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Abstract. The modulo p counting principle is a first-order axiom schema saying
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universe with itself) in a consistent way. It trivially holds on every finite structure.
An equivalent form of the the mod p counting principle is the following: there
are no two first-order definable equivalence relations ® and W on a (first-order
definable) subset X of the universe A (or of A’ for some i = 1,2,...) with the
following properties: (a) each class of ® contains exactly p elements, and (b) each
class of ¥ with one exception contains exactly p elements, the exceptional class
contains 1 element. In this paper we show that the mod p counting principles,
for various prime numbers p, are independent in a strong sense.
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Introduction The first nonpolynomial lower bound for constant depth Frege
proofs were given for the proofs of the Pigeonhole Principle ([Ajt1]). Later this result
was improved both in terms of the length of the proof and the constructivity of the
methods involved. (See [BIKPPW], [BPU], [KPW], [PBI]). In the search for further
tautologies whose proofs are even more difficult than that of the PH P the next step
was the so called Parity Principle which is the mod 2 counting principle as defined
in the abstract. It was proved in [Ajt2] that even if we are allowed to use PH P,, as
an axiom schema (in the sense described above) the Parity Principle has no constant
depth polynomial size Frege proof. (The Parity Principle implies PHP,, in this
sense, if it is stated in the form that there is no one-to-one map of {1,...,n} onto
{1,...,n — 1}. If we raplace “onto” by “into” then it is not known whether the
implication holds.) The Parity-Pigeonhole theorem was further improved in the same
sense as the original Pigeonhole result, by Beame and Pitassi, (see [BP]). The proof
of the mentioned theorem about the Parity Principle can be modified so that it gives
that generally for any fixed p, C'P, ,, does not imply PHP,. In this paper we show
that for various primes p the statements C'P, ,, are independent of each other in the
sense that if p, ¢ are different primes (of constant size) then C'P, ,, has no polynomial
size constant depth Frege proof even if we use C'P, ,, as an axiom schema. (The proof
yields, without any extra effort, that even if we use C'Py, j,...,C' Py, » together as an
axiom schema, where ¢, ..., g are primes distinct from p and of constant sizes, then
C P, still has no constant depth polynomial size Frege proof.)

The proof uses a somwehat extended version of the combinatorial, and model
theoretical part of the original Pigeonhole and Parity-Pigeonhole results. The essential
new part of the proof is the application of a theorem about the solution of a symmetric
system over a finite field. (We prove this theorem in [Ajt4].) The theorem essentially
says that if there is a linear system (mod p) whose variables are indexed by sequences
of length k from a set A of size n (k is fixed and n is sufficiently large), and the system
is invariant under permutations of A, then a solution (if exists) can be given in a way
which is essentially independent of n. We will use this theorem in the following way:
we will have a symmetric system for each n and we have to decide, for which n does
it have a soltuion. This presentation of a solution will guarantee that the the fact

whether our specific system has a solution or not depends only on the behavior of n

1



modulo p® where ¢ is a constant. The classical solutions (like Cramer’s rule) would
have led to the hopelessly difficult problem of determining the value of a complicated
n x n determinant mod p. Later we give an exact formulation of a corollary of this
theroem (Theorem 4) that we will actually use in our proof.

Finally we note that Soren Riis gave independently a different proof of the main

theorem.

1. Suppose that L is a first-order language with equality and a finite number
of relation and function symbols. Assume also that < is a binary relation symbol of
L and T is a first-order theory in £. We will say that T is weakly finite if for any
natural number n, T has a model whose universe is finite and contains more than n
elements and in any model of 7', the relation < is a total order of the universe.

We will say that a language L' is an extension of £ if it contains all of the
relation and function symbols of £ (and possibly others too). Assume that 7 is an
interprertation of £ and 7' is an interpretation of L. We say that 7' is an extension of
7, 1f 7' as a function is an extension of 7, that is, the universe of the two interpretations
are the same and the relation and function symbols of £ has the same interpretation
according to 7 and 7'

Definitions. 1. Assume that A is the universe of an interpretation o of a firstorder
language, £ and 7 is a positive integer, X C A*. We say that X is first-order definable
if there is a finite sequence ay, ..., a; from the elements of A and a first-order formula
¢ of L with j 4 ¢ free variables so that for each by,...,b; € A we have (by,...,b;) € A
iff =o &(b1, ... bi a1, .., a5).

2. Assume that X is an arbitrary set and E is an equivalence relation on X and
p is a prime number. We say that E is a p partition of X if each class of E contains
exactly p elements. E will be called a p-exceptional partition of X if each class of F
with one exception contains exactly p elements and the exceptional class contains 1
element.

3. Assume that that X is a subset of A or of A for some i = 1,2..., where A
is the universe of an interpretation of a first-order language. We will say that the

p equipartition principle holds for X if there are no first-order definable equivalence
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relations Fy, Ey on X so that Ey is a p-partition of X and FE; is a p-exceptional
partition of X.

4. We say that the modulo p counting principle holds in an interpretation of a
first-order language if for any positive 7 and any first-order definable subset X of A,
where A is the universe of the interpretation, the p-equipartition principle holds for
X.

Clearly for any fixed language, the the modulo p counting principle can be stated
as a first-order axiom-schema S, that is the principle holds on a structure iff each
axiom of S holds on it. For an alternative definition of the modulo p counting principle
and further motivation see [Ajt4]. (As we have indicated in the abstract, if there is a
first-order definable ordering of the universe A, then the modulo p counting principle
is equivalent to the existence of a function on the first-order definable subsets of A?,
¢ = 1,2,... with values in F}, so that the function satisfies the usual properties of the
cardinality function, that is, it is additive on disjoint sets, multiplicative on direct
products, invariant under first-order definable one-to-one maps, and takes the value
1 on singletons. Such a function can be called a modulo p cardinality function.)

Suppose now that p and ¢ are two distinct prime numbers. The following theorem
says that the “modulo p counting principle” and the “modulo ¢ counting principle”

are independent in a strong sense.

Theorem 1 . Suppose that T is a weakly finite theory of the language L. Then
there exists an extension L' of L so that the following theory T' in L' is consistent:
T + “the axiom schema of the modulo p counting principle” + —“the axiom

schema of the modulo q counting principle”.

L' will be the language that we get from the language £ by adding a new binary
relation symbol ¥ and the ternary relations + and x which define the arithmetic
operations in Peano Arithmetic. Let M be an arbitrary nonstandard model of Penao
Arithmetic and let n be a nonstandard element of M so that there is an interpretation
7 of £ on the universe {0, 1,...,n} so that < has the same interpretation according to
7 as in Peano Arithmetic. (Since T is weakly finite there is such an interpretation of 7'

for an infinite set of standard positive integers n. Moreover all of these interpretations
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are elements of N. Therefore there is a nonstandard n as well with this property. E.g.
if m is an arbitrary nonstandard element of N then the greatest n < m with the given
property will be necessarily nonstandard.) We assume for the moment that n = 0
(mod ¢). Later we will explain why this assumption can be dropped. We will show
that there is an equivalence relation ¥ on the set {0,1,...,n} (this is an infinite set)

so that if 7/ is the extension of 7 defined by 7/(¥) =¥, then we have

(2) 7' ET 4+ “¥is an equivalence relation on the universe and each class of ¥
contains exactly ¢ elements” 4+ “the modulo p counting principle”.

That is, we want to show that the mod g-equipartiton principle does not hold
on the set {0,1,....,n}, but the mod p-equipartiton principle holds not only on
Mu+1 ={0,1,...,n} but on every first-order definable subsets of M,+; and also,
for each standard 2, on every first-order definable subsets of the Cartesian product
1\1,i+1 = M41 X ... X M4y (¢ copies).

Since M is a model of Peano Arithmetic and the number of elements of the set
{0,...,n—1} is divisible by ¢ (in M) it is easy to give a first-order definable equivalence
relation on {0,1,...,n — 1} so that the number of elements in each class is divisible by
g. E.g we may divide this set into consecutive intervals of length ¢. This shows that
the universe {0,1,...,n} has a first-order definable ¢ exceptional partition already in
7. Therefore the property of ¥ given in (2) implies that 7' | = “the modulo ¢ counting
principle” and so out theorem is a consequence of (2).

Sketch of the proof.

We will construct ¥ in the following way. For each € = 1/k where k is a standard
positive integer we pick a ¢-partition ¥, of a subset of {1,...,n} with n—n® elements,
so that ¥, € M. Moreover we pick the sequence in a way that if € < ¢ then W, is
an extension of W.,. The common extension of all of the partitions ¥, will be ¥. We
show that the sequence can be picked in a way so that
(P) for any first-order formula ¢ the truth value of ¢(a), a € {1,...,n} can be
decided in the knowledge of a suitbale ¥, which does not depend on a, and in the
knowledge of those classes of ¥ which contain a set U, C {1,...,n} of constant size,
where U, does not depend on .

(The method of constructing such a model of M[¥] is a variant of Cohen’s method
of forcing as described in [Ajt2].) The essential property of the extended model M|[¥]
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is that first-order formulae over it can be decided using only partial information about
0.

We want ot show that M[¥] E“mod p counting principle”. For the sake of
simplicity we assume that p # 2, the p = 2 case is only slightly more complicated.
Suppose that the mod p counting principle does not hold. We show that, then there
exists a first-order definable weight function x on the edges of a complete directed
graph G with n® nodes, taking values in the finite field with p elements so that,

(1) for each fixed zg € G we have

[{y € G[x(z0,y) # 0}| < p, and

{y € Glx(y,z0) # 0}] < p.

