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Introduction

Propositional calculus plays a key role not only in logic, but also in complexity
theory. The relation of the complexity of propositional logic to the complexity
of computations was studied already in the seminal paper of Cook [10]. If
one uses a general concept of a proof system for propositional calculus, then
the question whether there is a proof system for propositional logic in which
every tautology has a proof of size polynomial in the size of the tautology is
equivalent to the well-known open question whether the class of predicates
accepted by a non-deterministic polynomial time Turing machine is closed
under complementation, i.e. whether NP = coN P, cf. [11].

As the task of proving NP # coNP appears to be very hard, it seems
reasonable to prove superpolynomial lower bounds gradually for stronger
and stronger proof systems. For quite a long time there were no nontrivial
lower bounds for any proof system, except for a very special system, regular
resolution, see [20]. The real progress started when Haken [13] proved an
exponential lower bound for the (unrestricted) resolution system. This is a
rather weak system, but it is very important for practical applications.

In [11] Cook and Reckhow defined certain important proof systems, the
most important is the class of the so called Frege systems. This concept is
intended to capture the idea of the most commonly used systems in logic. A
typical Frege system consists of a finite set of axioms and the Modus Ponens
rule

A, ~AV B
B

It seems, however, that these systems are quite strong and proving a super-
polynomial lower bound for them may be as hard as solving an important
question in computational complexity (eg. proving that an explicit language
is not in NCY).

Thus it was a major advance when Ajtai [1] proved that if in a Frege
systemn all formulas are required to have depth bounded by a fixed constant,
then there is no polynomial upper bound on the size of such proofs. Here we
mean by depth the number of alternations of conjunctions, disjunctions and
negations. Such systems are called bounded depth Frege systems. They are
stronger than the resolution system; the resolution system can be thought of
as depth 1 Frege system. The first truly exponential lower bound for bounded
depth Frege systems was proved by Krajicek [15]. In order to state his result



precisely, we have to talk about refutable sets instead of (the negations of)
tautologies and refutations instead of proofs (by contradiction). He proved
that for every depth d there exists a sequence of refutable sets of depth d
formulas which requires exponential size depth d refutations.

In this paper we show that there exists one sequence of tautologies of
depth 4 which requires exponential size proofs for any fixed d > 4.

All the results mentioned above use essentially the same tautologies, pro-
posed by Cook and Reckhow, (only the sets of formulas used by Krajicek in
[15] are rather modified). These are tautologies based on a trivial, but basic,
combinatorial principle called the Pigeonhole Principle. It is the familiar
fact that the range R of injective function f must be at least as large as its
domain D. Taking D and R to be sets of cardinalities n+1 and n respectively
we formalize this principle as the formula PHP(P,n):

a1, 29 € DAy € R(xy # 22 A P(z1,y) A P(zg,y)) V
Jdz € D3y1,y; € R(yr # y2 A P(x,y1) A Pz, y2)) V (1)
Jdz € DVy € R—P(x,y) V 3y € RVz € D=P(x,y).

This can be encoded as the tautology PH P, by:

\/ (pix A pjx) V \/ (Pri A prj) V (2)
i#j€D, kER i#jER, kED
\/ /\ —pix V \/ /\ Pik-
i€D kER kERED

We have included the condition that the function is onto, which makes the
principle weaker, hence our result stronger. Note that the size of PHP, 1s
polynomial in n.

Now we can state our result explicitly.

Theorem. Let F' be any Frege proof system and d any natural number
(greater than the depth of PHP, as formalized in F). Then every depth d

F-proof of PH P, must have the size at least exp (n(5+°(1))_d).

There have been considered a few other combinatorial principles, but
PHP is the easiest to analyze. Unfortunately it does have polynomial size
proofs in unrestricted Frege systems, see [8]. In fact, we lack good candidates
of hard tautologies for such systems.



Lower bounds on the length of proofs have important applications in
bounded arithmetic (which are logical theories formalizing computationally
feasible reasoning about finite structures). We shall mention these results
without proofs. The reader should consult [17, 18, 21] or monographs [7, 12,
16].

Ajtai’s original result [1] implies that P H P(P,n) is not provable in Ay(P).
This shows that, in a sense, PHP is stronger than the principle of mathe-
matical induction. Our results strengthens this to the following.

Corollary
The pigeonhole principle Vo PHP(P,x) is not provable in theory

TAG(P) + { ]k < w},

where Q is a 119-aziom saying that function wy(z) is total, where wy(x) = 2*

and wyy1(2) = 295020 and |x| = [log,(z + 1)].

In fact, this holds for any function g(z) with Ag-graph such that 2°
eventually majorizes any fixed iteration of g(z).

The paper is organized as follows. In the first section we define the notion
of a Frege system and introduce some notation. In the second section we
outline the strategy of the lower bound proof. The third section introduces
technical notions, the most important being the notion of k-complete systems,
and proves their basic properties. The technical heart of the paper is in the
fourth section which is devoted to the proof of a probabilistic combinatorial
lemma (Lemma D2). The lower bound is derived in the fifth section with
the help of the concept of k-evaluation introduced there.

The paper is intended for specialists in the field, however it uses only
standard techniques from combinatorics and very little logic. Thus it should
be accessible also to all mathematicians working in complexity theory and
combinatorics.

A similar theorem has been proved independently by Pitassi, Beame and
Impagliazzo [19] and the results have been announced in a joint extended
abstract [4]. Our and their proofs are different though have some similari-
ties. We think that the method of the proof is at least as important as the
result itself and that the two proofs should be published separately. The
main difference is that where [19] use decision trees and critical truth 1-to-1
assignments we use a more general concept of complete systems and all 1-1
assignments.



1 Frege systems

We shall consider the language consisting of disjunction V (binary), negation

-, falsehood 0, truth 1 and propositional variables. In general Frege systems

may use any complete basis of connectives, but it is well-known, see [11], that

they are equivalent up to a polynomial increase of the size of proofs, so we can

restrict ourselves to this basis, in which the depth can be defined naturally.

Since we study the proofs of PH P, we need only variables p;;,7 € D,j € R.
A Frege system is determined by a finite set of rules of the form

991((]1,---,(]m),---,997-((]1,---,(]m)

@O(qlv Ty qm)
where ¢1, ..., ¢, are variables and g, @1, .. ., @, are formulas in the language
V,=,0,1 and ¢, ..., ¢n. Furthermore the rules must be sound and implica-

tionally complete (cf. [11]). (For our lower bound we need only sound-
ness.) An instance of the rule is obtained by substituting particular formulas
Y1,..., %, (in the language V,—,0,1,p;;) for ¢1,...,¢n. A rule with r =0
is called an aziom scheme.

