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1. Introduction. The theorem described in the abstract (more precisely a
somewhat stronger but more complicated form of it) was needed for proving that the
modulo p counting principles are independent from each other in some sense. The
modulo p counting principle (for the number n) is the following statement: a set
with n elements cannot have two partitions: one with each classes having exactly p
elements and an other where each class with one exception has exactly p elements
and the exceptional class has 1 elements. This statement can be considered as a mod
p analogue of the pigeonhole principle. If it holds on an arbitrary (not necessarily
finite) structure in the sense that the universe has no two partitions of the described
properties and there is linear ordering of the universe then we may assign a modulo p
“cardinality” to each first-order definable subset of the universe in a way that the usual
properties of the notion of cardinality remain valid (see [Ajt3]). It was known that
the pigeonhole principle is in some sense weaker than the mod 2 counting principle
(see [Ajt2], [Ajtl]). (In [Ajt2] the modulo 2 counting priniple was called the “parity
principle”.) The proof given there is using (in a hidden way) the analogue of the
theorem given in the abstract over the fields of rationals. (The theorem is a much
easier over the rationals; it can be proved by either an averaging argument or using
some basic theorems about the representations of the symmetric groups over a field
of characteristic 0. In this case the structure A contains only the eqaulity relation,
the other relations are not needed.) In this paper we prove the theorem about linear
equations for the mod p case. (The proof of the theorem concerning the modulo p
counting principles is given in a separate paper (see [Ajt4])). In the present paper
we do not suppose that reader is familiar with any of mentioned concepts or proofs
related to the modulo p counting principles or the pigeonhole principle.

We give now a more rigorous formulation of the theorem mentioned in the ab-
stract. Later we give an other form of the theorem using the concepts of the repre-
sentation theory of the symmetric group. Actually all of the proofs will be using the
terminology of representation theory. Apart from the terminology the representation
theory of the symmetric group, particularly the so called “charactersic free” results
of G. D. James (see [J]) have a crucial role in the proofs. For the sake of the reader
who is not familiar with the terminology of representation theory, first we give all of

our results in terms of symmetric systems of linear equations.
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As we formulated the theorem in the abstract we used a structure
A = (A,<,Ry,..., R,i) which depended on the parameters p and j. Throughout the
paper the prime p will be fixed, however j will vary, that is, we get various structures
A;. With the present formulation if ;' > j then the structure A; is not an extension
of Aj; since the relation symbols R;, ¢ = 1, ..., j have different interpretations in the two
structure. We will give a somewhat more complicated definition for the structures A;
so that A is an extension of A; if j' > j. In the structure A; we will have relations
Risforalli=1,..,jand s = 1,...,p'. R; () will hold if z is the rth element of the
structure according to the ordering and r = s (mod p*).

Definitions. 1. Assume that p is a prime. For each positive integer j we define a
first-order language L]; which (apart from the equality) has a single binary relation:
<,andforeach:=1,..,5,s =1,...,p" aunary relations R; 5. Let qb]]’ be the following
first-order formula of L]; :

“< is a linear ordering of the universe and

if z is the smallest element then R; ;(z) for all: =1,...,j and

for each element z and each fixed 7 = 1,...,J there is exactly one s = 1,...,p'
with R; s(x) and
for each z,y and i =1,...,7if 1 < s,s' < p' are integers, y is the successor of z,

and s' = s+ 1 mod p' then R; ,(z) implies R; ¢ (y).”

Let Tf be the theory consisting of the single formula qbf If Ais a model of T]p,
then <4 will denote the interpretation of the relation symbol < in A. If the choice
of A is clear from the context then we may omit the subscript.

Clearly, for each positive integer n any two models of T]p with a universe of size
n are isomorphic. This is a consequence of the fact that R; ;(z) holds iff z is the
s'-th element of the ordering “<” for some s' = s (mod p'). Moreover if (4, <) is an
ordered set then there is a single model A of T}9 so that the universe of 4 is A and
“<” = “<4”. We will denote this model by A4 < jp. If j > j' then the interpretation
Aa < jpis an extension of the interpretation A4 < ;i ,, that is those relation symbols
which occur in both L? and L?, have identical interpretations in the two models.

4. Suppose that for each a € Ay, z, is a variable and for each a € A¥ i =1,...,1,
a(t) € Zp, bicz,. If 7 is a permutation of A then 7 also acts in a natural way on AF,

namely (ay,...,ax)m =(a17, ..., ap7).



We say that the system of linear equations ) 4 ugi)xa = by, 1 =1,...11s

symmetric if for each permutation 7 of the set A andi =1, ...,/ thereisani =1,...,1
so that for all a € A¥ we have ul) = ul .

Now we may formulate the theorem described in the abstract.

Theorem 1. For all prime number p and natural number k there are natural
numbers ¢, j so that for all natural number n the following holds:

Suppose that A is a set with n elements, A = (A, <,...) is an interpretation of the
theory Tf, | is a natural number, and for alli = 1,...,1, a € A* we have ugl) € Z, and
b; € Z,. If the linear system ), c 4 ugi)xa =b;,2=1,...,1 is symmetric and it has a
solution in Z, then it also has a solution v, = t, in Z, so that for each fixed d € Z,
there is a first-order formula ¢4(y1, ..., yx) of the language L]; so that the length of ¢4

is at most ¢ and for each a = {(ay, ..., ar) we have:

ta = d l'ﬂ..AfLS’j,p |: ¢d(a1) ...7CLk)

For the applications we need the theorem in a somewhat stronger form. Namely,
for each a € A* there will be not only one variable 2, but a set of variables, altogether
no more then ¢. More precisely let T' be a finite set (we will assume in the theorem
that |T'| < ¢) and for each pair a € A¥, v € T let z, - be a variable. Now a system of
linear equations will be of the form EaeA’c,veF ugi’)y:::a,7 =b;,1=1,...,1. The system
will be called symmetric if for all permutation 7 of A, v € I and + = 1, ..., there is

an i’ = 1,...,1 so that for all « € A* we have ufj)m = ufl/ﬂ.

Theorem 2. For all prime number p and natural number k there are natural
numbers ¢, j so that for all natural number n the following holds:

Suppose that A is a set with n elements, A = (A, <,...) is an interpretation of
the theory T]p, I' is a finite set with at most ¢ elements, | is a natural number, and
foralli =1,....1, a € A¥, v € T we have ugl,)v € Z, and b; € Z,. If the linear system
ZaEA’“,vGF ufj)ﬂm = b;, » = 1,...,1 is symmetric and it has a solution in Z, then it
also has a solution x, ~ =1, in Z, so that for each fixed d € Z, and v € T there is a
first-order formula ¢4 ~(y1,...,yx) of the language LI; so that the length of ¢4~ is at

most ¢ and for each a = (ay, ..., ar) we have:
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tyy = d jﬁAA,S])P |= (/bdﬁ(al, ...,ak).

The theorem has a Corollary which is used in the mentioned applications. It was

noticed on specific examples that if the symmetric system

(3) ZaeAk,veF ufliﬁaca’7 =b;, 1=1,..1

can be given in a “uniform” way in n then the fact whether the system has a solution or
not, depends only on the residue of n modulo p”, where v depends only on k. (Here we
used the world uniform in the general sense not as a mathematical concept.) To show
an example of such a system we need the following definition. The symmetric hull
of a system of linear equations is the smallest system of symmetric linear equations
containing it. E.g. if A = {1,...,n} and k¥ = 2 then the symmetric hull of the
system consisting of the single equation x(; 2y — z(2,1) = 0 is the set of all equations
z gy =z =0fori,j € {1,...,n}, 2 # j. Clearly this definition has some uniformity
in n. In a similar way if we give a set equations each containing only variables of the
type x(; jy where 1,5 € {1,...,c}, i # j, then for any n we may consider the symmetric
hull of this set of equations. This defintion again seems to be uniform. An other type
of defintions is illustrated by the following the following example: our system is the
symmetric hull of the equation

(1) Th,ran=1.

If n = 3 this equation is simply = 2y + 21,3y = 1. We may get the general
equation from this in the following way. Let Ay = {1}, A" = {1,2,3}. Let ul<i,j>
be the coefficient of z(; ;) in the equation z(; 9y + 2(;,3y = 1. For each permutation
7 of A = {1,...,n} which fixes the elements of A, if ix € A, jm € A’ then let
U(ij) = Uir jx- Lhe coefficients u(; ;) define the equation (4). (That is the elements in
A’ serve as a model for determining the coefficients belongong to arbitrary elements
of A.)

These examples motivate the following definition.

Defintions. 1. Let A’ be a subset of A. Suppose that v’ is a Z,-valued function
defined on A% x T x {1,...,1}, Ag C A', |[A' — Ag| > k and b is a Z, valued function
defined on {1,...,1}. (The values of b will be denoted by by, ....,b;). We will say that
the system




(5)  Cacarqer Yontaqy =biy i=1,..,1

is based on the quadruplet u', A, Ay, b if the following holds: for all i = 1,...,1 and
(a,v) € A x T if

(a) 7 is a permutation of A which fixes each element of 4y and

(b) are (A,
then uij =u'({am,~v,1)).