(2)  x(z,y) = —x(y,z) for all z,y € G

(3) forall z9 € G we have ZyeG X(zo,y) = 0. ((1) implies that the sum is defined.)
(4) thereis an y; € G so that ) .. x(z,y1) =1 and

for all yo # y1, yo € G we have Y o x(x,y0) = 0.

Such a function could not exist in a model of Peano Arithmetic since (2),(3)

and the second part of (4) would imply that >, x(z,y1) = 0 in contradiction to
the first part of (4). Although M[¥] is not a model of Peano Arithmetic so this
argument is not valid there, using property (P) we show that there is a structure
in M, which is similar enough to (G, x) so that we still get a contradiction. This
structure will provide a solution for a symmetric system E, of linear equations. (y
itself was a solution of a symmetric system too, if we consider the premutations only
of G —{y1}).

We use the following observation in the proof: if g|n + 1 then the construction of
U can be carried out in M, therefore the pair (G, ) is in M, what, as we have seen,
is impossible. Therefore we know that if g|n + 1 then E, has no solution. On the
other hand using our theorem about the symmetric linear equation we show that the
fact whether our system has a solution or not depends only on the residue class of
n mod p°, if n is sufficiently large, where ¢ is a constant (standard) integer. Clearly
each residue class mod p° contains an integer n so that g|n + 1 therefore the system
E,, has no solution for any sufficiently large integer n.

We will construct ¥ in the following way. For each € = 1/k where k is a standard

positive integer we pick a ¢-partition ¥, of a subset of {1,...,n} with n—n® elements,
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so that ¥, € M. Moreover we pick the sequence in a way that if € < ¢ then ¥, is
an extension of ¥.,. The common extension of all of the partitions ¥, will be ¥. We
show that the sequence can be picked in a way so that

(P) for any first-order formula ¢ the truth value of ¢(a), a € {1,...,n} can be
decided in the knowledge of a suitbale ¥, which does not depend on a, and in the
knowledge of those classes of ¥ which contain a set U, C {1,...,n} of constant size,
where U, does not depend on .

(The method of constructing such a model of M[¥] is a variant of Cohen’s method
of forcing as described in [Ajt2].) The essential property of the extended model M[¥]
is that first-order formulae over it can be decided using only partial information about
0.

We want ot show that M[¥] =“mod p counting principle”. For the sake of
simplicity we assume that p # 2, the p = 2 case is only slightly more complicated.
Suppose that the mod p counting principle does not hold. We show that, then there
exists a first-order definable weight function x on the edges of a complete directed
graph G with n¢ nodes, taking values in the finite field with p elements so that,

(1) for each fixed zg € G we have

[{v € G[x(x0,y) # 0}| < p, and

[{y € Glx(y,z0) # 0}] < p.

(2) x(z,y) = —x(y,z) for all z,y € G

(3) forall z9 € G we have ZyEG X(zo,y) = 0. ((1) implies that the sum is defined.)
(4) thereis an y; € G so that ) . x(z,y1) =1 and

for all yo # y1, yo € G we have ) . x(z,y0) = 0.

Such a function could not exist in a model of Peano Arithmetic since (2),(3)
and the second part of (4) would imply that > .. x(z,y1) = 0 in contradiction to
the first part of (4). Although M[¥] is not a model of Peano Arithmetic so this
argument is not valid there, using property (P) we show that there is a structure
in M, which is similar enough to (G, x) so that we still get a contradiction. This

structure will provide a solution for a symmetric system E, of linear equations. (y

itself was a solution of a symmetric system too, if we consider the premutations only

of G —{y1}).



We use the following observation in the proof: if g|n + 1 then the construction of
U can be carried out in M, therefore the pair (G, ) is in M, what, as we have seen,
is impossible. Therefore we know that if ¢|n + 1 then E, has no solution. On the
other hand using our theorem about the symmetric linear equation we show that the
fact whether our system has a solution or not depends only on the residue class of
n mod p°, if n is sufficiently large, where ¢ is a constant (standard) integer. Clearly
each residue class mod p° contains an integer n so that g|n + 1 therefore the system
E,, has no solution for any sufficiently large integer n.

Now we return to the actual proof. In the proof of (2) we will use the following
notions which were introduced in [Ajt4] in a slightly more general form. Examples
motivating the following definitions were also provided there.

We will be interested in linear equations over Fj,, where F), is the field with p
elements. The variables in the equation will be associated with sequences of length %
consisting of subsets of H and H x H, where H is a fixed finite set. Actually we will
have several group of variables each group will be associated with an element of a set
I'. More precisely we have the following definiton:

Defintion. Suppose that H is a finite set, |H| = n and ¢,r are a positive inte-
gers. Let H(®") be the set of all sequences Dy, ..., Dy, 1 < t' < t with the following
properties:

(a) foreachi=1,... ¢t either D; C H or D; C H x H,
(b) foreachi=1,..,t, |D;| <r.

Let A = H®" | With each element of § of A we associate a variable z5. We
will be concerned with systems of linear equations where each single equation is of
the form 25 asxs € A = b where as € F),, b € F), for all 6 € A. If we have several
equations then we will use an other subscript k € K that is our system of equations
will be:

(3) E&eA as ks = by
where as . € F},, bs € F}, for all k € K,6 € A. We will be interested in solutions with
values in F),.

2. Assume now that 7 is a permutation of H. The map 7 can be extended in a

natural way onto the subsets of H or H x H by Dn = {ax| « € D} if D C H and
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Dr = {{am,ym)| (z,y) € D} if D C D x D. We may further extend © onto A by
(Dy,...,Dp)yr =(Dy7,...., Dy)m. We will say that the linear system (3) is symmetric
if for each k € K the equation Z&eA asx xTsw = by 1s also an equation of the system.
The symmetric hull of a system will be the smallest symmetric system containing it.
3. Let H' be a subset of H and A’ = H'(®™). Suppose that a' is a F-valued
function defined on A" and Hy C H', |H' — Hy| > rt and ¢ is a F}, valued function
defined on t. We will say that the system (3) is based on the quadruplet o', Hy, H', g
if the following holds:
(a) bex =g(k)forall ke K
(b) for any permutation m of H which fixes each element of Hy, and for all § € A,
k € K if 67 € A’ then a5, = agmn.
4. We will say that a symmetric system FE is induced by the quadruplet
a',Hyo,H' g (over H) if F is the symmetric hull of a system based on this quadruplet.

The following theorem is an immediate consequence of Corollary D6 of [Ajt3].

Theorem. 4 . For all positive integers t,l,r and prime p there is a positive
integer ¢ so that if Hy C H', |H' — Hy| > rt, T, K are finite sets, I' < [, |H'| < I,
|K| <1 and a is a F, valued function on A' = H'®™) and g is a F, valued function
on K then the following holds:

There is a subset () of the residue classes modulo p°, so that for any sufficiently
large n, if H is a set containing n elements, H' C H, and the symmetric system E
is induced by the quadruplet o', Hy, H',g over H, then E has a solution iff n = s
(mod p©) for some s € Q).

Definitions. 1. A partition of a set S is a set of pairwise disjoint subsets of S,
whose union is 5.

2. We will say that the partiton P of the set S is a g-partition if each class of P
is a set with exactly ¢ elements.

3. A g¢-partition of a set S’ C S will be called a partial ¢-partiton of S.

4. The partial g-partitons P, () of the set S will be called compatible if every

class of P is either a class of () too, or disjoint from every class of ().
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5. Suppose that P is a partial g-partition of the set S and V' C S. We say that
V covers P iff each class of P contains at least one element from V. We say that V is
inside P iff V is a subset of | J P. V supports P iff it is both inside P and covers P.

Suppose ¥ is a g-partition of M, = {0,1,...,n}. (Of course ¥ is not an element
of M.) Let 7' be the extension of 7 with 7/(¥) = ¥. Obviously =, T A = “the
modulo ¢ counting prinicple for ¥”. For the proof of Theorem 1, it is sufficient to
prove that for a suitable choice of ¥, we have =, “the axiom-schema of the modulo

p counting principle”.

We will construct ¥ with a variant of Cohen’s method of forcing. The construc-
tion is described in section 2. It will be trivial that ¥ is a partition of M 4+1 and each
class of ¥ has exactly ¢ element. The more difficult part of the proof is to show that
the “modulo p counting prinicple” holds for 7/, that is, in the structure M,[¥]. In
section 2 we will show that if the “mod p counting principle” is not true in M,[¥]
then already in M there must be certain objects which have properties similar to that
of ¥. In this section we only formulate these properties (see conditions (5) below)
and show that they cannot hold in any model of Peano Arithmetic. The missing part
of the proof will be given in section 2. We will prove there that if the “modulo p
counting principle” does not hold in M[¥], and M was an elementary extension of
the standard model of Peano Arithmetic then the following statement holds in the
standard model of Peano Arithmetic: (for the sake of simplicity we formulate the

statement only for the p # 2 case. The p = 2 case is only slightly more complicated.
We will show at the end of this section how to handle that.)

(5) there exist a positive integer k so that for all mg there exists a positive integer
m > myg, a finite set H with m elements and two functions f,¢ with the following
properties:

(6) fis a function of three variables and f(U,V,Q) is defined it U C H, V C H,
|U| = |V] =k, and Q is a partial g-partition supported by U.

