Electronic Colloquium on Computational Complezity
ECCC TECHNICAL REPORTS SERIES 1994 REPORT NR: TR94-020

Agnostic PAC-Learning of Functions on
Analog Neural Nets

Wolfgang Maass

Received December 19, 1994

Abstract. We consider learning on multi-layer neural nets with piecewise poly-
nomial activation functions and a fixed number £ of numerical inputs. We exhibit
arbitrarily large network architectures for which efficient and provably successful
learning algorithms exist in the rather realistic refinement of Valiant’s model for
probably approximately correct learning (“PAC-learning”) where no a-priori as-
sumptions are required about the “target function” (agnostic learning), arbitrary
noise is permitted in the training sample, and the target outputs as well as the
network outputs may be arbitrary reals. The number of computation steps of the
learning algorithm LEARN that we construct is bounded by a polynomial in the
bit-length n of the fixed number of input variables, in the bound s for the allowed
bit-length of weights, in %, where ¢ is some arbitrary given bound for the true
error of the neural net after training, and in % where ¢ is some arbitrary given
bound for the probability that the learning algorithm fails for a randomly drawn
training sample. However the computation time of LEARN is exponential in the
number of weights of the considered network architecture, and therefore only of
interest for neural nets of small size.

Keywords: Analog neural nets

Online access for ECCC:

FTP: ftp.eccc.uni-trier.de:/pub/eccc/

WWW: http://www.eccc.uni-trier.de/eccc/

Mail to: ftpmail@ftp.eccc.uni-trier.de,subject "MAIL ME CLEAR”, body ”pub/eccc/ftpmail.txt”

1 Introduction

The investigation of learning on multi-layer feedforward neural nets has become a
large and fruitful research area. It would be desirable to develop also an adequate
theory of learning on neural nets that helps us to understand and predict the out-
comes of experiments. The most commonly considered theoretical framework for
learning on neural nets is Valiant’s model [V] for probably approximately correct
learning (“PAC-learning”). In this model one can analyze both the required num-
ber of training examples (the “sample complexity”) and the required number of
computation steps for learning on neural nets.

With regard to sample complexity the theoretical investigation of PAC-learning
on neural nets has been rather successful. It has lead to the discovery of an essential
mathematical parameter of each neural net V: the Vapnik - Chervonenkis dimension
of N, commonly referred to as the VC-dimension of AN'. The VC-dimension of N
determines the number of randomly drawn training examples that are needed in
the PAC-model to train NV ([BEHW]). Tt has been shown that the VC-dimension
of any feedforward neural net N with linear threshold gates and w weights can be
bounded by O(w logw) (Cover [C], Baum and Haussler [BH]). Recently it has also
been shown that this upper bound is optimal in the sense that there are arbitrarily
large neural nets N with w weights whose VC-dimension is bounded from below
by Q(wlogw) [M 93a]. Since the PAC-model is a worst case model with regard to
the choice of the distribution on the examples, it predicts bounds for the sample
complexity that tend to be somewhat too large in comparison with experimental
results.

The quoted upper bound for the VC-dimension of a neural net implies that the
sample complexity provides no obstacle for efficient (i.e. polynomial time) learning
on neural nets in Valiant’s PAC-model. However a number of negative results due
to Judd [J], Blum and Rivest [BR], Kearns and Valiant [KV] show that even for
arrays (N,)nen of very simple multi-layer feedforward neural nets (where the num-
ber of nodes in N, is polynomially related to the parameter n) in the PAC - model
there are no learning algorithms for A,, whose number of computation steps can be
bounded by a polynomial in n. Although these negative results are based on un-
proven conjectures from computational complexity theory such as NP # RP, they
have effectively halted the further theoretical investigation of learning algorithms
for multi-layer neural nets within the framework of the PAC - model.

A closer look shows that the type of asymptotic analysis that has been carried
out for these negative results is not the only one possible. In fact, a different kind
of asymptotic analysis appears to be more adequate for a theoretical analysis of
learning on relatively small neural nets with analog (i.e. numerical) inputs. We
propose to investigate PAC-learning on a fized neural net A/, with a fixed number
k of numerical inputs (for example k sensory data). The asymptotic question that
we consider is whether N can learn any target function with arbitrary precision if

sufficiently many randomly drawn training examples are provided. More precisely
we consider the question whether there exists an efficient learning algorithm for A
whose number of computation steps can be bounded by a polynomial in the bit-
length n of the &£ numerical inputs, a bound s for the allowed bit-length of weights,
as well as i, where ¢ is an arbitrary given bound for the true error of AV after the
training, and %, where 6 is an arbitrary given bound for the probability that the
training fails for a randomly drawn sample.