The size of a formula is the number of occurrences of V and — in it, the
depth is the maximum number of alternations of V and = in the formula.
The size of a proofis the sum of sizes of formulas in it and its depth is the
maximum depth of a formula in it. By a theorem of [11] we could restrict
ourselves to a particular Frege system, but this would not shorten the proof
and would make it less transparent.

We shall use PHP, in the form

\/ =(—pix V —pjx) V \/ “(=pri V s )V

i#ieD keR i#j€RkeD
V=V i)V Ve,
=¥ kER kER €D

where \/ denotes repeated binary V (the order of parentheses is not impor-

tant). Thus the size of PHP, is O(n®) and the depth is 4.

2 An outline of the proof

As the proof is rather technical we shall outline the main ideas in this section.
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First recall the way of proving unprovability of a formula 1 which is
implicitly used, when we use a model of —1). To show that ¢ is unprovable
we assign the truth values 0 and 1 to all formulas in such a way that:

1. the axioms get value 1,
2. the rules preserve the value 1,
3. 1 gets value 0.

We would like to use this idea, but our v is actually provable, so we must
modify this approach. We shall modify it in two respects. Firstly we shall
construct evaluation only for any small (= subexponential) set of formulas,
thus we only show that 1) does not have a small proof. Secondly, for technical
reasons, we shall not use values 0 and 1, but assign to each ¢ in question
a set S, and the value of ¢ will be a set H, C S, 1.e. an element of the
boolean algebra of subsets of S,. Then 1 is replaced by S, itself and 0 by 0.

It is clear that the evaluations should be somehow connected with the
PHP. Suppose for a moment that D = R in the formula (2) defining PHP,.
Then we can show unprovability of such a formula by taking S, = 5 =
{fl f1to-1, f: D — R} and H, will be those f’s which define truth
assignments to {p;;} that satisfy ¢. Since PHP, says that {p;;} do not
define a 1-to-1 mapping from D onto R, it gets value (), while the axioms get
S and the rules clearly preserve the value 5.

In our proof |D| # |R|, therefore we take partial 1-to-1 mappings and, in
a sense, approximate the above argument. The degree of approximation is
determined by a parameter k, the maximal size of a mapping in S,. Such
an S, must have special properties in order to look like all 1-to-1 mappings;
we call it complete. In order to show that 1 is preserved by rules, we use a
common refinement of S,’s occurring in the rule.

The most difficult task is to assign H, to ¢ in such a way that H, has
the same properties as the one consisting of total 1-to-1 mappings in the
case of |D| = |R|. The problem is that ¢ may speak about all variables
pi;, while partial 1-to-1 mappings are always undefined for some ¢’s and j’s.
Here we use a technique from boolean complexity which reduces the depth
of formulas by applying a (random) restriction of the domain, the so called
switching lemma. Here a restriction is a partial 1-to-1 mapping p from D to
R, which means that we restrict the formula to the 7 and j’s on which p is



undefined. We think of p as a partial specification of the alleged total 1-to-1
mapping. Applying the lemma several times the formula is reduced to such
a form that its truth can be decided by using only a subset of all remaining
variables. Again the lemma needs essential modifications for our purpose,
namely we use partial 1-to-1 mappings instead of 0-1-strings.

3 Complete systems of partial maps

Let n be a natural number and D and R two sets of cardinalities n + 1 and
n respectively, as in Section 1. Partial maps b :C D — R are thought of as
sets of pairs and as functions whichever is more convenient. The following
definition introduces basic technical notions we shall work with.

Definition A.
(a) M is the set of partial 1—to—1 maps from D to R,
M :={h:C D — R | h injective }.
For H C M, the norm ||H|| of H is
] = e .
(As h is injective, |h| = |domn(h)| = |rng(h)|.)

(b) For k < n,asubset S C M is k-complete iff it satisfies three conditions:
(i) V6,6’ € S,6 £6 — 66U ¢ M,
(i) Vhe My ||+ k<n—36€S,hUéE M,
(i) 11511 < k.
(Note that (ii) with ~ = ( implies that S # {.)

(c) For H,S C M, S is a refinement of H, H < S in symbols, iff
V6e S, (Vhe HhUS6¢ M) vV (3h € H b C6).



Note that the notation hU o € M is used to express that the two partial
I-to-1 maps h and o are compatible on the common elements of D and R.

The most important example of a k-complete set is the following. Let T
be a labelled tree where

1. the vertices are labelled by elements of D and R;

2. edges of T' going out of a vertex v are labelled by pairs (7, j) where ¢ or
7 1s the label of wv;

3. if (41,1)s-- -, (4r,J,) are the labels on edges of the path going from
the root to v and v is not a leaf, then the out-going edges contain all
labels (z,7) disjoint with {1, j1,...,%,J,} and containing the label of
v (according to the previous condition), thus in particular the label of
v must not be in {i1,71,...,%,,Jr };

4. the depth (=the maximal length of a path) is at most k.

Each path from the root to a leaf determines a partial mapping from M. Let
S be the set of all such mappings. Then one can check that S is k-complete.

The reader should keep this example in mind, since the whole proof can
be carried out using these special complete systems.

Next several lemmas are of rather technical nature but with a simple
motivation behind. We shall discuss this motivation first but we shall confine
to the situation with the boolean variables z;;, 2,7 = 1,...,n, and the notion
of a complete system w.r.t. the set M"° of all total truth assignments to
the variables corresponding to isomorphisms of the set {1,...,n}, i.e. every
assignment o € M*° have the form

L fitf) =
;) '_{ 0 if f(i) #J

for some bijection f : {1,...,n} — {l1,...,n}. That is a more natural
situation than the situation in the previous definitions, but allows a perfectly
general explanation of the intuition.

A complete system w.r.t. M'® is a set S of partial truth assignments to
x;; such that:



1. every o € S has the form:

1 if g(i) = j
ofwij) =4 0 if (i € dom(g) A g(i) # 5) V (j € rng(g) A g=V(j) # 1)
undefined if ¢ ¢ dom(g) A j & rng(g)

for some partial injective map ¢ :C {1,...,n} — {1,...,n}.
2.Vo#£6€ S, 0 L6, where 0 L § means that o,6 are incompatible
3. Vo e M*36€ S, § Co.

Identify the elements o € S with the subsets
[0] :={6€ M'™ | o C6}.

Then S is a complete system iff the set of the sets [o], 0 € S, is a partitioning
of M,

Let ¢(x;;) be a formula (in variables z;;). We are interested in the truth
values ¢(o) of ¢(x;;) only for assignments o € M*°. If S is a complete
system such that

M= n¢tD0) = | o] and M=) = | [o]

0€Sy 0€S

where SoUS; = S is a partition of S, then the truth table for ¢ for assignments
from M*° can be encoded by a map from S into {0,1}: map o € S to 0 iff
o € So.