2. We will say that a symmetric system FE is induced by the quadruplet
u', Ag, A", b (over A) if E is the symmetric hull of a system based on this quadru-
plet.

Remark. The |A" — Ag| > k assumption implies that if a system based on a
quadruplet then it is uniqaly determined by it. Indeed if ¢ € A* then because of
this assumption there is always a permutation 7 fixing each element of Ay so that
ar € (A")* and therefore the coefficients of the equations are determined by the
identities ufﬁv = u'({am,v,1)). Clearly this also implies there can be only a single

linear system induced by a quadruplet.

Corollary 6 . For all positive integers k, s and prime p there is a positive integer
v so that if 1 <1 < s, the sets Ag C A', T' have at most s elements, |A — Ay| > k,
u' is a Z, valued function on (A")¥ x T' x {1,...,1} and b is a Z, valued function on
{1,...,1} then the following holds:

There is a a subset () of the residue classes modulo p¥, so that for any sufficiently

large n, if A is a set containing n elements, A' C A, and the symmetric system E

is induced by the quadruplet u', Ay, A',b over A, then E has a solution iff n = d
(mod p¥) for some d € Q.

In the theorems and corollary described above the variables of the linear equations
are assigned to sequences of length £k formed from the elements of A. We may have
used not sequences, but other type of structures formed from at most k elements of
A, like e.g. subsets of size k or sequences of length k with different elements. In
these and similar cases the theorem and corollary remain true. In section 4 we give

a more general formulation of our results in this sense. This formulation (although
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it is not more difficult to prove then the present one) is more convininet for the
applications. From the point of view of representation theory the natural formulation
is the following: first we fix a partition gu1,..., y; of n, (that is, n = g1 + ... + ;) so
that gy = n — k. The variables are assigned to the partitions of the set A into classes
of sizes py, ..., ur. We will prove our results in this form and show in section 4 that

the other forms follow from this easily.

2. In this section we give a formulation of our results using the terminology of
representation theory. We sketch the definitions of those concepts of the representa-
tion theory of the symmetric group which are needed to understand the statement of
the theorem. (See also [J]).

If w = {p1,..., i) is a partition of the positive integer n then a p tabloid is a
partition of the set {1,...,n} into ¢ numbered classes so that the jth class has pu;
elements for j = 1,...,2. The classes will be also called the rows of the tabloid.

If 7 is a permutation of {1,...,n} and t is a u tabloid then t7 will be the pu tabloid
whose jth row is {zi7,...,2,; 7}, where {z1,...,2,; } is the jth row of t.

M" will be a vectorspce (in our case over Z,) whose basis is the set of y-tabloids,
in other words the vectorspace of the formal sums ), . a;t where T is the set of
p tabloids. We define the action of a @ € S, by (D ,cpait)m=>,cpaitm. We
may extend this oprartion in a natural way to the group algebra Z,S,. Under this
operation M* is a Z,S,-module.

As we were able to use the notion of first-order definability for solutions of eqau-
tions we will use this concept also for the elements of M* or more generally an element
of a direct sum of finitely many modules M*. The following definitions are necessary
for this purpose.

Definitions. 1. Assume that p = (g1, ..., i), is a partition of n and of y; = n—k.
Assume further that zy,..., 2} are distinct elements of {1,...,n}. We will denote by
td(k)(njl, ooy xk) =td(zy,...,2) the p-tabloid ¢ that we get in the following way. The
first row is {1,...,n} — {z1, ...,z }. If for each j = 2,... 1, Z]T;; pr = s; then the
j + 1-th row consists of the elements z,,41,...,2s;4,,. (In other words we put the
elements x1,...,x in row number 2....,7 + 1 of ¢ so that we are using the elements z;

in the given order and try to fill up those rows first wich have smaller row-numbers.)
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If I > k, then let td(l’k)(xl, U T T td(k)(xl, )

2. Suppose that M = (A],...), ..., A" = (\7...) is a sequence of partitions of n so
that \Xi >n—Fk,i=1,...,1. fuec M= @izl M and z € Zy and 1 <7 <r then
set(u, i, ) will be the set of all sequences a = (ay,...,ax) so that if u = uy + ... + uy

then the coefficient of u; belonging to the tabloid tdk’n_)‘i(al, ey AR

Theorem 7 . For all positive integers k,l and prime p, there is a positive integer
d so that for all positive integer n the following holds. Suppose that A", r =1,...,1
is a sequence of partitions of n, and for each fixed r, \" = (A],...). If \] > n— k for
r=1,...,1 and N is a Z,S, submodule of the direct sum @lrzl M then there is a
subset G of N containing at most d elements so that G generates N (as a submodule)
and for each fixed ¢ € G, x € Z, and j = 1,...,1 there is a first-order formula
bg.2,;(Y1, ..., yr) of the language L? so that the length of ¢4, ; is at most ¢ and for
each a = (a1, ...,a;) we have:

a € set(g,z,7) iff Aa< jp b= dalar,...,ar).

Sketch of the proof. Assume that N is a submodule, for the sake of simplicity
we assume that N C M#. (The general case when S* is a submodule of a direct
sum can be reduced to this with some kind of diagonalization procedure.) According
to James’s submodule theorem, either N D S#* or N C (S*)L. If N D S# then N
is isomorphic to a submodule of the factor-module M*/S#. In either case the mod-
ules containing N are of simpler structure then the original module M* (they do not
contain the irreducible module D, as a factor), which makes possible the applica-
tion of our inductive assumption. It creates however considerable difficulties that the
property that we want to prove (the existence of a first-order definable system of gen-
erators) is not necessarily invariant under isomorphisms, while the simpler structures
of the mentioned modules implies only that there are isomorphic modules where the
induction hypothesis can be applied. (In principle e.g. it would be possible that N
has two isomorphic copies in M* so that one has such a set of generator the other
not). To resolve these type of problems we have to build up a detailed theory of
submodules with first-order definable generators, and also use deep theorems (of the

charactersitic free representation theory as given in [J]). This theory describes several
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important properties of the factor module M* /S#* which are valid independently of
the characteristic of the field F'.

3. Proof of Theorem 7. In this section we assume that the reader is familiar
with some of the notions and theorems of the theory of the representations of the
symmetric group as as it is developed in [J]. The following notions and theorems are
essential for us:

u tableaux , p tabloids, the module M*, the module S*, the sumbmodule theo-
rem, the standard basis of S*, pairs of permutations x*, £, the module S* +#, a basis
for SH°#

the notion of u-tableaux, u-tabloids

The following definitions will be helpful when we are speaking about first-order
definability in the sense of Theorem 7.

Definitions. 1. Assume that (A, <) is a finite odered set, [ is a positive integer,
and A! is the set of all I-tuples formed from A. If ¢ is a positve integer we say that
a B C Al is ¢, p, A-definable if there is a j < ¢ and an interpretation A of T]P on the
universe A so that <4 and < are identical and there is a formula ¢(zy,...,2;) of L];
of length at most ¢ with [ free variables, so that for all by,...,5; € A we have that
(by,...,b;) € Biff A= ¢(by,...,0b). If the choice of p and A is clear from the context
we will say that B is c-definable.

Suppose that p is a prime and [ is a positive integer, and (A4, <) is an ordered
set. Assume further that f is a function defined on a subset of A! with values in Z,,
where Z) is a field with p elements. We say that f is ¢, p, A-regular if for each a € Z,
the set f~!(a) is ¢, p, A-definable. (Again we will use the expression c-regular if the
choice of p and A is clear.)

We will use the following uniform version of the notions of edefianblity /regularity.
Suppose that A, is a finite set and B,, C Afl for all but a finite number of integers n.
We say that B,, is uniformly ¢, p, A-definable if each fixed B, is ¢, p, A,-definable and
in the definiton of a, p, A,, definability A |= ¢(b1,...,b;) holds with the same formula
¢ for all n. We will use this definition exclusively with A, = {1,...,n}.
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It is a consequence of this definiton that the domains of a uniformly c-regular
family of functions is uniformly c-definable.

Suppose that for all but a finite number of positive integers n f, is a function
defined on a subset of AL. The family of functions f, will be called uniformly c-
regular if for each a € Z, the family of sets f,'(a) is uniformly c-regular. (Again it
is a consequence of this definiton that if f,, is uniformly c-regular then domain(f,) is
uniformly c-definable.)

2. Assume that n is a positive integer and p = (p1,..., ;) is a sequence of
nonnegative integers. We say that p is a partition of nif n = puy +... 4+ ;. p is called
a proper partition if gy > ... > p;. tbld, will denote the set of all i tabloid.

3. Assume that g, n and k are the same as in the previous definiton and
Ty,... 2 € I, tab(zy,..., 2;) will denote the tableau that we get from the tabloid
td(k)(ajl, ..., ¢x) by arranging the elements of each of its rows in an increasing order.

4. If [,1 are a positive integers then I; will denote the set {1,...,1} and I;; will
denote the set of all sequences of length : formed from the elements of 1,.... 1.