(7)  each value of f is an element of F),

(8)  if the partial ¢ partitions P and @) are compatible and both f(U,V,P), and
f(V,U,Q) are defined, then f(U,V,P)=—f(V,U,Q).
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(9)  the function ¢ (of one variable) is defined on the set of all subsets of H with k&

elements.

(10) if U € H, |U| = k and the partial ¢-partition P is supported by U then
ngH,|V|:k fU,V,P)=g(U).

(11) EUQH,|U|:k g(U) =1.

Clearly the values of the functions f and ¢ satisfiy certain linear equations. We
want to write up this equations using the formalism of Theorem 4. Let ¢t = 3 and
r = kq. We will have three groups of equations. We get the groups from (8), (10)
and (11).

Let Ky be the set of all quadruplets (U, V, P, Q) so that U,V are subsets of H
with k elements and P is a partial ¢ partition supported by U and @) is a partial ¢
partition supported by V', and P, Q) are compatible. If k = (U, V, P, () € K; then let
aw,v,pye = 1, avu,Q)x = —1. asx = 0 for all other values of 6 € A. Finally let
b, =0for all x € K.

Let K3 be the set of all pairs (U, P) so that U is a subset of H with k elements
and P is a partial ¢ partition supported by U. If k = (U, P) € K, and V is any subset
of H with k elements then let a(yv,py,x = 1, a@y,x = —1 and as, = 0 for all other
values of 6 € A. Finally let b, = 0 for all k € K.

Let K3 be an arbitrary set with one element which is disjoint from K; U Ky. If
x € K3 then for all subset U of H with exactly k elements let a(y,,, = 1 and for all
other values of 6 € A, let as,, = 0. Finally let b, = 1 for the single x € Kj.

It K = K, UK;U K3 then Ep will be the following system of linear equations

(12) EéeA ag gl = b;{, ke K
Clearly system Ep is symmetric. Properties (5.1),...,(11) imply that the following

evaluation of the variables x5,6 € A is a solution of Ep:

(a) if U,V are subsets of H with k elements and P is a partial ¢ partition of H
supported by U then zy v py = f(U,V, P)

(b) if U is a subset of H with k elements then zn = ¢(U)
(c) x5 =0 for all other choices of § € A.
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Now we give subsets Hy C H' C H so that |H'| depends only on k (and not
on m = |H|), a function a' defined on A’ x K', where A' = H**¢ K' C K, and
a function ¢ defined on K' so that the system Ep is induced by the quadruplet
a',Hy,H' g over H.

Let H' be an arbitrary subset of H with 6kq elements and let Hy C H', |Hy| =
2kq.

Finally let K' = K| U K} U K3, where

(U,V,P,Q) € Ky will be an element of K| too, iff U,V C Hy and P,QQ C Hy x Hy;

(U,P) € Ky will be in K} iff U C Hy, P C Hy x H,.

We define g by ¢g(k)=0if k € K{ UK} and g(k) =1 if k € K3.

a' is the restriction of @ onto A’ x K'. It is easy to check that Ep is induced by
the quadruplet o', Hy, H, g.

According to Theorem 4 if we consider now all of the possible sets H O H'
the fact wether the system E g has a solution or not depends only the value of |H |
modulo p¢ (at least if |H| is sufficiently large.) We will get a contradiction by showing
that if m = |H| is divisible by ¢ then Eg has no solution. Indeed, in each residue
class modulo p© there are infinitely many integers which are divisible by ¢ and so by
Theorem 4, Ey has no solution if |H| is sufficiently large, in contradiction to (5).

Suppose now that |H| is divisible by ¢. Then there is a ¢ partition S of the whole
set H. Suppose that E has a solution. Then there are functions f, g with (6),...,(11).
We define binary function F on, [H]¥, the set of subsets of H with k elements. If
U,V € [H]* then let P be the partial ¢ partition of H supported by U that we get
from S by keeping only those classes of S which has a nonempty intersection with U.
Let F(U,V) = f(U,V,P). According to (6),...,(11), the functions F and ¢g have the
following properties:

(a) F(U,V)=-F(V,U)foral U,V € [H]*,
(b)  Xvepp FU, V) =g(U) for alllU € [H]*

(c) ZUG[H]k g(U) =1.

This is however impossible since if we add the equations (b) for each U € [H]*

then we will get the following:

Yuvervev(FWUV)+ FV,U) + e FUU) = Xpermre 9(U).
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(a) implies that F(U, V) + F(V,U) = 0 for any U,v € [H]*. Since p # 2 we we
have F(U,U) = 0 too. Therefore EUG[H]k g(U) = 0 in contradiction to (c).
The p = 2 case can be handled in the following way: we will show that in this

case (5) remains true if we add the following property of the function f:

(13) f(U,U)=0forall U € [H*].

The proof remains the same, only we have to include the corresponding equation
in the system Ep.

Finally we explain why can we drop the n = 0 (mod ¢) condition.

Let n +1=a (mod ¢), 0 < a < ¢. Then there are positive integers n', r so that
n' =0 (mod ¢) and n+1=a(n' + 1)+ rq where r < ¢%. This means that the interval
[0,n] can be cut into a+ 1 disjoint subintervals so that the first a subintervals Iy, ..., I,
are of length n' +1 and the last subinterval I, is of length rq. Applying the already
proven part of the theorem with n — n' we get an equivalence relation ¥ on the set
{0, ...,n'} so that each class of ¥ contains exactly ¢ elements. Since |I;| = 1 (mod ¢)
there is an equivalence relation © so that it is first-order definable in the structure
{0,...,n, <.+, x}, and it is g-exceptional on I;.

Using ¥ and the arithmetic operations of Peano arithmetic restricted to the set
{0, ...,n} we may easily define by a first-order formula an equvalence relation ©; on I;
so that each class of ©; contains exactly ¢ elements for : = 1,...,a,a+ 1. Therefore in
the structure (M, <,+, x, ¥) we may define by first-order formulas two equivalence

relations \ilo, \ill so that

(a) \I~10 is the common extension of the equivalence relations ©1,...,0,41 and

therefore each class of ¥, contains exactly ¢ elements

(b) ¥, is the common extension of the equivalence relations ©, O, ..., Ou+1, and
so Uy is g-exceptional on {0,...,n}.

Let £" be an extension of the language £ with two binary relation symbols ¥
and ¥y and let 7' be an extension of the interpretation 7 of £ defined by 7"(¥¢) = T,
and 7"(¥,) = TU,. We claim that

" E T + “¥y is an equivalence relation on the universe and each class of ¥ contains
exactly ¢ elements” + “W; is a g-exceptional equivalence relation on the universe” +

“the modulo p counting principle”.
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The first three statement trivally holds we have to show only that 7" = “the
modulo p counting priniciple”. The already proven part of the theorem implies that
if 7 is an extension of 7 to the language LU{¥} defined by 74(¥) = ¥ then 75 |= “the
modulo p counting principle”. Since the first-order definable subsets of the structures
defined by 7" and 7 are essentially the same, the definition of the modulo p counting

principle implies that, 7 = “the modulo p counting principle”. Q.E.D.(Theorem (1))

2. In this section we construct the equivalence relation ¥ and show that if the
mod p counting principle does not hold for ¥ then (5) holds. This will complete the
proof of theorem 1

Assume that U is a g-partition of M, ; and the mod p counting principle does
not hold in 7'. Then there exist first-oder definable (in 7') equivalence relations Ey, Es
on a first-order definable subset X of M), (for some standard positive integer r) so
that F4 is a p-partition and E5 is a p exceptional partition of X.

First we show that this implies that there is a standard positive integer ¢ (de-
pending only on p and r) and a function x(z,y) of two variables defined on l\/[,i+1

with the following properties.

x is first-order definable in 7' in the sense that each set

(M1) x(z,y) € F, for all z,y € M},
(M2)

X Hw) ={{z,y)|x(z,y) = u}, u € F, is first-order definable.

(M3) for each fixed zo € M}, we have

{y € My 111x(20,y) # 0}] < p, and

{y € M, [x(y,z0) # 0} < p.

(M4)  x(z,y) = —x(y,z) for all z,y € M},

(M5) for all 2o € *M1iz+1 we have ZyEMle x(zo,y) = 0. ((M3) implies that the

sum is defined.)

(M6) there is an yy E JMle so that EmEMfLH x(z,y1) =1 and
for all yo # y1, yo € M, |, we have EI’EM,’;H x(z,y0) = 0.

Proof. Let + = rp + 2 and let ¢ be a function on M, , | with following properties
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(a) for each a € M, |, either p(a) =0 or p(a) = (B,§), where § € {0,1} and B
is a class of Es,

(b) for each class B of Eq or Ej, there is exactly one element a of M},

(c) the function y is first-order definable in 7'.

The existence of such a function p follows from the fact that each class of Ey or
E, contains at most p elements from M, | and therefore can be represented uniqualy
by a strictly increasing sequence of length at most rp from the elements of M, 1,
therefore by an element of M %, and a number giving the length of the sequence.
Consequently an element of 1\45:_4;2 may code all of this information and the fact
whether it 1s a class of Ey or Ey. p will be fistorder definble in the sense that the
relation “si(a) is an element of Es and « € p(a)” is first-order definable for a € M},
6€{0,1} and © € M, 4.