In this paper, we simultaneously turn to a more realistic refinement of the PAC-
model which is essentially due to Haussler [H] and which was further developed
by Kearns, Schapire and Sellie [KSS]. This refinement of the PAC-model is more
adequate for the analysis of learning on neural nets, since it requires no unrealistic
a-priori assumptions about the nature of the “target concept” or “target function”
that the neural net is supposed to learn (“agnostic learning”), and it allows for
arbitrary noise in the sample. Furthermore it allows us to consider situations where
both the target outputs in the sample and the actual outputs of the neural net are
arbitrary real numbers (instead of boolean values). Hence in contrast to the regular
PAC-model we can investigate in this more flexible framework also the learning
(resp. approximation) of complicated real valued functions by a neural net.

We will give at the end of this section in Definition 1.1 and Definition 1.2 a
precise definition of the type of neural network models that we consider in this
paper: high order multi-layer feedforward neural nets with piecewise polynomial
activation functions.

We will give in Definition 2.2 in section 2 a precise definition of the refine-
ment of the PAC-learning model that we consider in this paper. We will show in
Theorem 2.5 that, even in the stronger version of PAC-learning considered here, the
required number of training examples provides no obstacle to efficient learning. This
is demonstrated by giving an upper bound for the pseudo-dimension dimp(F) of the
associated function class F. It was previously shown by Haussler [H] that for the
learning of classes of functions with non-binary outputs the pseudo-dimension plays
a role which is similar to the role of the VC-dimension for the learning of concepts.

We will prove in Theorem 2.1 that for arbitrarily complex first order neural nets
N with piecewise linear activation functions there exists an efficient and provably
successful learning algorithm for A7, This positive result is extended to high order
neural nets with piecewise polynomial activation functions in Theorem 3.1.

One should note that these results do not show that there exists an efficient
learning algorithm for every neural net. Rather they exhibit a special class of neural
nets AV for which there exist efficient learning algorithms. This special class of neural
nets N is “universal” in the sense that there exists for every high order neural net
N with piecewise polynomial activation functions a somewhat larger neural net N
in this class such that every function computable on A is also computable on M.
Hence our positive results about efficient and provably successful learning on neural

nets can in principle be applied to real-life learning problems in the following way.
One first chooses a neural net N that is powerful enough to compute, respectively
approximate, those functions or distributions that are potentially to be learned.
One then goes to a somewhat larger neural net A~ which can simulate A" and which
has the previously mentioned special structure which allows us to design an efficient
learning algorithm for . One then trains A~ with a randomly drawn sample.

The previously described transition from N to N provides a curious theoretical
counterpart to a recipe which is frequently recommended by practitioners as a way
to reduce the chances that backprop gets stuck in local minima: to carry out such
training on a neural net that has somewhat more units than necessary for computing

the desired target functions ([RM],[L]).

The positive learning results of Theorem 2.1 and Theorem 3.1 are also of interest
from the more general point of view of computational learning theory. Learnability
in the here considered refinement of the PAC-model for “agnostic learning” (i.e.
learning without a-priori assumptions about the target concept) is a rather strong
property. In fact this property is so strong that there exist hardly any positive results
for learning with interesting concept classes resp. function classes as hypotheses in
this model. Even some of the relatively few interesting concept classes that are
learnable in the usual PAC-model (such as monomials of Boolean variables) lead to
negative results in the here considered refinement of the PAC-learning model (see
[KSS]). Hence it is a rather noteworthy fact that function classes that are defined by
arbitrarily complex analog neural nets yield positive results in this refined version

of the PAC-model.

One should note however that the asymptotic analysis which we use here for
the investigation of learning on neural nets is orthogonal to that which underlies the
quoted negative result for agnostic PAC-learning with monomials (one assumes there
that the number of input variables goes to infinity). Hence one should not interpret
our result as saying that learning with hypotheses defined by analog neural nets
is easier than learning with monomials (or other boolean formulas) as hypotheses.
Our result shows that learning with a fized number of numerical inputs is provably
feasible on a multilayer neural net, whereas boolean formulas such as monomials
are not suitable for dealing with numerical inputs, and it makes no sense to carry
out an asymptotic analysis of learning with a fixed number of boolean inputs (since
there exist then only finitely many different hypotheses).

Definition 1.1 A network archilecture (or “neural net”) N of order v with k
input nodes and | oulput nodes is a labelled acyclic directed graph (V. E). It has k
nodes with fan-in 0 (“input nodes”) that are labelled by 1,... k, and | nodes with
fan-out 0 (“output nodes”) that are labelled by 1,...,1. Fach node g of fan-in r >0
is called a computation node (or gate), and is labelled by some activation function

¥4 : R — R and some polynomial I19(y:,....y,) of degree < v. We assume thal the
ranges of activation functions of oulput nodes in N are bounded.
The coefficients of all polynomials I9(yy,...,y,) for gates g in N are called the

programmable parameters of N'. Assume that N has w programmable parameters,

and that some numbering of these has been fived. Then each assignment o € R"
of reals to the programmable parameters in N defines an analog circuit N, which
compules a function x — N2%(z) from R* into R' in the following way: Assume
that some input x € R has been assigned to the input nodes of N'. If a gate g in N
has r immediate predecessors in (V, E) which oulput yi,...,y, € R, then g outpuls
V(I (s yr)-

Any paramelers thal occur in the definitions of the activation functions 47 of N
are referred to as architectural parameters of N .

