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Figure 1: A tesselation of the hyperbolic plane’

1 Introduction
1.1 The Modular Group

The modular group T is a remarkable mathematical
object. It has several equivalent characterizations:

(i) SLa(Z)/+1, the quotient of the group SL(Z) of
2 x 2 integer matrices with determinant 1 modulo
its central subgroup {£T7};

(ii) the group of complex fractional linear transfor-
mations
az+b
cz+d

with integer coefficients satisfying ad — be = 1;

(ii1) the free product of cyclic groups of order 2 and 3;
i.e., the group presented by generators R, S and
relations R? = S% = 1;

(iv) the group of automorphisms of a certain regular
tesselation of the hyperbolic plane (Figure 1);

v) the group of sense-preserving automorphisms of
g P P g P
the undirected cubic plane tree (Figure 2).

The modular group is intimately connected with
the theory of elliptic curves, modular functions and
modular forms, hyperbolic geometry, and number the-
ory [1].

For instance, it 1s known that elliptic curves can
be uniformly parametrized by the Weierstrass o func-
tion. This function is invariant under the action of a

1Reproduced from Klein (1879) [9].

Figure 2: The undirected cubic plane tree

group of transformations of the plane isomorphic to
Z x Z. This action gives rise to a discrete Euclidean
tesselation of the plane. In contrast, a hyperbolic uni-
formization 1s a uniform parametrization of the ellip-
tic curve by functions that are invariant under the
modular group T' or some subgroup of it. Here the
so-called congruence subgroups of ' play a dominant
role. The Taniyama-Weil conjecture states that all
elliptic curves with rational coefficients admit such a
uniformization by functions invariant under some con-
gruence subgroup of I'. Tt is known that a counterex-
ample to Fermat’s Last Theorem would invalidate this
conjecture. While some difficulties remain, it appears
that Andrew Wiles has made a significant advance to-
wards resolving this conjecture.

The modular group is also deeply connected with
many algorithmic issues. For instance, the ordinary
Euclidean integer ged algorithm can be understood in
terms of a basis reduction algorithm on 2 x 2 integer
matrices, where the reducing operations are elements
of the modular group in the form (i) above. This con-
nection allows us to apply a result of Yao and Knuth
[17] concerning the integer ged algorithm in our anal-
ysis.

Some algorithms of Schonhage [14, 15] can be best
understood in light of the modular group.

A recent paper by Yap [18] is concerned with the
modular group and its connection with lattice basis
reduction algorithms. The basis reduction algorithms
of Lenstra, Lenstra and Lovéasz [10] have had consid-
erable impact on algorithm design and analysis, rang-
ing from integer programming to polynomial factor-
ization.

Finally, we note that the modular group has found
applications in computational learning theory [3].

1.2 Subgroup Membership

In this paper we consider four natural decision
problems for the modular group T':



The Unbounded Subgroup Membership Prob-
lem Given a finite subset & C T and an element
z € T', i1s z contained in the subgroup of I' generated

by S8?

The Bounded Subgroup Membership Problem
Given a finite subset § C I', an element z € I, and
n > 0 in unary, can z be expressed as a product of at

most n elements of S and their inverses (repetitions
allowed)?

The Unbounded Submonoid Membership
Problem Given a finite subset & C I' and an
element z € T, is ¢ contained in the submonoid of T
generated by &7

The Bounded Submonoid Membership Prob-
lem Given a finite subset § C I', an element z € T,
and n > 0 in unary, can « be expressed as a product
of at most n elements of § (repetitions allowed)?

The only difference between the subgroup and sub-
monoid membership problems is that in the subgroup
membership problems, inverses are allowed. The sub-
group membership problems reduce to the submonoid
membership problems by simply including the inverses
in the set S.

We assume that these problems are presented in the
form (i) of §1.1; that is, as 2 x 2 integer matrices with
entries written in binary.

1.3 Average-Case Complexity

The study of NP-hard problems that are hard on
average was initiated by Levin [11] and generated con-
siderable subsequent interest [2, 6, 5, 8, 16].