5. Assume that, ' is a finite set and for all v € T', u7 = (u],...) is a partition
of n and i > k. Let Mp be the direct sum of all of the modules M*' | that is,
My = @%P M*' . We get a linear basis of Mp by taking the union of the tabloid
basis of each direct summand M#' . We may associate the elements of this basis in a
natural way with the elements of T, where Tt is the set of all pairs (v, {t}), where
v € T and {t} is a p7-tabloid. Assume now that I' = I; for some [ < n, where
I ={1,..,1}. If a € My then we define a function h on a subset of I,, 41 with values
in Tr. (This will code the elemeents of the basis Tr by sequences of integers.) Let
r=n—pu "t R(z1,..., 2k, Tp41) will be defined iff x4 44 € I; =T and tdk’r(xl, ey Tk
is defined. In this case let and h(zy, ..., 2541) = <$k+1,tdk""(:61, Ce ).

6. If a € Mp then we may define a function f, on a subset of I, 41 in the
following way. fu(x1,...,2k+1) is defined iff h(zq,...,x4+1) is defined and in this case
fa(®1,...;xk41) is the coefficient of the basis element h(zy, ..., 241) in the representa-
tion of a as a linear combination of the elements of 7. We will say that the element
a is c-regular if the function f, is e-regular.

7. If p = (p1,...) 1s a partition of n and pu; = n — k, then for an arbitrary Z,-

valued function f defined on the set of p-tabloids we may define a function f on A*
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by f(z1,...,21) = f(td(z1,...,2)). (f is defined iff td is defined). We say that f is
d-regular iff f is d-regular. (We will use later the fact that domain(td) is c-definable
for some ¢ depending only on k.)

Following [J] we say that u*, p is a pair of partitions if g = (u1,...,u;) is a
partition of n, p* = (uj,...,uF) is a proper partition of some positive integer not
greater than n, ui = p1 and for all j =1,...,4, 4] < p;.

Definitions. 1. If ¢ is a p-tableau then let Cy be the group of coloumn permuta-
tions of ¢, that is the set of all permutations = so that for each ¢ € I,,, » and 7 are in
the same coloumn of t. If u*, u 1s a pair of partitions and ¢ is a u-tableau, then we
say that an element of ¢ is outside p* if it is in the j-th element of the :-th row and
i < j. Let Cf be the set of those permutations of C; which fix each element of ¢
which are outside p*.

2. If pu*,p 1s a pair of partitions, t is a p-tableau then let ef*’“ =
EWGC: sgn(m){t}x, where sgn(r) = 1 if 7 is even, otherwise sgn(w) = —1. S# #
1s the linear subspace of M, spanned by all of the elements ef*’“. S s a submod-
ule of M. In [J] a linear basis of SH s given, Theorem 17.13, p. 69., we will refer
to this basis as the standard basis of $#* *. We will use only the following porperties
of this basis:

(a) the standard basis of S*"# can be given in the form of {ef*’“|t € T# '}, where
TH ok is a subset of the set of p-tableaux (depending on p*), and each t € THF is
standard inside p*, that is those elements of the tableau ¢ which are not outside p*
are increasing from left to right in each row and they are also increasing down in each
coloumn.
(b)  the set {(x1,...,2x) € AF|tab(zy,...,2z) € T* #} is c-definable, where c-
depends only on k.
(¢) ift,t" are distinct elements of the T# +#, then the tabloids {t} and {¢'} are also
distinct

The facts listed in (a) are explicitely stated in section 17 of [J]. (b) and (c) are
immediate consequences of Theorem 17.13, p. 69 of [J]. We do not formulate the

theorem here since it involves definitions that we do not need in this paper.
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3. Assume that p*, p is a pair of partition for n and py = pf = n — k. Let
T = T* +*. Since {ef*’“|t € T} is a basis of S* *, each a € T can be written in a
unique way in the form of )~ ;. cie;. We will say that the element a is c-regular with
respect to the standard basis of S if the function Ciab(z1,...,e,) 18 C-TEgUlar.

4. Asin the case of u-tabloids, we define the notion of d-regularity for an arbitrary
function f defined on T#"+#. If f is an arbitrary function defined on 7" ** with values
in Z, we say that f is d-regular iff f(tab(zy,...,z)) is d-regular. (We will use later
the fact that domain(tab) is c-definable, and (as we have remarked at the definition of
TH Y {{zy, ...,z |tab(zy,. .., zx) € T* *} is also c-definable for some ¢ depending
only on k.)

Definiton. Suppose that A; = (4;,< ...) Ay = (A, < ...) are models of
TP, dist will denote the distance function on A;, ¢+ = 1,2, that i1s if a,b € A then
dist(a,b) = |[{z € A; | min(a,b) <z < max(a,b)}|. Suppose that a = {(ay, ..., a;) resp.
b = (b,...,b;) are sequences from the elements of A; resp A; and m is a positive
integer. We say that a and b are m isomorphic (with respect to Ay, Ay) iff for all

1 <i:land 1 <5 <[ the following four requiremnts are met.
(a) a; <ajiff b <D

b if dist(a;, a;) < m then dist(a;, a;) = dist(b;, b;)

(b)
(c¢) if dist(b;, b;) < m then dist(a;, a;) = dist(b;, b;)
(d)

d) Ryp(a;)=Ryp(b;)forallr=1,.,s, 1 =1,..,p°

We will say that @ and b are strongly m-ismorphic (with respect to Ay, Ay) iff the
sequnces (ay,...,az,01,01) (by,..., b1, 02,12) are m-isomorphic, where o, is the smallest

and 7, 1s the greatest element of the ordered set A,, < for r =1,2.

Lemma 8. For all positive integers d,l and prime p there is a positive integer
m so that the following holds. If ¢(zx1,...,z;) is a formula of LY of length at most d
and Ay = (A1, <,...) Ay = (A2,<,...) are models of T} and a = {(ay,...,a;) resp.
b= (by,...,b;) are strongly m-isomorphic sequences from the elements of A; resp.

Ay, then Ay |= dlay, ... a1) iff Az = ¢(b1,...,b).
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Proof. In this proof we will assume that A; = {1,...,n1} and 4y = {1,...,ny} for
some positive integers ny, ns.

Assume that ¢ is in prenex form and the number of quantifiers in ¢ is r. We
prove the Lemma by induction r. (We will denote by m, ;4 the value of m in the
lemma belonging to the corresponding values of the parameters r, [, d.) If ¢ is a propo-
sitional formula then the statement is an immediate consequence of the definition of
m-isomorphism. Assume now that ¢ is in prenex form with r-quantifiers starting
with the quantifier 4, and the lemma is true with »r — r — 1 and with any values
of the parameters d,l. (We will assume that both sequences contain the greatest
and smallest element of the corresponding universe. Beacuse of this assumption we
may speak about m isomorphism instead of strong m isomorphism.) Suppose that
the sequences a = {ay,...,a;), b = (by,...,b;) are my 4 if my1a > 4mr_1141,a. As-
sume further that 4, = Jz, ¢'(z,a1,...,a;). Let g € A with Ay | ¢(zo,a1,...,a;).
Let 1 <1 <[ so that y = 9 — a; has minimal absolute value. We claim that if

ly| < 2my—1 141, then the sequences a' = (zg, a1, ...,a;) and " = (b; +y, b1, ..., b;) are

My—1,141,4 isomorphic and if |y| > 2m,_1 ;41,4 then the sequences o' = (zg, a4, ..., ar)
and 0" = (b; + z,b1,...,b;) are m,_1 ;41,4 isomorphic, where z is an integer with the
properties

(9) y ==z (mod p?) and

(10) |z — ﬁer—l,H—l,cﬂ < pt+1.

Indeed if y < 2m,_1 41,4 = m' then the m, ;4 isomorphisms of the sequences
a,b and my_1 141,04 < 4my;q implies this. If y > 2m' where m' = m,_q 1414 = then
the distance of zo from any points of a is at least 2m'. If [a;,a;] is the minimal
interval formed from the elements of a that contains zo then a; — aj > 4m' and so
by the m, ;¢ isomorphism of @ and b we have that b; —b;; > 4m'. Clearly the interval
[bj,bj] contains b; + z and so according to 10 the distance of z from any elements of
the sequence b is at least 3m/', which together with (9) implies the m' isomorphism
of a' and b".

In either cases applying the inductive hypothesis with r — r — 1,1 — [+ 1 we
get that Ay = ¢'(b; + w, by, ..., b;) for some integer w that is Ay | ¢(by, ..., bp).

If ¢ starts with a V quantifier then we apply the lemma for —=¢ = dz .. ..

12



Corollary 11. For all positive integers d,l and prime p there is a positive integer
m so that the following holds. If ¢(z,x1,...,z;) is a formula of L of length at most
d, Ay = (41,<,...) Ay = (45, <,...) are models of T} and a = (ay,...,ar), resp.
b= (by,...,b;) are strongly m-isomorphic sequences from the elements of A, resp.
A,, then the number of elements in the following two sets are congruent modulo p:

X,={z €A | A E¢(z,a1,...,a1)} and

Yi={z€ Ay | Ay = ¢(x,by,...,01)}.