Now we may define the function x(z,y) for all z,y € JMfl_l_l by the following rules:

(a) if p(z) #0, u(y) #0, u(x) € Ey, u(y) € Fy then let x(x,y) be the residue class
of —[u(x) N p(y)l,

(b) if u(x) #0, u(y) #0, u(z) € Ey, u(y) € Ey then let x(x,y) be the residue class
of [u(x) N u(y),

(c¢) in all of the cases not covered by (a) or (b) let x(z,y) = 0.

We show that properties (M1)-(M6) hold for y. (M1)-(M4) are immediate con-
sequences of the definition. For the proof of (M5) and (M6) it is sufficient to notice
that Zy X(zo,y) is —|u(xo)|, (mod p), provided that u(xzg) # 0. If u(x) = 0 then
each term of the sum is 0. (In a similar way the sum 2y x(y, o) is either |u(xzo)|
(mod p) or 0.) Each of the classes of Ey has exactly p elements therefore (M5) holds.
Each of the classes of E; but the exceptional one has p elements and the exceptional
has 1 element. We get y; of (M6) from the exceptional class. Q.E.D.((M1)-(M6))

We will not construct only a single ¥ but a family of ¢ partitions ¥ of M, 1,
whose set will be denoted by I'. As we have shown, if the mod p counting principle
does not hold in any of the interpretations 7, U €T, then for each ¥ € T there is
a function y = yg with properties (M1),...,(M6). The domains of the functions yg

in principle could be different for different elements ¥ € I' but our contstruction will
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imply that the domain is the same set: 1\1,i+1 where 7 is a fixed standard integer. (As
our proof shows if 7 is fixed then we can define xg from ¥ by a first-order formula.)
We will show moreover that the family I' can be given in a way that the following

conditions are satisfied by a suitable D C M, +; and a standard positive integer k:
(R1) DeMand M =n—n'/kF <|D| <n—n'/k,

(R2) each class of each ¥ € T is either contained in D or disjoint from it. Moreover
each ¥ € T induces the same g-partition of D if we restrict it to D. (We will denote
this g-partition of D by ¥p).

(R3) If P is a partial ¢g-partition of M, so that ||JP — D| < 4kq and P is an
extension of Up then there is a ¥ € I so that ¥ is compatible with P.

Remark. The next property (R4) roughly tells the following: the value of x¢(z,y)
can be decided without knowing the whole ¥, namely for each z € l\l,i_i_l there is a
Uy € Myu41 — D, |Ug| = k so that those classes of U which intersect U,, uniqualy
determine x(z,y) for any y. (In a similar way if we know ¥ on U, it determines
x(z,y) for any z.) Moreover the function * — U, is an element of M, and if 5 is the
function which gives the value of yy(z,y) if z,3 and the classes of ¥ intersecting U,

is given as input, then n is an element of M.

(R4)  Let W be the set of all triplets (z, P,6), so that « € l\l7i+1, P is a partial
g-partition of M, which is an extension of ¥, ||JP — D| < 4kgand § =0or é = 1.
Then there is a function + — U,, in M, defined on J\J,i+1 so that, U, C M,+1 — D,
|U,| = k for all x € J\Jfﬂ_l, and there is a function n defined on W x M, 41 so that
n € M and if (z,P,8) € W,y € M,y1, ¥ € T ,¥ is an extension of P and P covers
U, then X‘i/(‘ray) :n(<$7P70>7y) and X\T/(ya‘r) =77(<.I‘,P, 1>7y)'

We will prove in the next section that such a set I' really exists. Using the
assumption that a I' exists with properties (R1)-(R4) now we are able to define the
functions f and ¢ of (5). Let H = M,,4+1 — D. Suppose that U,V C H, |U|=|V|=k
and @ is a partial p-partition supported by U. Let ¥ be an arbitrary element of T'
compatible with @ (such a ¥ exists according to (R3)). Let

UV, Q)= E{X\if(x,yﬂi” € *M1i1+1aU =Us,y € *M1i+1’v =Uy}.

(R4) implies that this sum really can be defined in M and so the function f is
an element of M, moreover the value f(U,V, Q) does not depend on the choice of ¥.
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Now we define the function ¢(U). Suppose that U C H, |U| = k. f U =U,,,
where y; is defined in (M6), then let ¢(U) = 1 otherwise let ¢(U) = 0.

We have to show that conditions (6)-(11) are satisfied. (6),(7) and (9) obviously
hold since they were part of the definition.

Proof of (8). The definition of f implies that both f(U,V,P) =
S {xun(@ vl y) € A} and fV,0,Q) = Sixwale.)liz,y) € B} for suitable
Uy, U € T' and A,B C | 7i+1 X 1\/[7i+1. Since P and () are compatible we
may assume according to (R4) that ¥; = ¥, = U are identical. According to
(M3), that is, the antisymmetricity of x, it is sufficient to show that (x,y) € A if
(y,z) € B. This is however an immediate consequence of the definitions that is of
A={{z,y)|U =U,,V=Uy} and B = {{z,y)|U =U,,V =U,}

Proof of (10). Let ¥ € T so that ¥ is compatible to P. (According to (R3) there is
such a ¥). The definition of f implies that ZVQH,|V|:I¢ fUV,P)=>{xg(z,y)|U =
Upg,o € M),y € M}, }. According to (M5) and (M6) this sum is 0 if U,, # U
and the value of the sum is 1 if U,, = U, that is according to the definition of g,
ZVQH,|V|:k fU,V,P)=g(U).

Finally (11) trivially holds because ¢ takes the value 1 exactly once and all of its
other values are 0’s.

Here we gave a pair of functions f, g with the required properties only on a fixed
set H of size m where m was a nonstandard element of M. Assume now that M
is an elementary extension of the standard model of Peano arithmetic. Since for all
standard mo M = “there exists an m > mg and H, f, g with the required properties”
this is true (for any fixed standard mg) in the standard model of Peano Arithmetic

as well, therefore (5) holds in the standard model. Q.E.D.(5)

3. If M is a model of Peano Arithmetic and n € M then M, will denote the
set {v € M|M |= x < n}. Suppose that X is a k-ary relation defined on M where
k is a natural number. We say that X is definable in M if there is a first-order
formula ¢(z1,...,2k,y) of Peano Arithmetic with the free variables zy,..., 2k, y
and there is a ¢ € M so that for all zq,...,2x € M we have X(z1,...,2) iff
M = ¢(x1,...,25,¢). If X is a k-ary relation on M, then there exists a single
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first-order formula ¢(xy,... 2k, y) (which does not depend on X)) so that if X is de-
fined on M, only then there exists a ¢cx € M so that for all xy,...,zr € M, we have
X(z1,...,zp,ex) iff M = ¢(z1,...,22,¢4). We will suppose that for each ¢ a ¢, is
fixed (e.g. the smallest one with the required properties). This makes it possible to
treat the relations on M, as elements of M.

Assume that M = (M, +, x, <, Ay, ..., A;) where M is a countable nonstandard
model of Peano Arithmetic and n is a nonstandard integer in M, +, x, < are the
arithmetic operations and the usual ordering of M, and Ay, ..., A; are relations with
arities ry,...,r; where j,rq,...,r; are standard. (We may think that M is the structure
defined by the interpretation 7 of section 1.) We want to add a new binary relation
p to this structure. (This will be ¥ in the proof of theorem 1.) We will denote
by M|[p] the structure that we get from M by adding the relation p to it, that is
Mlpl = (M, +, %, <, Ay, ..., Aj, rho)

If H is a set and P is a partial ¢ partition of H then |J P will denote the union
of the set of all classes of H. Assume that P, () are partial ¢ partitions, P C @ iff
every class of P is also a class of (). In this case we will say that () is an extension
of P. Since there is a ono-to-one correspondence between partitions and equivalence
relations we will use this terminology for equivalence relations too.

We will construct p in the following way. We take a partially ordered set, whose
elements are definable in M. In the case when we want p to be a ¢ partition of M,
the elements of this partially ordered set will be partial ¢ partitions P of M,,, which
are defined in M and have the property M = ||J P| < n — n¢, for some standard e.
We will pick a sequence (outside M) from these partial ¢ partitions, so that e tends
to 0 and the latter elements of the sequence are extensions of the earlier ones. Since
M, is countable we will be able to pick this sequence so that the common extension
of the partial ¢ partitions in it will be a ¢ partition of the whole M,,.

First we define a partially ordered set. We may think of the elements of this
set as approximations of the relation p. As in the previous example we will pick a
sequence from this partially ordered set and the union of the relations in the sequence
will be p.

We will frequently deal with sets which are not definable in M but still they

are the union of a uniform sequence of definable sets. E.g. the set of all partial ¢
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partitions P € M of M, so that ||J P| < n — n® for some standard e. This situation
motivates the following definition.

Definition. If k£ is a natural number and X is a k-ary relation on M we say that
X is w-definable in M iff there exists a first-order formula (x4, ..., 2, y, z) of Peano
Arithmetic, and a b € M so that for all a;,...,ax € M we have: X(ay,...,ar) iff
“ there exists a standard natural number y, so that M E ¥(ay,...,ax,y,b)”. (The
standardness of y is the essence of this definition.)

Definiton. Suppose that (p, <) is a partially ordered set, whose elements are
binary relations on M,, and the ordering is: p < ¢ iff ¢ C p. Assume further that

(a) each element p € p is definable in M,
(b)  the set p is w-definable in M,

(¢) g has a greatest element 1, and

(d) g has no minimal elements.