Suppose the inputs to an algorithm occur randomly
according to a distribution with the property that the
probability that the input size is n is either zero or
at least n=* for some fixed k. Such a distribution is
called regular. (For definiteness, Gurevich [5] takes
the probability of the event |z| = n to be proportional
to n~1(logn)~2, but any regular distribution will do.)

A deterministic algorithm runs in polynomial time
on average if there exists an ¢ > 0 such that

ZMPI‘(CE‘) < oo,

where T(z) is the running time of the algorithm on
input z. For regular distrubutions, it suffices to show

that there exists an € > 0 such that for all n,

Z T(z)" - Prp(z) < n®M

|z|=n

where Pry,(z) denotes the conditional probability that
x occurs given that the size of the input instance is n
[6, 5].

Gurevich [5] applied this notion to several algebraic
problems. In particular, he showed that certain matrix
decomposition problems involving the modular group
are hard on average.

Gurevich defined the bounded subgroup member-
ship problem stated in §1.2 and conjectured that it
was polynomial time on average.

1.4 Main Results

In this paper we show:

Theorem 1 The bounded and unbounded member-
ship problems for finitely generated subgroups and sub-
monotds of the modular group can be solved in polyno-
mual tzme on average.

This affirms Gurevich’s conjecture.

We do not know whether the subgroup membership
problems are NP-hard. However, the semigroup mem-
bership problems are quite easily shown to be NP-hard
by a straightforward encoding of the subset sum prob-
lem.

1.5 Overview

Our approach is to convert z and every element
in § to the representation (iii) of §1.1 (i.e., words in
{R, S}* reduced modulo the identities R? = S3 = 1),
and work in that representation.

This will be of little use if the representation (iii) is
too long or if it is hard to compute from the represen-
tation (i). It turns out that it is easy to compute, but
may be exponentially long in the worst case. However,
it is short on average.

Our analysis makes use of an intermediate repre-
sentation (2.3), which is similar to (iii), but for which
a polynomial bound on the average length is known.
The lengths of minimal representations in (iii) and
(2.3) are mutually proportional.

Our analysis proceeds in two steps:

(i) In §4, we give deterministic polynomial-time al-
gorithms in representation (iii) for the bounded
and unbounded membership problems. These
algorithms reduce the problems to a certain
automata-theoretic reachability problem.



(i1) In §5 we show that the process of converting an
input instance from representation (i) to repre-
sentation (iii) and then executing the algorithm
of §4 on the resulting data gives an average-case
polynomial-time algorithm. This part of the ar-
gument relies on an estimate of Yao and Knuth

[17).

The same techniques also handle other related
groups such as SLy(Z) or the congruence subgroups
of I'. We do not treat these cases in this paper.

2 Representations of I

To understand this work, one must first understand
the relationships among the different representations
(i)=(v) of T' described in §1.1. See [1, 13, 12, 4] for
details.

In the representation (i), elements of T' are repre-
sented as 2 x 2 matrices with integer entries. The
group ' is generated by the matrices

(01w (1)

S:TR:(} _(1)> (21)

Any two of these three matrices generate I
These matrices correspond to the fractional linear
transformations
1 1
T:z—z4+1 Riz——-= S:iz—1—-—
‘ “(2.2)

on C, respectively. The matrices (2.1) represent
the transformations (2.2) in homogeneous coordinates,
viewing them as linear transformations on the projec-
tive complex line. This gives the relationship between
the representations (i) and (ii).

Note that R is of order 2 and S is of order 3 (recall
we are working modulo 7). In fact T is the free
product of the cyclic groups generated by R and S.
This gives the relationship with representation (iii).

To see the relationship with (iv), observe that the
transformations (2.2) preserve the upper half plane H.
H can be regarded as a model of hyperbolic geometry,
where geodesic lines are semicircles or lines perpendic-
ular to the real axis. Under the appropriate metric, T’
is a group of isometries of H. The region

1 1
{zEC|—§<§Rz<§, |z| > 1}

is a fundamental region for the action of I'; and its
orbit gives a tesselation of H. This region corresponds
to the union of the two uppermost central regions, one
shaded and one not, shown in Figure 1. Several works
by M. C. Escher are based on this universe.