Moreover, the formulas ¢ and —¢ are equivalent for all assignments from
M to particular disjunctive normal forms:

¢Eiso \/ o C7 and _'¢E7fso \/ cCT

cES 0€Sy

where ¢ C T abbreviates the conjunction:

A T

zi;€dom(o)Ao(zi;)=1

and where =;,, means the equivalence for all truth assignments from M®°,
In this view a complete system is just a particular disjunctive normal form



of the formula 1, namely such a form in which the disjuncts are mutually
incompatible.

Disjunctive normal forms for ¢ and —¢ with this property are obtained
from any decision tree for ¢ of the form described after Definition A. On
the other hand, a complete system S allowing an expression of ¢ and —¢ as
above yields also a decision tree for ¢ of the depth < ||S||?.

For ¢ = x;; the complete system

Sxijz{{xinl}}U{{inHl,xujn—)l}|u7éi,v7§j}

of the norm 2 allows the expression of ¢ and —¢ as above, and obviously if
we have such a system Sy for ¢ then S_4 := S, works for —¢. Hence the
only non-trivial case in a construction of a complete system S of small norm
by induction on the depth of ¢ is when ¢ = \/; ¢;. A system S allows an
expression of ¢ and —¢ as above iff the sets LMZ-SOFW)(_I)(O) and Misoﬂ¢(_1)(1)
are unions of some sets [o] determined by S. But having the systems S; = S,
for ¢; allows already an expression

of ¢ as a union of blocks, where
1 =Ufo e 5| o] € o=0(1))

and it has the norm ||H|| = max;||S;|| which is small.
The problem is that H is not necessarily a subset of a complete system
(of a small norm). However, if S is a system refining H:

VoeS, (36€H, §Co) V(Y6 H, 6 Lo)

then
o= Ugfand—wﬁz\/agf
oES] o€Soy
where
Si={ceS|3beH §Co}
and

So={oceS|VéeH 6 Lo}.
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A lemma saying that there is a partial truth assignment p corresponding to
a partial injective map such that there is a small norm S refining H? thus
replaces the standard switching lemma [14] in this situation.

Now assume that we have complete systems S, assigned to formulas ¢
which allow an expression of ¢ and —¢ as above. This allows to define for
every ¢ the boolean algebra exp(Sy) of the subsets of S, and a value Hy in
that boolean algebra:

H,:={c€S,|[s]C¢V(1)}.

Think of Hy as of those o € S, forcing ¢ true. Hence ¢ is a tautology iff
H, =S, iff all 0 € S, force ¢ true.

In the particular Definition A of k-complete systems, intuitively, no ele-
ment o € M forces PH P, true. Hence one expects to get an "evaluation” of
formulas in which PH P, will not be true. The notion of k-evaluation defined
in Definition F formalizes these ideas. The necessary lemma (Lemma D2)
analogous to the switching lemma is proved in section 4.

Lemma A. Suppose H a« S <« T for some H,S, T C M,S is k-complete
and ||T||+ & <n. Then HaT.

Proof: We have
VreTdoe S, 0ureM

by the k-completeness of S and by ||T'||+ k < n, and so by S < T it must be:
VreT3d e 5,8 Cr.

To prove the lemma let h € H,7 € T be such that hU T € M. Take §' € S
s.t. ¢ C 7. Hence also h U o’ € M and thus ' C ¢ for some ' € H, by
H <« S. We have ' C 7 as we wanted to establish. [

Definition B.
For S,T C M, the set S X T, a common refinement of S and T', is defined
by:
SxT={6UreM|ée S,teT},
i.e. it is the set of elements of M of the form §UT,6 € S,7 € T. [ |

Lemma B.
Let S, T C M and assume that S is k-complete, T is [-complete, ||S||4+1 <
n, ||T||+ k <n and k+ [ < n. Then the following hold:

10



(a) S x T is k 4 [-complete.
(b) SaSxT, TaSxT.

Proof:

(a) Assume 6 U m,8' Ut € M for 6 U 7,6 U7 two distinct elements of
S x T. Then either § # ¢ or 7 # 7' and hence either § U8 ¢ M

or 7 Ut ¢ M by the completeness of S and T resp.. In both cases
(6UT)U (8’ UT") ¢ M which verifies condition (b)(i) of Definition A.
To verify (b)(ii) let |h| + k& 4+ 1 < n. Then, as ||S]| < k and ||T|]| < I,
by the completeness of S, T there are 6 € S,7 € T's.t. hU(6UT) € M.,
Finally, as obviously ||.S x T'|| < |[S|| + ||T]| < & + [, condition (b)(iii)
holds too.

(b) Let h € S and hU (6 UT) € M for some 6 Ut € S x T. Then, since S
is k-complete, b = § and thus h C § U 7. Hence S <« .S x T. Identically
follows T'a S x T.

Definition C.
Let H,S C M. The projection of H on S, S(H) in symbols, is:

S(H)={6¢ S|3h € H,h C6}.

We shall consider the symbol S(H) as a two-place function assigning to
a pair S, H C M aset S(H) C M.

Lemma C1

Let H,S,T C M, let S be k-complete, ||T||+k <nand H<S<T. Then
T(S(H))=T(H)and T(S)=T.

Proof: To see T(S(H)) C T(H) let 7 € T(S(H)). Then h C 6§ C 7 for
some 6 € S(H),h € H. Sot € T(H) too.

To establish T(H) C T(S(H)) let 7 € T(H) and h C 7 for some h € H.
Then, identically as in the proof of Lemma A, for some 6§ € S,6 C 7. Hence

11



hUé € M and, as H « S;h" C 6 for some h' € H. So h' C 6 C 7, ie.
€ T(S(H)).
To see T(S) =T take H = {0}. u

Lemma C2
Let H,S, T C M, HaS<T,||S||+1<n,||T||+k<n, S bek-complete
and T be [-complete. Then: S(H) =S it T(H)="T.

Proof:

Assume first S(H) = S. By Lemma C1 T(S) = T and also T(S(H)) =
T(H). Thus T(H) =T.

Now assume T(H) =T, and let § € S be given. By the l-completeness of
T and by [6]+1 < ||S]|+ < n,6UT € M for some 7 € T'. By the assumption
h C 7,some h € H. Hence 6 Uh € M too and thus, by H < S, h" C § some
other b’ € H. Therefore 6 € S(H). [ |

Lemma C3.
For any S, H; € M,: € I,

Lemma C4.

Let S C M be k-complete and Sy, 51 C S two disjoint sets, let T' C M.
Then:
T(So)NT(Sy) = 0.

