Electronic Colloquium on Computational Complezity
ECCC TECHNICAL REPORTS SERIES 1994 REPORT NRrR: TR94-019

Lower Bounds for the Computational Power
of Networks of Spiking Neurons

Wolfgang Maass

Received December 19, 1994

Abstract. We investigate the computational power of a formal model for net-
works of spiking neurons. It is shown that simple operations on phase-differences
between spike-trains provide a very powerful computational tool that can in prin-
ciple be used to carry out highly complex computations on a small network of
spiking neurons. We construct networks of spiking neurons that simulate arbi-
trary threshold circuits, Turing machines, and a certain type of random access
machines with real valued inputs. We also show that relatively weak basic as-
sumptions about the response- and threshold-functions of the spiking neurons
are sufficient in order to employ them for such computations.

Keywords: Spiking Networks

Online access for ECCC:

FTP: ftp.eccc.uni-trier.de:/pub/eccc/

WWW: http://www.eccc.uni-trier.de/eccc/

Mail to: ftpmail@ftp.eccc.uni-trier.de,subject "MAIL ME CLEAR”, body ”pub/eccc/ftpmail.txt”

1 Introduction and Basic Definitions

There exists substantial evidence that timing phenomena such as temporal differ-
ences between spikes and frequencies of oscillating subsystems are integral parts of
various information processing mechanisms in biological neural systems (for a survey
and references see e.g. Kandel et al., 1991; Abeles, 1991; Churchland and Sejnowski,
1992; Aertsen, 1993). Furthermore simulations of a variety of specific mathemati-
cal models for networks of spiking neurons have shown that temporal coding offers
interesting possibilities for solving classical benchmark-problems such as associative
memory, binding, and pattern segmentation (for an overview see Gerstner et al.,
1992). Very recently one has also started to build artificial neural nets that model
networks of spiking neurons (see e.g. Watts, 1994). Some aspects of these models
have also been studied analytically (see e.g. Gerstner and van Hemmen, 1994), but
almost nothing is known about their computational complexity (see Judd and Ai-
hara, 1993, for some first results in this direction). In this article we investigate a
simple formal model SNN for networks of spiking neurons that allows us to model
the most important timing phenomena of neural nets, and we prove lower bounds
for its computational power.

Definition of a Spiking Neuron Network (SNN): An SNN N consists of

a finite directed graph (V, E) (we refer to the elements of V as “neurons” and
to the elements of ' as “synapses”)

— a subset V;,, CV of input neurons

— a subset V,u,s TV of output neurons

~ for each neuron v € V — Vi, a threshold-function ©,: R* — RU {cc}
(where RY :={z € R:z >0})

~ for each synapse (u,v) € E a response-function &,, : R" — R and a weight-
function w,, R" - R .

We assume that the firing of the input neurons v € V,,, s determined from outside
of N, i.e. the sets F,, C RY of firing times (“spike trains”) for the neurons v €
Vin are given as the input of N'. Furthermore we assume that a set T C R of
potential firing times has been fired (we will consider only the cases T = RY and
T={i-p: 1€ N} for some u>0).

For a neuron v € V. —V;, one defines its set F, of firing times recursively. The
first element of F,, is inf{t € T : P,(t) > 0,(0)} , and for any s € F, the next
larger element of F, is inf{t € T : t > s and P,(t) > O,(t — s)} , where the
potential function P, : R* — R is defined by

P,(t):=0+ Z Z Wy p(8) Eun(t —8) .

u:{u,v) € F sel,:s<1

1

The firing times (“spike trains”) F, of the output neurons v € V,y that result in
this way are interpreted as the output of N .

Regarding the set T of potential firing times we consider in this article primarily
the case T = R* (SNN with continuous time), and only in Corollary 2.5 the case
T ={i-p:i €N} for some p with 1/g € N (SNN_with discrete time).

Our subsequent assumptions about the threshold functions ©, will imply that
for each SNN \V there exists a bound 7, € R with 7, > 0 such that ©,(z) = oo for
all z € (0,7y) and all v € V —V,,, (14 may be interpreted as the minimum of all
“refractory periods” 7,.s of neurons in N'). Furthermore we assume that all “input
spike trains” F, with v € V}, satisfy |F, N [0,¢]| < oo for all £ € RT. On the basis
of these assumptions one can also in the continuous case easily show that the firing
times are well-defined for all v € V — V;, (and occur in distances of at least 7).

In models for biological neural systems one assumes that if @ time-units have
passed since its last firing, the current threshold ©,(z) of a neuron v is “infinite” for
& < T (where 7,05 = refractory period of neuron v), and then approaches quite
rapidly from above some constant value. A neuron v “fires” (i.e. it sends an “action
potential” or “spike” along its axon) when its current membrane potential P,(t)
at the axon hillock exceeds its current threshold ©,. P,(t) is the sum of various
postsynaptic potentials w, , - €,,,(t — s). Each of these terms describes an ezcitatory
(EPSP) or inhibitory (IPSP) postsynaptic potential at the axon hillock of neuron
v at time ¢, as a result of a spike that had been generated by the “presynaptic”
neuron u at time s, and which has been transmitted through a synapse between
both neurons. Recordings of an EPSP typically show a function that has a constant
value ¢ (¢ = resting membrane potential; e.g. ¢ = —70mV’) for some initial time-
interval (reflecting the axonal and synaptic transmission time), then rises to a peak-
value, and finally drops back to the same constant value ¢. An IPSP tends to
have the negative shape of an EPSP (see Figure 3 in section 2). For the sake of
mathematical simplicity we assume in the SNN-model that the constant initial and
final value of all response-functions ¢, , is equal to 0 (in other words: &,, models
the difference between an action potential and the resting membrane potential ¢).
Different presynaptic neurons u generate postsynaptic potentials of different sizes at
the axon hillock of a neuron v, depending on the size, location and current state of
the synapse (or synapses) between u and v. This effect is modelled by the weight-
factors wy,,(s).

The precise shapes of threshold-, response-, and weight-functions may vary
among different biological neural systems, and even within the same system. For-
tunately one can prove significant upper bounds for the computational complexity
of SNN’s N without any assumptions about the specific shapes of these functions
of N. Instead, for such upper bounds one only has to assume that they are of a
reasonably simple mathematical structure (see Maass, 1994b, 1994c).

In order to prove lower bounds for the computational complexity of a SNN N

one is forced to make more specific assumptions about these functions. However
we show in this article that significant (and in some cases optimal, see section 3)
lower bounds can be shown under some rather weak basic assumptions about these
functions, which will be further relaxed in section 4. These basic assumptions (see
section 2) mainly require that EPSP’s have an arbitrarily small time-segment where
they increase linearly, and some arbitrarily small time-segment where they decrease
linearly. Since the computational power of SNN’s may potentially increase through
the use of time-dependent weights, lower bounds for their computational power are
more significant if they do not involve the use of time-dependent weights. Hence we
will assume throughout this article that all weight-functions w,,(s) have a constant
value wy, which does not depend on the time s.

Apart from the abovementioned condition on the existence of linear segments in
EPSP’s, the basic assumptions which underlie the lower bound results of this article
involve no other significant conditions on the shape of response- and threshold-
functions. Hence one may argue that these basic assumptions are biologically plau-
sible. In addition we will show in section 4 that the same lower bounds can be shown
if also phenomena such as “adaption” of neurons, or a “reset” of the potential after
a firing are taken into account. Thus the more critical points with regard to the
biological interpretation of these lower bound results appear to be the relatively sim-
ple firing mechanism of the SNN-model, which for example ignores for the sake of
simplicity nonlinear interactions among postsynaptic potentials such as integration
of potentials within the dendritic tree of a neuron, and various possible sources of
“imprecision” in the determination of the firing times. The latter issue can partially
be taken into account by considering the variation of the SNN-model with discrete
firing times as in Corollary 2.5 (although the implicit global synchronization of this
version is not completely satisfactory). In this variation of the SNN-model with
discrete firing times ¢ - g for ¢ € N one can view a firing of a neuron at time ¢ - u as
representing a somewhat imprecise firing time in a small interval around time 7 - .

The model SNN that we consider in this article is very closely related to the
model that was previously considered by Buhmann and Schulten, 1986, and es-
pecially to the spike response model of Gerstner, Ritz, van Hemmen, 1992, and
Gerstner, van Hemmen, 1994. Similarly as in Buhmann and Schulten, 1986, we
consider in this article only the deterministic case (which corresponds to the limit
case 3 — oo in the stochastic spike response model of Gerstner et al.). However in
contrast to these preceding models we do not fix particular (necessarily somewhat
arbitrarily chosen) response- and threshold-functions in our model SNN. Instead, we
want to have the possibility to use the SNN-model as a framework for investigating
the computational power of various different response- and threshold-functions. In
addition, we would like to make sure that various different response- and threshold-
functions that are observed in specific biological neural systems are in fact special
cases of the response- and threshold-functions in the here considered formal model

SNN.

The computational complexity of another neural network model where timing

plays an important role has previously been investigated by Judd and Aihara, 1993.
Their model PPN is also motivated by biological spiking neurons, but it employs a
quite different firing mechanism. There are no response-functions in this model, and
instead of integrating all incoming EPSP’s and IPSP’s in order to determine whether
it should “fire”, a neuron in a PPN randomly selects a single one of the incoming
“stimulations” of maximal size, and determines on the basis of that stimulation
whether it should fire. Consequently, computations in this model PPN proceed
quite differently from computations in models of spiking neurons such as the spike
response model of Gerstner and van Hemmen, 1994, or the here considered model
SNN. Judd and Aihara, 1993, construct PPN’s which can simulate Turing machines
that use at most a constant number s of cells on their tapes, where s is bounded
by the number of neurons in the simulating PPN. However a Turing machine with
a constant bound s on its number of tape cells is just a special case of a finite
automaton, and hence this result does not show that a PPN of finite size can have
the computational power of an arbitrary Turing machine.

In contrast to the quoted result about PPN’s, it is shown in Theorem 2.1 of this
article that with arbitrary response- and threshold-functions which satisfy the basic
assumptions of section 2 one can construct for any given Turing machine M an SNN
N of finite size that can simulate any computation of M in real-time (even if the
number of tape cells that M uses is much larger than the number of neurons in

Nag).

In addition, at the end of section 4 we will describe a way how a simulation of
arbitrary Turing machines can also be accomplished by finite SNN’s whose response-
and threshold-functions are piecewise constant. Apparently our method for proving
this can also be used to show that with the help of a module which decides whether
two neurons have fired simultaneously, one can simulate (although not in real-time)
any Turing machine M (where M may use an unbounded number of tape cells) by
some PPN Py of finite size, thereby improving the lower bound for the computa-
tional power of PPN’s due to Judd and Aihara, 1993, from finite automata to Turing
machines.

