one generation
takes a lot of time if compared with one step on a
computer; the parallelism can partially make up for
this handicap. The conclusion for computer science
is that Genetic Turing Machine is a model of parallel
computation and that a “random architecture” can be
very powerful.

A natural objection is that it is not possible to
realize such computations with the restricted means
which we can expect in the case of DNA’s. In order
to counter this objection we shall show that a gen-
eral Genetic Turing Machine can be efficiently simu-
lated by a special one with a very restricted evolution
operator. The restriction is that only crossing-over
is allowed, where the positions on which the strings
are switched are determined purely by small neigh-
borhoods of the positions. (The underlying idea is
that Turing Machines can be simulated by rewriting
systems and crossing-over is sufficiently general to sim-
ulate rewriting rules.)

This research is related also to the popular field
of Genetic Algorithms, however our goals are differ-
ent. Genetic Algorithms serve as heuristics for solv-
ing practical problems, usually optimization problems,
which are difficult to analyze theoretically. The main
tool 1s a suitable selection operator. What we suggest
here is to study the power of genetic type computa-
tions from the point of view of complexity theory. We
want to investigate how evolution can be controlled by
heredity mechanisms. Nevertheless the results of this
paper do have some relevance for Genetic Algorithms.
In particular, our simulation of PSPACE in polyno-
mial time shows that, at least in principle, algorithms
can be parallelized using the genetic approach.

2 Basic concepts and notation

In this section we recall some basic concepts from
complexity theory and genetics. We start with com-
plexity theory.

The standard model of computation used in com-
plexity theory is the Turing Machine. A Turing Ma-
chine consists of a finite device which controls the com-
putation and infinite memory represented as an infi-
nite tape. The tape has cells where symbols from a
fixed finite alphabet can be written and rewritten us-
ing a head. The device can be represented by a finite
automaton or simply by a program with instructions
about the two possible movements of the head and
possible symbols which are read and written. We shall
confine ourselves to one-tape Turing Machines. Multi-
tape Turing Machines are only needed when complex-
ity is to be determined more precisely.

The machine starts with an input word written on
the tape; the rest of the tape cells contain some fixed
symbol. After the control device reaches one of par-
ticular instructions it stops. The output is what is
written on the tape at this moment. If we want only
to recognize some set of inputs, we label some stop
instructions as accepting and some as rejecting. Thus
the machine determines the set of words on which it
stops on an accepting instruction.

A Probabilistic Turing Machine has moreover the
possibility to toss a fair coin during the computation
and act according to this random bit. Thus the ma-
chine does not compute a function, but a random vari-
able. For computing sets we use bounded error prob-
abilistic Turing Machines. This is a machine which,
for each input z, accepts & with probability at least
3/4 or with probability at most 1/4. This dichotomy
is used to define the set of inputs accepted by the ma-
chine. (Clearly, by running the machine several times
we can decide with high confidence, if the input word
is accepted or not.)

There are two basic complexity measures time and
space. Time is the number of steps used in the com-
putation; space is the number of tape cells used in the
computation. In the theory we are interested only in
asymptotical behavior of these quantities. We mea-
sure the time and space requirement for computation
of a given set as a function f(n) depending on the
length of the input word n = |z|.

We shall consider the following complexity classes.

P is the class of sets which can be accepted in time
bounded by a polynomial on a Turing Machine.

BPP is the class of sets which can be accepted in
time bounded by a polynomial on a bounded error
Probabilistic Turing Machine.

PSPACE is the class of sets which can be accepted
in space bounded by a polynomial on a Turing Ma-
chine.

P and BPP are used as theoretical approximations
of what can really be computed using a deterministic,
respectively probabilistic, real computing device. We
have the inclusions P C BPP C PSP.ACE. 1t has been
conjectured that both inclusions are proper, however
the proofs are beyond our present means. P and BPP
do not seem to be very far apart, but there is strong
evidence that PSPACE is much larger. Note that
in particular a machine with a polynomially bounded
space can actually run in exponential time, since the
number of possible configurations on the tape of poly-
nomial length is exponential.

We shall now recall some facts from genetics. The
most important genetic information is encoded in
strings of DNA. Each string has its own chromosome
and the chromosomes occur in pairs. The two DNA’s
from a pair of chromosomes encode information about
the same traits of the organism. (The resulting traits
are (weighted) combinations of the information in the
two DNA’s.) The number of chromosomes is a fixed
even number for each species and in most cases it is
between 14 and 60. The length of the DNA is also
fixed for each chromosome. DNA consists of two com-
plementary strings which can be thought as words in
the alphabet {A,C, G, T}, where A is the complement
to G and C'is the complement to 7. The total length of
all DNA’s ranges from 7-10° to 2:10" 1. The genetic in-
formation is passed to offsprings in two stages. First
reproductive cells, gametes, are formed by crossing-
over the two DNA’s from the pairs of the chromo-
somes. Crossing-over means to put the two strings
side by side, cut them at some places and replace the
segments. Gametes have only one chromosome from
each pair. When two organism mate, two gametes join
into one cell, zygote. The zygote then develops into a
full organism by replicating. Thus for each pair of the
chromosomes of the offspring, one chromosome inher-
its genetic information from the mother and one from
the father.

We shall consider a simplified situation where there
is only one stage with an operation possibly more com-
plex than crossing over. The two stage process may
influence only the selective forces, but it is not essen-
tial for spreading information through the population.
We shall also consider just one string of the genetic
code. We have given more detailed, though still very
rough, description above so that the reader can later
see how much do we simplify the matters.

The evolution of a population of a species is further

determined by the particular way of mating and by
fitness, the ability to survive and reproduce, of organ-
isms with particular genetic code. The usual simplify-
ing assumption is panmizia i.e. the mating organisms
meet completely randomly.