Proof. We assume again that Ay = {1,...,n;} and Ay = {1,...,n2}. The strong
m isomorphism of @ and b implies that n; = ny (mod p?). As in the previous proof
we may assume that the smallest and

greatest elements of the universes are included in the correspomdimg sequences.
Let my 4 be the number whose existence is guaranteed by Lemma 11 for some fixed
[ and d and let m = 2im41 4. Let S, be the set of all elements of A whose distance
from the set {ai}ﬁzl is at most myy;,4 and Sy defined in an anlogue way for the
sequence b. Clearly the m-isomorphism a and b can be extended in a unique way into
an mj41,q isomorphism between o', b where o', b’ are extensions of the sequences a, b
with elements from S, resp. Sp so that each element of S, resp. Sj is used. Let
k be the one-to-one map between S, and Sj induced by this isomorphism. Clearly
it + € S, then the sequences (z,a), (k(x),b) are mi41,4 isomorphic and therfore, by

Lemma 8,
(12)  |S.N X, = |5 N Xyl

Forany © € A; — S, and y € Ay — S} if + = y (mod p?) then the sequences (z,a)

and (y,b) are m4q ¢-isomorphic and so by Lemma 8:
(13) forallz € Ay — S4, y € A2 — S, x =y (mod p) we have z € X, iff y € Xj.

The mi41,q isomorphism of (x, a) and (k(x),b) imply that the number of elements
of S, N X, and S, N X which are in any fixed residue class ¢ modulo p is the same.
Therefore n; = ny (mod p?) and (13) imply that [{z € X,|z = ¢ (mod p)}| =
H{y € Xily = ¢ (mod p)}|, therefore according to (13) | X, — S.| = | X — Sp| (mod p)
and so by (12) | X,| = |X3| (mod p).

13



Corollary 14. For all positive integers [, d and prime p there is a d' so that if
¢(z,y1,...,y1) is a first-order formula of LY, of length at most d with the free variables
T,Yy1,...,y; then there exists a d' so that the following holds: For each positive integer
n we define a function f,, on I, ; = (In)l with values in Z, in the following way. If
ay,...,an € I, then fn(ay,...,a,) is the residue class of the number of elements of the
set {z € I, |Ar, <,dap = ¢(x,a1,...,a1)} modulo p.

Then the family of functions f, is uniformly d'-regular

Proof. We divide the sequences (ay,...,a;,n), a; € I,,i =1,...,1 into equivalence
classes in the following way: (a,...,a;,n1) and (by,...,b;,n2) are in the same class if
the sequences (ay,...,a;) and by, ..., b; are strongly m isomorphic with respect to I,,,,

I,,,, where m is the positive integer whose existence was guaranteed by Corollary 11.

According to the definiton of m-isomorphism the number of equivalence classes
depends only on p,d,l and m and so, by Corollary 11 only on p,d and [. Therefore
there is an ny depending only on p,d and [ so that each equivalence class contains an

element (aq, ..., a;,ng). Therefore f,(b1,...,b) = c iff

(15) “there is a sequence a = (ag, ...,a;), a; < ng, ¢ = 1,...,ng so that the sequences
a and (by, ..., b;) are m isomorphic and f.(a,...,a;) = ¢.”
It is easy to see that there is a first-order formula ¥ depending only on p.d, [ and

¢ (form the uniform definition of the family f,) so that (15) holds iff A7, < 4, =
Y(ay,...,az) which completes the proof of Lemma (14).

Lemma 16 . For all positive integers d, [ and prime p there is a positive integer

d' so that the following holds. Assume that ¢y, ¢y € Z,
(17) If f,g are d regular functions on A' then ¢, f + ¢3¢ and fg are d' regular.

(18) If f,,gn are uniformly d regular families of functions, then ¢ f, + c29, and

fngn are uniformly d' regular.

Proof. We prove only (17), the other statement can be proved in an analogue

way. It is clear that f' = ¢, f is d regular since if ¢; # 0 the f'~!(c) = f~'(c;'¢). So

14



we have to prove only that f' = f + ¢ is d' regular provided that both f and ¢ are d
regular.

f=Ye) = Uaezp(f_l(a) Ng~'(c—a)). Since the sets f~!(a) and f~'(c —a) are
d definable and the number of terms in the union depends only on p we have that
f'7'(e) is d'-definable which completes the proof of the d' regularity of c; fi + cafa.

The d' regularity of fg can be proved in a similar way.

Lemma 19. For all positive integers d,l and prime p there is a positive integer
d' so that the following holds.

Assume that (A', <) is an ordered set, f is a d-regular function defined on A'
with values in Z,, 0 < k <[ and f' is a function defined on A* by f'(ai,...,a;) =
S {f(ar,...,ap, by, bi—g)| (br,...,bi—) € A"=F}. Then f' is d'-regular.

Moreover if the family of functions f, is uniformly d-regular then the family of
functions f!(ay,...,ax) = S {falar,. .. ar,by,...,bi—)| (b1,...,bi—t) € A=F} is

uniformly d'-regular.

We prove only the non-uniform version of the lemma. The proof can be easily
modified for the uniformity.

Assume first that [ = 1. For each ¢ € Z, let f. the function that we get from f
by changing all it’s non-c values into zero and let f!

fiar, ... ar) =S Afelar, ... ar, by, ... bi—g)| {b1,... bi—g) € AI7F}

Clearly f' = Zcezp fL. According to Lemma 16 it is enough to show that each
flis d' regular. (The ¢ = 0 case is trivial since f! =).) Let c,u € Z,, ¢ # 0 be fixed.
fl(ay,...;ar) = u iff the number of elements in the set {b € A|f.(b,ay,...,a;) = ¢} is
congruent to ¢ 'u modulo p. Therefore d regularity of f. and Corollary 14 implies
that (f')7'(u) is d' regular which completes the proof of the [ = 1 case.

We prove the general case by induction on [. Assume that the lemma is true

with [ — [ — 1. Let

flay, ... ar, bi—g) = S Af(ar, ... ar, b1y bi—g)| (byy ... bi—p—q) € AI7R=1Y

According to the inductive assumption the function f is d'-regular. Since
flar,...,ax) = S {f(ar,...,ar,b)| b € A}, the [ = 1 case implies the d" regularity
of f'.
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Lemma 20. For all positive integers ky, ko,d and prime p there is a positive
integer d' so that the following holds.

Assume that ¢ is a linear transformation from M* to M where p = {u1,...),
A= {A1,...), g1 = k1, A1 < ko. Suppose that for each p tabloid T we have T¢ =
Y ricibld, Crr T - If the function f(z1, .,y yy . ,) = Ctd(z1,.. 2k ) 4 (Y1, yry) 15
d-regular and a € M* is d-regular with respect to the tabloid basis of M* then a¢ is
d' regular with respect to the tabloid basis of M”.

Proof. Assume that a = Zretbldu ~v-7. The d regularity of a implies that the
function ~; is d regular. Let <, be the lexicographic ordering on I, ;, We define
a function g on I, by g(x1,..., 2k, ) = v if (21,...,2k, ) is the smallest element of
A*t under the ordering <g, so that td(zy,...,zx, ) = 7. If there is no such 7 € thld,
then g(x1,...,xr, ) = 0. It is easy to see that ¢ is dy regular where d; depends only on
d, ky,l and p.

In a similar way starting from the function ¢, we define a function
(T4, ooy Ty s Y1y ees Yy ). Namely A(1, oo @ky, Y1y oo Uiy ) = (7, 7") i td(y1y ooy yiy ) =
7" and (21, ..., 2k, ) is the smallest element of A*¥* under the <j, ordering so that 7 =
td(z1,...,xg). If there are no 7, 7’ with these properties, then h(x1, ..., 25, Y1, ..., Yk, ) =
0.

If ap = 3 cipia, O 7' then we have to show that the function ¢(y1,...,yx,) =
0ta(Y1, ..oy Yk, ) is d' regular. Since ¢ is linear we have q(yi,...,yk,) =
ZretbldM TrCrtd(yr,eyky) =
SHG( Ty ooy Guy V(T ooy TR YLy ooy Yo ) (T 1y ooy gy ) € ARLY

Therefore by Lemma 16 and Lemma 19 ¢ is d'-regular.

Corollary 21 . Lemma 20 remains true if either the domain resp. the range of
¢ (or both) is M#ESH resp. MM > for some p*, \* and we consider the regularity of

the elements a, a¢p with respect to the corresponding standard basis.

Proof. The proof is exactly the same as that of Lemma 20.
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Lemma 22. For all positive integers d,k and prime p there is a d' so that if
n >k, u*,p is a pair of partitions for n, and p; = pf = n — k then the following
holds.

(23) Ifac€ SHTE s d-regular with respect to the tabloid basis of M", then a is d'

regular with respect to the standard basis of S* '*.