The focus in the investigation of computations in biological neural systems differs
in two essential aspects from that of classical computational complexity theory.
First, one is not only interested in single computations of a neural net for unrelated
inputs x, but also in its ability to process an interrelated sequence ({(x(i),y(2)))ien
of inputs and outputs, which may for example be the protocol of some adaption- or
learning process. Obviously the processing of arbitrary sequences ({z(2),y(?)))ien of
inputs z(7) and y(¢) contains as a special case not only the scenario of unsupervised
learning (where the x(i) are the inputs for the unsupervised learning), but also that
of supervised learning processes. For the case of supervised learning (e.g. PAC-
learning) one may assume that for some m € N the initial segment (z(1),...,z(m))
represents some training sequence of length m, where each x(¢) also provides the
target-output, whereas x(z) for ¢ > m just represents a test-ezample which does not
indicate the corresponding target output. Apart from the advantage that it allows

us to compare not only the computational complexity of computations but also of
learning processes, the subsequent notions of a real-time computation and real-time
simulation are also particularly suitable for the analysis of computations in biological
neural systems because the exact timing of computations is all-important in biology,
and many tasks have to be solved within a specific number of steps. We will show
after these definitions, that these notions also allow us to analyze computations in
the usual sense of computational complexity theory.

Definition of real-time computation and real-time simulation

Fiz some arbitrary (finite or infinite) input alphabet A;, and output-alphabet
Aour (for example they can be chosen to be {0,1}, {0,1}* or R). We say that a
machine M processes a sequence ({(x(2),y(7)))ien of pairs (x(1),y(i)) € Ain X Agut
in_real-time r, if M outputs y(i) for every i € N within r computation steps after
having received input x(1) (for ¢ > 0 we assume that x(i) is presented at the next
step after M has given output y(i —1)).

We say that a machine M' simulates a machine M in real-time (with delay-
factor A) if for every r € N and every sequence that is processed by M in real-

time r, M' can process the same sequence in real time A - r.
In the case of SNN’s M we count each spike in M as a computation step.

We first would like to point out that these notions contain the usual notions of
a computation respectively simulation as special cases. If M computes a boolean
function F' : {0,1}* — {0,1} in time #(n) (in the usual sense of computational
complexity theory), then one can identify each input (z1,...,z,) € {0,1}* with
an infinite sequence (z(z));en where x(i) = z; for i < n and z(¢z) = B for i > n
(assume that M gets one input bit per step, B := “blank”). Furthermore one
can set y(¢z) = B for those steps 1 where M’s computation is not yet finished, and
y(2) = F({z1,...,2,)) for all later ¢ (in particular for all 7 > ¢(n)). Obviously M
processes this sequence ((x(7),y(7)))ien in real-time 1. Hence, if another machine
M' can simulate M in real-time with delay-factor A, then M’ can compute the
same function F' : {0,1}* — {0,1} in time A - #(n). This implies that a real-
time simulation is a special case of a linear-time simulation. In particular, every
computational problem that can be solved by M within a certain time complexity,
can be solved by M’ within the same time complexity (up to a constant factor).

In addition, the remarks before the definition imply that when we show that
M’ can simulate M in real-time, we may conclude that any adaptive behavior (or
learning algorithm) of M can also be implemented on M’. Finally we would like to
point out that for the investigation of specific computational- and learning-problems
on specific models for biological neural nets one would like to get eventually also
estimates for the size of the constant r in real-time processing, respectively the size
of the delay-factor A in a real-time simulation. Such refined analysis (which will
not be carried out in this paper) appears to be also of interest, since it is likely to
throw some light on the specific advantages and disadvantages of different models

for biological neural systems (e.g. networks of spiking neurons versus analog neural
nets), which are shown in Maass 1994b, 1994c, to be equivalent with regard to the
preceding notion of a real-time simulation.

In contrast to the usual notion of a simulation, a real-time simulation of another
computational model M by an SNN implies that the simulation of each compu-
tation step of M requires only a fized number of spikes in the SNN. In particular
the required number of spikes does not become larger for the simulation of later
computation steps of M.

Input- and Output-Conventions

For simulations between SNN’s and Turing machines we assume that the SNN
either gets an input (or produces an output) from {0,1}* in the form of a spike-
train (i.e. one bit per unit of time), or encoded into the phase-difference of just
two spikes. The former convention is suitable for comparisons with Turing machines
that receive at each computation step a single input bit and produce a single output
bit. For comparisons with Turing machines that start with the whole input written
on a specified tape, and have their whole output written on another tape when the
machine halts, it is more adequate to assume that the SNN receives at the beginning
of a computation the whole tape content of the input tape encoded into the time-
difference ¢ between two spikes (using the same encoding as we will use in section
2 in order to represent the content of a stack), and that the SNN also provides the
final content of the output tape in the same form. Real-valued input or output for
an SNN is always encoded into the phase-difference of two spikes.

The structure of this article is the following. In section 2 we specify our basic
assumptions about the response- and threshold-functions of an SNN, and we con-
struct SNN’s that can simulate in real-time arbitrary threshold-circuits and Turing
machines. In section 3 we relate the computational power of SNN’s for real-valued
inputs to a specific type of random acces machine. In section 4 we discuss variations
of the preceding constructions for some related models of spiking neurons, and in
section 5 we outline some conclusions from the results in this article.

2 Simulation of Threshold Circuits and Turing
Machines by Networks of Spiking Neurons

In order to carry out computations on an SNN. some assumptions have to be made
about the structure of the response- and threshold-functions of its neurons. It
is obvious that for example neurons with everywhere constant response-functions
cannot carry out any computation. We will specify in the following a set of basic
assumptions, which suffice for the constructions in this article. Some variations of
these conditions will be discussed in section 4.

We assume that there exist some arbitrary given constants Ay, Apax € R with
0 < Apin < Apax so that we can choose for each “synapse” (u,v) € F an individual
“delay” Ayy € [Amin, Amax] With e, (2) = 0 for all z € [0,A,,]. This parameter
A, corresponds in biology to the time-span between the firing of the presynaptic
neuron u and the moment when its effect reaches the trigger zone (axon hillock) of
the postsynaptic neuron v. This time-span is known to vary for individual neurons
in biological neural systems, depending on the type of synapse and the geometrical
constellation. The constants Ay, and Apax can be interpreted as biological con-
straints on the possible lengths of such time-spans. No requirements about A,
and Apax are needed for our construction, except that Apin < Amax-

We assume that except for their individual delays A, , the response-functions
€uw (as well as the threshold functions ©,) are stereotyped, i.e. that their shape is
determined by some general functions ¥,/ and ©® which do not depend on u or v.
More precisely, we assume that we can decide for any pair (u,v) € E whether ¢,
should represent an excitatory “EPSP-response-function”, or an inhibitory “IPSP-
response-function”. In the EPSP-case we assume that

Eup(Ayy + 1) = 5E(:p) for all z € RT,
and in the IPSP-case we assume that
Eun(Ayy + 1) = &:I(:p) for all z € RT.
In either case we assume that
eun(z) =0 forall z €[0,A,,]
Furthermore we assume for all neurons v € V — V,,, that

O,(z) = O(z) forall z € RT.

We assume that the three functions ¢¥ : R* — R*, e/ :R* —» {z € R: z <0},
and © : Rt — R U{oc} are some arbitrary functions with the following properties:
There exist some arbitrary strictly positive real numbers 7,cf, Tend, 01, 02, 03,
Ti, T2, T3, Ly Supy, Sdown With 0 < Tyep < Tepg, 01 < 02 < 03, 71 < T2 < T3 (see
Figure 1 for an illustration), which satisfy the following five conditions:

6(0) . ~

e (1)

\

Figure 1: Illustration of our notation for the basic assumptions on ©, e¥ &l (the
functions shown are quite arbitrary and complicated, but nevertheless they satisfy
our basic assumptions).

(1) ©(z) > 0(0) >0 forallz € R, O(z) = oo for all z € (0,7,),
and O(z) = 0(0) < oo for all x € [Tepq, 0)

(2) eF(0) = e¥(2) = 0 for all x € [03,0), and there exists s0me emax € RT
so that Iz € R (e¥(2) = emax) and Vy € RT(e¥(y) < cmax)

(3) e¥(o1+2) =e¥(01) + 5up -2 forall z€[—L, 1]
(4) e¥(oy + 2) = e¥(03) — Saoun - 2 for all z € [—L, L]

(5) €1(0) = el(x) = 0 for all x € [r3,00), &l(x) <0 for all x € (0,73),
el is non-increasing in [0, 7] and non-decreasing in [1a, 73].

We assume in addition that ©(0), c(01), eP(03), Sup, Sdown € Q.

It should be pointed out that no conditions about the smoothness, the continuity,
or the number of extrema of the functions ©, &, & are made in the preceding
basic assumptions. However if one demands in addition that ¥ is piecewise linear
and continuous, then the conditions (3) and (4) become redundant. The assumption
that ©(0), cf(01), €¥(032), Sup, Sdown are rationals will only be needed to ensure

that certain weights can be chosen to be rationals (see subsection 2.9).

8

Examples of mathematically particularly simple (piecewise linear) functions &,

el and © which satisfy all of the above conditions are exhibited in Figure 2.

,}8

00)\ L e 10

v
v

v

e’ (?)

v

Figure 2: Examples for mathematically very simple functions ©, ¢, and &' which
satisfy the basic assumptions.

The subsequent construction shows that neurons with the very simple response-
and threshold-functions from Figure 2 can in principle be used in order to build an
artificial neural network with some finite number n; of spiking neurons that can
simulate in real time any other digital computer (even computers that employ many
more than ny memory cells or computational units).

We have formulated the preceding basic assumptions on the response- and
threshold-functions in a rather general fashion in order to make sure that they can
in principle be satisfied by a wide range of EPSP’s, IPSP’s and threshold-functions
that have been observed in a number of biological neural systems (see e.g. Figure

3).

The currently available findings about biological neural systems (see e.g. Kandel
et al., 1991, and the discussions in Valiant, 1994) indicate that in general a single
EPSP alone cannot cause a neuron to fire. In fact, it is commonly reported that 50
to 100 EPSP have to arrive within a short time-span at a neuron in order to trigger
its firing. These reports indicate that the weights w,, in our model should be as-
sumed to be relatively small, since they cannot amplify a single EPSP to yield an

mV
-68

-70

-72

Figure 3: Inhibitory and excitatory postsynaptic potentials at a biological neuron.
(after Schmidt (1978). Fundamentals of Neurophysiology. Berlin: Springer-Verlag.)

arbitrarily high potential P,. Hence for the sake of biological plausibility one should
assume that the values of all weights w,, in an SNN belong to some bounded interval
[0, wmax)- For simplicity we assume in the following that wpay = 1. This convention
just amounts to a certain scaling of the values of the response-functions in relation
to the threshold-functions. In any version of this model where a single neuron is not
able to cause the firing of another neuron, one necessarily has to assume that each
input spike is simultaneously received by several neurons (since otherwise it cannot
have any effect).