To understand the connection to (v), we observe
that the infinite undirected cubic plane tree shown in
Figure 2 is embedded in Figure 1 by considering the
segment of the circle of radius 1 centered at 0 from
e2™il3 to e™/3 as a directed edge E, then taking the
orbit of this edge under the action of the group. Every
element of T is uniquely identified with a directed edge
produced in this way.

With this identification, observe that R reverses the
direction of E, T corresponds to a left turn out of F,
and S = TR rotates about the vertex at the head of
FE. In any product X --- X, € {T, R, S}* applied in
order from right to left, the destination of £ can be
calculated by reading the string X; - -- X, from left to
right and interpreting 7" as “turn left”, R as “reverse
direction”, and S as “rotate clockwise about the ver-
tex before you”. We can also define U = ST (“turn
right”).

The group I has the following presentation in terms

of T (turn left), U (turn right), and R (reverse):

TRU = URT = R
TRT = U URU = T (2.3)
R? =1

The equations (2.3) can be applied as term rewrit-
ing rules to reduce any string in {R,T,U}* to nor-
mal form (R + ¢)(T + U)*(R + ¢). Every element
of T' can be expressed uniquely as a product of this
form, and the length of any expression of this form
is within two of minimal among all expressions in
{R, T, U, R~", T=1,U~1}* denoting the same group
element. This is a consequence of the fact that short-
est paths in the graph of Figure 2 are unique. A sim-
ilar statement holds for the presentation (iii); in this
case, normal forms are strings in {R, S}* with no oc-
currence of two consecutive R’s or three consecutive
S’s.

The presentations (2.3) and (iii) are interderivable
using the facts 7' = SR, U = SSR, S = T'R. More-
over, these relations show that for any group element,
the lengths of the minimal representations in {R, S}*
and {R,T,U}* differ by at most a factor of three.

In terms of representation (i), the left and right
turns are

(1) (1Y),



respectively. Note that elementary row and column
operations on 2 x 2 matrices (adding a row or column
to the other) are effected by multiplying on the left
or right by T or U. In this interpretation, the signifi-
cance of the normal form (R+¢)(T+U)*(R+¢) is that
for any matrix, we can multiply by R on the left or
right if necessary to make all entries nonnegative, and
then there is a unique sequence of column operations
to bring the matrix to I while keeping entries non-
negative. The same is true for row operations. This
gives us an effective method for converting between
the representations (i) and (2.3).

2.1 Integer GCD

The matrices T and U have the following signifi-
cance regarding integer ged. Let s(m,n) be the num-
ber of steps in the following subiractive Fuclidean al-
gorithm for finding the ged of m and n: replace the
larger number by the difference of the two numbers
until both are equal. Note that s(m,n) is one less
than the sum of all partial quotients in the contin-
ued fraction representation of m/n, 1 < m < n. For
example,

7 1

16 2+ ﬁ
and s(7,16) = (2+3+2)—1=6.

The matrices T and U correspond to the basic op-
erations of the subtractive ged algorithm in the sense
that if m and n are relatively prime and appear in the
top row of a matrix A € T, then 7-! and U~ applied
on the right hand side effect the column operations
corresponding to the steps of the subtractive ged al-
gorithm. Tt follows that the length of the unique ex-
pression in {T, U }* equivalent to A is exactly s(m, n).

3 Length of Representations

Gurevich showed that the size of any element A € T
in representation (2.3) is polynomial in the size of 4 in
representation (i) on average [5, Lemma 4.2]. Our ob-
servation that minimal-length representations in (2.3)
and (iii) are mutually proportional implies that the
size of A in representation (iii) is also polynomial in
the size of A in representation (i) on average. This
result, together with the polynomial time algorithm
of the next section, do not immediately imply an av-
erage polynomial-time complexity of the membership
problems, since the number of input matrices is not

fixed.