(24) Ifac€ SKTE is d-regular with respect to the standard basis of S * then a is
d' regular with respect to the tabloid basis of M*".

Proof of (24). We want to apply Corollary 21. Let ¢ be the natural injec-
tion of S** into M* and let ef*’“ be an element of the standard basis of M# #
and let 7 be a p-tabloid. According to Corollary 21 it is sufficient to prove that if
f(t,7) is the coefficient of 7 in ef*’“ then the function f (more precisely the function
f(tab(zq,...,xx), td(y1, ..., yx))) is d-regular, if d is sufficiently large with respect to k
and p. This is however an immediate consequence of the definition of ef*’“.

Proof of (23). We define a binary relation ® on T# >k in the following way. If
t,t' € T* # then t®t holds iff t # ¢' and there is a 7 € C} so that {tx} = {t'}. In
other words t®t' iff t £ t' and the tabloid {¢'} has a non-zero coefficient in ef*’“.

Since for each t € T* # the elements not outside p* are increasing down the
coloumns we have that ¢,t' € TH # t®t' t £ t' implies that {t} < {t'}. Since < is a
partial ordering we may extend ®, based on the transitivity, into a partial ordering
that we will denote by <. In other words ¢ < #' iff there is a finite sequence t;,
i=1,...,ssothat t =t;,t' =t;and forall i = 1,....;s t; < t;41.

We define a partial order C on the set of u tabloids in the following way. Let
T = {r € thld,|3t € T** 7 = {t}}. The elements of thld, — T will be pairwise
incomparable under the partial ordering T, and any element of tbld, — T will be
greater than any element of T. If 7,7/ € T, then 7 C 7' iff 7 = {t}, 7/ = {t'} and
t < t' for some t,t' € TH *,

(25)  There is a ¢ depending only on k, so that for any sequence ty,...,ts of the
clements of TH ", if t;®t, 44 forallt =1,...,5s — 1, then s < c.
Proof of (25). If ¢ is a p-tableau then we will denote by set(t) the set of all

elements of the tableau which is outside the first row. (set(t) is a subset of I,, with
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k elements.) We claim that if ¢®¢' then set(t') C set(t) U Ix. This is a consequence
of the fact that the elements in the first row of ¢ are inrcreasing from the to right
and therefore at the first k positions (on the left) we have the smallest k elements of
the set I, — set(t). Since |set(t)| = k, they are among the elements of Iox. When we
apply an element of C} to t only those elements may leave the first row which are in
the first k& coloumn, therefore every element leaving the first row is included in o
and so we have set(t') C set(t) U Iz. This implies that for all t;, ¢ = 1,..., s we have
set(t;) C set(t1) U Izx. Since the elements of each t € TH H are increasing in the first
row the number of + € T" ** with set(t) C set(ty)U Iz is less than ¢, where ¢ depends
only on k, which completes the proof of 25

Definitions. 1. If 7 is a p-tabloid then depth(r) will denote the largest positive
integer 7 so that there is a sequence ty,...,t, t; € TF # § =1,....s, so that 7 = {t}
and for all i = 1,...,s — 1, t;®t; 4. If there is no such sequence then depth(r) = 0.
((25) implies that there is a bound, depending on only on k, on the numbers depth(7),
T € thld,.)

2. If f is a function on tbld, then let fnin be the set of all minimal elements
{r € thld,|f(7) # 0} under the C partial ordering. If ¢ is a function defined on T# *

then we define the set gy in a similar way using the < partial ordering.

(26) Suppose that f is a Z,-valued function on tbld, and g is a Z,-valued function

on TH * so that Zretbldu flr)r = Zterm*,# g(t)ef*’“, then {{t}|t € gmin} = fmin-

Proof of (26). For all t € T# * and for all of the tabloids 7 occurring with
non-zero coefficient in ef*’“ we have {t} C 7. Therefore if t € gmin then {t} does not
occur with a non-zero coefficient in any ef,*’“, t' € gmin, t' # t and so f({t}) # 0, that
is, {t} € fmin-

Assume that 79 € fuin- Zretbldu FO)T = crur g(t)ef*,“ implies that there
isate TF " sothat ¢(t) # 0 and 7 has a non-zero coefficient in ef*’“ and therefore
{t} C 7. Let ty € gmin so that tg <¢. According to the already proven part of (26)
we have that {tg} € fmin and so 79 € fumin, {to} C 7o implies 7 = {to}. Since tg € gmin
this completes the proof of (26).

If fis a Z,-valued function on tbhld, and a = Z‘retbldu flr)r € S then

there is a ¢' so that a =), .. . g'(t)ef*’u- Let ¢ be a function defined on T# ** by

18



g(t) = ¢'(t) for all t € ¢! . and ¢(t) = 0 otherwise. Clearly gmin = ¢.,;, and so by

26) {{t}|t € gmin} = fmin,
27)  ¢(t) = f({t}) for all t € gmin and ¢(t) = 0 for all ¢ ¢ gmin.
We will denote the function ¢ by bottom( f).

o~ o~

If g is an arbitrary Z, valued function on 7T+ , then, trivially, there is a function
f on tbld, so that Zretbldu FT)T =2 jerwrn g(t)ef*’“- We will denote this function
f by thasis(g).
(28)  For all positive integers d,k and prime p there is a d' so that the following
holds: If *, pu is a pair of partitions of n and py = k and f, g are Z-valued functions
defined on tbld, resp. T#"# then we have:

(29) if f is d-regular, then bottom( f) is d'-regular,
(30) if g is d-regular, then tbasis(g) is d'-regular.
Proof. (29) is an immediate consequence of (27) and the fact that the ordering

= is c-definable, where ¢ depends only on k. (30) is a consequence of (24).
Definition. If f is an arbitrary Z,-valued function defined on tbld,, then let
depth(f) = max{depth(7)|f(7) # 0}.
If depth(f) = depth(7r) and f(7) # 0 then 7 € fiin. Indeed if 7 ¢ fiin then
there is a 79 # 7 so that f(79) # 0 and 79 C 7. This implies depth(7y) > depth(r)
which contradicts to the defintion of depth(f).

(31) depth(f — thasis(bottom(f)) < depth(f).

Proof. Let h = f — thasis(bottom(f)). By (27) for each 7 € fmin, h(7) = 0,
so h(7) # 0 and f(7) # 0 implies depth(7) < depth(f). Assume that h(7) # 0

and f(7) = 0. In this case 7 appears with non-zero coefficint in ef*’“ for some t,
with {t} € fmin, and 7 # {t}, and therefore we have again depth(7) < depth(f).
Q.E.D.(31)

Finally we note that (28) and Lemma 16 implies that
(32) if f is d-regular then f — tbasis(bottom(f)) is d' regular, where d' depends
only on d,p and k.

Now we may prove (23). Assume that Z‘retbldu Fr)m =2 cpurn 9(t)
f is d-regular. We have to prove that ¢ is d'-regular. We prove this statement

.
eff #and
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by induction on depth(f). If depth(f) = 0 then f = 0, ¢ = 0 and therefore ¢ is
trivially d'-regular. (25) gaurantees that that depth(f) < ¢ where ¢ depends only on
k, therefore it is enough to show that if the statement of the lemma holds for every
i, (1 < ¢) with d' — d; then it also holds for ¢ + 1 with d' — d;;1 where d;+; depends
only on p, k and d;.

Assume that depth(f) = ¢+1. By (31) we have depth( f —tbasis(bottom(f))) < 1.
Therefore by applying the inductive assumption to f — thasis(bottom(f)) we get that
g — bottom(f) is d; — regular. By (29), bottom(f) is d regular where d depends on
only d;, k and p so, according to Lemma 16, ¢ is d;;q-regular. Q.E.D.(Lemma 22).

We define the homorphisms v; ,, as in [J] Definition 17.10 p. 67.

Lemma 33. For all positive integers d,k and prime p there is a d' so that if
n >k, u*,p is a pair of partitions for n, and p; = pf = n — k then the following
holds.

Suppose that v, and ¢ are defined as in [J], Theorem 17.13, p. 69. If a € S¥ #Ee
is d-regular with respect to the tabloid basis of M*Ee then there is a b € S* " so
that bp._y u+ = a and b is d'-regular with respect to both the standard basis of SKm
and the tabloid basis of M*.

Proof. First we show that the statement of the lemma is true if @ is an element of
the standard basis of S# *#Fe_ In this case using the identity ef*’“'z,bc_l,uz = f;’cuR“
we may find a b of the form of et*’“%/)c—l,uz which is clearly d'-regular. For each
t € Tr 1#Be et  be the smallest tableau so that 6?*’N‘¢c—1,u; = 6f*’“R°. Clearly the
function ¢ — ¢ is d'-definable.