We will call such a partially ordered set a notion of forcing.

Remarks. 1. Although the elements of p are relations on M,,, we may treat them
as elements of M, so requirement (b) is meaningful. (See remark in the definition in
the definiton of definability).

2. Since p has no minimal elements but it is covered by a set which is finite in
M, it cannot be definable in M.

Example. Let p. = {P|P € M, P is a partial ¢ partition of M,,, M =“||JP| <
[n—nf". p° = Ul/k{pl/ﬂk is a standard natural number }. p° is a notion of forcing.

Definition. Assume that T is a subset of p, where p is an arbitrary notion of
forcing. We say that T is dense iff for all ¢ € p thereisa h € T with h < g. (We will
be mainly interested in those dense subsets which are w-definable in M.)

Example. In p° the following sets are w-definable dense sets. (The sets are not
definable in M since p° itself is not definable in M)

1. For each fixed standard rational 6 > 0, Ts = p° — @s.

2. For each fixed x € M,,, T, = {p € 9p° | = € | p}.

Definition. Let G be a subset of p, where p is an arbitrary notion of forcing. We
say that G i1s p generic over M iff the following three conditions are satisfied:

(a) g € G, h € p, g < himplies h € G,
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(b) for all g,¢' € G thereisa h € G with h < ¢ and h < ¢,
(c) if T is a dense subset of p, which is w-definable in M, then GNT is nonempty.

Since M is countable it is possible to pick (outside M) a decreasing sequence
P1,D2, ... form the elements of p so that the sequence contains at least one element
from every dense subset of p which is w-definable in M. The filter generated by this
sequence is a generic subset of p over M. In the example with the partial ¢ partitions
f < g iff fis an extension of ¢g. py,pa,... is the sequence mentioned whose common
extension is the required function. This will be also the common extension of all of
the functions in the filter G generated by py, po, .. ..

Example. Assume that G is p° generic over M and let p = Uper' Clearly
p 1s a partial ¢ partition of M,. We claim that it is actually a ¢ partition of M,
that is (Jp = M,. Indeed as we have remarked earlier for each fixed * € M,,
T, ={p € p° | x € |Up} is dense and therefore according to the definition of generic
sets contains an element from G. Thus we have z € | p.

Definitions. 1. Suppose that é(yo,...,y;) is a first-order formula of L',
ag,...,a; € My, g € p. We say that ¢ |- ¢(ao,...,a;) (“g forces ¢(ag,...,a;))
iff for any generic subset G of p with ¢ € G we have that p = |JG implies
Mp] E ¢(ag, ..., ai).

We will be interested in the properties of those relations on M,, which can be
defined by a first-order formula from p and the relations given in M.

3. Suppose that i is a natural number and X is a relation on M. We say that X
is in M[p] (or definable in M[p]), if there exists a natural number j and a first-order
formula ¢(zq,...,2i—1,Y0,...,yj—1) so that for some by,...,b; € M, we have that
for all ag,...,ai—1 € M,: X(ag,...,a;—1) iff M[p] = ¢(ag,...,ai—1,bo,...,b;).

The following lemma has three different assertions which are essentially are more

formalized versions of the following ideas:

(a) if G is p° generic over M then for each first-order statement X about M|p]

there is an element ¢ of G which either forces X or its negation.

(b) the relation p |- X(ao, ..., a;—1) (as a subset of {(p, ao, ..., ai—1) }|p € p,a; € M,)
i1s w-definable in M, and if we restrict p to p. then it is definable in M.
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(c) asssume that we are interested in the turth values of the relations X (aq, ..., a;—1),
ag,...,a;—1 € My. In every generic set there is a p so that for each fixed ag, ..., a;—
we have to extend p with only k elements, where k is a standard number depending

only on ¢, so that p decides X(aq,...,a;—1)

Lemma 14. Suppose that @ is standard a natural number and X is a relation
on M! so that X is in M[p], where p = |JG and G is ¢° generic over M, then the
following conditions hold:

(15) for all ag,...,a;—1 € M, there is a ¢ € G so that g |- X(ag,...,a;—1) or
g |F—~X(ao,...,ai—1).

(16) foreachq € p° thereisaq' € p°, ¢' < ¢ so that the relationp | X(ag,...,ai—1)
resricted to the set p < ¢', p € 9°, ag,...,a,—1 € M, is w-definable in M, and for any
standard rational € > 0 the relation p |- X(aq,...,a;—1) resricted to the set p < ¢,
pE pe, ag,...,a,—1 € M, is definable in M

(17) for all ¢ € p° there exist a ¢' € p°, ¢' < ¢, a standard natural number k and
a function U which is definable in M so that for all a € M}, U(a) is a subset of M,
with k elements, and for all p € p° if p < ¢' and U(a) C |Jp, then either p | X(a)

or p |- =X (a).

Remark. Since p° is not definable in M the relation p |- X(ao,...,a;—1) is
not definable in M. However if we restrict p to a p¢ as described in (16) it will
be definable. (17) shows that it is enough to consider this restricted relation since
already in such a p{ we will find an element p with p |- X(a) or p=X(a).

(17) means that if a set of formulae is given with parameters in M,, then they
can be almost decided simultaneously, that is there is a p € G so that for each fixed
formula there is a set (U(a)) containing a standard number of elements so that if we
give the classes of p there and the fact p C p, these together decide already whether
the formula is true or false in M|p].

According to the following corollary if f € M]|p] is a first-order definable function
from M! into MJ} where i,j are standard integers, then there exists p € G so that
for each a € M! there is a set U,, containing a standard number of elements, so that
if we give the classes of p there then this (tohether with p C p) already decides the

value of the function at a.
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Corollary 18 . Suppose that i, are standard natural numbers and X is a

relation on Mi*7 so that X is in M|p|, where p = |JG and G is p° generic over M,
and for each x € M} there is exactly one y € M} with X(z,y). (That is “y = f(x)
iff X(z,y)” is a function). Then the following holds:
(19) for all ¢ € G there exist a ¢' € G, ¢' < ¢, a standard natural number k and
a function U which is definable in M so that for all a € M}, U(a) is a subset of M,
with k elements, and for all p € p° if p < ¢' and U(a) C |Jp, then there exists a
be M} with p |- X(a,b).

Now we are able to construct the family I" with properties (R1)-(R4).

In Lemma 14 and Corollary 18 p° consists of partial g-partitions of the set M,,.
In the following application of this lemma and its corollary M, will take this role
that is we apply the lemma with n — n + 1.

Assume that G is p° generic over M and p = |JG and M[p] = =”"the modulo p
counting principle”. This means that there is a standard integer r, a set X C M, ,,
and equivalence relations Ey, F; on X, so that Ey is a p partition of X and F; is a
p-exceptional partition of X and X, Ey, F are first-order definbale in the structure
M |p] by first-order formulae &, ¢¢, ¢1.

According to Lemma 14 there is a p; € G so that

(20) p; |F“the equivalence relation defined by ¢q is a p partition of the set defined
by & and the equivalence relation defined by ¢ is a p-exceptional partition of the
same set”.

We want to define I" as I' = {|JG|G is p° generic over M, p; € G}. To be able
to prove properties (R1)-(R4) we have to pick p; in a way that it forces certain first-
order properties of p = UG. Lemma 14 and Corollary 18 will guarantee the existence
of such a p;. (20) already implies that, as we have promised, r and ¢ = pr + 2 does
not depend on the choice ¥ € T.

For any fixed p = UG, p1 € G the function x, with properties (M1)-(M6) is
first-order definable in M([p]. According to (M3) for each fixed zg € M}, there are
at most 2p elements y € l\lfb_l_l so that —~(x,(z0,y) = 0Ax,(y,zo) = 0). We will call
such a y an exceptional element with respect to zg. Let j = 4pi. We define a function

f on M! with values in MJ. If zg € M., f(zo) will be a sequence containing all
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exceptional elements y and the corresponding values of x(zo,y) resp. x(y,z0). To
make f first-order definable we may agree that the various elements y are arranged in
lexicographic ordering. Clearly f(zo) determines all of the values f(u,v), xo € {u,v}.

Therefore according to Corollary 18 we may assume that p; was chosen with
the following property: there is a standard positive integer k£ and a function U in M
so that, p; € g7/, for each a € M,y if po < p1 and U(a) C |Jp2 then there is a
b e M), sothat py |- f(a) = b. Acording to (16) we may also assume that the

relation

(21)  “pa |l f(a) =b", p2 € 9355y @ € My, b€ My, s in M.
The described properties of the function U imply that

(22)  the classes of p intersecting U(a) uniqualy determine all of the values x ,(u,v)
where at least one of the elements u, v is identical to a, provided that p = |G, p1 € G
and G is p°-generic over M.

Let I' = {|JG|G is p° generic over M and p; € G} and let D = |Jp;. We show
that T', D and k satisfy properties (R1)-(R4).

p1 € M and p; € @;/k implies (R1).

(R2) follows from the fact that each p € I" is an extension of p;.

Assume that P is a partial ¢-partition with the properties given in (R4). Since
Up = p2 we have that P € p° and therefore for any p° generic G with P € G we
have that ¥ = |JG € T and it is compatible with P.