Gurevich’s argument is based on the following esti-
mate of Yao and Knuth:

Lemma 2 (Yao and Knuth [17])

Z s(m,n)

m<n
6
= Fn(log n)? 4+ O(nlogn(loglogn)?) .

It follows immediately that for fixed n, the aver-
age value of s(m,n), where m is chosen uniformly at
random among all positive integers less than and rel-
atively prime to n, is at most

n(logn)?

o(n) ) < O((logn)ﬂoglogn)J (3.4)

O(
where ¢(n) is the Euler totient function. The in-
equality (3.4) follows from the estimate ¢(n) =
Q(n/loglogn) [7, Theorem 328].

Except for I, T, and U, if A € T has nonnegative en-
tries and maximumentry n, and if m is the other entry
in the same row as n, then 1 <m < n, (m,n) = 1, and
the rest of A is uniquely determined by the constraint
on the determinant of A. Since there are four ways
to choose the position of the maximal entry n in A,
such matrices are in four-to-one correspondence with
the pairs m,n such that 1 < m < n and (m,n) = 1.
It follows that the length of the unique expression in
{T,U}* corresponding to A € I'is also polynomial on
average.

4 Deterministic Algorithms

In this section we give deterministic polynomial-
time algorithms for the unbounded and bounded mem-
bership problems when the input is given in represen-
tation (iii) of §1.1, i.e. in terms of generators R, S and
relations R? = S3 = 1.

Consider the term rewriting system over strings in
{R, S}* consisting of reduction rules R2 — ¢, S% — ¢.
We write z — y if the string = reduces to the string y in
zero or more steps. A string is said to be reduced or in
normal form if no reduction rule applies. This system
has nonoverlapping redexes (the redezes are R? and
53), thus it follows from term rewriting theory that
normal forms are unique, and z = y iff x and y have
a common normal form.

Suppose now we are given a set S of reduced strings
in {R, S}*, areduced string € {R, S}*, and (for the
bounded membership problem) an integer n in unary.
Let 8* denote the submonoid of {R,S}* generated



by §. The unbounded membership problem is to de-
termine whether there exists a string y € $* such that
y — x. For the bounded membership problem, we re-
quire in addition that y € §™ for some m < n. We
will give an algorithm that runs in time polynomial in
n and the sum of the lengths of  and the elements of
S.

Note that this formulation of the problem asks for
membership of z in a finitely generated submonoid of
. If we wish to determine membership in a finitely
generated subgroup, we can simply include the in-
verses of elements of S.

In a fixed reduction sequence ¥ — y, we say that
an occurrence of a letter a in y comes from an occur-
rence of a in x if * = wav and y = zaw, where the
mentioned occurrences of a in  and y are as shown,
and the appropriately chosen subsequences of the re-
duction sequence give u — z and v — w. For a fixed
reduction sequence xz — y, every letter of y comes from
a unique letter of z. The remaining letters of z must
eventually become part of a redex and disappear.

For any set H of strings, we denote by H/= the
set of strings =-equivalent to some string in H. Thus
S8* /= denotes the set of strings representing elements
of the submonoid of T generated by §. This notation is
slightly nonstandard but convenient for our purposes.
Our task is to find an efficient membership test for
8*/ = for the unbounded membership problem and
U,n<cn 8™ /= for the bounded membership problem.

4.1 An Automata-Theoretic Characteri-
zation

Let M be the finite automaton with states

Q = {u|uisasuffix of some z € S},
start and final state ¢ (the null string), and transitions
au —s u | a€{R,S},
u——uv, ulve 8= .

We will show below that for any reduced z, z €
S* /= iff z is accepted by M. Note that M has linearly
many states and the ¢ edges are transitive. Once we
construct the automaton for a given set of generators
S, we can test membership in $*/= of any string
efficiently by reducing to normal form and then testing
whether the resulting string is accepted by M. This
will give us an efficient algorithm for the unbounded
membership problem.

For the bounded membership problem, we will need
a slightly stronger formulation. Define

A@) = {nlzes8"/=}

for any string . Note = € 8*/= iff A(z) £ 0. Label
each e-transition u —— v in M with the nonempty set
A(u=tv). Let + denote setwise addition:

X+Y = {m+n|meX neY}.