An arbitrary a is a linear combination of the elements of the standard basis of

SHTERe o that the coefficients form a d-regular function on T# #f< We have to

show that if we form with these coefficients the linear combination of the elements

ef;*’“ then we get an d'-regular element of S #.
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Definiton. Assume that g = (u1,..., yy) is a proper partition of n with r non-zero

parts. Then according to Corollary 17.18 of [J], p. 72, we have

ropi—1

SH = ﬂ ﬂ ker ;1 ;.
i=2 j=0
Let O = {¢)i—1,; |2 <¢<r, 0<j <p;—1}. This definition implies that |¥| = n—p;.
We will use this fact later.
The image of each ¢ € ¥ is in some M"¥ where vy > . Let Y# = @TZJE‘P MPv.
There is a natural homomorphism n of M* into Y#. The mentioned Corollary implies

that the kernel of n is S*.

Lemma 34. For all positive integers d, k and prime p there is a positive integer
d' so that if u = {p1,...,ur) is a proper partition of n and puy = n — k then the
following holds.

If a € M*" is d-regular in the tabloid basis, then for all + = 2,...,r, j =

0,...,¢i—1, atb; j is d'-regular in the tabloid basis.

Proof. Let 7, be fixed. v, ; 1s linear map of M*, into M", v = vy, ;. Therefore
according to Corollary 21 it is sufficient to show that f(7,7') is d regular, where
T € thld,, 7' € tbld, and T¢,;; = ET’Etbldv/ f(r,7")r. More precisely we have to
prove that the function f'(zy,...,2k, Y1, yx) =F(td(2y,..cizp), td(y1,..., 1)) is d-
regular, vy = (n —[,...). (vps; > p implies [ < k.) This is however an immediate

consequence of the definition of ¥, ;.

Lemma 35. For all positive integers d,k and prime p there is a d' so that if
n >k, and p = (u1,...,py) is a partition of n, g1 = n — k then the following holds.
If a € Y* is d-regular with respect to the tabloid basis and a = xn for some x € M"
then there is a b € M* so that a = by and b is d'-regular with respect to the tabloid

basis.
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Proof. There is a sequence p", ..., ut9, i < k of proper partitions of n and a
sequence ¢y, ..., ci—y of positive integers I,, so that for each 1 < j <1, (9, 11 is a pair
of partitions for n and the following requirements are met.

(36) u =0, 4 = g
()

(37) forallj=1, .,i-185"mgp g = SHmRe and
cj—L,ng;

j U) A .. 41
(38)  SH A ker o gy =G At = gnt T
Cj_laNCj

(39) Forevery h=2,...,rand ¢ =0,...,u, — 1 there is a 5, 1 < j <4, so that
Vhg =V, ) (Actually this holds with h = ¢; and ¢ = ,ugf))
c; —1, cj
Let d = d; < ... < d; be a sequence of integers which grows sufficiently fast with
respect to d, k and p. (The sequence does not depend on n).
We will show by induction on j that

(40)  there is a b; € M" so that b; is d; regular with respect to the tabloid basis

and for all s =1,...,7 we have chs—l,u(fs) = bj’l’/)cs—l,u( ).

First we prove (40) for j = 1. Since a = zn is d-regular with respect to the

tabloid basis of Y* clearly ;17'1/)61_1 e 1s also d-regular with respect to the tabloid
b Cl

basis of M#Fe1. Therefore Lemma 33 implies that there is a by € 5“(1)’“ C M*" so

that by is d'-regular in the tabloid basis of M* and :ﬂ';/JCl_l e =by) (1)
sleq

Cl—laﬂcl

Assume now that (40) holds for j and we will to prove it for j+1. Let ; = z —b;.
Clearly for all s =1,...,7 we have xj?’bcs—l,u(ci) = 0 that is z; € ker ';/JCS_I,N(CSS). Using
this fact and (38) we can prove by inductiori on s that z; € S# Tk and therefore
x; € S# Tk Since both z and b; are dj-regular with respect to the tabloid basis

of M*, z; is d'-regular with respect to the tabloid basis. Let u = z;¢ () -
J Cj+1_1aHCj+1
According to Lemma 34, u is d’j' regular with repsect to the tabloid basis of M

and so, by Lemma 22 it is d}' regular with respect to the standard basis of SHHhuR,,

Therefore Lemma 33 implies that there is a v € AR Ne M, which is d}"-regular

with respect to the tabloid basis of M, so that u = vy G+1. (Moreover

. Cj+1_1aNCj+1

ve s hn implies, that vip., —1,,s = 0forall s =1,...,7). Therefore b;1; = v + b,
: R . JT— " e e ) — 1. )

is a djyi-regular element of M* with the property: $¢Cj+1—1,u(c§-fl) = b; ¢Cj+1—1a#(cjjfl)’
which completes the proof of (40).

22



By (39) b = b; satisfies the requirements of the Lemma.

Definition. We define a homomorphism p = p# of Y* onto (S*)* in the following
way. Each element (z € S#)* induces a linear functional £, on M* which is defined
by aé, = a -z for all a € M*". Clearly all of the linear functionals that we get this
way are distinct, they are 0 on S*, moreover we get this way every linear functional
which vanishes on S*. (We get the identity of the two spaces of functionals from the
equality of their dimensions.)

Each element y of Y# also induces a linear functional ¢, on M*# defined by
aly = (an) -y for all a € M*". (We define the inner product on Y* = @¢€W Mvv
with respect to the tabloid basis of the direct sum, that is the basis that we get by
taking the union of the tabloid basis of each direct summand M?"¥.) Since the kernel
of n is S*, ¢, vanishes on S*. According to our previous remarks, for each y € Y'*
there is exactly one z € (S*)* so that Cy = & If z,y satisfy this identity then let
yp = x. Clearly p is a homomorphism of Y* into (S#)+. To show that p is “onto” it
is enough to show that every linear functional vanishing on S* is of the form ¢, for a
suitable y € Y~

Since the kernel of n is S*, the image X of M*" with respect to n is isomorphic
to M* /S*. Therefore, for every linear functional f vanishing on S* there is a linear
functional ¢ on X so that f = ng. ¢ can be extended into a linear functional defined

on the whole Y, therefore it can be written in the form (,, that is f = (.

Lemma 41. For all positive integers d, k and prime p there is a d' so that for all
n the following holds. Assume that g = {{1,...) is a proper partition of n, u1 > n—=k
andy € YY", If y is d-regular with respect to the tabloid basis of Y* then yp* is d'
regular with respect to the tabloid basis of M*.

Proof. Let B be the tabloid basis of Y#. p* is a linear map of Y* into M,
therefore according to Corollary 21 it is sufficient to show that the function f(b,7),
be B, r € tbld, is d'-regular where bp* = Z‘retbldu f(b,m)r.

f(b,7) = bp" - 7 =7&pu = ™y =(7n) - b. The proof of Lemma 34 implies that

this is d'-regular as a function of 7 and b.
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Theorem 7’ . For all positive integers k,l and prime p, there is a positive integer
d so that for all positive integer n the following holds. Suppose that A", r =1,...,11s
a sequence of proper partitions of n, and for each fixed r, \" = (A\],...). IfA] > n—k
forr =1,...,1 and N is a submodule of the direct sum @5:1 M?*" then there is a
subset G of N containing at most d elements so that G generates N (as a submodule)

and each g € G, is d-regular with respect to the tabloid basis.

Proof. There is a total order <p on the set of all partitions of n which is an
extension of the < ordering. Let p be the minimum of the partitions A" under this
ordering. We prove the theorem by induction on p with respect to the ordering <p.
(The induction will go downwards on the ordered set of partitions.) If u has only
one class (this is the greatest partition), then the assertion of the theorem is trivial,
since M* is of dimension 1 and so the dimension of the direct product @lrzl MY is
[. Therefore every element is d-regular (if d is sufficiently large with respect to 1) and
the direct product has a system of generators consisting of [ < d elements.

Assume that min’_, A" = p. First we prove the theorem in the [ = 1 case, that
is we assume that N is a submodule of M*#. (We give this proof only to make it easier
to understand the general case.) According to the submodule theorem [J], Theorem
4.8, p. 15, either N O S* or N is orthogonal to S* (where we define an inner product
on M*" with respect to the tabloid basis).

Case 1. N D S*. Let n be the homomorphism of M* into Y# as defined before
Lemma 35 and let N' = Nn. Y# = @¢€‘P M,, where vy >p pand |¥| =n—p; <k
therefore according to the inductive assumption there is a G' C Y#, |G| < d so that
each ¢ € G is d-regular with respect to the tabloid basis of Y*. Lemma 35 implies
that for each ¢ € G thereis a by € M, so that byn = g and b, is d-regular with respect
to the tabloid basis of M*. Since S* is the kernel of n we have that {b,},cq U S*
generates N. S, can be generated by a single ¢, which is, ¢ p-generic over the tabloid
basis, where ¢ , depends only on k and p (this is an immediate consequence of the
definiton of e;). Therefore G = {b;},ec U {e;} generates N, |G| < d+ 1 < d and
each element of G is d regular with respect to the tabloid basis, which completes the
proof of Case 1.
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Case 2. N C (S*)+. Let N' = Np~!. N'is a submodule of Y*. As in Case 1.
we may apply the inductive assumption to N’ C Y#. Let G’ be a set of generators for
N' so that |G'| < d and each g € G' is d-regular with respect to the tabloid basis of
Y. Since p is a homomorphism of Y# onto (S*)1, we have that G = {gp | g € G'}
is a system of generators for N. Clearly |G| < |G'| < d < d, and Lemma 41 implies
that each g € G is d-regular with respect to the tabloid basis. Which completes the
proof of Case 2.