Finally let U, = U(z). (21) and (22) implies (R4). Q.E.D.((R1)-(R4))

4. Proof of Lemma 14. As we have seen the relation p = |JG where G is
©° generic over M is a ¢ partition of M,,. In the following definitions f will be an
arbitrary ¢ partition of M,. but it will be of interest in the f = p case. We will
consider such a ¢ partition f as an evaluation of certain Boolean variables. This

motivates the following definitions.

Definition. Suppose that D is a finite set. For each unordered pair (a,b), a € D,

b € D let 4,5 be a Boolean variable. (That is the variable z, 4 and xp , are identical.)
We will use this definition in the case D = M,,.
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If fis a ¢ partition of M, then we may associate with it the following 0,1-
evaluation e of the Boolean variables z,3, a € My, b € M,: e(x,p) = 1 iff f(a, b)

that is if @ and b are in the same class of f. (We will also denote this evaluation by

val(f).)

Lemma 14 is an assertion about a first-order formula ¢(z) of the language L'.
Suppose that z is fixed. The truth value of ¢ is a function of the partial ¢ partition
f. Tt is easy to see that there is a constant depth Boolean formula I' € M on
the variables z,; whose value at the evaluation e is the same as the truth value
of ¢. (The evaluation e is not in M but since the Boolean formula is of constant
depth an evaluation can be defined in the natural way outside M). We will try to
replace I' by a simpler Boolean formula I'' so that I'(e) = I''(e) for all of the possible
f. We will construct I’ in M but since the evaluation e is not in M, I cannot
be any Boolean formula which is equivalent to I' in M. Still there are possibilities
to construct a good I''. For example we may apply one of the Boolean identities
(commutativity, associativity, distributivity, etc.) to I'. If IV is the new formula what
we get this way, clearly I'(e) = I''(e). Even if we perfom such transformations on a set
of disjoint subformulae of T" still we get a good I'!, or we may perform a finite number
of transformations one after the other of this type. (The number of transformations
is counted in the world, not in M). To describe these things in a rigorous way first
we define formally what is a constant depth, unlimited fan-in Boolean formula, then
we define the mentioned operations on them.

Definition. Suppose that X is a set of Boolean variables. We define unlimited
fan-in Boolean formulae in the following way. We define the formulae recursively
according to their complexity. Let Fy = X U {0,1}. Suppose that Fy_; is already
defined. If H is a finite set of natural numbers and A is a function defined on H
with values in F}_; then let \/er h(z) and /\er h(z) be elements of Fj. Moreover
if ¢ 1s an element of Fi_; then let both ¢ and —¢ be an element of F. We define
F} as the set of all elements that we can get through one of the described ways.
F = Uk:o,l,... Fy, is the set of unlimited fan-in Boolean formulae with variables in
X. In the following Boolean formula will mean always an unlimited fan-in Boolean
formula. The depth of a Boolean formula ¢ will be the smallest integer k£ with ¢ € F}.
We may define the size of the formula by induction on its depth k. For k£ = 0 the
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size is 1 and size(\,cpy M(z)) = D, cpysize(h(z)) (and similarily for \/), moreover
size(—s) =size(s) + 1. This definition of the size is not the same as the correspond-
ing notion for Boolean circuits. However if we want only to define constant depth
polynomial size circuits/formulae the two notion is the same.

We will call two Boolean formulae equivalent if their value is the same under any
0,1-evaluation of the variables. We will consider Boolean formulae in a nonstandard
model M of Peano Arithmetic, whose depth is a standard natural number. For such
formulae it is possible to define the value of the formula even for an evaluation which
is not in M. It is possible that two such formulae are equivalent in M still there is an
evaluation (not in M) so that the corresponding values of the formulae are different.
In the following we will define relations in M which will be finer than the equivalence
of the formulae, and will have the property that if two formulae are in relation with

eachother than their values are the same for any evaluations (not necessarily in M ).

Defintion. In the following we give some of the usual Boolean identities for
unlimited fan-in formulae. (For our purposes it is important that they are given in
the unlimited fan-in form.) Each identity has a dual form that we get by changing
the role of the operations \/ and A. Although we will give here only one of the two
forms later referring to these identities we will mean both of them.

(B1) If the ranges of the functions h and g coincide then A h(z) = A, cq 9(2).

(B2) If H = J;¢; Hi where {H;} is a family of pairwise disjoint sets, h; is a
function defined on H; for all ¢+ € I, h 1s the common extension of all h; to H and

A,ep h(z) € F then
/\ZEH h(z) = /\ie[(/\zeHi hi(z)).
(B4)if s € F and \,py h(z) € F then
sV Neen M) = Nsenls V h(z)).
(B5) if A,y h(x) € F then = Ay h(z) =V, ey ~h(2).

Apart from these identities for unlimited fan-in formulae we will need the usual

Boolean identities fixing the role of 0,1 and the operation —.
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(B6)if s € Fthen0Vs =35, 0As=0,1Vs=1,1As=s,sVas=1,sA-s =0,
-8 = s,

As we mentioned before we want to define a relation L between Boolean formulae
so that I'LT" implies I'(e) = I'(e) for any f where, € is the evaluation corresponding
to e. Since f is a partial ¢ partition, there will be Boolean equations between the
variables z, ; which do not follow from the general Boolean identities given in (B1)-
(B7) still they hold for all of the evaluations of type e.

Definitions. 1. Let B = B(D) denote the set of unlimited fan-in Boolean formulae
with the variables {z,,}, u,v € D. A k € B is called a k, g-partition if there is a ¢
partition P of a set D(x) C D so that & = A\, ,yep Tu,0 and |D(x)|/q = k. We will
use the notation D(x) =|JP, P = Py, k = ||

We say that a set V' C D covers the k, ¢ partition map k € B if each class of P,
has an element in V.

Assume that x, &' are k,q, resp. k',q partitions. We say that « and &' are
contradictory if the a partitions P, Py are not compatible. (That is there is no
partial ¢ partition of D which is an extension of both.)

2. We call a formula h € B a k-disjunction if h =/
a k', g-partition for some k' < k.

The set V' covers the k-disjunction b = \/, 5

3. Let Eq be a Boolean formula so that if Eq(val(f)) = 1 then f is an equivalence

wck o, where each k € K is

k, if it covers all k € K.

relation. e.g. Eq can be the conjunction of the following formulae:

(a’) /\aED xaaa
(B)  Aap,cep((Tap ATbe) = Tac)

(The formula /\a peD Tab < Tpa is not needed since we have assumed that the
variables z,; and zp , are identical.)

For each u € D let D;q) be the set of all subsets of D with exactly ¢ elements.
Let F, be the Boolean formula \/{zy 4, A...%ua,| {a1,...,aq} € Dﬁﬂ)}, saying that
there are ¢ elements that u is in relation all of them.

For each a = {ai,...,a,} € [D]¥ let G, be the formula (A, 74, ,0;) —
/\bED—a “Zpq,. (Meaning that an element can be in relation with at most ¢ other

element, including itself.)

25



Clearly the formula O(D) = Eq A A\, ¢p Fu /\ae[D]q G, evaluated according to
val(f) will be true iff f is a ¢g-partition of D. Therefore if |D| is not divisible by ¢ the
Boolean equation O(D) =1 has no solution.

4. Suppose that h = \/ o & is a k-disjunction and V covers h, [V| = 1. We
define an [-disjunction ¢(h, V). (¢(h,V) will act as a complement for h if we restrict
our attention to evaluations of the variables which define partial ¢ partition covered
by V). Let N = {p| pis a j, ¢g-partition for some j < I; u is covered by V and Vk € K
 is contradictory to x} and

o(h, V) =V ey it

It is easy to check that if f is a ¢ partition then =k and c(h, V) has the same
value under the evaluation val(f). We say that the formulae =h and c¢(h,V) are
k-equivalent.

5. If k£ is a natural number then we define a binary relation L between Boolean
formulae. We say that T'LiI" if there is a set S of pairwise disjoint subformulae of T’
so that if we replace each formula in S by another wich is equivalent to it according
to (B1),...,(B6) or by a formula which is k'-equivalent to it for some k' < k.

If k,r are both natural numbers we define the relation Ly, by aLy b iff there
exists a sequence ay = a,dy,....,a, = b so that for all j = 0,...,r — 1 we have
ajLrajqr.

7. Suppose now that |D| = n, e > 0 and @ is a 0,1 assignment on a subset of
X. We say that ) is an e-partial assignment if there is a partial ¢ partition P of D
with [ J P = [n — nf] so that @) asssigns a value to a variable x, , iff either u € | J P
or v € |J P, moreover for all pairs u,v where @ is evaluated we have Q(zy,) = 1 iff
P(u,v). We will use the notations P = part(Q) @ = val(P) and set(Q) = |J P.

If X is a Boolean formula then we will denote by A9 the Boolean formula that
we get from A if we perform the substitutions prescribed in Q).

Let P be a partial g-partition of D, and let € > 0.

We define a random variable B = REP) which takes its values with uniform
distribution on the set of all e-partial assignments () satisfying the condition that

part(Q)) is extension of P.

26



Theorem 23 Vq,s,d,u,6 > 0de > 0,k,r so that for all sufficiently large n if
|D| = n and ¢ € B(D) is a Boolean formula of size at most n® and depth d, P is a
partial q partition of D with ||JP| < n — n® elements and R = R'P) is the random
assignment defined earlier, then with a probability of at least 1 — n™" the following
holds. There exists a k-disjunction ¢ and a set V C D so that g is covered by V,
V| =k and ¢B® Ly ,g.