For any computation path o : u — v in the automa-
ton M, let A(c) denote the sum of the sets labeling
the e-transitions along the path o. More formally,

>
2
|

{0}, if o is of length 0
) = Ao)
) = A(o)+ A(u_1v) .

Theorem 3 For any reduced x and n > 0, z € §" /=
if and only if there is an accepting computation path
o e = ¢ withn € A(c). In other words, for any
reduced z,

Proof. (<) We show by induction on the length of &
that if ¢ : ¢ = w and n € A(c) then zu € 8" /=. The
result follows by taking u = e. If ¢ is of length zero,
then A(s) = {0}and z = e € 8°. If 0 = 7-(au == u),
then z = ya, 7 : € —— au, and n € A(r) = A(o).
By the induction hypothesis, zu = (ya)u = y(au) €
S"/=. Finally, if ¢ = 7- (v == u) where 7 : ¢ == v,
then n = k + m for some k € A(r) and m € A(v~1u).
Then v~'u € 8™ /=, and by the induction hypothesis,
zv € 8*/=. Thus zu = zvv~lu € 8" /=.

(=) If z € 8°/=, then z = ¢ since z is reduced.
In this case take o to be the null path ¢ —— ¢ and
we are done. Otherwise, we show by induction that if
r€ 8”1 st €8, and rs — y where y is reduced, then
there is a computation path o : ¢ = ¢ with n € A(o).
The result then follows by taking t = €.

For n = 1, we have r = ¢. Then y = s since s is
reduced, and there is a computation path 7 : ¢ —— st
of length one with 1 € A(7) = A(st). Combining this
with |s| transitions of the form au —— u, we obtain a
computation path o : ¢ = ¢ with 1 € A(o).

Now suppose n > 2. If s = ¢, we have y = r €

8"~ 2Sandt € S. Then 1 € A(t) and by the induction

Y
€ — €

hypothesis, we have a computation path 7 :
with n—1 € A(7). Combining this with the transition
¢ — {, we obtain a path ¢ : ¢ —— ¢ with n € A(o).
If s # ¢ and the last symbol of y comes from the
last symbol of s in the reduction rs — y, then s = ua,
y = va, and ru — v for some u,v. By the induction

hypothesis, we have a computation path 7 : ¢ — at



with n € A(7).
at — ¢, we obtain a computation path o :
with n € A(0).

Finally, if the last symbol of y does not come from
the last symbol of s, then the last symbol of y cannot
come from any symbol of s, since s is reduced. Thus
we can write r = upqu where u € S¥, v € 8™, pg € S,
the last symbol of y comes from the last symbol of p,
and qus = e¢. Then up = upqus = rs = y. Since y
is reduced, up — y. By the induction hypothesis, we

Combining this with the transition

Yy
€ — t

have a computation path 7 : ¢ = q with k+1 € A(T).
Moreover, since qus = ¢, we have ¢~ 't = vst € STt
thus m+1 € A(q~'t). Combining 7 with the transition
q —— t, we obtain a computation path o : ¢ —— ¢ with

n=k+m+2€ A(s). O

Corollary 4 For any reduced z, * € 8*/= if and
only if M accepts x.

4.2 Construction of M

We have reduced the problem of determining mem-
bership in §*/= of arbitrary strings = to the prob-
lem of determining membership in §*/= of u=!v for
u,v € . We now give an efficient algorithm for this
problem.

Let N be the set of normal forms of strings u='w
for u,v € . Note S C N and N is finite. Let B(z),
z € N, be the smallest family of sets closed under the
following rules:

(1) 0 € B(e)
(i) 1€ B(z), 2z €S
(ii1) B(xz) + B(y) C B(z), where z = zy.

If 2 is not reduced but £ — y € N, we define B(z) =
B(y).

We show below that A(z) = B(z) for z € N. This
gives a simple inductive method for determining the e-
transitions of M: mark ¢ and all z € § as required by
rules (i) and (ii), then mark z € N whenever z,y € N
are marked and zy — z. Then u —— v iff the normal
form of u~'v is marked.