The basic concepts of mathematical population ge-
netics are the following. Let G denote the possible
forms of organisms of a given species; we can just take
the possible genetic codes. A population is a mapping
z:G—1[0,1]. Fora g € G, z(g) denotes the frequency
of g in the population; thus we require

Y ozg) =1 (1)

g

This means that we ignore the size of the population;
in fact allowing real numbers as frequencies means
that we assume that it is infinite. Evolution is deter-
mined by inheritance coefficients p(g, h; k), the proba-
bility that ¢ and h produce k, and survival coefficients
A(g), the probability that g survives. In order to pre-
serve (1), we assume

plg,h;k) >0, 2)
2k plg hik)=1.
For A(g) we require only 0 < A(g) < 1. The inheritance

coefficients determine a quadratic operator on [0, 1]¢

given by the following equation:
(k)= plg, hi k)z(g)=(h). (3)
g:h

We shall call it inheritance operator. The survival co-
efficients determine the following survival operator:

oy)sle)
S SSTOED ®

(additional conditions must be ensured so that
> n A(h)z(h) is never 0). The binary operator V ob-
tained as the composition of these two is called the
evolutionary operator. The population evolves in dis-
crete steps by applying the evolutionary operator V' to
the initial vector z. We shall not talk about more com-
plex models such as those with two sexes, two levels
(zygote and gamete) etc.

In this paper we want to study computability as-
pects of evolution. Therefore we represent GG by a set
of strings A™ of length m in a finite alphabet A. It
is natural to require that the offsprings of ¢ and h
are computed by a probabilistic Turing Machine P in
polynomial (in m) time. Thus the inheritance coeffi-
cients are given by

p(g, h; k) = Prob[P(g, h) = k].

Formally, P(g,h) denotes the random variable ob-
tained by running P on the input gh, where we de-
note by gh the concatenation of the words ¢ and h.
Similarly, the survival coefficients are determined by
a random variable A : A™ — {0,1} computed by a
probabilistic Turing Machine:

A(g) = Prob[A(g) = 1].

We shall use the following notation. We shall
think of m as the set {0,...,m — 1}. For a subset

T C {0,...,m — 1}, we denote by p|r the restriction
of p to AT,

plr(h) = plg):

We shall say that g and h do not interact if

p(g,h;9) = 1/2 and p(g, h; h) = 1/2.

It is convenient to use nonsymmetric p, but note
that almost all results remain true for the symmetric
case, since we can symmetrize it very easily by taking
(p(g, h; k) + p(h,g; k))/2. Note, however, that this re-
quires an additional random bits (to choose the order
of g and h.)

Sometimes we shall also need ”empty” strings, then
we shall assume that there is a special symbol # in the

alphabet A and we denote by # the string consisting
of #’s.

3 Environment as the input

We want to show that the information provided by
the survival operator can be coded into g’s, thus it
suffice to consider only the inheritance operator, if we
are interested in the computational power of such a
model. More precisely, we want to show that if the
machine A has an additional input with a word z of
length n < m, then it can force the population to
develop so that z appears as an initial segment on
almost all g’s.

In the above setting the solution is trivial: take

1 ifglh==
Alg, z) = { 0 otherwise

Then the condition is satisfied already in the next gen-
eration, provided that all g’s have positive frequencies.

This solution has very little to do with reality,
therefore, exceptionally, we shall consider a situation
with a small population, where small means again
polynomial in n. As we do not want to introduce an-
other model, we will work with the one above and only

ensure that those ¢’s which are essential will have fre-
quency z(g) at least 1/n* for some constant k. Then
it can be shown that the evolution of an actually finite
population of size say n** would be with high preci-
sion and high probability the same. We shall state
the result for finite populations, but prove only the
infinite approximation as stated above.

Proposition 3.1 Let m > 2n. There exist polynomi-
als t1(n) and t3(n) and random variables P(g) and
A(g,z) computable in probabilistic polynomial time
such that for every x € A™, the population of size t1(n)
consisting only of;(?: s (i.e. z(#) = 1) evolves in ty(n)
generations into a population where all members have
x as the initial part (i.e. z|,(x) = 1) with ezponential
probability.

Proof. Let A ={0,1}. Let

g with probability 1/2 — ¢
h with probability 1/2 — ¢
g with one of the first n bits changed

P(g,h) = with probability &

h with one of the first n bits changed
with probability &

Thus a particular bit is changed with probability /n
in g and the same in h. We shall set ¢ = 1/16n. Let

1
A(g,.'r_) = n

the number of positions on which g|,
and z coincide
Consider some population z. Let a; denote the fre-

quency of ¢’s which coincide with z on exactly i places.
Let

Let a’ be a after applying the inheritance operator.

Then

1 1
a > 2(12(5 —e)+ 2ab(§ —¢) =a(l —2e).

Now let a’ be a after applying the survival operator.
Then

/ Zi=k+1 n%i Zi=k+1 n @i

a = 7 - k i n i =
> nai Dizo p t Zi:k+1 @i
Ha (14 5)a (I+3)a (1+42)a
Z k Erl . 1 Z 1 = 1
Sp+ it b4+ (1+5)a " b+ (14 5)a 1+ Za

If a < 3/4 then it is

>a

Assuming a < 3/4 and substituting ¢ = 1/16n we get
after application of both operators

1 1
—a(1_26)(1+4_)>1+16—n

Thus after O(n) generations a increases to at least
max{3/4,2a}. Furthermore, if Y i, a; > 3/4, then
after applying the inheritance operator Z?:k+1 a; be-

comes at least
2
3 1
= e — = L,
4 n 128n2

which, by the above estimate, increases to 3/4 after
O(nlogn) generations. Thus after O(n?logn) gener-
ations the frequency a, becomes at least 3/4.