Using Theorem 23 we may complete the proof of Lemma 14. According to the
original definiton of p° the elements of p° are partial g-partitions of M,,.

First we define two relations Wy Wy. Wy(p,ao,...,ai—1) will imply p |- X(a),
Wi(p,ag,...,ai—1) will imply p |- =X (a). For each fixed a € M! let ¢, € B(M,) be
the Boolean formula expressing the relation X(ag,...,a1). (Since X is definable in
M(p] and p can be considered as an evaluation of the variables x4, s,t € M, there
is such a formula ¢,.) We may assume that each ¢, is of depth at most d and size
at most n®, where the standard integers d, s depend only on the size of the first-order
formula defining X but not on n or a). We apply Theorem 23 with u = ¢ 4 1 for each
fixed ¢, @ € M:. Let ¢ > 0,k,r be the numbers whose existence is guaranteed by
Theorem 23 and let P’ be a value of REP) satisfying the conclusion of Theorem 23
simultaneously for each fixed ¢,, a € M:. (Since u > i there is such a ¢'.) We define
a relation Wy by Wi(p, ao,...,a;) iff “there exists a standard j so that p € p;/j and
¢PL; ;17. (We get the definition of W if we substitute the last formula by ¢PL; ;07).
Clealry Wy, W are w-definable. The conclusion of Theorem 23 implies that Wy is
equivalent to the relation p |- X(ag,...,a1) if p < ¢'. This implies the first part of
(16).

Let 6 > 0 be a standard rational. Then, according to Theorem 23 the relation
W, with p < ¢' restricted to g3 is equivalent to “p € p? and ¢PLy ,1.” where k and
r may depend only on i and the size of the formula defining X but does not depend
on the choice of ag,...,a;—;. That is p |- X(ag,...,a;—1) is indeed definable in M,
if p<dq',pe p;.

If we pick U(a) as the set V belonging to ¢, then our previous argument shows
that (17) holds.

(15) follows from (16). Q.E.D.(Lemma 14)
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Proof of Corllary 18. Let y = f(x) if X(z,y). For each fixed = f(z) can be
considered as a 0, 1-sequence of length jlogn. For each fixed r = 0,1,...,7logn
let X(a,r) be the following relation on M:*1: if r < jlogn then the rth element
of the sequence corresponding to f(z) is a 1. Clearly we may assume that X(a,r)
is first-order definable. Therfore applying (17) of Lemma 14 with X — X(a,r),
i — 1+ 1 wegetag € G, q¢ <qanda function U(a,r) so that if p < ¢', p € p° and
U(a,r) C |Jp then p | X(a,r) or p |- =X(a,r). Since the sequence (X(a,r))|r =
0,...,Jlogn) determines f(a) uniqualy, we have that for some b € MJ, p |- b =
f(a).Q.E.D.(Corollary 18)

5. Proof of Theorem 23 First we show that it is enough to prove the theorem
for the special case when ¢ is an s-disjunction. In this case (supposing that there are
no identical terms in the disjunction) the size of ¢ is not more than n*t%, so we may
drop the condition about the size of the formula. In the the formulation of the result

for s disjunctions we may substitute the relation Ly , with a simpler one.

Definition. Suppose that ¢, @ are s disjunctions. We say that ¢Liy if ¢ =
Vierd(i), ¥ = V,cp d(2), I' = {t € I|Vj € I d(i) # d(j) implies that part(d(7)) is not
an extension of part(d(j))}. (That is we get 1 from ¢ by deleting from ¢ those terms

which are not “minimal”).

Clearly there are absolute constants k,r so that for all ¢, v ¢L implies ¢pLy, ).
We will denote the (essentially) unique ¢ with ¢.L by min(¢). It is easy to see that if
Q is an evaluation of the variables then min(¢%) = min((min(4))?). (More precisely

the two formulae are equivalent according to (B1)).

Lemma 24. Vs,ude > 0,k so that for all sufficiently large n if |D| = n, and

¢ € B(D) is an s disjunction and R = R, is the random € partial assignment, then

u

with a probability of at least 1 — n™" we have; there exists a set V' C D so that

min(¢®) is covered by V and |V| < k.
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Lemma 25. Lemma 24 implies Theorem 23.

Proof of Lemma 25. Let K be the set of formulae of size at most n’ from B(D).
For each positive integer let Ug’l = Uy, be the set of [ disjunctions in K;. Suppose
now that Ugz_1; 1s already defined then let Ug; be the set of all formulae from K;
which are either of the form \/ _; h(x) where h(z) € Ug for all x € H or of the form
—h where h € Ug ;.

Claim 26. If g € K; and g is of depth at most d then there is a ¢' in Usq, and
there are positive integers k,r depending on only d so that gLy ,g'.

Proof. Using the identities in (B1),...,(B6) we may transform ¢ into a formula
which uses only \/ and — as logical connectives and still its depth is not greater than

2d. A single variable z,, may be considered as a 1 disjunction.

Now we may prove Lemma 25 by induction on d. We give the proof for d = 1.
Suppose that ¢ € U(1, k) if g is of the form \/ h(z) then using (B1) and (B2) we may
transform ¢ into a formula in U(0,) so Lemma 24 can be directly applied.

Assume now that & is of the form —¢ where ¢ € U(0,1). According to Lemma
24 with high probability we have ¢®Lg where ¢ is a k disjunction covered by a
set V, where |V| = k. g¢ is k equivalent to ¢(g,V) so we have ¢®Ly ,41¢(g,V).
Q.E.D.(Lemma 25)

Before we start the proof of Lemma 24 we formulate two combinatorial Lemmas
which will be repeatedly used throughout the proof. (The proofs of these lemmas is
given in [Ajtl].) The first Lemma essentially states that if there is a function defined
on a finite set H so that at each point x the value of the function is a small subset of
H not containing z, then inside a small random subset H' the function will be almost
trivial, that is H' will have only a constant number of points which are contained in
a value of the function taken at a point in H'. The second Lemma is a generalization

of the first, for functions with more than one variables.

29



Lemma C. Suppose that 0 < e < 1/2, 0 < é < ¢/4 and ¢ is a fuction defined
on the finite set H with n elements such that g(z) C H, |g(z)| < |H|'~¢ and z ¢ g(z)
for allz € H. If j < |H|® and H' is a random subset of |H| with j elements, then
for all t > 0 we have P(|{yly € H' and y € g(z) for some x € H'}| > t) < n=c1lte2

where ¢y > 0 and ¢y, ¢y depend only on e.

Lemma C’. Suppose that 0 < ¢ < 1/2 and k is a positive integer. Then there
exists a 6 > 0 such that for any finite set H if ¢ is a function defined on the Cartesian
product [, H with g(z) C H, |g(2)| < |H|'"™¢, g({z0, ..., xk—1))N{z0,...,2p—1} =10
for all = (xg,...,25-1) € [[, H, j < [|H|°] and H' is a random subset of H with
J elements, then for all t > 0 we have P(|{y € H'|y € g(z) for some z € [[, H'}| >
t) < n~'*°2 where ¢; > 0 and ¢y, ca depend only on € and k.

Now we continue the proof of Lemma 24.

Definition. Suppose R is the random € partial assignment and D' = D —set(R,).
For each fixed value of D', D' let R be a 6 partial assignment on the universe D’.
Let R o R be the common extension of the partial ¢ partitions R., and R§. Each
value of R, o R} is a partial ¢ partition on D, moreover the distribution of R, o R} is
the same as the distribution of Rs that is the random variables Rs, and R, o R§ are

identical.

We will give the random e partial assignment of Lemma 24 in the form R, =
R.1yo...0 R, where €(j) = € and j depends only on s,u. We will construct a
sequence of k; disjunctions for i = 1,...,5: ¢ = ¢1,...,¢; = min((¢)%) so that
¢>56(”/§¢>t+1 fort =1,...,5 — 1. ¢ = ¢, is an arbitrary s disjunction. The next
element of the sequence ¢, will be an s disjunction with some additional property.
As we will construct the elements of the sequence ¢; we will add more and more
additional properties apart from being an s disjunction, and at the last step we get
the s disjunction ¢; =min((¢)%) with the property described in Lemma 24. So our

proof will consist of several statement of the type:

30



if an s disjunction ¥ has property P1 then with a probability of at least 1 — n"
we have %< L1 where ¢ > 0 depends only on s and u and ¢’ is an s disjunction
with property P2.

For the sake of notational simplicity we formulate these Lemmas on a universe

D of size n but we will actually apply them for a universe of size n¢(%).

Defintion. To make the definition of the notion of “property” simpler, let us
assume that we will consider only sets D where the elements of D are natural numbers.
A property P of s disjunctions will be a binary relation defined on all of the pairs ¢, k
where ¢ is an s disjunction for some D and k is a natural number (In this definition

we assume that s and ¢ are fixed).

Examples. 1. In the conclusion of Lemma 24 we defined a property of s disjunc-
tions. Now we will denote by % the s disjunction corresponding to the s disjunction
min((¢)%) in the lemma. We will denote this property by II, that is TI(x), k) iff “there
exists a set V' C D so that 1 is covered by V and |V| < k”. If this holds we will say
that the weight of v is at most k.

2. We will denote by Q the trivial property which holds for each s disjunction ¢
and natural number k. If we want to emphasize the dependence of  on s, ¢ then we

will write € 4.