In spite of this convention we will occassionally assign much larger values to
certain weights w,,. We will then (silently) assume that u does in fact represent
an assembly of [w,,| neurons that all fire concurrently. Furthermore we assume in
those situations that all edges from neurons in this assembly to neuron v have the
same delay, and the same weight %’Z—] € [0,1]. The main difference between this
type of construction and a construction with arbitrarily large weights is that in our
set-up the (virtual) use of large weights blows up the number of neurons that are

needed.

Theorem 2.1 If the response- and threshold-functions of the neurons satisfy the
previously described basic assumptions, then one can build from such neurons for
any given d € N an SNN Nra(d) of finite size that can simulate with a suitable
assignment of rational values from [0,1] to its weights any Turing machine with at
most d tapes in real-time.

Furthermore Npa(2) can compute any function F : {0,1}* — {0,1}* with «a

suitable assignment of real values from [0, 1] to its weights.

The proof of Theorem 2.1 is rather complex. Therefore we have divided it into
subsections 2.1 to 2.10, which are devoted to different aspects respectively modules
of the construction. Several of these modules are also useful for other constructions.

10

The global construction of Nrar(d) with the properties claimed in Theorem 2.1 is
described in the last subsection 2.10.

We will discuss afterwards in section 4 some methods for alternative construc-
tions of N7ar(d) that are based on different assumptions about response- and
threshold-functions.

2.1 Conditions on the Neurons

We assume that we can decide for any pair (u, v) of neurons whether there should be
a “synapse” between both neurons (i.e. (u,v) € E). Selfreferential edges of the form
(u,u) will not be needed. In this proof the weights w,, on edges (u,v) are always
assumed to be time-invariant, and they are only assigned values from [0,1]. We
assume that the response- and threshold-functions satisfy the previously described
basic assumptions.

2.2 Delay- and Inhibition Modules

We will construct in this subsection two very simple modules that will be used fre-
quently (and often silently) in the subsequent constructions. From the general point
of view the existence of these two modules shows that our very weak assumptions
about Api, and Apay (we have only required that 0 < Ay, < Apax) as well as our
very weak assumptions about the shape of ¢! in condition (5) are in fact sufficient to
create in an SNN arbitrarily long delays, and arbitrarily fast appearing or arbitrarily
fast disappearing inhibitions of arbitrarily long duration.

A “delay-module” is simply a chain uy, ..., urps of neurons so that (u;, u;4q1) €
E, ey uy, is an EPSP-response-function, and wy,;u,,, = ©(0)/emax for ¢ =
1,..., k. Since each delay Ay, can be chosen arbitrarily from [Amin, Amax], the
total “delay” between the firing of u; and the arrival of an EPSP at ujy; can be
chosen to assume any value in an interval of length &+ (Amax — Amin). It will cause no
problem that the total transmission time from wu; to w41 grows along with &, since
in the subsequent constructions time will essentially only be considered modulo a
certain constant mpyg.

We next construct for any given real numbers 6, A > 0 and & < 0 “inhibition-
modules” I, and 592, Is .\ can be used to transmit to any desired neuron v a
volley of IPSP’s that sum up to a potential which changes from its initial value 0
to some value < k within a time interval of length 6, and then maintains a value
< k for at least the following time interval of length A. Is, \ consists of a neuron u
that transmits EPSP’s simultaneaously to several “relay-neurons” vy,...,v;, which
are triggered by this EPSP to send an IPSP to some given neuron v. If [and the
delays between the neurons are chosen appropriately (as a function of 8, &, A, &’()
and the parameter 71, this module will have the desired effect on neuron v.

Dually, one can also build for any §, A > 0 and x < 0 an inhibition module 7%

11

that sends TPSP’s to any specified neuron v whose sum stays < « for a time interval
of length > A, and then returns to 0 within a time interval of length < 6. Here
we exploit that according to condition (5) the function &!(z) is non-decreasing and
strictly negative for x € 72, 73).

2.8 Oscillators

Consider subgraphs of an SNN of the following structure:

N
T

(@ (b)

e
.

Figure 4: Graph structure of an oscillator consisting of one neuron (a), respectively
two neurons (b).

Both types of subgraphs can be used to build an oscillator. The first one is some-
what simpler, but we will not use it in our construction since it would require a
selfreferential edge (v,v) € FE.

In the second type of oscillator (Figure 4, (b)) we assume that w,,, w,, >
O(0)/emax , and that both &,, and ¢,, are EPSP-response-functions. Thus after
an initial EPSP through edge a both neurons will fire periodically. More precisely,
v will fire at times to + ¢ -7 for « = 1,2,..., until it is halted by an IPSP through
edge b. We refer to © as the oscillation-period of this oscillator.

We will distinguish one such oscillator as the “pacemaker” for the constructed
SNN, which we denote by PM. We write 7py for its oscillation period. We assume
that the oscillation of PM is started at “time 0” by the first input spike to the SNN,
and that it continues without interruption throughout the computation of the SNN.
PM emits EPSP’s through edge e, which will then be broadcast as a timing-standard
throughout the SNN. We will say in the following that some other neuron v in the
SNN fires “at unit time” or “synchronously” if the considered firing of v occurs at a

12

time point ¢ of the form 7 - 7py for some 2 € N.

In N7ar(d) we will use oscillators in two ways as storage devices. First we use
them as “registers” for storing a bit (via their two states dormant/oscillating), for
example in the control of N7ar(d). Secondly we use oscillators O with oscillation
period wpy to store arbitrary numbers ¢ € [0, 7pm] via their phase difference to
PM (i.e. neuron v of oscillator O fires at time points of the form ¢ - 7pm + ¢ with
¢ € N). In this way oscillators can for example store the time difference between two
input-spikes to the SNN, and the program respectively tape content of a simulated
Turing machine.

2.4 Synchronization Modules

A characteristic feature of a computation on a feedforward boolean circuit of the
usual type is that the timing of its computation steps is independent of the values
of the bits that occur in the computation. For example, the timing of the output
signal of an OR-gate does not depend on the values of its input bits. This feature
is very useful, since with its help one can arrange that all input bits for boolean
gates on higher levels of the circuit arrive simultaneously, and therefore it allows us
to build complex circuits from simple modules.

If one wants to carry out computations on an SNN with single spikes, one would
like to interpret the firing of a neuron at a certain time as the bit “1” and non-firing
as “0”. Thus one might for example want to simulate an OR-gate by a neuron
v that fires whenever it receives at least one EPSP. However when that neuron v
receives two EPSP’s simultaneously (corresponding to two input bits being 1) it
would in general fire slightly earlier than in a situation where it receives just a
single EPSP. This effect is a consequence of having EPSP-response-functions e, ,(z)
that are not piecewise constant. In addition, if v has already fired just before,
then the fact that ©(z) is in general not piecewise constant also contributes to this
effect. Unfortunately this effect makes it impossible to simulate on an SNN in a
straightforward manner a multi-layer boolean circuit (where the bit “1” is signaled
by a spike, and “0” by the absence of a spike at the corresponding time): the input
“bits” for neurons that simulate boolean gates on higher layers of the circuit will
in general not arrive at the same time. Furthermore it is not possible to correct
this problem by employing delay modules of the type that we had constructed in
subsection 2.2, since the required length of the delays depends on the current values
of the input bits.

We will solve this problem with the help of the here constructed synchronization
module. In fact, we will show in the next subsection that with the help of this mod-
ule an SNN suddenly gains the full computational power of a boolean feedforward
threshold circuit, and therefore is able to carry out within a small number of “cycles”
substantially more complex computations than a regular boolean circuit.

On first sight it appears to be impossible to build a synchronization module

13

without postulating the existence of an EPSP-response-function that has segments
of length > mpp; where it is constant, or increases respectively decreases linearly.
However the following “double-negation trick” allows us to build a synchronization
module without any additional assumptions.

source of
unsynchronized spikes pacemaker

PM
(EPSP) (EPSP)
e (EPSP)
° 01
inhibition
IPSP \/
ue

\SEPSP)

)

oV,

%P)

inhibition
module 7,
V3, ,/ inhibition
(IPSP)\ (IPSP) module 7,
L
l (EPSP)
synchronized spikes

Figure 5: Structure of a synchronization module.

Consider the graph of an SNN on the left hand side of Figure 5. We arrange that
as long as no EPSP is transmitted through its “input edge” e, the neuron u fires
regularly with period mpy as a result of EPSP’s from the pacemaker PM. These
EPSP’s induce the inhibition module I, to send IPSP’s to neuron v that “cancel
out” the EPSP’s that arrive at v directly from PM. Therefore in the absence of an
input through edge e this neuron v does not fire.

Assume now that at some arbitrary time point an (unsynchronized) EPSP arrives
through edge e. This EPSP triggers the inhibition module I7, which then sends
out IPSP’s that prevent neuron u from firing for a time interval of some fixed
length. Therefore at least one of the EPSP’s that arrive at neuron v from PM is not
cancelled out by IPSP’s from the inhibition module 5, and neuron v emits at least
one synchronized spike (i.e. v fires at least once, and with a proper choice of delays
only at unit times of the form 7 - 7py with ¢ € N).

A closer look shows that the mechanism of this module is in fact a bit more

14

delicate. It can in principle happen that at neuron u the beginning or the end of a
negative potential from I; coincides with an EPSP from PM in such a way that it
leads to a small shift p in some firing time of u (besides cancelling other firings of).
This could shift the time-interval of the activity of I3 by a certain amount p. One has
to make sure that this shift cannot lead to a competition at neuron v between the
negative potential from I and the EPSP from PM that results in an unsynchronized
firing of v. One can solve this technical problem by designing I; and I, so that their
output is the superposition of the output of a module I, , and of a module I>%*.
In this way one can achieve that their strongly negative output-potential (of value
< Kk both builds up and disappears at neuron v within time-intervals of length 6.
This parameter ¢ provides then an upper bound for the length p of the possible
time-shifts of these negative potentials. By choosing ¢ sufficiently small (and by
arranging the lengths and delays of these inhibitions appropriately) one can achieve
that for any arrival time of an input spike through edge e and for any EPSP from
PM the resulting inhibition from I, either cancels the corresponding firing of v, or it
lets v fire without shifting its firing time (cancelling some other firings of v instead).
For that purpose one chooses the weight w € [0, 1] on the edge from PM to v so
that the resulting function w-e? crosses ©(0) while it is in the middle of its linearly
increasing segment (see condition (3) of our basic assumptions).

The timing of this synchronization module can be specified with more precision
as soon as one selects concrete response- and threshold-functions that satisfy our
basic assumptions. However the preceding analysis shows that it will do its job in
any case. One should keep in mind that our basic assumptions are relatively weak.
For example they do not even prescribe the relationships between the sizes of the
parameters 03, 73, and 7., that denote the lengths of the non-trivial segments of
the response- and threshold-functions.