We shall sketch how to increase this frequency to 1
minus an exponentially small term. Clearly the strat-
egy must change after some time, otherwise the ”mu-
tations” prevent us to get such a good bound. To this
end the machine for P can use the rest of the strings to
keep track of the time. So after sufficiently long time
it stops the mutations. Then it must determine which
is the string z. This is possible due to Lemma 3.2 be-
low. Tt enables P to compute the most frequent string
at the beginning of g’s. Then it just sets P(g,h) = g
with probability 1, if g|, = 2. This causes the other
elements to disappear exponentially fast.]

Another way to get information from environment
is to compute the frequency of certain parts of the
code. We shall present two such computations. The
first one is the lemma that we needed in the proof
above.

Lemma 3.2 Let m > n—+ 2logn+ 1. Let z : A™ —
[0, 1] be a population such that the first n bits are sep-
arated from the rest by a special symbol and the next
[2logn] bits are 0, (this means that those g’s which do
not have this property have frequency 0). Then there
ezxists an inheritance operator computed by a proba-
bilistic polynomial time bounded Turing Machine P
with the following properties:

1. the frequencies z|, are preserved;

2. after n generations, for almost all g € A™ the
[logn] bits after the first n and the separation
symbol encode the frequency z|, with precision
1/4; more precisely the frequency of g’s for which
the next [logn] bits do not encode the number
2|n(gln) with precision 1/4 is at most 2e="/8.

Proof. As we are not interested in the rest of the
sequence g after n+2log n+1 bits, we can think of each
g as a triple (h, 1, j), where we interpret the two parts
of length [logn] as numbers. Initially i = j = 0. The
machine P will produce outputs with the following
probabilities.

P((h,i,j), (b, j")) =

(h, J + 1) with probability 1/2 if h # k'
(h' 45 + 1) with probability 1/2 if h # A’
(h i + 1,74+ 1) with probability 1/2 if h = A’
(', + 1,5+ 1) with probability 1/2 if h =h'

Clearly j encodes the number of generations that
have passed. Let h be fixed. It can be easily checked
that the i associated with A in the j-th generation has
binomial distribution

(4ot - e,

where @ = z|n(h), is the frequency of h. Thus for
j = n, the frequency of those which have

‘i—a > 1/4
n

is, by Chernoff’s bound, at most

26_2(%)271 = 2e~n/8,
Thus we only need to modify P so that it prints i/n
instead of 7 in the n-th generation.]

The next proposition shows that we can get very
high precision, if we want to compute the frequency
only for one bit.

Proposition 3.3 Suppose we have a population z
where 1 occurs on the first position with the frequency
a (i.e. a = z|g13). Then there erists an inheritance
operator computed by a probabilistic polynomial time
bounded Turing Machine P with the following proper-
ties:

1. the frequencies of the first bit are preserved;

2. after n generations, for almost all g € A™ the n
bits after the first one encode the frequency z|{13
with exponential precision; more precisely the fre-
quency of ¢’s for which the next n bits do not

encode the number a with precision A is alt most
2 -\ 2'n+1

Thus for instance the precision 27"/3 is achieved

for the 1 — 2e=2"""*" fraction of the population.

Proof. As in the above proof we can think of each g
as a pair (b, y), a bit b and a number y with binary rep-
resentation of length n. W.l.o.g. we can assume that
initially y = 0. The machine P will give the following
probabilities:

with probability 1/2

by by t+y)
P((b,y)(¥,y)) = { with probability 1/2

b y+y)

Consider the distribution of ¥’s in the i-th generation.
It can be easily computed that it has binomial distri-
bution of order 2=%. Thus, by Chernoff’s bound, we
get that for ¢ = n the frequency of (b, y)’s for which
ly—af > Ais

< Qe 22" g A2

4 Genetic Turing Machines

In this section we shall introduce our basic com-
putational model and compare it with some related
models.

A Genetic Turing Machine P is specified by a fi-
nite alphabet A and a Probabilistic Turing Machine
P which has the property that for each m, it produces
output strings of length m from input strings of length
2m, (more precisely it produces a probability distribu-
tion on strings of length m). The strings g € A™ will
be called tapes.

A Genetic Turing Machine determines evolution of
a distribution (population) z : AM — [0,1] in the
sense discussed in the previous section. We want, how-
ever, to compute on input strings, rather than dis-
Let us assume that A = {0,1,#}. For
an input string z € {0,1}" we shall take the initial
population z consisting solely of strings of the form
x# € AT (ie. z(m#) = 1) and assume that m is suffi-
ciently large. To simplify the matter, we shall assume
that after computing for some time the machine will
stop on all pairs with nonzero frequency. This is an
inessential restriction in the most cases, since the ma-
chine can use a part of the additional space on tapes
to keep track of time and stop after sufficiently long
time has passed. The output is a probability distribu-
tion on strings y € {0, 1}", which are initial segments
of the tapes delimited by # .

tributions.

Hence a Genetic Turing Machine computes the
same thing (a probability distribution) as a Probabilis-
tic Turing Machine. Thus we can use the same crite-
rions for defining classes accepted by Genetic Turing
Machines. In particular we define that P is a bounded
error machine, if in the final population the frequency
of 1’s on the first position is either at least 3/4 or at
most 1/4 (i.e. z[{13(1) > 3/4 or z[13(1) < 1/4). We
define that a bounded error Genetic Turing Machine
accepts the set of the strings for which in the final
population z|13(1) > 3/4.

We shall show that it is possible to simulate gen-
eral Genetic Turing Machines by machines of a very
special form with only a polynomial increase of time.
(A further reduction will be considered in Section 6.)