Lemma 5 Ifu e Q,pg €S, r €S, and urp = ¢,
then n + 1 € B(u='q).

Proof. If n = 0, then u~'¢ = pq, and the conclusion
follows from rule (ii).

If n > 1 and u = ¢, then we can write r = vs with
veES, se8 ! and vsp — ¢. Then 1 € B(u™'v),
and by the induction hypothesis, n € B(v~'q), there-
fore n + 1 € B(u™'q) by rule (iii).

Similarly, if p = €, then we can write » = sv with
s€ 8" ve S, and usv — ¢. Then 1 € B(e tv),
and by the induction hypothesis, n € B(u~!¢), there-
fore n 4+ 1 € B(u~1q) by rule (iii).

Assume now that n > 1 and both u and p are non-
null. The proof proceeds by induction on the length
of the reduction sequence urp — e.

If urp can be expressed as the concatenation of two
nonnull strings, each of which reduces to ¢, then the
first of these cannot be a substring of u and the second
cannot be a substring of p, since u and p are reduced.
Thus we can write r = stzy wheretz € S, s € S*, y €
S™, m+k+1=n, ust = zyq = e. By the induction
hypothesis, k +1 € B(u~'z) and m+ 1 € B(z"'q).
By rule (iii), n+ 1 =m+k +2 € B(u"1q).

If urp has no such decomposition, then in the re-
duction urp — ¢, if the last reduction rule applied is
RR — ¢, the first R must come from the leftmost sym-
bol of u and the second must come from the rightmost
symbol of p, otherwise we would have a decomposi-
tion as in the previous case. Thus u = Rz, p = yR,
and zry — e. By the induction hypothesis, we have
n+1¢€ B(z7'Rq) = B(u™'q).

If the last reduction rule applied is SSS — ¢, then
again the first S must come from the leftmost sym-
bol of u and the third must come from the rightmost
symbol of p.

If the second S comes from u, then we have u =
SSz and p = yS, where zry — e. By the induction
hypothesis we have n + 1 € B(z~'Sq) = B(u™'¢).

If the second S comes from p, then we have u =
Sz and p = ySS, where zry — e. By the induction
hypothesis we have n + 1 € B(z~1SSq) = B(u~1lq).

Finally, if the second S comes from r, then we have
u = Sz, r = yzSws, and p = ¢S, where zSw € §,
ye S s € 8™, and xyz = wst = ¢. By the induction
hypothesis we have k +1 € B(z7'Sw) and m+ 1 €
B(w~'Sq), therefore by rule (iii) we have n + 1 =
m+k+2¢€ B(x7'5S¢) = B(u™'q). O

Theorem 6 A(z) = B(z) forz € N.

Proof. We argue first that the sets A(z) satisfy all
the rules (i)—(iii) for z € N, thus B(z) C A(z). The
rule (i) just says ¢ € 8, (ii) just says that € S for
x € §, and (iii) says that if 2 in §™ and y € §”, then
ry € Smtn,

For the reverse inclusion, we show by induction on
n that for all u,v € @, if n € A(u™'v) then n €
B(u='v). If n =0, then u='v = ¢, and 0 € B(u~'v)
by rule (i). Ifn =1, then u™'v =z € S, and 1 €
B(u~'v) by rule (ii).



Assume now that n > 2. Let ulv=rec 8. Then
ur = v, and since v is reduced, we have ur — v.

We proceed by induction on the length of v. If
v = ¢, then writing r = st with s € 8" ' and t € S,
we have ust — ¢, so n € B(u~'v) by Lemma 5.

Suppose now that v is nonnull. If the first letter of
v comes from u in the reduction ur — v, then it must
come from the first letter of u, since u is reduced.
Thus u = ay, v = aw, and yr — w. By the induction
hypothesis, n € B(y~'w) = B(u™'v).