In the sequence ¢; described earlier, for each ¢t we will have a property )¢ so
that (¢, k) holds for all sufficiently large k, more precisely for all k > k¢ where kg
depends only on s and u. E.g. the last ¢}y will be the property that ¢, is of weight at
most k. As we are going along the sequence each property will be the consequence of

the previous one in a sense given in the following definition.

Definition. Suppose s,¢ are a positive integers and P, () are properties of s
disjunctions. We will say that property P can be reduced to property Q if the following
holds:

Vk'Je > 0, ko, h €¥ w with lim, . h(x) = 0o so that Vk > kg if n is sufficicently
large, |D| = n and ¢ is an s disjunction with P(¢, k') then with a probability of at
least 1 — n~"*) there is an s disjunction ¢ with ¢®<Lg and Q(g, k).
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An immediate consequence of the definition is the following statement: if P, (), T
are properties of s disjunctions, P can be reduced to ) and () can be reduced to T,

then P can be reduced to 7.

Lemma 27. If s = 1 then for all positive integers g the property ) can be reduced
to the property “for each a € D there exists a W, C [D]? and a V(a) C D —{A} with
the following properties:

(a) H €W, impliesa € H for alla € D
(b) |Via)| <k forallae D
(c) V(a)NH#(forallae D, He W,

(d) ¢ can be written in the form of ¢ = ¢y V ¢o where ¢y is a 1 disjunction of wight

?

at most k and ¢5 = \/aeD \/HeWa /\u,vEH‘TU7U7'

Proof. If ¢ is a 1 disjunction it can be written in the form \/ .y /\u,vEH Typ
where W' C [D]?. We may also write this in the form of \/ \/H'eW; /\u,vEH’ Ty v,
where for each a € D, W/ is a set of subsets of D containing the element a and
together with it exactly ¢ elements. Let k be sufficiently large and let G = {a €
D| |Wi| > n""'"%}, (n = |D]).

Case 1. |G| > nt. We claim that with high probability after we perform the
substitutions according to R, where € = %, there will be a H € W' so that the value
of /\u,veH Ty is 1. So min((4)®) is covered by the empty set. Indeed assume that
we randomize R, in the following way.

We will pick a sequence ay, ..., az, ..., 1 < nt+1 recursively and for each a; we pick
a class A; of Re containing A; at random. Assume that the elements ay, ..., a; and the
classes Ay, ..., A;—_1 has been already chosen, where : < n*. We will pick now the pair
ai, A;. Let a; be an element of G — (41 U...UA;_1). (Since |G| > n%, |4 =¢< n%,
i —1 < n¥ such an q; always exists.) We pick A; with uniform distribution from the
set of those elements of G — (A; U ... U A;_1) which contain a;. The definition of G
implies that with a probability of at least 1 — n~% we have A; € W. Therefore the
probability of the event that there is at least one i = 1,..., [n*] +1 with A; € W is at
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least 1 — (1 — nl_%)n% >l —e™ ™ >1—nt (for all fixed v and k if n is sufficiently
large.) Q.E.D.(Case I.)

Case II. |G| < nt. If e >0 is sufficiently small with respect to k, then clearly
P((|D —set(R:))NG| > t) < |D|~“1"* ¢ where ¢1,c2 > 0 depend only on e. Therefore
if ¥ =V,ca Vaew, Nuven then ¥R is a 1 disjunction with weight of 1 —n =%, Let
¢y = B,

Let ¥ = V,ep_g Vaew, /\u,veH' We want to show that ¢ = gRe) satisfies the
condition of the Lemma. Assume that a ¢ G. We claim that if € > 0 is sufficiently
small then the probability p, that D —set(R,.) contains ¢ pairwise disjoint set which are
in W! is smaller than 1 —|D|~<'* where ¢ > 0 depends only on e. Indeed, assume that
Uy,...Us € W, are pairwise disjoint sets. The probability of Uy,...,U; C D — set(R.)
is at most n(¢=D@=D!  On the other hand the number of all possible choices for
Uy,...,U; is at most n(=1=%) (Here we used that |W,| < n?"'~% for all a ¢ G).
Therefore we have that p; < nlemDa—Dip(a—1=5)t —p (=g Felg—1)1 Sn_flt. Therefore
with a probability higher than 1 — n~¢! we have less than ¢ disjoint sets from W)
contained in D — set(R,). Therefore with a probability higher than 1 — ne t we may
assume that this holds simutaneaously for all a ¢ G where €’ > 0 depends only on
€¢'. Suppose that such a value of R, is fixed. For each fixed a ¢ G let Uy,...,U;
be a maximal subset of W, containing pairwise disjoint sets from D — set(R,.) and
let V(a) = Uf;l U(t). Clearly |V(a)| < ¢t and V(a) has a nonempty intersection
with any element of W/ contained in D — set(R.). Therfore in the new universe

D' = D — set(R,) the formula ¢(F<) can be written in the required form.

Lemma 28. If s = 1 then for all positive integers ¢ the the property
“for each a € D there exists a W, C [D]|? and a V(a) C D — {A} with the

following properties:
(a) HeW, impliesa € H for alla € D

(b) |Via)| <k foralla€e D

(c) V(a)NH=#(forallae D, He W,

(d) ¢ can be written in the form of ¢ = ¢,V ¢5 where ¢ is a 1 disjunction of weight

at most k and ¢ = \/, . \/HeWa /\u,vequvv”' can be reduced to the property
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“¢ 1s of weight at most k”

Proof. For each fixed a € D suppose that the set V(a) covers the 1 disjunction
\/HeWa /\u,vEH Tu,v-

Let us apply Lemma C with H — D and f(z) = V(z). Let H' = D—set(R,).
and V = {y € H'|3z € H' y € f(x)}. Clearly V covers the 1 disjunction ¢f< and
Lemma C implies that the requirement about the size of V' is met with sufficiently

large probability.

Lemma 24 clearly follows from the following assertion:

Lemma 29. For all positive integers s, and ¢, Qs , can be reduced to the property
IT: “¢ is of wheight at most k”.

Proof. The case s = 1 is an immediate consequence of Lemma 27 and Lemma 28
and the mentioned transitivity property of reducibility.

Now we start the proof of Lemma 29 without any restriction on s. We will
proceed in the following way. If ¢ is an s disjunction then we will prove that there is
an s disjunction 1 and an s — 1 disjunction ' so that
(80) oLV )
and v is of wheight at most k. Then applying the inductive (on s) assumption to ¢’
we get the required result. Again we will proceed through several steps of type (30).

Definitions. 1. Suppose that ¢ is an s disjunction ¢ = \/,.; d(¢) where each d(7)
is an s', ¢ partition for some s' < s and min(¢) = \/,c;, d(i) for some I' C I. Let
(¢)s = Viepr d(2) where I'" = {1 € I'|[part(d(7)) is an s, q partition}. (In other words
we get (¥)s from ¢ by keeping only those terms which describe a ¢ partition with
exactly s classes and which are not consequences of any terms of smaller size).

2. Assume that P is a property of s disjunctions. We define the property (P)s
by Ps(¢, k) iff P((4)s, k).

Lemma 31. For any positive integer s, ) can be reduced to (II)s.
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We may get Lemma 29 easily from this lemma and the already proven case s = 1

by induction on s, using the transitive property of s reducibility.

Proof of Lemma 31. Suppose that ¢ = \/,.;d(i) is an s disjunction. If X € [D]
then we will denote by ¢~ the s disjunction Vier d(2) where I' = {1 € I| X is a class
of part(d(i))}.

We will prove the Lemma by using the following two assertions and the transi-
tivity of reducibility.

(a) © can be reduced to Y, where Y is the following property: "for all B € [D]*
the weight of ¢ is at most k.

(b) Y can be reduced to (II)s.

Proof of (a). Suppose that B € [D]* is fixed, ¢B = Vier d(z). For each fixed
i € I',d(7) is an ', g-partition for some s' < s. Let d'(i) be the s' — 1, ¢ partition that
we get from d(i) by deleting the term A, ,cp Zun. Let ¥ = \/ieI'd'(i)- Pisan s — 1
disjunction, so by the inductive hypothesis with high probability there is an s — 1

disjunction ¢ so that ¢»®<Lg and ¢ is covered by a set of size k — 1, which implies our

assertion.
Proof of (b). We apply Lemma C’ with H — D, k¥ — ¢. The function f is
defined in the following way: if ay,...,a, € D are ¢ distinct elements, then according

to Y there is a set V of size of at most k so that V' covers ¢} In this case
let f({a1,...,as)) = V. For all other (ai,...,a,) let f(ai,...,a,) = 0. Let R = R.,
H' = D—set(R). Lemma C’ holds for H'. Let X = {y € H'| y € f(a1,...,aq) for

some ay,...,a, € H'}. According to the Lemma P(|X| > k) < n=¢t**¢2 where ¢; > 0

R.
s -

Let ¢ = \/,c;d(7), and suppose that for a fixed i € I, we have that B is a class of
part(d(7)). It is sufficient to prove that if | | | part(d(z))—set(R,)| = sq then BNX # {).
s > 2 implies that there is a B' € D with B’ # B so that B’ is a class of part(d(z)).

! . . .
As we have seen X covers ¢” which implies our statement.

and ¢q, c2 depends only on e. We claim that X covers (¢)
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