Assume that P uses an alphabet A and P’ uses the
alphabet A’ = AU{#}. We shall say that P’ simulates
P in time t(m) and space s(m), if the following holds
for every m and every population z : A™ — [0, 1]. Let
2 A™ = [0,1] with m’ = s(m), be such that

2 (g#) = z(9) (5)

for every g € A™. Let 2(1) resp. 2!} denote z, resp.
2!, after 1 applications of the inheritance operator as-
sociated with P, resp. P’. Then the condition is that

We shall say that P’ polynomially simulates P, if P’
simulates P in polynomial time and polynomial space.
We shall use the following notation. For g, h € A™,
we denote by (g, h) the string of length m in alphabet
Ax A defined by (g, h); = (gi, hs). Let F: (AxA)™ —
(A x A)™ be a function. Then we can interpret F' as
a random variable F' : (A x A)™ — A™ as follows.
Suppose F'({g,h)) = (¢’, h’), then we think of F' as
_ [¢ with probability 1/2
Flg.h) —{ h' with probability 1/2

An inheritance operator thus given by F' represents
the situation where parents have always two children.

In the following proposition we shall use an opera-
tor which is not symmetric; we can make it symmetric,
but then we get only a weaker property: each parents
have four children.

Proposition 4.1 Any Genetic Turing Machine P
can be polynomuially simulated by a Genetic Turing
Machine P' where

with the interpretation

1. Pl (AxA)™

above and

— (AxA)™

2. P’ is computable by a deterministic Turing Ma-
chine in linear time.

Proof. Let the Genetic Turing Machine be given
by an alphabet A and a Probabilistic Turing Machine
P, let m be given. Let m’ be the space needed by P
working on inputs of length 2m, more precisely the
length of strings needed to encode such configurations
of P. W.l.o.g. we can assume that P works as follows:

e on inputs gh# it produces kk# instead of just
k3,

e the string kk# is different from the strings that
code configurations of P working on such inputs,

e on each input of size 2m it always stops after ex-
actly ¢ steps, ¢t bounded by a polynomial.

Furthermore we shall assume that the initial popula-

tion is of the form gg# instead of g#. Recall that P

uses one random bit in each computation step.
Define P’ by

Pl((.gg#; hh#)) = (ghw, hgw')

where ghw resp. hgw' encode the initial con-
figuration of P on gh resp. hg;

P'({g1h1w1, g2hows)) = (g1 hiwy, ghhbwh)

where g1hiw; is a configuration (not final)
and g{hjw] is the next configuration cor-
responding to the random bit 0 and where
gahows is a configuration (not final) and
ghhhwh is the next configuration correspond-
ing to the random bit 1;

P'({ggw, hhw')) = (g9, hh#)

where ggw resp. hhw' encode end configura-
tions of P.

For all other inputs P’ can be defined arbitrarily.
The simulation proceeds as follows. First_the tapes
g9# and hh# are randomly mixed into gh# and hg#
by crossing-over and the computation of P on them
starts. Then for ¢ generations P’ works as the lin-
ear operator of the probabilistic machine, except that
it is always performed on pairs. Note that each con-
figuration ghw occurs in half of the cases as the first
component and in the other half as the second compo-
nent. Thus the two next configuration corresponding
to the two values of the random bit, will be produced
with weight 1/2 each. In the ¢ 4 1-st generation P’

transforms the end configuration ggw of P into gg#.

-1

(The ”end configuration” means that P has completed
the computation of P(g, h), not that the genetic com-
putation stops.) Then the process is repeated with
the new population of gg#’s etc. Thus the original
Genetic Turing Machine is simulated in time¢ + 1. &

Essentially the same idea can be used to prove the
next two propositions.

There is a natural generalization of the Genetic
Turing Machine to the case where the quadratic op-
erator is replaced by an operator of degree d > 2.
However essentially no additional power is gained.

Proposition 4.2 The generalized Genetic Turing
Machines with operators of a fixed degree d > 2 can be
stmulated by the usual ones in polynomual time.

Proof-sketch. Let d be given. Use the same proof
as in Proposition 4.1, except that you must take the
tapes of the form gg .. .g# with d occurrences of g and
the ”mixing phase” must be d — 1 steps.]

A universal Turing Machine is a machine M such
that for any Turing Machine M’ there exist a string
¢ (a ”program” for M') such that for each input x,
M computes the same output on c#zx as M’ on z.
It is well known that universal Turing Machines exist
and that they actually simulate in polynomial time.
The same is true about universal Probabilistic Turing
Machines (recall that they output a probability distri-
bution). These in turn can be easily used to construct
universal Genetic Turing Machines.

Proposition 4.3 There erists a universal Genetic
Turing Machine which simulates other Genetic Tur-
ing Machines in polynomial time and space.

Proof-sketch. Apply the proof of Proposition 4.1
to a universal Probabilistic Turing Machine with the
tapes of the form c#gg#, where ¢ is reserved for pro-
grams. u

Let us now compare Genetic Turing Machines with
Probabilistic Turing Machines and Quantum Turing
Machines. Consider a Probabilistic Turing Machine
M computing on inputs of size n. Suppose the ma-
chine always uses some restricted space and hence the
computations can be coded by strings in A™, for some
m. Then we can think of the computation of M as evo-
lution of z : A™ — [0, 1] given by the random variable

P A™ — A™ defined by

Plo) — ho with probability 1/2
@=1 b with probability 1/2

where hg, hq are the next possible configurations after
g- Thus, taking

p(g; h) = Prob[P(g) = h],

the evolution of z is defined by
Z(h) =) plg; h)=(9)- (7)
g

Hence the essential difference is that this operator
is linear, while in Genetic Turing Machines it is
quadratic. (For Probabilistic Turing Machines the ran-
dom variable P is, moreover, given by simple rewriting
rules; it is not clear if Genetic Turing Machines can
use such rules, we shall use crossing-over in Section 6.)
Let us observe that the conditions (2) correspond to
the following ones for Probabilistic Turing Machines.

k) >0,
g(:gkp()g;k) =1 (®)

There 1s another, more exotic, but physically well-
founded concept of a Turing Machine which has a lin-
ear operator. It is the Quantum Turing Machine intro-
duced by Deutch. It works in a similar way as Proba-
bilistic Turing Machine, but the coefficients p(g; h) can
now be arbitrary complex numbers. The vector z rep-
resents only so called amplitudes and the probability is
counted as its Ly norm. The transformation (7) must
preserve the L norm, hence the matrix {p(g;h)}4n
must be unitary. This means that the requirement (2)
is replaced by

Y z9)z(e) = 1,

g

and (8) is replaced by

Yo plg;h)p(k; h) = 0 for g # k,
2 plg;h)p(g;h) =1

5 The power of genetic computations

In order to compare the computational power of
Genetic Turing Machines with the classical ones we
shall consider the complexity class of sets accepted by
bounded error Genetic Turing Machines in polynomial
time and show that it is equal to PSP.ACE.