If the first letter of v comes from r, then we can
write r = styz where s € S* 2 € 8™ ty € S, and the
first letter of v comes from the first letter of y. Then
ust — ¢ and yz — v. By Lemma 5, k+1¢€ B(u™'y),
and by the induction hypothesis, m € B(y~'v). By
rule (ili), n =m+k+1¢€ B(u_]v). O

4.3 Unbounded Membership

Once we have constructed the automaton M for a
given set of generators §, we can solve the unbounded
membership problem for a given string efficiently by
reducing to normal form and then testing whether the
resulting string is accepted by M. Corollary 4 asserts
the correctness of this procedure.

4.4 Bounded Membership

One approach to solving the bounded membership
problem is to observe that the closure rules (i)—(iii)
are essentially equivalent to the following context-free
grammar over a single-letter alphabet {a} and nonter-
minals Az, z € N:

A, — ¢
Ay — a, z€S8
A, — AAy, ry=12z.

Then for z € N, A(z) is the set of lengths of strings in
{a}* generated from the nonterminal A,. By Parikh’s
Theorem, this is a regular set, and we can deter-
mine membership in A(z) efficiently using known al-
gorithms for context-free language recognition.

However, for the purpose of deciding whether there
exists an accepting computation path o : ¢ —— ¢ with
m € A(c) and m < n, we do not need to know the
entire set A(u~!v) but only its smallest element. In-
deed, if A(u='v) is nonempty but its smallest element
is greater than n, then we might as well delete the
edge u —— v, since it cannot contribute to such an
accepting computation path.

Let » be the number of relations z = yz that hold
among elements of N. Here is an O(nr) algorithm

for determining all the minimum elements of A(z) for
z € N. For each x € N we have an integer variable
my that holds a current estimate of min A(z). We ini-
tialize m, to n+ 1, which we regard as co. We assume
that for each x € N we have a list L, of all relations
z = zy or z = yx that hold among the elements of N
with z on the right hand side. The combined length
of all the lists L, is at most 2r.

Now min A(¢) = 0 and min A(z) = 1 for 2 € S, so
we set m, := 0 and m, := 1 for z € § and put ¢ and all
z € § in a bag for further processing. We then repeat
the following procedure until the bag becomes empty.
Take the next z out of the bag and scan through the
list L. For each relation z = zy or z = yx on the
list, check whether m, > m; + m,. If so, set m, =
mg + my and put z in the bag.

Fach z taken out of the bag takes O(|L,
process, and a particular  can enter the bag at most n

) time to

times, since my is decremented each time. This gives
O(nr) in all.

Once we have computed the minimum element of
A(u=tv) for each pair u,v € ), we can weight the ¢-
transition u — v with this quantity and weight the
other transitions au —— u zero. Then to compute the
minimum element of A(z) for a given reduced z, we
can use a variant of Dijkstra’s shortest path algorithm
to find a minimum-weight computation path € — ¢
and check that its weight is at most n. The correctness
of this method is given by Theorem 3. This solves the
bounded membership problem.

5 Average Case Algorithms

In this section we prove Theorem 1, which states
that the bounded and unbounded subgroup and sub-
monoid membership problems are polynomial-time on
average.

For a positive integer m, we take the size of m to
be logm, the base 2 logarithm of m. For a sequence
m of positive integers, we take the size of m, denoted
|||, to be the sum of the sizes of its components.

An instance of the unbounded subgroup or sub-
monoid membership problem of §1.2 is a sequence &
of 2 x 2 integer matrices with determinant one and
entries written in binary. An instance of the bounded
subgroup or submonoid membership problem is a pair
(8,n) where S is as above and n is a positive inte-
ger. For our analysis, we will measure the size of
such instances as follows. For a matrix with entries
a,b,e,d, we take u(A) = max{|al,|b|,|c|, |d|}, where
|a| denotes the absolute value of a. Let pu(S8) be the



sequence (u(A) | A € §). We define the size of
an instance & of the unbounded membership prob-
lem to be [|S]| = [|u(S)||, and the size of an in-
stance (S, n) of the bounded membership problem to
be [|(S, )|l = [IS][ + n.

Let o(S) denote the sum of the lengths of the R, S
representations of the matrices in &, as described in

§2.