It turns out that the previously described module may output not just one, but
several (i.e. O(1)) synchronized spikes as a result of one unsynchronized input spike.
This effect causes no serious problem in our subsequent applications of this module,
but it is easier to verify a construction if this module never outputs more than
one synchronized spike for each input spike. This additional requirement can be
satisfied by adding after neuron v a device with three neurons vy, vy, v3 as indicated
in the right hand side of Figure 5. With suitably chosen delays and parameters
for its inhibition module I3, this device removes all except the first spike from any
sequence of successive synchronized spikes. It lets the first one of these spikes emerge
from neuron vs as a single synchronized output spike.

2.5 Simulation of Boolean Threshold Circuits by SNN’s

If one just wants to simulate in a straightforward manner the control of a Turing
machine on an SNN, one can reserve one neuron for each possible state of the con-
trol, and simulate state-transitions with the help of neurons that simulate boolean
AND- and OR-gates. However Horne and Hush, 1993, have pointed out that much

15

fewer neurons are needed if one simulates the control with the help of a boolean
feedforward threshold circuit with gates of unbounded fan-in (see subsection 2.8).
In addition, the ability of SNN’s to simulate threshold circuits in an efficient manner
is of substantial interest for various other reasons (see Corollary 2.4 and the lower
bound for the VC-dimension of SNN’s in Maass, 1994b). Therefore we describe here
rightaway the simulation of a threshold circuit on an SNN, rather than considering
first the simulation of the special case of a boolean circuit with gates of bounded
fan-in (which would suffice for the proof of Theorem 2.1).

A feedforward boolean threshold circuit (threshold circuit for short) consists of
a directed acyclic graph with nodes of arbitrary fan-in, that correspond to linear
threshold gates (threshold gates for short) with arbitrary weights. A threshold gate
with fan-in m computes a threshold function of the form

Lot > aiea >
{O,I}ma<:c1,...,:cm>|—>T9(;v1,...,:vm)={ ’ lz;a = o

0, otherwise
with arbitrary parameters ayg, ..., o, € R (or equivalently: ag,...,a, € Z) .

It is obvious that the common boolean operations AND, OR, NOT are special
cases of threshold functions. Therefore the common types of feedforward boolean
circuits (even with AND’s and OR’s of arbitrarily large fan-in) are special cases of
threshold circuits. Hence it is clear that every boolean function can be computed
by a threshold circuit of depth 2 (i.e. with one “hidden” layer).

There are several different possibilities for simulating a threshold circuit on an
SNN, providing subtle tradeoffs between the amount of demands imposed on the
response-functions and the number of neurons needed for the simulation. We de-
scribe here one simple construction based on our basic assumptions, and we will
indicate a variation in section 4.

Consider first a “monotone” threshold function, i.e. a threshold function 7%
with «; > 0 for all “weights” aq,...,a,. If ag < 0 then T2 always outputs “17,
and is therefore superfluous. Hence we may assume that ag > 0.

By condition (2) each EPSP-response-function ¢,, has some maximal value
€max > 0 which does not depend on u or v. We employ for the computation of 7%
on an SNN m + 1 neurons u1,...,u, and v with {u : (u,v) € E} = {u1,...,un}.
We assume that all response-functions ¢, , are EPSP’s and that the weights w,, ,

O(0
are chosen so that wy, ;- €max = @ - Jao—l Furthermore we assume that the “delays”

Ay, are chosen to be the same for ¢« = 1,...,m. Consider then some arbitrary
set S C {l,...,m}. Assume that the neurons u; with ¢ € S fire simultaneously
at some time tg, that the neurons w; with ¢ € {1,...,m} — S never fire in the

time interval [tg — 03, to + 03], and that neuron v did not fire in the time inter-

val [to + Auy v — Tend, to+ Ay). Then v fires at some point in the time interval

(to+Au, v, totAy v+os)ifand only if 3 wy, v Emax > O(0). The latter inequality
€S

16

is equivalent to > ai-%gl > 0(0), hence to)~ a; > ap. Thus we have constructed a
i€s ies

module of an SNN that computes an arbitrary monotone boolean threshold function

T=.

This module has the disadvantage that its proper functioning is only guaranteed
if all u; with 2 € S fire at a common time ty. On the other hand the firing time of v
depends not only on tg, but also on S (i.e. on its “input bits”). In general a larger
set S gives rise to a slightly earlier firing time of v (because the function ¥ does
not jump immediately from 0 to emax). Obviously these two facts together cause
problems if one wants to use compositions of the previously constructed module in
order to simulate a multi-layer monotone threshold circuit (i.e. a threshold circuit
where all gates compute monotone threshold functions). Therefore one has to use
synchronization modules between any two layers of modules in order to simulate on
an SNN a monotone threshold circuit.

We will now describe the simulation of an arbitrary threshold circuit €', where
threshold functions T2 with “weights” «; of arbitrary sign are computed by gates of
C. Tt is well-known (see Hajnal et al., 1993) that such a circuit C' can be simulated
by a monotone threshold circuit Cp,on of the same depth, provided that Ch,on receives
for each boolean input variable z; also its negation 1 —x;. Proceeding from the input
layer to the ouput layer one can then replace each threshold gate g of C' by two gates
that both compute monotone threshold functions: one of them provides the same
output as g, and the other one provides the negation of that output.

Thus in order to simulate C' on an SNN, one needs in addition to the preceding
construction a preprocessing device that computes the negation 1 — x for each input
bit € {0,1} under the here considered bit-encoding (where “z = 1”7 is encoded
by a firing of a neuron u at a certain time ¢, and “z = 0” by the non-firing of u
within a certain time interval around ¢). For that purpose one connects u to an
inhibition module whose outputs cancels out an EPSP from PM at another neuron
u' (similarly as in subsection 2.4). Then u' will fire if and only if it is not inhibited
via a firing of u, hence u’ computes “1 — 2”.

2.6 Modules for Comparisons and Multiplication of Phases with Arbi-
trary Constants

We will construct in this subsection a module for an SNN that can compare the
phase-difference ¢ of an oscillator O with some given constant « (COMPARE(> «)),
and a module that can multiply ¢ with some given constant 3 (MULTIPLY(5)).
Such modules (more precisely: modules for the operation COMPARE(> 2717) for
a certain constant ¢, as well as modules for MULTIPLY(2) and MULTIPLY(1/2))

will be needed in the next subsection in order to simulate a stack on an SNN.

Let a € [0, L/2] be some arbitrary real constant. We construct a module which
can decide whether the phase-difference ¢ € [0, L/2] between PM and some oscillator

17

O with oscillation period wpys is > . More precisely, this module for the operation
COMPARE(> «a) will send out a spike within some time-interval of some given
length 2D if and only if ¢ > a. Consider neurons wuy, uy and v with (u;,v) € F for
¢ = 1,2. Assume that u; is induced to fire at a certain time t; by a spike from the
pacemaker PM. Furthermore assume that us is induced to fire at a certain time
by a spike from the oscillator O. Finally we assume that the delays A,, , and A, ,
have been chosen so that in the case ¢ = « one has for L= t; + Ay, that there
exists some t* > max(fl, t~2) so that t* —{; = oy and t* — {5 = 5. We choose weights
Wy, » > 050 that Wy, 4+ Sup = Wy * Sdown and Wy, o - £7(01) + Wy, - £7(02) = O(0)
(see Figure 6).

. .-V E, . E -
oot ."Wul,o'g(t't1)+wu2,o'8(t'(t2+q)'a))
N
\
\ v E, . E,
6(0) \ '-wul,o-s(t-t1)+wu2,0~s(t-t2)
<P—02\ ¥
\ } E ~
\ ..Wlll,l).g(t-tl)
\
\ E >
\ .‘___,u"'kuz,[)‘ € (t-(t2+(p-a’))
o
\ E ~
O Wy E (t-1,)
f >
t* t

Figure 6: Mechanism of the module for COMPARFE(> «).

According to our general convention at the beginning of this section we actually have
to replace in the case w,,, > 1 the neuron w; by an assembly of [w,,]| neurons
with weights from [0, 1] on their edges to v. However for the sake of simplicity we
will ignore this trivial complication in the following.

We arrange that for an arbitrarily given parameter D > 0 inhibition modules
Is ., and %% (with suitable values of their parameters) are triggered by spikes
from PM to send TPSP’s to v so that v is not able to fire within the time intervals
[t*—L/2—=D, t*—L/2) and (t*+ L/2, t*+ L/2 + D] even if the firing time ¢, of
neuron us is arbitrarily shifted, but so that these inhibition modules have no effect
on the potential P, at neuron v during the time interval [¢t* — L/4, t*+ L/4].

Consider now what happens if the phase-difference ¢ of the oscillator O is not
fixed at p = a, but assumes any value in [0, L/2]. Then by choice of the parameters

18

Wy, vy Way .y and t*, and by the conditions (3) and (4) of our basic assumptions, the
sum of the EPSP’s from wu; and u; at neuron v has in any case a constant value
within the time interval [t* — L/2, t* + L/2]. Furthermore this constant value is
> 0(0) if and only if ¢ > a. Hence the neuron v will fire within the time interval
[t*—L/2, t*+ L/2] if and only if ¢ > «. Furthermore by the choice of the inhibition
modules the neuron v fires within the time interval [¢t* — L/2, t* + L/2] if and only
if it fires within the time interval [t* — D, t* + D].

We now assume that some arbitrary real number 5 > 0 is given, and we construct
a module that carries out the operation MULTIPLY (/). This module also consists
of neurons uy,uz,v with (u;,v) € F for ¢« = 1,2 so that uy is triggered to fire at
some time t; by a spike from the pacemaker PM, and u, is triggered to fire at some
time t3 by a spike from an oscillator O which has oscillation period mpy; and some
phase-difference ¢ € [0, min(L/2, L/2/3)] to PM. We want to achieve that for any
value ¢ € [0, min(L/2, L/23)] of this phase-difference the “output-neuron” v of this
module fires at a time ¢t + 3 - ¢, where ¢ does not depend on .

The construction of the module for the operation MULTIPLY (/) is slightly dif-
ferent for the two cases # > 1 and 8 € (0,1). We consider first the case § > 1.
Assume for the moment that the phase-difference ¢ € [0, L/253] between O and PM
has value 0, and choose delays A,,, so that there exists for l: = t; + Ay, some
t* > max(fl, fg) with t* — {; = 09 and t* — {3 = ;. Furthermore we choose weights
Wy, v > 0 so that

(a) Wy v &:E(t* - fl) + Wyy p - &:E(t* - fg) = 0(0) and

. Wy v " S
O) B = e
Wysw * Sup Wy v * Sdown
Since 3 > 1, the equation (b) implies that 0 < W, * Sdown < Wuyw * Sup. Hence we
have

(c) Wy - €0 (1 =t 4 2) + Wy - P (1 =12+ 2) < O(0) for all z € [—L,0).