There is a natural concept of space and time in Ge-
netic Turing Machine computations. The time is the
number of generations. The space is the length of the
tape. Note that we require that the computation of
offsprings P(g,h) is done by a Probabilistic Turing
Machine whose time is bounded by a polynomial ¢(n)

depending on the input length n. Thus this measure is
not very precise, as a lot of computation can be done
between the generations. A more precise measure is
obtained using Proposition 4.1 as the definition. Here
we are interested only in polynomial bounds, thus we
do not need the more precise measure.

We want to characterize the natural class of sets
accepted by bounded error Genetic Turing Machines
in polynomial time. Observe that the space can be
bounded by a polynomial depending on time, similarly
as for Turing Machines, hence such machines have also
polynomially bounded tape. As Russel Impagliazzo
pointed out, the usual simulations techniques can be
used to prove that this class is contained in PSPACE.
Thus we get a full characterization from the following
theorem.

Theorem 5.1 Polynomial space on Turing Machines
can be stmulated by polynomial time on Genetic Tur-
ing Machines, i.e. PSPACE is contained in the class
of sets accepted by bounded error Genetic Turing Ma-
chines in polynomial time.

Proof. Let L € PSPACE. Let M be a Turing Ma-
chine accepting L running in polynomial space. Thus
for a given input length n the configurations of M can
be coded as strings of 0’s and 1’s of length N, where N
is bounded by a polynomial depending on n. In par-
ticular the machine can run only for 2V steps. We
shall assume that it remains in the final configuration
when it reaches such, thus we only need to determine,
if its configuration after 2V steps is an accepting con-
figuration. We shall say that a configuration ws is
k steps after configuration wn, if it is the k-th next
configuration after wy.

Let a sufficiently large n, and hence N, be fixed. We
shall describe the action of a bounded error Genetic
Turing Machine P for the set L. The tape of P will
encode (z,b, i, wy, wy) where

e 2 is the input,
e b will be the output bit,
e i1s a number and

e wiy,ws are 0-1 strings of length N, which will en-
code configurations.

-

The initial population will be (z,0,0, :;!_7‘5, #). The ma-
chine P will work as follows:

1. On an input pair (z,0,0, #, #), (2,0,0, #, #) it
generates a random string wy of length N, each
string with probability 2=~ . Then it checks, if w;

is a configuration of M. If so, then it computes the
configuration wsy which is next after wy and pro-
duces (2,0, 1, w1, wsy) as the output. Otherwise it

produces (z,0,0,0,0).

2. On an input pair (z,0,1, wy,ws), (2,0,1, ws, w3),
where ¢ < N, it produces (z,b, 141, w1, w3) where
b = 1, if wy is the initial configuration and ws is
an accepting configuration of M working on z,
and b = 0 otherwise.

3. On an input pair (2,0, wy,ws), (2,0, 7, w), wh)
it will output (z,0,¢, wi,ws), if ¢ > j, and
(2,0,7,wh,wh), if i < j. Ifi =7 and wy # wi,
then they will not interact.

4. On an input pair (x, 1,4, w1, wa), (x, 0,7, wi, wh)
it will produce (z,1,7, w1, wa).

In all other cases the pairs do not interact.

It is clear, how the evolution from the initial
population will look like. First tapes of the form
(2,0,4, w1, ws) with wy one step after wy are cre-
ated and the rest becomes (1‘,0,0,6, 6) Tapes of the
form (z,0, ¢, wy, ws) will gradually appear where w» is
the configuration 2¢ steps after the configuration w;.
Those with larger ¢ will win over those with smaller ¢,
so the average ¢ will increase. The tapes (z,0,0, 0, 6),
which do not code anything, do not produce new tapes
and quickly disappear. Eventually a large part will
have : = N, which, in particular, means that the finial
configuration of M has been reached. If M accepts z,
then b = 1 on these tapes. Then the tapes with b =1
will increase their frequency, eventually over 3/4. If
M does not accept x, then tapes with b = 1 never ap-
pear. We have to prove that in the positive case the
frequency 3/4 is reached in polynomial time.

Claim 1. Consider a particular generation in the
evolution and let 1 < ¢ < N be fired. Then the fre-
quencies of all (x,0,%, w1, ws), where wy is the con-
figuration 2¢ steps after a configuration wy, have the
same value,

We shall prove it by induction on the generations.
In the first generation all (2, 0,7, w, ws) with ¢ = 1
have frequency 27 and for i > 1 their frequency is
0. The property is preserved to the next generation,
because each such (z,0, ¢, wy, wy) can be produced in a
unique way from tapes of the form (z,0,7—1, wi, wh).
This is because M 1s deterministic and thus if ws is
2! steps after wy, i > 1, there exists exactly one w
such that 2=1 is steps after wy, and ws is 2°~" steps
after w. Hence there exists exactly one pair of tapes
which can produce (z,0, 7, w1, ws). Consequently the
new frequency of (z,0, i, wi, w2) is a function of the old

frequency of (z,0, i, w1, wa) and the old frequencies of
the corresponding pairs. These are the same for all
such tapes by the induction assumption.