Proof.
For the sake of contradiction assume 7 € T'(Sp) N T'(S1). By Definition
C, 6p € 7 and é; C 7 for some &y € Sy, 61 € S;. But then 6y U 6, € M which

contradicts k-completeness of 5, as necessarily 69 # 6. [ ]

Lemma C5.
Let S, C M, S be k-complete, ||T||+k <n,S<T and Sy C S. Then:

Proof:
By Lemma C1,7(S) = T. By Lemma C4,T(S) is a disjoint union of
T(So) and T'(S\Sp). Hence T(S\So) = T\T(So). u

12



Now we approach the technical heart of the paper, a space of random
maps and a lemma inspired by similar results in boolean complexity.

Definition D.

(a) Let 0 < p < 1. Ry is the probability space of maps p € M which are
determined by the following process.

(i) First form rng(p) by putting any j € R into it with probability
l—p,ie. Pr(j€rng(p)=1-p.

(ii) Then randomly choose a bijection p from a random subset X C
D.|X| = |rng(p)| to rng(p) with uniform distribution.

(b) For p,h € M, h? is undefined if hUp ¢ M and, if hUp € M, dom(h”) =
dom(h)\dom(p) and h* = hp. Also, D* = D\dom(p), R* = R\rng(p)
and (n)? = |R”|.

For H C M, H’” = {h”|h € H and h” is defined }.

Note: "h? undefined” and "h? = ()7 are different things. |

In the proof of the theorem we shall be forced to move from a situation
with n, D, R, M and some H,S,T,... C M to a situation with (n)’, D?, R’,
M? and H?,S5°,T?,..., by choosing random p € R,, while preserving some
properties. That is guaranteed by the next lemma.

Lemma D1.
Let H S, K C M and p € M be arbitrary. Then:

(a) H < S implies H? ¢ S,
(b) S k-complete and |p| + k < n implies that S? is k-complete,

(¢) K=S(H)and H < S implies K* = S?(H”).

Proof:

(a) Let h € H,6 € S be such that A Ué” € M?. Then h U6 € M and so
h' C 6 for some h' € H. Then (h')? C 6*.

13



(b) Let 67 U 67 € M? for some 61,6, € S. Then 6; U b, C M so 6 = 6y,
le. 6y = 65. To verify the second condition of Definition A(b) let
|h| + k& < (n)? for some h € M? C M. As |p| = n — (n)” we have
also |h U p| + k < n. Hence by k-completeness of S for some § €
S,(hUp)Ub € M. But then hUé” € M? as h = h”.

Pinally, [|57]| < [15]] < .
(¢) Let k” € K?, some k € K. Then k € S and h C & for some h € H,
which gives k” € S? and h? C &, ie. ” € SP(H").

Now let 67 € SP.h* € HP s.t. h? C 6. Then hUd € M and, as
H a S, h" C 6 for some other b’ € H. So 6 € S(H),i.e. 6 € K, and
therefore 67 € K?. |

Lemma D2 (Switching Lemma).

Let H C M,||H|| <1 < s. Assume that p < ;1= and pn > 40s. Then for

random p € R, the statement:
“there is 2s — complete S C M? such that H” « S"”
holds with probability at least:

1 —e(16p*n’t)® — 27,

where ¢ > 0 is a constant.
This remains true even if we add the condition |p| < n — $pn . For the
choice of p=n*"" and t = s = n® such that 0 < 6 < ¢ < é, this probability

is at least 1 — 27" for n sufficiently large. |

The proof of this lemma will occupy the next section.

4 The proof of Lemma D2

The proof is based on an unpublished work of Woods which, in turn, builds on
earlier work by Yao [22], Cai [9] and Hastad [14], in order to get exponential
bounds rather than just the superpolynomial bounds given by the switching
lemma of Ajtai [1].

14



For h € M define:
u(h) = Pr(p =)

and define the support of h to be:
supp(h) = dom(h) Urng(h) .

The following lemma follows directly from the definition of R7.

Lemma E1 Let § # g € M, h € M be such that supp(h) N supp(g) = 0
and let X C M. Then:

_ M —p)"
(@) n(h) =P
p—lgl(l — p)lgl

(b) pu(hUg) = p(h)

(n - |h| + 1)ILC/I .
(c) Pr(p€X)=hex pnlh) .

Here (n)k denotes the falling factorial n(n — 1) . (n —k+ 1) .
||

Let m(p) = n — |p| be the number of elements of R on which p~' is
undefined. The next lemma is an instance of the well-known bounds on the
tails of a binomial distribution, such as the Chernoff inequality. See [3] or

[6].
Lemma E2. There is a constant ¢ > 0, such that for 0 < p < % and n
for which pn > 36 it holds:

A property E(p) of p € M will be called positive if whenever o C p, and
E(0o) holds, E(p) holds.

We shall later use one more technical lemma. Before stating it, let us
motivate it heuristically. We will be interested in probabilities roughly of the
form

Pr(supp(p)NU=0|hUpe M),
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where supp(h) C U and typically U = supp(6) for some 6 € M, so |U| = 2k
with & = [6]. Now most p have m(p) = pn. If we restrict our considerations
to such maps p (so the Pr( ) notation will temporarily be used rather loosely)
then for z € D, y € R, we have

Pr(z € dom(p)) ~p= Pr(y € rng(p)) .

Assuming these events are roughly independent, and provided k is signifi-
cantly smaller than pn, we expect that Pr(supp(p) N U) & p* (since |U| =
2k). Also for p*n < 1, Pr(hUp € M)~ Pr(hCp)~xn~*, where s = |hl|.

Therefore we guess
Pr(supp(p) NU =0 | hUpe M)~ p**=9) (np?)* .

JFrom the definition of conditional probability as a ratio, conditioning on
supp(p) NV = 0 where VN U = ) and V has similar properties to U,
should not change this. Also it seems plausible that conditioning on a pos-
itive condition £ (which will typically mean p has to be defined on certain
points) should normally not significantly increase the probability of p, p~!
being undefined on U.

For several reasons considerable care is required in making these ideas
precise. In particular it seems necessary to be careful how m(p) is restricted.
To this end we will consider conditional probabilities Pr'(A) defined by

Pr'(A) = Pr(A | m(p) < 2pn).
We will adopt the convention that Pr(A|B) =0 if Pr(B) = 0.