We would like to arrange that v does not fire during the time interval
[t* — Tena, 1*), where 7,q has the property that ©(z) = ©(0) for all € [repg, ©00)
(according to condition (1)). Furthermore we would like to make sure that this prop-
erty holds even if the firing of uy is delayed by some arbitrary amount ¢ € [0, L/23].
However even if one assumes that only the considered EPSP’s from u; and u, are
influencing P,(t), this assumption only allows us to derive this fact with the help of
(c) for the interval [t* — L/2, t*), since we did not make more detailed assumptions
about the shape of the function e¥. Therefore we arrange that at a suitable time an
inhibition module [%/2#7ena sends IPSP’s to v, which make it impossible that v fires
during the time interval [t* — 7,4, t* — L/2) (no matter at what time wu; fires), but
which do not influence the potential P,(t) at times ¢ > ¢t*. Furthermore we arrange
that no other EPSP’s or IPSP’s contribute to P,(t) for t € [t* — Tepq, t*]. In this

19

way it is made impossible that v fires during the time interval [t* — 7.4, ©*) (even
if the firing of us is delayed by some ¢ € [0, L/2/]). Therefore in the case ¢ = 0 our
assumption (a) implies that neuron v will fire at time ¢*.

We now consider what will change if the firing of uy at time ¢ is replaced by a
slightly later firing at time ¢, + o, whereas the firing time of u; and of the inhibition
module remain unchanged. We will show that for any ¢ € (0, L/2/] this delay will
cause a somewhat delayed firing of v (see Figure 7). Consider the time point ¢,

\4

Figure 7: Multiplication of a phase ¢ with 3 > 1 (i.e. t,—1t*= [¢).
which is defined by the equation
(d) wue Pty =) Fwie Pt — (2 +) = 0(0).

By equation (a) and the conditions (3) and (4) of our basic assumptions we have for
t, —t* € [-L, L] that

(e) Wy €8ty —11) = Way e 81 —11) — Wuy v+ Sdown * (tp — %),
and for ¢,t, with t, —t* — ¢ € [=L, L] we have that
(f) Wyy - €7 (L — (T2 +9)) = Wy 21 = 19) + Wy v Sup - (Lo — 1 —).

These two equations in conjunction with (a), (b), and (d) imply that

It is obvious that for ¢ € [0,L/253] one has that 8 -¢, -9 —¢ € [-L,L].
Furthermore it is clear from our construction that v cannot fire during the time
interval [t* — Tepa, t*+ - @). Therefore t, := t* + 3 - ¢ is in fact the firing time
of v if uy fires at time ¢; + . Hence the described module carries out the operation

MULTIPLY(f) in case that 5 > 1.

In order to carry out the operation MULTIPLY (/) for some arbitrarily given
B € (0,1) we just change the delay A, , in the previously described module so that
t* —t; = oy (instead of t* — t; = 0,), see Figure 8. We choose weights w,,, > 0 so

that (a) holds and

w
@) b = g Twa

v

Figure 8: Multiplication of a phase ¢ with § € (0,1).

As before, we consider the time point ¢, that is defined by (d). Then equation
(f) holds, but instead of (e) we have

Wy €5ty —11) = Wyy 71 —11) F Wy Sup - (to — 7).
The latter two equations in conjunction with (a), (d) and (g) imply that
t,—t"= 0.

Hence the described module carries out the operation MULTIPLY () for an arbi-
trarily given g € (0,1).

21

2.7 Simulation of a Stack with Unlimited Capacity by an SNN of Fixed
Size

The simulation of a stack (also called pushdown store, of first in - last out list) is the
most delicate part of the construction of Nra(d), since it requires the construction
of a module in which the lengths ¢ of the bit-strings (b1, ..., bs) that are stored and
manipulated are in general much larger than the number of neurons in this module
(in fact: ¢ can be arbitrarily large). Of course Nra(d) needs to have a component
with this property, since otherwise the SNN N7ar(d) (which will consist of a fized
finite number of neurons) cannot simulate the computations of Turing machines that
involve tape-inscriptions of arbitrary finite length. The content (by,...,b,) € {0,1}*
of a stack S (where by is the symbol on top of the stack) will be stored in the form
of the phase-difference

l
oo =Y b2
i=1

of a special oscillator Og. More precisely, we assume that Og fires with the same
oscillation period 7py as the pacemaker PM, but with a delay ¢g. The parame-
ter ¢ € R" is some arbitrary constant which is sufficiently large so that 27¢ <
min(L/2, wpyp).

We will now describe the mechanisms for simulating the stack operations POP
and PUSH on a bit string (b1,...,b,) that is stored in ps.

The stack operation POP determines the value of the top-bit by, and then re-
places the stack content (by,...,b;) by (bs,...,bs). In an SNN one can determine the
value of b; from g by testing whether g > 271=¢. For that purpose one employs
a module that carries out the operation COMPARE(> 2717¢) (see the preceding
subsection).

/ . £—1 .
In order to change the phase-difference g from 3~ 6;-27"7¢ to > b;y1-27°7° one

first replaces pg by Z b; - 27'=¢. This can be carried out by directing in the case

by = 1 an EPSP from OS through a suitable delay module, by halting simultaneously
the oscillation of Og with the help of an inhibition module, and by restarting the
oscillation of Og with an EPSP from the considered delay module. Note that we can
employ at this point a simple delay module as described in subsection 2.2, because
in the case by = 1 the length of the desired shift of the phase-difference does not
depend on its current value.

It remains to carry out a SHIFT LEFT operation, which replaces the phase-
difference Z by - 277 ¢ by 2 - Z by - 277 Z biy1 - 277, This operation cannot

be 1mplemented by a delay- module since it has to shift the phase-difference by an
amount that depends on the values of ¢ and b, ..., b,. Instead, we have to employ
a module that carries out the operation MULTIPLY(2) (see subsection 2.6).

22

In order to simulate the stack operation PUSH one has to replace for a given
£ .
bo € {0,1} the current phase-difference pg = 3. b; - 27°7¢ of the oscillator Og by
=1

41 ,
Z b;_1 - 27'7¢. Our simulation of PUSH consists of two separate parts: a SHIFT-

RIGHT operation that changes the current phase difference to Z bi_q -2 and
=2

a subsequent ADD(v) operation that adds v := by - 27'7° to thls phase-difference.
Obviously ADD(~) can be implemented in an analogous way as the subtraction of
by - 2717¢ from g in the previously described simulation of POP.

Thus it just remams to simulate a SHIFT-RIGHT operatlon i.e. to replace the
phase difference g5 = E b; - 2717¢ of size < L/2 by ¢s/2 = Z bi_1 - 27", For that

purpose we employ a module for the operation MULTIPLY(I/Q), as constructed in
the preceding subsection.

2.8 Simulation of an Arbitrary Fixed Turing Machine by an SNN

We will show in this subsection that the previously constructed modules suffice
to construct for any given Turing machine M an SNN ANjs (whose structure may
depend on M) that can simulate M in real-time. According to the notion of a
real-time computation (see section 1) we assume that the given Turing machine M
processes a sequence ((z(7),y(7)))jen with z(7),y(j) € {0,1}* in real-time. We
assume that the inputs z(7) are presented to M on a read-only input tape, and the
outputs y(j) are written by M on some write-only output tape. We will assume that
the simulating SNN A} receives each input z(j) € {0,1}* in the form of a time

difference ¢ between two input-spikes, with ¢ = Z by - 27¢ for x(3) = (by,. .., by).

We will arrange that Ay delivers its outputs y(]) in the same form (as a time
difference between two output spikes).

It is easy to see that any Turing machine M, with any finite number d of two-
way infinite read/write-tapes, can be simulated in real-time by a similar machine
which has 2d stacks, but no tapes (see e.g. Hopcroft and Ullman, 1979). We will
call the latter type of machine also a Turing machine. In this simulation one uses
two stacks for the simulation of each tape: one stack for simulating the part of the
tape that lies to the left of the current position of the tape-head, and another stack
for simulating the part of tape to the right of the tape-head.

In principle it would suffice to consider a Turing machine with 1 tape (respec-
tively 2 stacks), since this type of Turing machine can simulate any other Turing
machine (although not in real time). However it is known that various concrete
problems (especially several pattern-matching problems) can be solved faster on a
Turing machine that has more than one tape (see e.g. Hopcroft and Ullman, 1979,
Maass, 1985, and Maass, Schnitger, Szemeredi, 1987). Therefore, and because it
does not cause any extra work, we simulate rightaway an arbitrary Turing machine

23

M with any number k of stacks by an SNN N3,.

At any computation step the Turing machine M may POP or PUSH a symbol
on each of its k stacks. We assume for simplicity that the stack-alphabet of M is
binary (i.e. M can push 0 or 1 on each stack, and pop a binary symbol, or receive
the signal “bottom-of-stack” if the stack is empty.) Furthermore we assume that
the input for the computation of M is given as the initial content of the first one of
the k stacks, and that the output of M consists of the final content of the last one
of the k stacks (at the moment when the machine halts).

If) is the (finite) set of states of M, then the transition function of M can be
encoded by a function Fy; : {0,1}1el@lI+k _, £o 11 MoglQl++ We assume here that
the state of M indicates on which of the stacks a POP or PUSH has to be carried
out.

Thus in order to simulate the finite control of M by an SNN, it suffices to em-
ploy a module that can compute an arbitrary given function from {0,1}Megl@l+k
into itself. We assume here that the [log|Q|] + k input- and output-bits of this
functions are stored in a corresponding number of oscillators with two states (dor-
mant /oscillating). According to Lupanov, 1973, one can compute any function F' :
{0,1}Mesl@lI+E £ 11 1eel@II+F o a feedforward threshold circuit with O(|Q['/? -
2F/2) gates. In addition, Horne and Hush, 1993 have shown that any such function F
can be computed by a threshold circuit of depth 4 with O(|Q[*/?-2%/2 . (log |Q| + k))
gates, using only weights and thresholds from {—1,0,1}. Hence our previously de-
scribed simulation of an arbitrary threshold circuit on an SNN in subsection 2.5
allows us to simulate in A3 the finite control of M with a module of O(|Q|"/?-2%/?)
neurons (provided the SNN may use arbitrarily large weights). Furthermore the
quoted result by Horne and Hush in conjunction with our construction in subsec-
tion 2.5 implies that with O(|Q['/?-2%/? . (log|Q| + k)) neurons one can implement
in Vs the finite control of M in such a way that only very simple weights from [0, 1]
are needed in Ny, and that the simulation of each computation step of M requires
only O(1) “machine-cycles” of M. More precisely, each computation step of M is
simulated by Ay in a time interval in which the pace-maker PM fires < K times,
where K is some absolute constant that is independent of |@)|, k, the length of the
current input of M, and the number of the previously simulated computation steps

of M.