Now we start the proof for the general case, that is, we will have no restrictions

on [.

Lemma 42. (S*)+ = {a € M* | Vt, ar, = 0}. Moreover if U is a submodule of

M* wich is not contained in (S*)*, then for any p-tableau t there is a u € U with
uke # 0.

Proof. Let X = {a € M*|Vt,ar; = 0}. If (a € S*)* then for any tabloid * we
have 0 = a-e; = a- {t}r, =(ar() - {t} =ce, - {t} where ¢ is an integer. (The last
inequality follows from Lemma 4.7 of [J], p. 14.) Since ¢;- {t} = 1 we have that ¢ =0
and therefore ax; = 0 that i1s a € X.

If « € X and t is a tableau, then a-e; = a - {tk;} =ak¢- {t} = 0 and therefore
aec St

Lemma 43. Assume that U is a submodule of M" which is not orthogonal to

Sk, V is a homomorphic image of (S,)*

Then S* C ker ¢.

, and ¢ is a homomorphism of U into V.

Proof. Since U is not orthogonal to S#*, Lemma 42 implies that there is an a € A
and a tabloid {t} so that ax; # 0. According to Lemma 4.7 of [J] we have that
ar; = ce; where ¢ Z 0 mod p. Therefore e;¢p = c'aki¢d = (c'ag)r. c'agp = by for some
b € (S*)1 and homomorphism ¢ therefore by Lemma 42 e;¢ = (b)), = (bry)h = 0
and so S* C ker ¢.

Definition. 1. Assume that I' is a finite set, n is a positive integer, and pu

is a proper partition of n. Wr , will denote the direct sum ®7€F M*" that is the
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direct sum of |I'| copies of M#*. A T by I' matrix will be a function defined on
the direct product I' x I' with values in Z,. If A is a I' by I' matrix, then we
may define the action of a matrix A = {ax y}rer ,yer on W ,. If v € Wr , and
v = (vy|y €T), then vA = (vy|y € T)A =(D"\cr axvaly € T'). The map obviously
is a Z,Sy,homomorphism of W, , into itself.

2. Sﬁ"u will denote the set {(v,|y € T) € Wr, | Vy € T, v, € (§#)1}. Clearly
Sﬁ"u is a submodule of Wt ,.

3. pr,, will denote the natural projection of a direct sum @7611 V, onto V.,
defined by <a7>p1‘% = a,. If T' C T then prp, will be the natural projection of the

direct sum onto V. 1 and (pv will denote the corresponding natural injections.

yer!

Lemma 44. If U C Wr ,, is a submodule not contained in Sﬁu, and t is a
pu-tableau, then there is an invertible I' by T' matrix A, and a v € U so that if
(vyly € T) = uAky then there is a 79 € T' so that vy, = e; and v, = 0 for all

Y # v,7 €T

Proof. Since U is not contained in Sﬁ‘u there is a 79 € I' so that U, is not

contained in (S*)1, where Uy, = Upr.,,. Lemma 42 implies that there is a u' € Uy,

so that u'ky # 0. There is an u = (uy)yer € U so that u' = u.,. Let uyk; = cyeq
(see. [J], Lemma 4.7, p. 14.). We know that ¢, # 0 (mod p). Let A = {ay .}, where
ayy = c;ol forall A € I' and ay -, = —cxcgol. It is easy to check that A statisfies the

conditions of the Lemma.

Lemma 45. If U is a submodule of Wt ,,, and t is a p-tableau, then there is an

invertible ' by T' matrix A, and a I C T so that the folllowing requirements are met:
(46) for all v € T there is a u~, € U so that the v component of u, Ak is ey, and

all of the other components of uyAr; are 0,

(47) for ally € T —T' and for all u € U the vy-component of uA is in (S*)*1.

Proof. Let I be a maximal subset of I so that the requirements of 46 are met
with a suitably chosen invertible I' by T' matrix A. We claim that (47) holds for
this I'" and A. Assume that (47) is not true. Let UA = {uA|u € U}. Clearly UA
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is a submodule of Wt ,. Let U' = Uprp_p, U’ is a submodule of Wr_r/ ,. Since
(47) is not true, U’ is not contained in S%—F',u' Therefore, by Lemma 44, there exist
avy €' =T, u' € U and an invertible I' — T'" by I' — I'' matrix A’ so that the
~vo component of u'A'k; is ¢; and all of the other components are 0. Let u € U so

uprp_pr = u' and suppose that uAr; = (hye)yer and v =u — o hoyuy. I~y el

then vArpr., =udrpr., — EV'EF' by Akypr.,. Since (46) holg: for the sequence
(uqyr)yrer we get that vArpr, =0if y € I'. If y € ' —T" then uyprp_p, = 0 for all
7" € T' implies that vAk¢prp_p = u'ky.

We extend the matrix A’ into a I' by T’ matrix A. Let A be the I by T' matrix
that we get from A’ by adding 1’s to its new diagonal elements and 0 everywhere else
and let A = AA.

The set T U {,} with the matrix A and the elements u.,, v € T and u., = v

satisfies the conditions of (46) in contradiction to the minimality of I".

Now we return to the proof of Theorem 7.

Lemma 48. It is sufficient to prove Theorem 7’ with the following additional
reqiurements on the submodule N:

There is an l', 0 < I' <[ so that for all positive integersr, 1 < r <, we have
(49) if1 <r <! then \" = p, if r > I' then either \" # u or Npr, C (S*)*
(50) if1 <r <! then {atJa € S,} CN.

Proof. We may assume without the loss of generality that A\! = ... = \"™ = ¢
and for all » > ro, A" # u. Let T' = {1,...,r¢}, and Nprp = U. Applying Lemma
45 we get a I'" C T' and an invertible matrix A with properties (46) and (47). Let
U =UA and N' = U & Nprp_p,. the conditions (49) and (50) are satisfied with
N — N'. Since (46) implies that U contains S*¢, for all v € T' it is easy to show
that conditions (49) and (50) are satisfied with N — N'.

If Theorem 7’ is true with the additional requirements then there is a set of
generators G for N', consisting of elements which are d-regular with respect to the
tabloid basis and containing no more than d elements. We may define the action of

A~! on any element of 2 € N so that we apply A only to the I' component of z and
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leave the other components unchanged. It is easy to see that G' = {gA™1|g € G} is
a system of generators for U, each gA~"! is d'-regular and |G'| < |G| < d'.

Lemma 51. It is sufficient to prove Theorem 7’ with the following additional
requirements on the submodule N:

There is an I', 0 < I' <[ so that for all positive integersr, 1 < r <, we have
(52) if1 <r <! then \" = yu and Npr, C (S*)*,
(53) ifl' <r <! then \" # p.

Proof. We want to prove the theroem with the additional requirements (49)
and (50). Suppose that the submodule N meets these requirements. We define a
homomorphism ¢ of A = @5:1 M into A = @l

T

!

L YPe @l MY I =
(vi,...,v1) € A then let vé = (vin,...,vpn,vp41,...,v7), where 1 is the natural
homomorphism of M* into Y*. Since Y#* = @wé\lf M"¥ | where vy > 1 we have that
A" can be written in the form A’ = (@5:1 Dy M™)S @f":l’—f-l M. This satisfies
already the conditions (52) and (53) (if we rearrange the direct summands) with
N — N¢. The conditions Népr, C (S*)+ hold since the corresponding components
were not changed by ¢ and by (49) the analogue statement was true for N.

If Theorem 7’ holds with the additional requirements (52) and (53), then N¢
has set of generators G' so that |G'| < d and each g € G' is d-regular with respect
to the tabloid basis. According to Lemma 35 for each ¢ € G' there is an a, € A so
that a;¢ = ¢ and each a4 is d'-regular. (We get a, by applying Lemma 35 separately
for each gorup of coordinates where ¢ acts as n and leaving the other coordinates
unchanged.) Let G = {a,|g € G'}. Clearly G C N. We get a set of generators for N
if we add to G for each r, 1 <r < [' an element b, whose r-th component is ¢; and all
of the other componnents are 0 (for an arbitrary p-tableaut). G = G U {by,... by}

is a set of generators for N so that each ¢ € G is d' regular and |G| < |G'| +1' < d'.
Now we show that Lemma 51 implies Theorem 7’. Assume that N satisfies
the conditions (52) and (53). Let B = (@5:1 YH) & @lrzl,+1 M?* . Let o be the

homorophism of B into @izl M?*" defined by

(al,...,al/al/+1,... ,al>a :<a1p“,... ,al;p“al;+1,...,al>
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and let N' = No~!. N’ is a submodule of B which is of the form B = @521 MY,
where v, <p p and [ < lk. Therefore by the inductive assumption there is a subset
G' of N' with at most d elements so that each ¢ € G' is d-regular with respect to the
tabloid basis. Let G = {go| g € G'}. Clearly |G| < d and Lemma 41 implies that
each ¢ € G i1s d-regular with respect to the tabloid basis, which completes the proof
of Theorem 7’

4. Proof of Theorem 2. As we have mentioned already in the introduction,
the theorem that we have proved about the representations of the symmetric groups
(Theorem 7) implies a theorem about symmetric systems of linear equations where
the variables correspond to p tabloids, where u = (1, ..., ;) is a fixed partition of n
with gy = n — k. We reformulate now Theorem 2 with these types of variables then
we prove the new theorem using Theorem 7. Theorem 2 will be an easy consequence
of the reformulated theorem.