Lemma E3. Tet UV CDUR, UNV =0, k=|UnD|=|UnNR],
J=1VnD|=|VNR|and let h € M, supp(h) C U, s=|h|.
Suppose p < ——. pn > 2, and let F(p) denote the event

100

supp(p) NV =0 A E(p) A m(p) >10J .
where F is positive and .JJ > j. Then
Pr'(supp(p)NU =0 A m(p) > 10(J+k) | hUp € M A F(p)) < (2p*n)°(2p*)**

Proof: Let G/(p) hold if and only if F(p) A m(p) < 2pn . Clearly the
conditional probability in question is either 0 or bounded above by
Pr(supp(p) N(UUV) =0 A G(p) A m(p) 210(J +k))
Pr(h Cp Asupp(p)NV =0 A G(p) A m(p)>10J)
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so it suffices to show this ratio is at most (2p*n)*(2p?)F=*.
Given p there is a unique maximal p’ C p such that supp(p’) N U = 0.
Consequently

Pr(hCp A supp(p)nV =0 N G(p) N m(

) >107)
> Y Pr(hCp A supp(p) NV =0 A

p
bnp=0o) (x)

where the sum is over all ¢ € M satisfying
supp(a)N(UUV)=0 A G(o) A m(o) > 10(J + k) .
For certainly if p’ = o for some such o, then as G is positive, p satisfies
G(p) N m(p) 210J .

For each such o,

Pr(hCp A supp(p) NV =0 A p'=0) > Y Pr(hUgCp A p=0)
g

=Y Pr(p=hUgUo)
g

where the sum is over all ¢ € M with |g| = 2(k — s) having the property that
supp(g) N supp(h) = 0, supp(g) NV = 0 and ¢’ = 0, that is, that if (z,y) € ¢
then either

(i) = € U\ supp(h) and y € R\ (UUV), or
(ii) y € U \ supp(h) and z € D\ (UUV).
If m(c) = m, then there are
(m =k = )ica(m + 1=k = )ems 2 (m =2k — )"0

such maps ¢g. For each of them

1—p\ (o)
Pr(p=hUgUo)=puhUgUo)=|——
(p gUo)=phUgUo) ( p ) RS

17



by Lemma E1. Therefore

Pr(h C p Asupp(p)1V = 07 f = o) > ((1 _p) m = 2k —j)m_s)(i
p m+ 1 p(m+1
But m = m(o) > 10(k + j) s
m—2k—j _10(k+j)—2(k+j) 8 1
il S0t (kty) LS VEI—p)
Also as m = m(o) < 3 pn by G(0), we see that
m+1<2(1—p)pn .

Therefore

Pr(h Cp A supp(p) NV =0 A p'=0) > (2p") "7 (2p"n) " p(o) .
Summing over o, the lemma now follows immediately from (#), since

2 p(@) = Prisupp(p) N (UUV) =0 A Glp) A m(p) 2 10(] +£)) .

|

We shall divide the proof of Lemma D2 into several steps.

(1)

(2)

Let H C M with ||H|| < ¢ < s and let ', h? h% ... be any fixed

enumeration of elements of H.

Two players T and 1T will play a game in which they construct a sequence
of maps &y C &, C ..., all from M, &, = 0.

At a step of the game when 6y C 6; C ... C §; has already been
constructed, player I plays h;y;: the first & in the enumeration ', h%, ...
such that h U € M. Player I then chooses any C-minimal 6,41 2 &
such that domn(h,y1) € dom(é41) and rng(her) C rng(6i41). The

game ends iff either T has nothing to play or II choses 6,41 2 hiy1. Note
that the strategy of I is fixed while IT can use different strategies.

Let hy, ha, ..., kg1 be the elements of H chosen by player T (by his
fixed strategy) in a game determined by 6y C 6; C ... C é341. We shall
call h; the i-th critical map.

18
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(4)

(5)

Put S to be S = {8541] some &g C &, C ... C b4y is a sequence
constructed in a finished game}.

Claim: S is ||S|]-complete.

Proof of the claim: Assume § # §' are two elements of S. Let & # §;
be the first move of I which was different in the two games. As both
61, 6] are C-minimal, clearly & U 6] ¢ M, hence 6 U ' ¢ M.

Now let & € M such that |h| + ||S|| < n be given, and let player
IT follows the strategy: on dom(h) or rng(h) answer according to h,
otherwise arbitrarily but consistently with A. As |k| 4 ||S|| < n, II can
always apply this strategy. Obviously h U éd € M for any output ¢ of

such a game.

Claim: H < S.

Proof of the claim: S is a refinement of H by the definition of the
termination of a game: in the first hU 6 ¢ M for all h € H and in the
second h C § for some h € H.

Unfortunately it is not true in general that ||S|| < 2s and we have to
employ random map p from R, to achieve this. Note that, by Lemma
D1, both Claims (4) and (5) will remain valid after the application of
p € Ry

Now we consider the game played with H” instead of H, thus some
h € H will be discarded (if pU h ¢ M), and some h,g € H,h # g may
became identical, i.e. h? = g”. However we shall still use the order
of H induced on H” by taking the first element in each class of the
identified mappings. Tt is useful to think of an element ¢ € H” as h”
where h is the first element of H compatible with p. Thus the strategy
of the player I can be thought of as: “Play the first A~ € H such that
hUSUpe M.

Suppose we played a game and obtained critical mappings hf,..., h{
and &, C & C ... C épp1- The elements of A?\&;_; will be called
critical pairs. We want to bound the probability that there are at least
s critical pairs. Therefore we assign a set of parameters for each such
game with at least s critical pairs and split the computation according
to those parameters.
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Let us denote by
52/- =0; — b;_1, (56 = @)§

67 = (dom(h;) x rng(h;)) N 6; = (dom(hf) x rng(hl)) N é;.
Note that this equality holds as supp(6x41) N supp(p) = 0. Let

s;i=|[h\&i_y | for 1 <i <k,
i.e. the number of critical pairs in h? and

Sk41 =S — St ... — Sk.

Let d; = |67|; note that |6} = 2s;,—d;. Thesets Ty, ..., Ty C{1,...,t}
are defined as follows. Let 7 < k be fixed and suppose

hi = {617"'a6fi}7

then
hI\6ior = {e;}jer-

Thus h; and T; determine the critical pairs of A?. For i = k 4+ 1 we
define Ty4q in the same way, except that we take only the initial part
of hy,,\0r consisting of spy; pairs. This is because we want to con-
sider only what happens on the first s critical pairs. Let ~1,..., 9% be
the partial one-to-one mappings with domain and range contained in
{1,...,t} defined as follows. Let ¢ < k be fixed and suppose

dom(h;) = {ar,... a4y}, a1 < ... < ay;

rng(hi) = {b1, ..., by}, 01 < ... < by.
Then
6; = {(ar, by, )|l € dom(7:)}.

Thus h; and v; determine 6 for ¢ < k.