Let

K =2(N + [logy N] +2) + 1.

We shall estimate
the frequencies of tapes (z,0,17, w1, wa) in particular
generations.

Claim 2. Consider the aK -th generation, for some
a, 1 < a < N. Then ecither the sum of the frequencies
of tapes (x,0, 4, wi,ws) with i > a is at least 1/4, or
the sum of the frequencies of tapes (x,1,i, w1, wa) is
at least 1/4.

Again we proceed by induction.

Let @ = 1. Since there exists a computation even
of length 2V, there is at least one pair wy, wo, where
wsy 1s one step after wi. Hence in the first generation
the frequency of tapes with i = 0 is at most 1 — 2V,
Due to rules 3 and 4, this decreases after N steps to
(1 —Q_N)2N+1, which is less than 1/4 for N sufficiently
large.

Suppose the claim holds for some a < N. If the
sum of the frequencies of tapes (x, 1,7, wq, ws) is at
least 1/4 in the aK-th generation, then it is at least
so in the (a 4+ 1) K-th generation. Thus suppose that
the frequency of tapes with ¢ > a is at least 1/4 in
the aK-th generation. Hence for some ig > a the
frequency of tapes with i = iy is at least 1/4N.

First suppose that i < N. Again, there exists at
least one pair w, wo, where wy is 200+ steps after ws.
Let w be ”between” wsy and wi, i.e. w is 2°° steps af-
ter wy and wy is 2% steps after w. Then, by Claim 1,
the frequencies of (z,0, 4y, w1, w) and (z,0, g, w, ws)
are at least 1/4N2N hence (z,0,iq + 1,wy, wy) or
(2,1,40 + 1, w1, wa) has the frequency at least

1 2
(W) =277

in the aK + 1-st generation. Thus the sum of the
frequencies of tapes (z,0,4, wy, wy) with ¢ < a is at
most 1 —2~(K=1)_ Due to rules 3 and 4 it decreases to

after the next K — 1 generations.

If ig = N, then, since a < N, the frequency of tapes
(2,0,7, wy, ws) with ¢ < ais at most 1 —1/4N and this
decreases to a value less than 1/2 even sooner.

Thus the claim is proved.

Applying Claim 2 to a = N we get that in the
N K-th generation the sum of the frequencies of tapes

with i = N or b = 1 is at least 1/4. If the frequency of
tapes with b = 1 is less than 1/4, then, by Claim 1, the
frequency of the tape (z,b, 4, w1, ws), where wq encode
the initial configuration of M on z and ws encode the
end configuration of M on z, is at least 1/2N+2 If
M accepts z, then this & = 1, hence this frequency is
amplified to at least 3/4 after N 43 generations. Thus
if M accepts z, then in any case the frequency of this
tape (z, 1,7, w1, ws) will be at least 3/4 after N 4 3
generations. If M does not accept z, then b = 1 never
appears.

Thus we can conclude that the initial population
evolves so that after O(n?) generations the sum of the
frequencies of tapes with b = 1 is at least 3/4, if M
accepts z, and it is 0 otherwise.]

6 Reduction to crossing-over

Here we show that a general Genetic Turing Ma-
chine can be simulated by a Genetic Turing Machine
which uses only crossing over where positions at which
the crossing over is done is determined only by a small
neighborhood of it. (Let us note that the word recom-
bination is often used instead of crossing over.)

Let us be more precise. Let C' be a set of quadruples
of finite strings in alphabet A. We shall call C' local
conditions and assume that it is a finite set. Let g, h €
A™. Crossing over according to the set of conditions C'
is the following procedure. Starting from the left side,
consider the homologous positions in the strings g and
h. If the part before the position ends with uq in ¢ and
with vy in h, and the part after the position starts with
us in g and with vy in h for some (uy, vy, us, v2) € C,
then we switch the whole parts after the position and
we move to the next position left. Otherwise we just
move to the next position to the left. Thus if

9192 9p ... Gi Ji+19i+2 ... gr

hihs hg...hi | higthiga.. . hg
and

(9p - -9ishg - higix1. . gr hig1. . hs) €C,

then we get

9192 oo Gp---Gihiy1 | higa.. . b

h1h2 hq~-~higi+l Ji+2---Gr
Otherwise we get

gi192 9p .- 9igi+1 git2...9r

hihs hg ... hihiy1 | higa... hg

We shall furthermore assume that we can use infor-
mation about the beginning and the end of the string.
E.g. when applying crossing-over we can assume that
the words always start and end with a special symbol.

The crossing-over will be interpreted in the same
sense as in Proposition 4.1, i.e. the inheritance coef-
ficients will be p(g,h; k1) = 1/2 and p(g, h; ks) = 1/2
where k1 and ko are the two strings resulting from
crossing over g and h. Note that again this is not a
symmetric operator.

It is clear that crossing over in Nature must allow
some randomness, which is not present in the defini-
tion above. If a deterministic procedure as above was
used, then a couple of parents would have always all
children identical. The definition above can be gener-
alized to something which is closer to reality. Namely,
instead of taking a set of quadruples we can take a
probability distribution on all quadruples of words of
a certain length. Then the algorithm of crossing over
described above would be the same, except that we
would switch the strings at a particular site with some
probability 0 < p < 1 depending on the context. We
shall prove the simulation for the more restricted case
of deterministic crossing over. The reason is only to
get a stronger mathematical result. In fact, a part of
the simulation could be simplified, if we allowed ran-
domness in crossing over.

Because of the very restricted means, we have to
consider a weaker concept of simulation than we used
in Section 4. Namely:

1. The simulated tapes g cannot be simply initial
parts of the simulating tapes g’; instead we shall as-
sume that g is represented by

a191a29s - . . AmGmam+108m420 ... @m0,

where aq,...,a, are strings of some fixed constant
length. We can assume that they are all the same in

IMthe initial population, except for a@,,41, which deter-

m

m

Im

mines the end of g.