Apart from the finite control component, the SNN A}, consists of a module
of O(1) neurons for each of the k stacks, and O(1) neurons which implement the
pacemaker PM. In addition Nys uses O(log |@Q] + k) neurons for other oscillators
that serve as temporary registers for bits. Thus Ny consists altogether of at most
O(|Q|"* - 2%/? . (log |Q| + k)) neurons, and the simulation of any computation step
of M involves at most O(|Q[*/?-2*/% . (log |Q| + k)) firings of neurons in Nas. After
N has simulated every computation step of M on the current input z(j) € {0,1}*,
it has generated on an oscillator Og, which corresponds to the stack S on which

24

~ ~ . ,
M writes its output y(j) = (b1,...,b;), a phase-difference g = Y b; - 27°7¢ with
=1

regard to the pacemaker PM. Aj; outputs two spikes, where one is generated by
PM and the other one by Og, before receiving its next input. Since for fixed M the
parameters |@Q| and k can be viewed as constants, Ny just uses O(1) spikes for the
simulation of each computation step of M. Hence Njs simulates M in real-time.

2.9 Weight-to-Phase Transformation

At this point the only missing link for the construction of the desired SNN N7p(d) is
a module which allows us to generate from suitable weights of an SNN the encoding
of arbitrarily long (even infinitely long) bit strings, which may for example represent
the program of a Turing machine, or an infinitely long “look-up table”. The here
constructed weight-to-phase transformation module will be able to generate within

‘ :
a fixed number of “machine cycles” any given phase-difference ¢ = >~ b;-27"7° of an

oscillator (for arbitrary ¢ € NU{oo} and b; € {0,1}) from suitablezwleights between
0 and 1. Furthermore these weights can be chosen to be rational if £ € N. This
module will exploit effects of the firing mechanism of a neuron in an SNN that are
closely related to those that we had used in subsection 2.6 in order to multiply the
phase of an oscillator with a constant factor. In order to allow a unique decoding of
infinitely long bit sequences from phase-differences ¢ we adapt the convention that
by; = 0 for all 72 € N in case that £/ = oo.

We consider the same configuration with neurons wui,us,v and an inhibition
module as for MULTIPLY (/) in subsection 2.6. However instead of shifting the
firing time of u,, we are now interested in the consequences of multiplying the
weight on the edge from u; to v with some factor w € [0,1] (see Figure 9). We

0(0) + B0 -w, £ -5)

E
Wy, v" € (o) L........0 \

/
!
v

t*t, t

Figure 9: Mechanism of the weight-to-phase transformation module.

25

choose values for the delays A, , so that for t = t; + Ay, v there exists some
t* > max(fl, 7?2) with t* — #; = 5 and t* — t, = ¢y. Furthermore we choose positive
weights w,, , so that w., , * Sup = 2Wy, » * Sdown and

Wy v * €E(t* — {1) + Wayyw * €E(t* — {2) = @(0) .

In order to analyze the consequences of multiplying the weight w,, , with some
w € [0, 1], we consider for arbitrary w € [0, 1] the point ¢,, > t* which satisfies

W Wy - gE(tw — fl) + Wy - &:E(tw —t) = 06(0) .

Together with the preceding equations and conditions (3) and (4) from our basic
assumptions on e this yields

(w - 1) Wy vt EE(t* - {1) — W Wyy v Sdown * (tw - t*) + Z'wul,v * Sdown * (tw - t*) = 07
or equivalently

(1 —w) - wy, - EE(O'2) _ (1 —w)- €E(02) .

ty — t* : .
(2 - w) * Wy v+ Sdown (2 - LU) * Sdown

Then analogous arguments as in subsection 2.6 show that if w € (0, 1] is chosen so
that the right hand side of this equation has a value in [0, L /2], then the value for ¢,
which results from this equation is in fact the uniquely determined firing time of v
in [t*, t* 4+ L/2] if the weight on the edge (uy,v) is multiplied with w. In particular
the value t,, — t* = L/2 of the shift in the firing time of v is achieved for

EE(O-2) - L- Sdown

EE(JQ) —L- Sdoum/2 .

Thus wy, € [0,1), and the function w — t,, — t* maps [wr, 1] one-one onto [0, L/2].

wy, ¢ =

The inverse of this map is defined by

EE(O'Q) — Z(tw — t*) * Sdown
E(J2) - (tw - t*) * Sdown .

ty —t* —w
€

One can derive from the basic assumptions on © and ¢ that w,, , € Q. Hence the
preceding formula in combination with these basic assumptions implies that one can
achieve any rational phase-shift ¢,, — t* € [0, L /2] with a rational weight w - w,, , on
the edge (uq,v).

Finally, by our choice of ¢ one has Z b; - 27'=¢ € [0, L/2] for any values of

¢ € NU{oc} and b; € {0,1}. Hence in a preprocessing phase of an SNN any
given finite or infinite bit-sequence (b, by,...) can be “loaded” (with only O(1)
spikes involved) from the value of a certain weight of the SNN into the form of

£ .
a phase-difference g = Zlbi - 27'¢ of an oscillator Og. For that purpose one
1=

26

has to arrange that the considered firings of neurons u; and wuy (as well as of the
involved inhibition module, see the corresponding construction in subsection 2.6)
are triggered by EPSP’s from the pacemaker PM. Thus we have shown that the
weights of an SNN can essentially play the role of a “read-only memory” of unlimited
capacity.

2.10 Construction of N7y (d)

In this last part of the proof of Theorem 2.1 we construct an SNN Nrj(d) which
has those properties that are claimed in Theorem 2.1. Let d € N be any given
constant. Let My be a “universal Turing machine” with d + 1 tapes that can
simulate any Turing machine with d tapes in real-time. More precisely, My is a
Turing machine which receives two finite binary strings * and e on two different
tapes as input, and which simulates for any e¢ € {0, 1}* the d-tape Turing machine
with program (or “Gddel number”) e in real-time on input z. The construction
of such universal Turing machines My, is a standard part of the proof of the time-
hierarchy theorem for Turing machines (see e.g. Hopcroft and Ullman, 1979). The
desired SNN N7pp(d) will basically be that SNN which one gets by applying the
construction from subsection 2.8 to the Turing machine M := M, but with 2d + 2
stacks instead of the d + 1 tapes.

The only additional work that remains to be done in order to satisty the claim
of Theorem 2.1 is to change the way in which N}y, receives its input. Ordinarily
N, would expect to get its second input e = (eq,...,e;) € {0,1}* in the same
way as its first input € {0, 1}*, in the form of two input spikes with time-distance

£ .
> 270 C
=1

In contrast to that, the constructed SNN N7ps(d) only receives a single input
in the form of a time-difference between two input spikes. On the other hand its
weights may depend on the simulated Turing machine M. Thus we may choose a
rational weight w € [0, 1] that can be transformed with the help of the module from

£ .
subsection 2.9 into a phase-difference t,, — t* = >~ e; - 27*7¢. This transformation
=1

can be carried out in a preprocessing phase within O(1) firings of PM. After that,
the computation of Nras(d) proceeds exactly like that of Nay,.

In order to prove the second part of the claim of Theorem 2.1, one exploits the
obvious fact that any function F': {0,1}* — {0,1}* can be computed by a Turing
machine My with infinitely many bits of “advice”, i.e. by a Turing machine Mg
which has at the beginning of each computation on one of its tapes the same infinite
sequence (¢€;);eN of bits ¢; € {0, 1} as initial tape inscription. This sequence (e;);en
may for example encode a look-up-table for all pairs (z, F(x)), z € {0,1}*. We
may assume that (e;);en also encodes the program of the Turing machine My, and
that Mp altogether has only 2 tapes. As usual, the Turing machine Mg receives
on another tape the input @ € {0,1}*. In order to simulate this Turing machine

27

Mp on the SNN N7ar(d), we just have to equip Nrar(d) with a suitable real weight
w € [0,1], that can be transformed (as described in section 2.9) in a preprocessing

phase within O(1) firings of PM into the phase-difference t,, — t* = %O: ¢; - 27He
=1

of an oscillator. After that, N7y (d) will simulate the computation of the Turing
machine Mg (with initial tape content (e;);en on one of its tapes) in the usual
manner. Thus Nra(d) will output F(z) for any given input z € {0,1}*. Hence
Nrar(d) can compute the (arbitrarily given) function F' : {0,1}* — {0,1}*. This
concludes the proof of Theorem 2.1. |

An immediate consequence of Theorem 2.1 is the following lower bound for the
VC-dimension of certain SNN’s (see for example Maass, 1995, for definitions and a
brief survey of results on the VC-dimension of neural nets).

Corollary 2.2 One can construct with any type of neurons whose response-
and threshold-functions satisfy our basic assumptions an SNN N of finite size, so
that the VC-dimension of the class of boolean functions that are computable on N
(with different assignments of rational values from [0, 1] to its weights) is infinite.

A proot of the following result is contained as a special case in the proof of
Theorem 2.1 (see especially subsection 2.8).

Corollary 2.3 Any deterministic finite automaton with g states can be simu-
lated in real-time (both for decision problems, or with intermediate output as a Mealy-
or Moore-machine) by an SNN with O(q'/?) neurons (respectively with O(¢*/*-log q)
neurons if only weights from [0, 1] are permitted).

The following corollary exhibits another result of independent interest that was
shown in the preceding proof (subsection 2.5).

Corollary 2.4 One can construct with any type of neurons whose response- and
threshold-functions satisfy our basic assumption for any given feedforward boolean
threshold circuit C' with arbitrary weights, s gates and d hidden layers an SNN S¢
with O(s) neurons that simulates any computation of C within a time interval of
length O(d). Furthermore one can also simulate C' within time O(d) by an SNN S,
with polynomial(s) neurons that only uses weights w € [0, 1].

Finally we observe that an application of the techniques from the proof of The-
orem 2.1 to SNN’s with discrete time (see the definitions in section 1) yields the
following result.

Corollary 2.5 One can construct for any Turing machine M with any type
of neurons whose response- and threshold functions satisfy our basic assumptions
an SNN Ny so that for any s € N the SNN Ny with discrete firing times from
{i-p:1€ N} for some p with 1/p = 2°t°0) ¢ N and Amay — Amin > 2 can

28

simulate in real-time arbitrary computations of M that involve at most s tape cells

of M.