Finally let 3i,..., 8, be the mappings from {1,...,2(s; — d;)} into
{1,...,n+ 1} such that for : = 1,...,k 3; determines ¢! — é*. Namely,
let ¢ be fixed, let

{al,...,da,._4.} = (dom(6]) — dom(5])) N dom(hi), a1 < ... < dy_g;
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(10)

{v,,.. "b;i—di} = (rng((SZ’-) —rng(6})) Nrng(h,), b <...< b;i_di.
Then
52((1;) =Bi(y) fory=1,...,8 —d;
62_1(63) Iﬁz(sz—d2+J) fOI‘j = 1,...,Si—di.

The set of parameters 7 will consist of

k; 8155 Sk+1; Tlv"'ka+1; Yo Vhy ﬁ17"'75k'

We shall estimate the number of possible sets = for fixed s1,..., k41,
S14 ...+ 8ky1 = 8, and dy,...,dr. The number of Ty,..., Tyyq is at

i t t i
M) < <15
S1 Sk+1 S1 Sk+1

The number of 41,..., 79 1s at most

3 d 23 d 2d
B AL k<t

where d = dy + ...+ di. The number of 3,..., 3 is at most
(n + 1)2(sl—d1) S (n + 1)2(3k_dk) — (TL + 1)2(51_d)
where s = 1 4+ ...+ s;. Altogether we get an upper bound

st (n + 1)2(31_d)

Let a set of parameters 7 be given. We shall estimate the Pr’ prob-
ability of the event A that a game with parameters = occurs and
m(p) > 20s. (Recall that m(p) = n — |p|. The technical condition
that m(p) > 20s is included in A so that we will ultimately be able to
apply lemma E3.)

Let CT(h) denote the event that h is the first h € H consistent with p
(i.e. hUp € M). In general, let C7(h) be the event that Player I plays
h* in round ¢ in a game played according to = till Player I chooses £ in
the i-th step. (Recall that this implies that there is no g € H before
h with ¢ = h?.) Thus CT(h) does not exclude that Player II cannot
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play according to # already in the i-th move nor does it exclude that
h? = §; however it implies that AU p € M. (7 determines &g, 61, ..., O
and hence the moves of Player 1T if H” is known.)

Let P7(h),1 < ¢ < k be the event that m(p) > 10(sy + ... + s;)
and in some game played according to = till the i-th round, h” was
played by Player I, the critical pairs of h” are determined from h by
the parameter T; and Player Il can play his -th move according to
7. The last condition means that the 6] determined by = and A is
consistent with é;_y and supp(6) N supp(p) = 0. Let P (h) be the
event that m(p) > 20s and in some game played according to = till
k 4 1-st round h” was played by Player I and there are (at least) sp4q
critical pairs in h determined by Tx4;. In the sequel we shall abbreviate

A" by A,CT(h;) by C; and P7(h;) by P;. We have

Pr'(A) < max Pr'(A|CY);

PT,(A|01> = PT‘I(A N P1|Cl) = PT‘,(A|P1 A Cl) . PTI(P1|01);
PT‘I(A|P1 A 01) S H}LaXPT'I(A|OQ A P1 A 01)

PT’(A|CQ/\P]/\C‘[) = PT,(A|P2/\CQ/\P]/\C])'PT’(P2|CQ/\P] /\C]) etc.
Eventually we get

PT’(A|P]C/\C]C/\.../\P1/\01)§

< maXPr'(A|Ck+1 ANPLANCAN...ANPLANCY) =

hr 41

=max Pr'(ANA Pey1|Copn AP ACL AN ANPLACH) =

hrg1
— %ﬁ?Pr'(PHﬂCkH NP ANCyAN...NPyACY),
since A is implied by Pegy A Cegr A ... A Py A Cy. Thus
Pr/(AT) <
k+1

max H Pr'(PT(h)|CT(h;) N Py (hici) ACy(hizi) A ...

haseoshir 22

. NP{(hy) A CT(hy))
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(11) The reason for the above decomposition is that under the condition,
Ci NPy NCiy Ao.. N Py A Ch, the mappings 6;—1 and hy, ..., h; are
determined. We shall estimate first the i-th term in the last product for
¢ < k. If 7 determines é! to be inconsistent with é,_;, the probability is
zero. Otherwise P; (under the condition) is equivalent to the condition
supp(6l) Nsupp(p) =0 A m(p) > 20(s1 + ...+ s;). Let us denote by
k! = h;\6i—1. The condition C; A P,_y A ... A C} implies the condition
RiUpe M A m(p)>20(sy + ...+ si—1). Thus we have

Pri(P|C; NPy Ao .NCh) <
Pr'( supp(6))Nsupp(p) = 0 Am(p) > 20(s1+...+s;) |hiUp e M ANF),
where F'is
m(p) >20(s1 4+ ...+ sic1)) NC; APy AL ANCh

Assuming kiU p € M A m(p) > 20(s; + ...+ s;-1) the condition F is
equivalent to the conjunction of the following three conditions:

Bi: g Cp

By supp(p) N supp(bi-1) = 0;

Bs: Yhe K(pUh¢ M).
In By, g € hyU...U hj_y are those pairs which should belong to p
according to w. In By, K consists of those h € H which for some 57 <1

are before h;, after h;_; (if j > 1), and have h U §;_y € M. Note that
now g and 6;_; are fixed, i.e. do not depend on p.

As F is equivalent to
supp(p) N supp(6i—1) =0 AN By ABs A m(p) >20(s1 + ...+ s-1)
and as By A By is positive, the probability
Pr (supp(§)Nsupp(p) = B A m(p) = 20(s1-+...+5;) | KiUp € MAF)
can be estimated using Lemma E3 to be:
< (2p%n)" - (2p7) @) = (2pn) (2p7) ).

(Recall that [supp(é!)| = 2s; — d; and |h}| = s;. Also, observe that
on taking J = 2(s; 4+ ... + s;—1), we have |6,—1| < J, and m(p) >
20(s1 + ...+ s;) implies m(p) > 10(J + 2s; — d;).)

23



(12)

(13)

The last factor in the estimate for Pr'(A’T) n (10) can be bounded in
the same way by (2p*n)s+!.