Lemma 7 Let m = (my,...,my). Ford > 1, the
quaniity Zle(log m;)? is mazimized subject to the
constraints 1 < m;, 1 <1 < k, and Hle m; = n

at the extremes m; = n and m; =1, j # 4.

Proof. Taking a; = logm;/logn, the problem is

. ... k
equivalent to maximizing >_,;_, af

_, aj subject to the con-
straints 0 < a;, 1 <7 < k, and Zle a; = 1. This
occurs at the extremes, since the function is convex

and symmetric. 0O

Proof of Theorem 1. We treat the unbounded mem-
bership problems first. As remarked in §1.3, we need
only show that there exists an ¢ > 0 such that

> T(S) - Pru(S) = n°W), (5.5)

lIS)l=n

where T(8) is the running time of the algorithm on in-
put S and Pr,(8) denotes the conditional probability
that § occurs given that the size of the input instance
is n.

By results of §4, we have T(S) = o(S)" for some
constant ¢. Since all instances of size n are equally
likely, PrnS = |{S | ||S|| = n}|~" for S of size n,
where | X| denotes the cardinality of the set X. Taking
e=1/c, (5.5) becomes

Lisi=a °S) o) (5.6)
HS TSI = n}

We now establish (5.6). For £ = (f1,...,£) and
m = (mi,...,mg), £ < ™ means that £ < m;,
1 <i <k, and (£,/m) = 1 means that ¢ and m;
are relatively prime, 1 < ¢ < k. The numerator of

(5.6) is

3

> a(s) = Yo > a8 (B.71)

[|&8]|=n =1 m e N* u(8)=m

ﬁ”:n

and for m € N¥,

u(8)=m
k
< 12k Zs(ﬂi,mz)
7 <m i=1
(¢, m) =1
= O(n > sl my)) (5.8)
7 <m i=1
(,,m) =1

The coefficient 12k reflects the number of ways of
choosing the positions of the largest elements of the
matrices in § and the factor bounding the lengths of
the R,S and R, T,U representations as discussed in
§2. The vectors £ represent the possible entries in the
same row as the largest entry of each matrixin §. As
discussed in §2.1, once that row is given, the rest of
the matrix 1s uniquely determined, and the length of
the R,T,U representation of the i*" matrix in & is
S(fi, mz)

Changing the order of summation in (5.8), we have

(Z,ms)m:1
= Z(H p(mp)( Y s(ti,mi))
= “77;2 (zi,ln;;n_l 1
= 0> mi(logm;)* H e(m;)) (5.9)
r
- 0((}:[1 g@(mj));p(n;)(]ong) )
= O((J] ¢(m)) > _(logm;)?) (5.10)

Step (5.9) uses Lemma 2 and step (5.10) uses the esti-
mate ¢(m) > Q(m/loglogm) [7, Theorem 328]. Thus
(5.7) is bounded by

k

omY. Y ([T etm) Y (ogm:)?

k=1 7 ¢ N* j=1 i=1

Iml = n



p(m;)) .
] (5.11)

kj

kel

n k

k=1 me

m||

=

The inequality (5.11) follows from Lemma 7.
The denominator of (5.6) is

H{S ISl = n}

Y oY

k=1 m ¢ N* u(8)=m

™l = n
= Z Z Z 4k
kIlHENk ng
™l =nG m) =1

Q. > ITetm).

k=1 m e N* j=1
7| = n

v

(5.12)

Dividing the upper bound (5.11) for the numerator of
(5.6) by the lower bound (5.12) for the denominator of
(5.6), we obtain the polynomial bound O(n*) for the
quotient.

Thus the condition (5.5) is fulfilled, and the algo-
rithm is polynomial time on average.

For the bounded membership problems, as above
we need to show for each n that

2o )s|l4m=n 7(S) +m — o)
(S, m) [ |S]] +m = n}|

But the left hand side is bounded by

Zjisi<n 7(8) + X< ™

HS TSI < n}
~ Lysj=m oS)
< LGSl T

which by (5.6) is polynomial in n. O
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