For the proof of Corollary 2.5 one exploits that because of the condition Ap.x —
Amin = 2p the same construction as in subsection 2.2 yields modules that achieve
any given real-valued (!) delay > Amin. With the help of such delay modules one
can then arrange that the time points ¢* in the subsequent constructions of other
modules, as well as the time points when the EPSP’s reach their maximal value epax
(for the simulation of a threshold circuit), all belong to the set {¢-p : ¢ € N}. For
the simulation of a stack of a Turing machine M the construction from the proof of
Theorem 2.1 works without changes for SNN’s with discrete time steps of length g,
provided that 27%=¢ € {i - u : i € N} for the maximal length ¢ of any bit-string that
is stored in a stack of M. |

3 Beyond Turing Machines

We have shown in Theorem 2.1 that one can build from arbitrary neurons, whose
response- and threshold-functions satisfy certain basic assumptions, an SNN that
can simulate any Turing machine. However SNN’s are strictly more powerful than
Turing machines for two reasons:

i) An SNN can receive real numbers as input, and give real numbers as output
(in the form of time-differences between pairs of spikes).

ii) We had constructed in subsection 2.6 modules for an SNN that can carry
out the operations COMPARE (> «) and MULTIPLY(3), for a wide range
of constants « and 3, applied to arbitrary real-valued arguments ¢ from a
certain interval. If one applies for example such operation to a phase of the

£ .
form ¢ = 3" b;-27%7¢, then such module executes with O(1) spikes an operation
=1

that involves the whole bit-string (b1, ...) of arbitrary length £ € NU {oc}. In
contrast to that, any Turing machine operation can affect at best a constant
number of its stored bits.

In this section we will show that in addition one can construct modules for an
SNN that ADD, SUBTRACT, or COMPARE any two real valued phase-differences
1,2 € [0, L/4] of two different oscillators. This result turns out to be quite impor-
tant, since in combination with i) and ii) it implies that one can simulate in real-time
on an SNN any RAM with finitely many registers that stores in its registers arbitrary
real numbers of bounded absolute value, and which uses arbitrary instructions of the
form COMPARE, MULTIPLY(3), ADD, SUBTRACT. Furthermore such SNN can
be built with any type of neurons whose response- and threshold-functions satisfy
the basic assumptions from the beginning of section 2.

29

On the other hand according to Maass, 1994b, 1994c, any SNN with arbitrary
piecewise linear response- and threshold-functions can be simulated in real-time by
the same type of RAM. Hence, the computational power of these RAM’s (which we
will call N-RAM’s because of their close relationships to neural networks) matches
exactly that of SNN’s whose response- and threshold-functions are piecewise linear
and satisfy our basic assumptions.

One can also show through mutual real-time simulations (see Maass, 1994b,
1994c; and a somewhat related result in Koiran, 1993) that the computational
power of N-RAM’s (and hence of the abovementioned SNN’s) matches exactly that
of recurrent analog neural nets with discrete time and piecewise linear activation
functions (see Siegelmann and Sontag, 1992). More precisely: any analog neural net
with any piecewise linear activation functions can be simulated in real-time by an
N-RAM; for the simulation of N-RAM’s by analog neural nets one can employ for
example the linear saturated activation function together with the heaviside activa-
tion function in the analog neural net. This result implies as a side-result that these
two activation functions together are “universal” for all piecewise linear activation
functions in recurrent analog neural nets (since they allow such net to simulate in
real-time any other recurrent analog neural net with arbitrary piecewise linear acti-
vation functions). Hence N-RAM’s provide also a very useful intermediate link for
the comparison of SNN’s (modeling spike coding) and analog neural nets (modeling
frequency coding).

We defer the detailed discussion of N-RAM’s (which are closely related to the
computational model considered in Koiran, 1993) and the proofs of the abovemen-
tioned results to a subsequent article (Maass, 1994c). However we will describe in
this section the construction of SNN-modules for the operations ADD, SUBTRACT,
and COMPARE, since those constructions are closely related to the preceding con-
structions in this article. These constructions provide the tools for the real-time

simulation of N-RAM’s by SNN’s.

Consider two oscillators 07 and O, of an SNN, both with oscillation-period 7py.
Let ¢; be the phase-difference between O; and the pacemaker PM, : = 1,2. We
construct a module that receives a spike from each of the oscillators Oy and O, and
which is then able to kick-off a third oscillator O with oscillation period #py; in such
a way that it will have phase-difference 1+, to PM. This module for the operation
ADD employs a similar arrangement of three neurons uy, u; and v as the modules for
COMPARE(> a) and MULTIPLY (/) that were constructed in subsection 2.6. We
assume that neuron wu; is triggered by a spike from oscillator O; to fire at a certain
time t;. We choose delays A, , in such a way that for ti=1t; + Ay, there exists
some t* > max(f1,1;) so that t* —#; = t* — {3 = 0y in case that ¢; = @, = 0. We
choose w > 0 so that 2w-ef (o) = ©(0), and we set w,, , = w,,, = w. We also add
an inhibition-module, which makes it impossible for v to fire within the time-interval
[t* — Tend, t* — L/2) for any values of ¢1, 2, and which has no influence on P,(t)
for ¢ > t* (as in the construction for MULTIPLY (/) in subsection 2.6).

30

Then for arbitrary values ¢1,p2 € [0,L/2] the neuron v fires at a time ty €
[0, L/2] such that

WSy (s — (" + 1)) Fw- sy (b — (T +¢2)) = 0,

or equivalently
Y1+ P2
2

(see Figure 10). The factor 1/2 of ¢ + @3 can be removed with the help of a

ly —t* =

sum of both /
functions %

0(0) / ../

Cwe g (o, - (o))

W'SE(Gl)- W.8(01+t_(t*+(p2))

4 4 4 |

v

(t*+o) ty (t*+o) t*+L2 t

Figure 10: Mechanism of the module for ADD.

subsequent module for MULTIPLY (2) (see subsection 2.6). In this way the here
constructed module for ADD can generate an output-spike at time - wpp+ (1 + 92)
for some 7 € N.

The construction of a module that computes the difference o1 — @5 of the phase-
differences @1, py of two modules O; and Oy with ¢; > @3 is quite similar. For
arbitrary given values ¢1,p2 € [0,L/2] with ¢; > @y we first employ a module
MULTIPLY(1/2) which replaces ¢; by @1 := ¢1/2. For an arrangement of neurons
uy, ug,v similarly as for ADD we choose delays A, , so that ¢* — {; = oy and
t* — 1y = 0y in case that ¢ = ¢, = 0, and weights Wy py Wy, SO that wy, 4, - sy, =
QWay v * Sdown aNd Wy, 4 - £X(01) + Wy, . - eP(03) = O(0). Furthermore we employ an
inhibition module which makes it for any values of ¢,y € [0, L/2] impossible for
neuron v to fire within the time-interval [t* — 7.4, ¢* — L/2], but which has no
influence on P,(t) for ¢ > t*.

31

Then for any phase-differences ¢, @3 € [0, L/2] with ;1 > 5 the phase-difference
1 is first transformed to ¢ = /2. Neuron u; receives a spike with phase-difference
@1, and uy receives a spike with phase difference ¢,5. The resulting firing time tA of
neuron v is determined by (see Figure 11)

sum of both.
functions A~
B(0) - v v :

NG RA N GETD)

ul,\)

E
Wul,\) . £ (51) e

E
Wuz,o‘S(GZ) 4.

E
NS CERRGETS)

f f
(t*+9,) (t*+ o) Iz g

Figure 11: Mechanism of the module for SUBTRACT.

Wyy v * Sup * (tA - (t* + 951)) — Wy v * Sdown * (tA - (t* + 992)) = 0.

This yields
a—1" = 201 -9y = p1—¢2 .

Finally, it is easy to see that the module for COMPARE(> «a) from subsection
2.6 in combination with the preceding module for SUBTRACT allows us to build
a module for the test COMPARE, i.e. a module which decides for any two given
phase-differences @1,y € [0, L/4] of two oscillators O; and O, with oscillation-
period wpy whether ¢ > 5. For that purpose one first transforms p; with the
help of a delay module to ¢} := ¢y + L/4. It is then clear that ¢} > ¢, and the
module for SUBTRACT can be employed to compute ¢} — @2 = p1 — @2 + L/4.
With the help of a subsequent module for COMPARE(> L/4) we can then decide
whether @1 — g + L/4 > L/4, i.e. whether ¢1 > .

Of course one can also build directly a module for COMPARE by using a vari-
ation of the construction for COMPARE(> «) in subsection 2.6.

32

4 Variations of the Constructions for Related
Models of Spiking Neurons

We have assumed for the constructions in the preceding two sections that the
response- and threshold-functions are stereotyped, i.e. that apart from their in-
dividual delays A,, the functions ¢,, and O, all have the sampe shape. This
assumption is convenient, but not really necessary for the preceding constructions.
The same constructions can also be carried out if these functions are different for
different edges (u,v) € E and different v € V. More precisely, it suffices to assume
that the response-functions ¢, , are defined with the help of individual delays A, ,
and individual functions Eﬁv respectively &:{w, so that e, ,(z) = 0 for z € [0,A,,]
E I

and &,,(Auy +) = &y, (), respectively €,,(Ay, + 2) = €,,(z) in the case of

an [PSP, where the functions Efw,efw, 0, satisfy the basic assumptions from the
E I

beginning of section 2. However these functions ¢y, ¢, ,, and ©, may be arbitrar-
ily different, with different values of the parameters 7,..¢, Tena, 05, 75 L, Sups Sdown, for
different neurons u,v (in fact one may assume that these functions are chosen by
an “adversary”). Under these relaxed conditions we have to assume however that

we can choose arbitrarily large delays A,, and weights w,, after the individual

functions Eiv, sfw and 0O, are given to us. Of course one can trade-off parts of the
latter condition against some quite reasonable conditions on the individual functions
_E I e

Epvs €y aNd O

One can also replace the basic assumptions at the beginning of section 2 by some
alternative assumptions about 551» efw, and ©,. For example one can postulate the
existence of suitable linear segments of efw or ©,, and then exploit at the neuron v
in the module-constructions of sections 2 and 3 a “timing-race” between an EPSP
and an IPSP, or between an EPSP and the declining part of ©, (instead of the race
between two EPSP’s). Without a “reset” at each firing of neuron v (see below) one
needs however for the latter option (EPSP’s versus ©,) more specific assumptions
about these functions, in order to control undesired side-effects that may result from

the end-segments of EPSP’s that caused the preceding firing of v.

We also would like to point out that the full power of the module COMPARE(>
a) from subsection 2.6 is actually not needed if one just wants to simulate Turing
machines on an SNN. If one employs a less concise encoding of bit-strings by as-
suming that also by; = 0 for all ¢ < £/2 for all finite bit-strings (b1, ..., bs) that are
encoded in the phase-difference ¢ = f: b; - 27'7° of an oscillator, it is guaranteed

=1

that p > 2717 or ¢ < 2727¢ (independently of ¢ and of the values of the b; € {0,1}).
This “gap” of fixed length between the possible values of ¢ allows us to carry out
the test whether by = 1 just with the help of delay- and inhibition-modules (instead
of using the more subtle mechanism of COMPARE(>«)). But the module for
COMPARE(> «) is of independent interest, since it shows in the context of section
3 that also discontinuous real-valued functions can be computed on an SNN.