Now we get a bound for Pr/(A™) if s1,..., sg41 and dy, ..., dy are fixed:

k
Pri(AT) < (H(Ep?n)si@ﬁ)(“"d")) S (2p%n) < (2pPn)° - (2p7)0 .
=1
Multiplying it by the estimate from (9) we get an upper bound on the
Pr' probability that m(p) > 20s and there are at least s critical pairs,
assuming the game was played with fixed parameters si,...,sp41 and

dl, ey dkl
ts+2d . (TL + 1)2(5'_d) . (2p2n)5 . (2p2>(5’_d) S

< (Pt (o) - (1 - [ "
- n (n+1)-p -
< e(4p*'n’t)’,

(provided that pn > 1, 2¢' < n and ¢t < (n + 1)p which follow from
our assumptions). The number of all sequences sy, ..., sk41 such that
1 < 1,000, < spqn, 1+ oo+ gy = s is 271 (Such decom-
positions s; + ...Sk41 = s are in a 1-to-1 correspondence with sub-
sets {s1,81 + s2,...,s} of {l,...,s} containing the element s.) No-
tice that we must have s; > 1 for ¢ < k, since otherwise h? C §;_y
so 6; = 6;—1 and the game terminates at round ¢ contrary to the as-
sumption that s; +...sp41 = s. Similarly we can assume k is chosen

such that sgy; > 1. The number of all sequences di,...,d; such that
0<d <s1,...,0 <dj <spis(l+s)-... (14 s;) which is maximal
when s; = s = ... = s = 1 and so is at most 2°. Thus the Pr’

probability that m(p) > 20s and there are at least s critical pairs is at
most

e(16p*n’t)°.
If 6541 has > 2s elements, then there must be at least s critical pairs.
Thus this is also a bound to the probability that ||S]| > 2s.

Recalling the definition of Pr’ in terms of Pr, and using the assumption
that 20s < %pn, this implies that

Pr(|[S]]| >2s A 2pn <m(p) < 3pn) < e(16p'n’t)’.
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Application of Lemma E2 then completes the proof of Lemma D2. [ ]

5 The proof of the theorem

Recall that we consider only formulas in the language V,—,0,1,p;;,t € D, j €
R,|D| = n+1,|R| = n. Let ¢ be a disjunction. The reduced form of ¢ will be

the expression \ @; where each @; 1s either a negated formula or a variable
i€l

and ¢ 1s obtained from @;,¢ € I by applying the binary V in a suitable order.

Equivalently ¢; can be determined as the maximal subformulas of ¢ whose

depth is less than the depth of ¢.
Definition F.
Let T' be a set of formulas, I" closed under subformulas. A k-evaluation
of T' is a pair of mappings (H,S):
H:T—-PM),S:T— P(M)
such that
1. forevery p € I'H, €S, C M and S, is k-complete;

2.Sy=S, ={0} and Hy = 0,H, = S;,
H,, = {{(i,))}}
Sp, = {{(6,5"), (W )" # 4,57 # 5} U {50}

3. if np €T, then H., =S, \ H,, S_, =8S,;

4. if p € I"and V ; 1s the reduced form of ¢, then
el

U H,, «S, and H, =S, (U H%) .

el el

We use the letters H, S to denote the maps of a k-evaluation as S pre-
viously denoted k-complete systems and S, is always a k-complete system,
and H was used to denote an arbitrary subset of M.
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Let p € M. We define
0 ifi € dom(p), but p(i) # J,

0 if j € rng(p), but p(i') = j for ' £,
pi; otherwise.

If ¢ is a formula, then ¢ is obtained by applying p to all variables of p; that
is by replacing each p;; by (pi;)? but performing no further simplifications.
If T is a set of formulas, then I'? = {p?|p € T'}.

Let (H,S) be a k-evaluation and p € M. We define the restriction
(H”,S”) of the k-evaluation as follows. For ¢ € I' define:

1. If ¢” is different from all formulas of the form 0,-0,—-=0,... then put
SC:={h"|hUpe MAh€ES,}

and

H) :={h"|hUpe MANhecH,}.

2. If ¢’ is one of the formulas 0, -0, =0, ... then put:

S’ = {0}
and '
- 0 %fgopz(),—'—'O,...
¢ {0} if p* = =0,-—0,. ..
The exceptional case for formulas collapsed by p to 0, -0, ... is needed as for

some atom p;; it might be that p?; = 0 while 551-] # {0}, contradicting clause
2. of Definition F.

Lemma F1 Let I' be a set of formulas, p € M, and |p|+ &k < n. If (H,S)

is a k-evaluation of I', then (H”,S”) is a k-evaluation of I'”.

Proof - use Lemma D1(a) and (b), and observe that the set {0} is refined
by any other set. [ ]

Lemma F2 Let d > 1, be an integer, 0 < ¢ < é,O < 6 < e’ and let

I' be a set of formulas of depth d,I" closed under subformulas. Suppose that
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—1

IT| < 27 and n is sufficiently large. Then there exists p € M, |p| < n —n*"
such that there exists a < 2n’-evaluation of T'”.

Proof:

Proceed by induction.

1. For d = 1 the only formulas are single variables for which we have H,,
and S, by (2) of the definition. Clearly S, is 2-complete, hence we
have a 2-evaluation, (p = ().

2. Suppose that the lemma is true for d and let T be a set of formulas
of depth d + 1,T" closed under subformulas. Let A be the formulas of
I of depth < d. TLet 0 < &¥(= e™'=!) be given. By the induction
assumption we have a p’ € M, |p'| <n —n*"" and a < 2n’-evaluation
(H',S) of A”'. Let m = n—|p/[, thus m > n=""". We shall extend p/ to a
suitable p. This can be thought of as applying some p” to the restricted
universe given by D? and R”'. By Lemma F1 the restrictions of A?" and
S’ will be < 2n’-evaluations of A??" again, thus we only need to choose
p" so that we can extend this evaluation to the whole I'. For negation
it is straightforward for any p”. For disjunction we apply Lemma D2
with n, D, R replaced by m, D? | R*, and t = s = n’®,p = %ms_l. Let
w € I',p of depth d + 1, let \ ¢; be the reduced form of ¢. Note that

n®=n 9T <m:-T and <e.

€d_1

By Lemma D2, if n is sufficiently large, then with probability < 1—2_”6,

there is S € M**" such that

UML) «S and [p"] < m — 2pm = m — m?.

If this is the case, we extend (H',S’) to ¢ by defining
S,=Sand H, =S (U(Hgm,)ﬁ”) :

Since |T'| < 2”6, there is at least one p” with the above properties
satisfied all for such ¢ € T'. Then we have also
1o d

lpl=1pp" 1 <n—m+m—-—m=n—-—m<n-n°.
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Lemma F3. For every Frege system F' there exists a constant f with
the following property. If (v1,...,7:) is an F-proof, (H,S) is a k-evaluation
of the set of all subformulas of the proof and k < n/f, then H,, = S,, for
1=1,...,1.