2. Furthermore we need some auziliary tapes which
will not encode the original tapes at all and which will
be used only for rewriting. Those which do code the
original ones will be called proper. The population will
consist of proper and auxiliary tapes. We shall ensure
that the frequency of proper tapes is a fixed positive
number.

3. We shall simulate the original frequencies not
precisely, but up to some error . Let us denote the
original population by z, the set of indices on which it

gmis simulated by S and the restriction of the simulating
hmpopulation 2z’ to S and to proper tapes by z'|s proper-

10

Then the equation (6), Section 4, is replaced by

| Zl(it)|5,proper - Z(z) | S g.

4. Finally we will not be able to keep the error
small for ever, thus we shall consider only simulation
of polynomially many generations.

In order to state the next theorem concisely, let
us say that P can be weakly polynomially simulated
by a class of Genetic Turing Machines X', if for every
polynomial ¢, there exists a Genetic Turing Machine
P’ € X which simulates P on A™ in the above sense
for q(m) generations, in polynomial time, polynomial
space and with error ¢ < ¢q(m)~".

Theorem 6.1 Fvery Genetic Turing Machine can be
weakly polynomuially simulated by a Genetic Turing
Machine with crossing over determined by a finite set
of local conditions.

By the following lemma, we need to simulate just
one step with sufficiently large precision.

Lemma 6.2 Let Vq, V5 be two inheritance operators
determined by inheritance coefficients p1(g, h; k) resp.
p2(g, h; k). Let | be a positive integer. Suppose that for
every g,h, k € G,

lp1(g, h; k)

and |G| < on', Apply V1, Va to the same population z
n'-times. Let z1 resp. zo be the corresponding popula-

tions. Then
Z 21 (g

hence also the mazimal distance, will still be exponen-
tially small.

— palg, hs k)| < 27

) — z2(9)],

Proof. Suppose that

max p1(g, h; k) — palg, b; k)| < 4.
g,h,k

Consider two populations such that

2late

Let z{, 25 be the populations in the next generation.
Then

Z |21 (k
2

k

—22)|SE

—22)|:Z Zplzlzl—pQZQ,zQ =

k gh

E p12121 — p2z121 + paziz1 —
gh

11

—Pp22221 + p2z2z1 — P222z2| <

Z |(p1 — p2)z121| + Z [(21 — 22)p2z1]

ghk ghk

+ Z [(z1 — z2)paza]

ghk

YD alg=an) | +

k

+Y (|Zl (9) = 22(9)1 D Pl b; k)zl(h))

IN

IN

+Z |Z1(h)_Z2(h)|ZP2(g,h;k)zQ(h) =
= Z‘H‘Z (|Z1(!J) —Zz(g)IZzl(h)> +
+Z (lz1) = z2(h)IZZQ(h)) < |GJ6 + 2.

(We have omitted some g, h, k for sake of readability.)
Thus if we start with z; = z5, we get the bound for
the #-th generation

2

k

(k) - =7 (k)| < 391G,

1+1, |G| < 2”1,2' = n', which gives
an exponentially small upper bound gnign'g-n'*t g

In our case § = 27"

The proof of Theorem 6.1 will be an essential ex-
tension of the proof of Proposition 4.1. In this pre-
liminary version we only present the main ideas; the
details must yet be worked out.

As in the proof of Proposition 4.1 there will be two
types of simulation steps:

e Steps where ggw; and hhws produces ghun and
hgws. We shall call it crossing-over steps. The
simulation is straightforward here. Let us recall
that we have to encode the original tapes by tapes
with some auxiliary strings placed between the
symbols from the original ones. Thus e.g. ggw;
should be in fact

a1g91 .. . Amdmm4191 - . - AamImA2amF1W1 ..
e Steps where an action of the Probabilistic Turing
Machine is simulated. We shall call it rewriting

steps. This will be done using auxiliary tapes.

Furthermore there will be also

! Wyn! —m

e random bit generating steps, and

e waiting for synchronization steps.

1. The
auxiliary tapes will have form bygy ...b,1 g where
b;-s will be always different from a;-s, thus proper and
auxiliary tapes will be distinguishable locally. Fur-
thermore we must ensure that the information bits g;
are also locally distinguishable from the labels a; and
b;. This is quite easy.

2. We shall ensure that on the auxiliary tapes all
short sequences occur with frequencies bounded be-
low by a positive constant. Thus one rewriting will be
delayed only by a constant factor. The simplest way
to do it is to allow a ”random” rule for crossing-over
where for some context crossing over would be done
with probability 1/2. Tt can be done also for the ”de-
terministic” crossing-over defined above using a more
complicated schema for crossing-over auxiliary tapes.

Here is a possible way. Suppose we need to rewrite
words of length up to k. We take periodic auxiliary
tapes with period k and such that each has the same
frequency p and the frequency of proper tapes ¢ is
much smaller than p. Thus p, ¢ are positive constants
depending only on k. If an auxiliary tape is used for
rewriting, it is distorted. We will not allow rewrit-
ing which would make another change near a distorted
place, thus the identity of an auxiliary tape, and hence
also its frequency, will be preserved. Then we intro-
duce a rule that two mating distorted auxiliary tapes
will make all corrections on themselves which reduce
the number of changed bits on both. This rule restores
the original periodic tapes very efficiently. Thus the
frequency of distortions will first grow, but eventually
it will be balanced by the restoration force.