33

The implicit assumptions about the firing mechanism of neurons in the version
of the SNN-model from section 1 ignore the well-known “reset” and “adaptation”
phenomena of neurons. However one can easily adjust the definition of the SNN-
model so that it also takes these features into account. In order to model a reset
of a neuron at its moment of firing, one can adjust the definition of the set F, of
firing times of a neuron v by deleting (or modifying) in the definition of P,(¢) those
EPSP’s and TPSP’s from presynaptic neurons u that had already arrived at v before
the most recent firing of v.

Adaption of a neuron v refers to the observation that the firing-rate of a biological
neuron may decline after a while even if the incoming excitation (i.e. P,(t)) remains
at a constant high level), see for example Kandel et al., 1991. This effect can be
reflected in the SNN-model by replacing the term ©,(t — s) in the definition of the
set F, of firing times by a sum over ©,(t — s) for several recent firing times s € F,
(and by assuming that ©,(z) returns only relatively slowly to its initial value ©(0)).

We would like to point out that all of our constructions in sections 2 and 3 are
compatible with our abovementioned changes in the SNN-model for modelling the
reset and adaptation of neurons. The reason for this is that we can arrange in the
constructions of sections 2 and 3 that all “relevant” firings of a neuron v are spaced
so far apart that reset and adaption of v have no effect on those critical firing times.

Regarding the simulation of threshold circuits by SNN’s (see subsection 2.5)
we would like to point out that the corresponding SNN-module can be constructed
with fewer neurons if one makes further assumptions about the shape of EPSP- and
IPSP-response-functions. For example one can simulate directly a threshold gate 7%
with weights «; of different sign in a similar way as we have simulated monotone
threshold gates 7% in subsection 2.5, provided that the EPSP’s (modelling inputs
with positive weights) and IPSP’s (modelling inputs with negative weights) move
linearly within the same time-span from 0 to their extremal values.

Finally, we would like to point out that the class of piecewise constant functions
(i.e. the class of step-functions) provides an example for a class of response- and
threshold-functions which do not satisfy our basic assumptions from section 2, but
which can still be used to build for any Turing machine M an SNN A} that can
simulate M (although not in real-time). We assume here that the response-functions
are piecewise constant (but not identically zero), and that the threshold-functions
are arbitrary functions (e.g. piecewise constant) that satisfy condition (1) of our
basic assumptions. One can then build oscillators, as well as delay-, inhibition-,
and synchronization-modules, in the same way as in section 2, and one can also
simulate arbitrary threshold circuits in the same way. Furthermore one can use the
phase-difference between an oscillator O with the same oscillation period mpy as
the pacemaker PM in order to simulate a counter. For that purpose one employs
a delay module D with a suitable delay p > 0 (so that k- p = £ - wpy for any
k,¢ € N implies that £ = £ = 0). One can then use the phase-difference between
O and PM to record how often the “spike in O” has been directed in the course of

34

the computation through this delay module D. Hence one can store in the SNN an
arbitrary natural number &k, which can be incremented and decremented by suitable
modules. In order to decide whether & = 0, one needs a module that can carry out a
special case of the operation COMPARE. Such module cannot be built in the same
way as in sections 2 respectively 3, but one can employ directly the “jump” in the
here considered piecewise constant response- functions in order to test whether two
neurons fire exactly at the same time.

It is well-known (see Hopcroft and Ullman, 1979) that any Turing machine M
can be simulated (although not in real-time) by a machine M’ that has no tapes or
stacks, but two counters. The preceding argument shows that such M’ (in fact: a
machine with any finite number of counters) can be simulated in real-time by some
finite SNN Ny with piecewise constant response- and threshold-functions.

5 Conclusion

We have analyzed the computational power of a simple formal model SNN for net-
works of spiking neurons. In particular we have shown that if the response- and
threshold-functions of the SNN satisfy some rather weak basic assumptions (see sec-
tion 2), then SNN’s of finite size can simulate arbitrary Turing machines in real-time.
The same construction techniques yield a lower bound for the computational power
of SNN’s with limited timing precision (Corollary 2.5), and for SNN’s with real val-
ued inputs (section 3). On the side we would like to mention that these results also
yield lower bounds for the VC-dimension of networks of spiking neurons, hence for
the number of training examples needed for learning by such networks (see Maass,
1994b). One immediate consequence of this type is indicated in Corollary 2.2 of this
article.

The results of this article have two interesting consequences. One is, that in or-
der to show that a network of spiking neurons can carry out some specific task (e.g.
in pattern recognition or pattern segmentation, or solving some binding problem; see
e.g. Malsburg and Schneider, 1986, or Gerstner et al., 1992) it now suffices to show
that a threshold circuit, a finite automaton, a Turing machine or an N-RAM (see
section 3) can carry out that task in an efficient manner. Furthermore the simulation
results of this article allow us to relate the computational resources that are needed
on the latter more convenient models (e.g. the required work space on a Turing
machine) to the required resources needed by the SNN (e.g. the timing precision of
the SNN, see Corollary 2.5). In other words, one may view N-RAM’s and the other
mentioned common computational models as “higher programming languages” for
the construction of networks of spiking neurons. The real-time simulation methods
of this article exhibit automatic methods for translating any program that is written
in such higher programming language into the construction of a corresponding SNN.
In this way the “user” of an SNN may choose to ignore all worrisome implementation
details on SNN’s such as timing (potentially at the cost of some efficiency). Fur-

35

thermore the matching upper bound result for N-RAM’s (see Maass 1994b, 1994c¢)
shows that the corresponding “higher programming language” is able to exploit all
computational abilities of SNN’s.

Secondly, in combination with the corresponding upper bound results for SNN’s
with quite arbitrary response- and threshold-functions (and time-dependent weights)
in Maass, 1994b, 1994c¢, the lower bounds of this article provide for a large class of
response- and threshold-functions exact characterizations (up to real-time simula-
tions) of the computational power of SNN’s with real valued inputs, and for SNN’s
with bounded timing precision. As a consequence of these results, one can then
also relate the computational power of SNN’s to that of recurrent analog neural
nets with various activation functions (see section 3), thereby throwing some light
on the relationships between the computational power of models of neurons with
spike-coding (SNN’s) and models of neurons with frequency-coding (analog neural
nets). Furthermore the combination of these lower and upper bound results shows
that extremely simple response- and threshold-functions (such as for example those
in Figure 2 in section 2) are universal in the sense that with these functions an SNN
can simulate in real-time any SNN that employs arbitrary piecewise linear response-
and threshold-functions. Equivalence-results of this type induce some structure in
the “zoo” of response- and threshold-functions that are mathematically interesting
or occur in biological neural systems, and they allow us to focus on those aspects of
these functions which are essential for the computational power of spiking neurons.

Finally we would like to point out that since we have based all of our inves-
tigations on the rather fine notion of a real-time simulation (see section 1), our
results provide information not just about the relationships between the computa-
tional power of the previously mentioned models for neural networks, but also about
their capability to execute learning algorithms (i.e. about their adaptive qualities).

Acknowledgement
I would like to thank Wulfram Gerstner and John G. Taylor for helpful discussions.

References

M. Abeles. (1991) Corticonics: Neural Circuits of the Cerebral Cortex. Cam-
bridge University Press.

A. Aertsen. ed. (1993) Brain Theory: Spatio-Temporal Aspects of Brain Func-
tion. Flsevier.

J. Buhmann, K. Schulten. (1986) Associative recognition and storage in a model
network of physiological neurons. Biol. Cybern. 54: 319-335.

P.S. Churchland, T. J. Sejnowski. (1992) The Computational Brain. MIT-Press.

36

W. Gerstner, R. Ritz, J. L. van Hemmen. (1992) A biologically motivated and
analytically soluble model of collective oscillations in the cortex. Biol. Cybern. 68:

363-374.

W. Gerstner, J. L. van Hemmen. (1994) How to describe neuronal activity:
spikes, rates, or assemblies? appears in: Advances in Neural Information Processing
Systems, vol. 6, Morgan Kaufmann: 463-470.

A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, G. Turan. (1993) Threshold
circuits of bounded depth. J. Comput. System Sci. 46: 129-154.

J. E. Hopcroft, J. D. Ullman. (1979) Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley.

B. G. Horne, D. R. Hush. (1993) On the node complexity of neural networks.
Technical Report EECE 93-003, Dept. EECE, Univ. of New Mexico.

K. T. Judd, K. Aihara. (1993) Pulse propagation networks: A neural network
model that uses temporal coding by action potentials. Neural Networks 6: 203-215.

E. R. Kandel, J. H. Schwartz, T. M. Jessel. (1991) Principles of Neural Science.
Prentice-Hall.

P. Koiran. (1993) A weak version of the Blum, Shub, Smale model. Proc. of
the 34th Annual IEEE Symp. on Found. of Comp. Sci., IEEE Computer Society
Press: 486-495.

W. Maass. (1985) Combinatorial lower bound arguments for deterministic and
nondeterministic Turing machines. Trans. Amer. Math. Soc. 292: 675-693.

W. Maass. (1993) Bounds for the computational power and learning complex-
ity of analog neural nets. Proc. 25th Annual ACM Symposium on the Theory of
Computing: 335-344.

W. Maass. (1994a) Neural Nets with Superlinear VC-Dimension. Proc. of
The European Conference on Artificial Neural Networks 199/ (ICANN ’94); journal
version appeared in Neural Computation 6: 875-882.

W. Maass. (1994b) On the computational complexity of networks of spiking neu-
rons (extended abstract). TR 393 from May 1994 of the Institutes for Information
Processing Graz; to appear in the Proceedings of NIPS ’9/.

W. Maass. (1994c) Upper bounds for the computational power of networks of
spiking neurons. In preparation.

W. Maass. (1995) Vapnik-Chervonenkis Dimension of Neural Nets. To appear in
the Handbook of Brain Theory and Neural Networks, M. A. Arbib, ed., MIT-Press.

W. Maass, G. Schnitger, E. Szemeredi. (1987) Two tapes are better than one

37

for off-line Turing machines. Proceedings of the 19th Annual ACM Symposium on
Theory of Computing: 94-100.

H. T. Siegelmann, E. D. Sontag. (1992) On the computational power of neural
nets. Proc. 5th ACM-Workshop on Computational Learning Theory: 440-449.

L. G. Valiant. (1994) Circuits of the Mind. To appear in Ozford University
Press.

C. von der Malsburg, W. Schneider. (1986) A neural cocktail-party processor.
Biol. Cybern. 54: 29-40.

L. Watts. (1994) Event-driven simulation of networks of spiking neurons. Ad-

vances in Neural Information Processing Systems, vol. 6, Morgan Kaufmann: 927-

934.

38