Proof:

Let F' be given. Let f be the maximal number of subformulas in a rule of
F plus 1 (axioms are special cases of rules with r = (). Clearly it suffices to
prove the following claim and apply induction:

Claim. Let
991(77&1’ s '7¢m)a s ,L,DT(lle, .- ad)m)

©o(P1y- 5 m)
be an instance of a rule of F. Let (H,S) be an n/f-evaluation of the sub-
formulas of @o(¥1,...,%m)s ... 00 (Y1,...,¥m). Suppose that He = S, for
= L,oz-(g/}l, .. .,¢m),i =1,...,7. Then Hy = S; for { = 990(1/}1, .. ,L/Jm)
Proof of Claim. Let (H,S) be given. Let I' be the set of all for-

mulas of the form p(v1,...,¢¥n), where (g1, ..., ¢n) a subformula of some

©i(q1y. .., qm),t = 0,...,7. Let T be an @—complete system such that
Se¢ « T for every £ € I'. Such a system exists by Lemma B. Note also that
ISell +||T|| < n for every £ € T.

Suppose that =¢ € T'. Then

H-; =S¢\ He ,

hence, by Lemma C5,
T(Hoe) = T\ T(H,) .

Suppose that o, 3,aV 3 € I'. Let \V v; resp. V 7; be the reduced forms
€A i€EB

of a resp. 3. Hence, using Lemma C3,

HaVﬁ = Sa\/ﬁ (U H'Yi) U Sa\/ﬁ (U H’Yi) .
i€A €8
Now using Lemma C3 and using Lemma C1 twice we get
T(Hous) = TS (U ) U780 (U R ) =

€A 1€B
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Cr(ym)or(un)

s, (U H%)M(s; (un)-

= T(H,) U T(Hy,).

Furthermore we have, by Lemma C1
T(He) =T(Se) =T,

for € = (Y1, ..., ¥m),t = 1,...,1, since He =S¢ and S; is complete.
Thus we have shown that the mapping ¢ — T'(H¢) of I' into the Boolean
algebra of subsets of T' has the following properties

1. it maps — on the operation of the complement and V on the operation
of the union:

2. 1t maps the premises of the rule on T

Since the rule is sound it preserves the value 15 in any boolean algebra B
(as otherwise a suitable ultrafilter would define a 0-1 assignment satisfying
the premises of the rule but not its conclusion, contradicting the soundness).
The value 15 in the boolean algebra B = exp(T') of the subsets of T is the
set T and hence we must have T(H¢) = T for £ = @o(t1,..., %), whence
by definition and Lemma C2,

H¢ = S¢(H) =S¢,

which concludes the proof of the claim and, consequently, of the lemma. m

Recall the discussion before Lemma A to draw an intuition for the next
lemma.

Lemma F4.

(i) Let (H,S) be a k-evaluation of the subformulas of PH P, and suppose
k S % —3. Then HPHPn = @ and hence HPHPn 7£ SPHPn-

(if) If pe M,k < n=lel _ 3. then part (i) holds for PHP,”.

2
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Proof:

(i) PHP, is a disjunction of formulas —¢ where ¢ ranges over
_'pikv_'pjkvi ?é] € D7k € R7

“pri V kit # 3 €E R k€D,

\/ pir,i € D,
kER

\/ pir, k € R.

ien
We shall show that H, = S, for each such formula, hence H-, = 0,
thus

Hpp, = Spup, (| JH-y) = Spup, (0) =10 .
(a) Let ¢ be =pix V —pji. By definition

Hop, = {0 K, (k)T # 0, K # k)

and
Hop, = {0 K), G k)N # 5, K # k}.
Let T be the 3-complete set
{{(0, B), (5, B"), (L k)i # 1 5, K # K" # & # KU
UG k), (7, K}k # K O {0 K, (5, k) Mk # K

It can be easily verified that

T(H.,, UH., )=T.

Pik Pk

By Lemma B, we have some n/2-complete W which is a common
refinement of S, and 7'. Hence, by Lemma C2,

W<H—'p¢k U H_'pjk) =W.
and again by Lemma C2,

H—'pikV—-Pm = S_‘pikv-'pjk(H_‘pik U H—'ij) = S—'Pz‘k\/—-p;k'
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(b) Let ¢ be \/ pix. By definition
kER

H, = S,({(¢, k)[k € R}).

But, clearly, {(¢, k)|k € R} is 1-complete,
hence

S.({(1;k)|k € R}) = S,.
(¢) The case of =pg; V —=prj; resp. \V pix is proved in the same way as

(a) resp. (b). h

(ii) The generalization is straightforward: if ¢ contains a variable which is
changed to 0 or 1 by p, then all the variables in ¢ are fixed and one
can easily check that H., = 0.

Now we are ready to prove our main result. Let F' be a Frege system,
d > 4 (4 is the depth of PHP,), 0 < § < 57%*! let n be sufficiently large and
let (y1,...,7:) be an F-proof of depth d and size < 27" Let f be the constant
associated to I’ by Lemma F3. Choose an ¢ such that ¢ < % and § < ¢?7!. By
Lemma F2, there exists p € M,|p| < n —n*""" and a 2n’-evaluation (H,S)
of T'”, where T' is the set of subformulas of the proof (y1,...,v). Clearly
(77, ...,77) is an F-proof with variables p;;,2 € D?,j € R” and I'” is the set
of its subformulas. Let m = (n)? =n — |p| > n=""". Since n is large, we have

ms < and 2n° < % - 3.

SIRNE

Thus we can apply Lemma F3 (with n replaced by m etc.) and Lemma F4.

By the first one we get
H,=8, fore=1,...,¢;

by the second one

Hpppp =0

which is different from Spgpe. Thus (71,...,7¢) cannot be a proof of PHP,,
i.e. proof of PHP, of depth d must have size > o’ [ ]
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6 Some open problems

1. The most important problem is to extend superpolynomial lower bounds
to stronger systems. Our result shows that some techniques from boolean
complexity theory can be adapted for propositional calculus, but the progress
in propositional calculus is much slower. It is, perhaps, because the problems
involve besides combinatorial difficulties also unusual logical concepts. In
boolean complexity exponential lower bounds are known for bounded depth
circuits with V, A, = and PARITY gates (in general with MOD,, p prime,
gates). It is an open problem to prove a superpolynomial lower bound for
Frege systems with bounded depth formulas of this form.

2. Even in the case of bounded depth proofs with formulas in the basis
V, A, — there are some open problems. Krajicek [15] has shown that there
is an exponential gap between depth d and d + 1, but he needed formulas
with increasing depth. Is there a constant ¢ such that for every d there
is a sequence of tautologies of depth at most ¢ such that these tautologies
have polynomial size proofs of depth d + 1, but only exponential (or just
superpolynomial) size proofs of depth d?

3. In our lower bound exp(n®®) the constant ¢4 decreases exponentially,
while in the corresponding boolean case it decreases only linearly. (This is
due to the fact that the bound in our switching lemma depends on n.) Is it
possible to improve our bound so that ¢; decreases only polynomially?
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