Definitions. 1. Suppose that k,i,n are positive integers u = (p1,..., i) is a
partition of n and puy =n — k. Let T' =T, be the set of all y tabloids and let I" be a
finite set. Suppose that for each a € T, x, is a variable and foreacha € T, 2 =1, ..., [,
ul) € Z,, bie, .

(1)

We say that the system of linear equations ) _pus'za = b, @ = 1,..,1 is
symmetric if for each permutation 7 of the set A = {1,...,n} and ¢ = 1, ..., there is
an ¢ = 1,...,] so that for all @ € T we have u(al,)r = ugl ),

Theorem 54. For all prime number p and natural number k there are natural
numbers ¢, j so that for all natural number n the following holds:

Suppose that A ={1,...,n} and A = (A, <,...) is an interpretation of the theory
TJP Assume further that T' is a finite set with at most ¢ elements, | is a natural
number, pp = (1, ..., ;) is a partition of n and for alli =1,....1, a € T,, v € ' we
have uij € Zp and b; € Z,,. If the linear system EaET,“'yET ugi,)vsca,,7 =b,1=1,..,1
is symmetric and it has a solution in Z, then it also has a solution x, .~ =t, in Z,
so that for each fixed d € Z, and vy € T' there is a first-order formula ¢4 (y1, ..., Y )
of the language LJ; so that the length of ¢4 ~ is at most ¢ and for each a = (ay, ..., ay)

we have:

ta,'y = d .iffAA’S’j’p |: ¢d,’y(a17 "'7ak)'
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Proof. If the system is homogeneous then the trivial solution is first-order defin-
able in the sense of the theorem. Therefore we may assume that the system is not
homogeneous. In this case may assume that our symmetric system of linear equations
is the symmetric hull of a system E which contains only homogeneous equations with
a single exception and the exceptional equation has a 1 on its righthand-side. Indeed
we may form classes from the equations so that two equations, equations number ¢
and ', 1 < 4,2 < [, are in the same class if there is a permutation © of A with
uf[,)w = ufj’% for all y € T and a € T,. We pick one equation from each class. Let
€1,..., ey be the eqautions that we get this way. Assume that ey, ...,epr, I < 1" are the
non-homogeneous ones among them. If necessary we may multiply these equations
by a non-zero element of Z,, so we may assume that the righthand-side of each of
the equations ey, ...,ep is 1. The system of equations E consisting of the equations
€1,€3 — €1,...,€11 — €1, €141, ..., ey clearly satisfies all of our requirements and the set
of solutions of its symmetric hull is the same as the set of solutions of the original
system. Each evaluation of the variables z, ~, a € T}, v € I, can be associated with
an element of Mr = P M" (this is the direct sum of |T'| copies of M*"), namely if
Ty — Qq~ 18 an evaluation it will be associated with the element aa,va(w where
a'? is the copy of a ocurring in the direct summand corresponding to . Let & be
the equation that we get from e; by replacing the 1 on its righthand-side by a 0, and
let Ey be the system that we get from E by replacing e; with e;.

If ¢ is the equation EaeTu,vef Uq,~Ta~ = b then let er be the equation
ZaevaeF Ugr,yTa,y = b. We will denote by E; the system that we get from E by
discarding the equation e; and adding the following set of equations to the system:
{e1 — ey | ™ is a permutation of A}.

Both systems FE; and Ej are homogeneous. Let El, Eg be the symmetric hulls of
E E,. El is a homogeneous system therefore the the set of elements of Mt associated
with its solutions form a submodule Ny of Mp. We will denote by Ny the sobmodule
that we get in a similar way from E,. Clearly every solution of E is also a solution of
EQ, therefore Ny C N,. The fact that the original inhomogeneous symmetric system
has a solution implies that Ny # N;. Now we apply Theorem 7 with N — N;. Since
G is a system of generators for Ny there is a ¢ € G so that ¢ ¢ Ny. Therefore the

coefficients of ¢ are first-order definable in the sense of Theorem 7 moreover ¢ € Na,
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g ¢ Np. Let g be the evaluation of the variables associated with the element ¢g. Clearly
g is a solution of FE5 but it is not a solution of E;. Since it is not a solution of E;
there is a permutaion 7 of A, so that if we evaluate the lefthand-side of e;7 according
to g then we get some w € Z,, w # 0. According to the definiton of E; the same
must be true for e; itself. Hence the evaluation corresponding to the element w™!g
is a solution of our original system and clearly it is first-order definable in the sense
required by the theorem. Q.E.D.(Theorem 54).

Proof of Theorem 2. First we note that if the variables are associated not with
arbitrary sequences but with sequences with distinct elements then the theorem is
an immediate consequnce of Theorem 54. Indeed in this case let u be the partition
which has a single class of size n — k and k classes of size 1. Since there is a natural
one-to-one correspondence between this tabloids and the set of sequences of length &
with distinct elements, the statements of the two theorems are the same.

The case of arbitrary sequences can be easily reduced to the case of sequences
with distinct elements. Assume that z, . is a variable for all @ € A,y € T'. Let A be
the set of those elements of A* which have k distinct elements.

For each sequence a = (aq,...,ax) let P, be the partition of {1,...,k} defined by
iPj iff a; = a;. Let T' be the set of all partitions of {1,...,k} and let I'y =T x I"". If
a € A¥ and P, has j classes then let s(a) be a sequence of length j that we get from
a by going along the sequence from left to right and deleting those elements which
has already occured earlier.

Let y,, be a new variable for each a € A, v € T';. For each of the original
variables z,~, a € A, v € T' we define a set S(a,v) of the new variables in the
following way: yar € S(a,v) if v' = (v,P,) and the first |P,| elements of the
sequence o' forms the sequence s,. (Therefore if |P,| = j then S(a,~) has nF=7
elements).

Now we define a new linear system E; in terms of the variables y, ,» which
will be equivalent to the original system E in the following sense. Suppose that 7 is
an evaluation the variables z, , we define an evaluation 7; of the variables y, ,» by
T1(Yar ) = T(a,7) if yor o € S(a,v). We will define the new system E; so that 7 is

a solution of F iff 7; is a solution of F;.
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For each equation e of E we define new equations by simultaneoulsy replacing
each variable z, ~ in e, by a variable y,r » € S, 4. All of the equations that we get
this way will be in Ey. Apart form these, F; will also contain all of the equations
Ya' ' — Yarr v = 0 if there is a pair a,y so that yar v/, ye v € Sy 4. It is easy to see
that F; is indeed equivalent to E in the described sense and each first-order definable
solution of Fy leads to a firstorder definable solution of E. Q.E.D.(Theorem 2).

For the applications concerning the modulo p couniting principles we need vari-
ables associated with even more complicated structures. Namely there we need vari-
ables associated with a sequence Dy, ..., D; so that each element of the sequence is
either a subset of A or a subset of A x A, j <k, |D;| <k fori=1,....7. Since such a
sequence can be coded by an element of A* where k' depends only on k this theorem
follows easily from Theorem 2.

Finally we prove Corollary 6 using theorem 2.

Let Ey be the system based on the quadruplet u', Ag, A’,b. That an evaluation
v of the variables can be defined by first-order formulae which are in L? and has a
length not greater then ¢y, where both j and ¢; depend only on k and p. If ay, ...., a,
are the elements of A’ so that aq, ..., a,» are all of the elements of 4, then there is a
first-order formula ¢ (1, ..., z,) of L% of length not greater than ¢y(k,p) so that v is
a solution of Ey iff ¢)(ay, ..., a,) holds.

Let now E be the symmetric hull of E; that is the system induced by the quadru-
plet u', Ag, A’,b. Clearly v is a solution of E iff

Yy, ..z, (/\i;éj i #Fx) = P(xr, . 2r),

that is there is a firstorder 3’ in L? os length at most cs(k,p) so that v is a
solution iff ¥/’ holds.

According to Theorem 2 if the system has a solution it has also a first-order
definable solution where, the length of the defining formula x is in Lf and its length
is at most c4(k). Beacause of the existence of the formula ', for every possible choice
of x the fact whether x defines defines a solution will be a firstorder sentence in some
L];,. Since the number of choices for xy depends only on k& and p there is a single
first-order formula " of some L];,, of length at most ¢4 so that "' holds iff E has a
solution moreover ;' and ¢4 depend only on k and p. According to Corollary 11 this

implies the assertion of Corollary 6.
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