3. Rewriting cannot be simulated directly by cross-
ing over, since we need to keep the labels a; and b;
which distinguish proper and auxiliary tapes. Sup-
pose we need to replace a part of the tape of the
form a;g; ...a;g; by aig; ...a;jg;. Then, naturally, one
would like to use an auxiliary tape with the cor-
responding part big;...bjg;. However the crossing-
over algorithm first replaces only g; by g; and then
the context is distorted for the next replacement.
A solution to this problem is to do this rewriting
in two stages. We shall code one bit g; by sev-
eral ones, thus we may have codes also for pairs
(9i,91). In the first stage we rewrite a;g;...a;9; to
ai(gi,97) ---a;(g5,9;) (no context is lost). In the sec-
ond we rewrite a;(gi,9;)-..a;(g;,9;) to aigi...a;g;
(no context is needed).

12

4. We need to use a random bit for each rewrit-
ing, because the rewritings correspond to elementary
actions of a Probabilistic Turing Machine. (This is
different from Proposition 4.1, where the bit was pro-
vided by random order of the two tapes.) This can be
done by having a special sort of auxiliary tapes which
is used only for providing random bits, and thus it
is not biased by ordinary rewriting. The next step
of the Probabilistic Turing Machine will be simulated
only when a new random bit is copied on the proper
tape near the position which is to be rewritten.

5. The most difficult problem is to ensure syn-
chronization. Rewriting using auxiliary tapes leads
to a random process in which some tapes are rewrit-
ten faster than others. Also the mean time needed for
rewriting may depend on the type of the tape. If we
allowed the crossing-over step to be performed imme-
diately after the tape is rewritten, those which were
rewritten faster would get advantage. Therefore each
proper tape will be additionally equipped with a clock
which will control when crossing-over may occur. It
will wait much longer than is needed for rewriting in
the average, consequently only an exponentially small
fraction of tapes will not be rewritten. Then it will
fire a signal which will allow crossing-over. After the
signal has been fired, such a proper tape will not en-
ter new rewriting phase before it crosses-over with
another one. They will have enough time to cross-
over, thus again only an exponentially small fraction
of tapes will not manage to do it in time.

The speed of the clock must be independent of the
rewriting process. This can easily be achieved, since
the clock will be placed on different cells of the tape
and thus it will use different parts of the auxiliary
tapes. The frequencies of combinations of symbols on
these positions will be not influenced. The clock will
be hidden in the labels a;, thus the signal for start-
ing the crossing-over steps will appear on the position
between the first occurrence of a code of g and the
second one, where we assume that after rewriting the
tape encodes a string ggw.

6. We describe a suitable clock. Let us forget about
the strings that will be between the bits coding the
clock. The clock will have two versions

000...0001000...000
and the inverse
111...1110111...111

both with the same frequency. The position of 1 resp.
0 from the left determines the time. Advancing will

be done in two steps

000...0001000...000
000...0001100...000
000...0000100...000

and similarly for the inverse version. This way of
rewriting has the advantage that the probability of
rewriting depends only on the frequency of 0’s and
1’s on single positions. Since we use two complemen-
tary versions of the clock the original frequency 1/2
for each bit on the auxiliary tapes will not change.
Thus the distribution of times shown on the clocks will
be precisely binomial with p = 1/4. Now we can use
Chernoff’s bound. After ¢ generations the frequency
of tapes on which the clock shows a time between
t/4 —t3/* and t/4 + t3/* will be at least

_opl/2

1—2e . 9)

7. Let us compute what we need in order to be
able to apply Lemma 6.2. In order to obtain preci-
sion 27" we set the time ¢ for the crossing-over
step not only so large that the frequency of the non-
rewritten tapes is exponentially small, but also we take
t > n?*+2 which will ensure that the bound in (9) will
be of the needed order.

We shall not present further computations in this
preliminary version. Let us only note that a simi-
lar argument based on Chernoff’s bound can be used
to ensure sufficiently small frequency of nonrewritten
tapes. |

7 Conclusions

We have presented a new model of computation
which can be considered as a generalization of ran-
domized computations and also as a kind of paral-
lel computations with random architecture. We have
shown that it is very powerful, namely, that polyno-
mial time computations on this model can simulate
polynomial space computations on Turing Machines.

The conclusions for genetics are, of course, only
speculations, as we do not know if and how the
crossing-over is controlled. We have, however, shown a
theoretical possibility that nontrivial information pro-
cessing is possible on the molecular level, since we have
proved that crossing-over alone is sufficiently strong

13

to simulate complex computations. We have used a
very restricted model in which the positions where the
strings can cross-over are determined by a small neigh-
borhood (local conditions). In reality the mechanism
uses randomness and maybe more, which makes com-
plex computations even more possible.

Let us also stress that combining Proposition 4.3
with Theorem 6.1 we get that there are local con-
ditions for crossing-over which are wuniversal in the
sense that any genetic computation can be simulated
by them, provided we encode a program for it on the
tape. Looking at the proofs one could expect that
such universal conditions must always be very com-
plex. But I think the converse is more likely. I would
even conjecture that randomly chosen local conditions
are universal (if we take sufficiently long conditions
with suitable probability).

We conclude with a bold speculation: The existence
of universal local conditions means that it is possible
that the same local conditions for crossing-over are
used by all species, similarly as they all use the same
genetic code for the synthesis of proteins, and that
they are universal.

This suggests two direction in experimental re-
search:

1. to look for reactions of populations to changing
environment which cannot be explained by purely
random mutations;

2. to estimate the probabilities of crossing-over on
particular sites of the DNA.

References

[1] D. Deutsch, Quantum theory, the Church-Turing
principle and the universal quantum computer.

Proc. Roy. Soc. (London), A400, 97-117

W.J. Ewens: Mathematical Population Genetics.
Springer-Verlag, 1979.

Y.I. Lyubich, Mathematical Structures in Popu-
lation Genetics. Springer-Verlag, 1992.

Y. Rabinovich, A. Sinclair, A. Wigderson,
Quadratic dynamical systems. Proc. 33-rd TEEE
Symp. FOCS 1992, 304-313.

J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A.
Steitz, A.M. Weiner, Molecular Biology of the
Gene I, II. Benjamin/Cummings, 1987.