Definition 1.2 A function v : R — R is called piecewise polynomial if there
are thresholds t1,...,t, € R and polynomials Py, ..., P; such that t; < ... <1, and
for each v € {0,...,s} : t; < x < tiy1 = 7(x) = Pi(z) (we set tg := —o0 and
Loy := 00).

We refer to ty,...,ts together with all coefficients in the polynomials Fy,. .., Ps
as the parameters of ~v. If the polynomials Py, ..., Ps are of degree <1 then we call

v piecewise linear
Note that we do not require that ~y is conlinuous (or monotone).

2 Learning on Neural Nets with Piecewise Linear
Activation Functions

We show in this section that for any network architecture N with piecewise linear
activation functions there exists another network architecture A" which can not only
compute, but also learn any function f : R* — R' that can be computed by M. The
only difference between A" and A is that each computation node in N has fan-out
<1 (i.e. the computation nodes of N form a tree, but there is no restriction on the
fan-out of inpul nodes), whereas the nodes in V' may have arbitrary fan-out.

If V' has only one output node and depth < 2 (i.e. N has at most one layer
of “hidden units”) then one can set N := N. For a general network architecture
one applies the standard construction for transforming a directed acyclic graph into
a tree. The construction of N from N proceeds recursively from the output level
towards the input level: every computation node v with fan-out m > 1 is replaced
by m nodes with fan-out 1 which all use the same activation function as v and which
all get the same input as v. It is obvious that for this classical construction from
circuit theory (see [S]) the depth of N is the same as the depth of N'. In order to
bound the size (i.e. number of gates) of N, we first note that the fan-out of the
input nodes does not have to be changed. Hence the transformation of the directed
acyclic graph of A into a tree is only applied to the subgraph of depth depth(AN) —1
which one gets from A by removing its input nodes. Furthermore one can easily
see that the transformation does not increase the fan-in of any node. Obviously
the fan-in of any gate in N is bounded by size(N) — 1. Therefore the tree that

4

provides the graph-theoretic structure for N has in addition to its & input-nodes

depth(V)-1 . : depth(N
up to > size(N)" < % computation nodes. Hence for bounded
o size

1=
depth the increase in size is polynomially bounded.

Let Q,, be the set of rational numbers that can be written as quotients of integers
with bit-length < n.

Let F: R* — R' be some arbitrary function, which we will view as a “predic-
tion rule”. For any given instance (z,y) € R* x R' we measure the error of F by

l
[[F(z) = yll1, where [[{z1,..., z)|[s := X [zi]. For any distribution A over some sub-

set of R* x R' we measure the true error of F with regard to A by
Egyeall|F(z) — yll1], ie. the expected value of the error of F' with respect to
distribution A.

Theorem 2.1 Let N be an arbilrary network architecture of first order (i.e.
v:= 1) with k input nodes and | output nodes, and let N be the associated network
architecture as defined above. We assume that all activation functions in N are
piecewise linear with architectural parameters from Q. Let B C R be an arbitrary
bounded set.

Then there evists a polynomial m(é, %) and a learning algorithm LEARN such
that for any given s,n € N and any distribution A over QF x (@, N B)" the following
holds:

For a sample ¢ = ((xi,¥:))i=1,..m of m > m(L,3) examples that are independently
drawn according to A the algorithm LEARN compules from (,s,n in polynomially
in m,s and n many computation steps an assignment & of rational numbers to the

programmable parameters of the associated network architecture N such that

EgyeallN¥z) —yllh] < e+ inf EgyealllNz) — ylli]
aeqQy

with probability > 1 — 6 (with regard to the random drawing of ().

Consider the special case where the distribution A over QF x (Q, N B)is of the
form

D(z) , ify=N2r(z
Ao, (Ly)={ (z) y (z)

0 , otherwise

for some arbitrary distribution D over the domain Qi and some arbitrary ap € QY.
Then the term

il B yeall NVHz) — ylli]
o €Qy
is equal to 0. Hence the preceding theorem implies that with learning algorithm

LEARN the “learning network” N can “learn” with arbitrarily small true error any
target function N7 that is computable on A with rational “weights” a;. Thus

5

by choosing A to be sufficiently large, one can guarantee that N can learn any
target-function that might arise in the context of a specific learning problem.

In addition the theorem also applies to the quite realistic situation where the
learner receives examples (z,y) of the form (z, Nr(z)+ noise), or even if there
exists no “target function” N9z that would “explain” the actual distribution A of
examples (z,y) (“agnostic learning”).

Before we give the proof of Theorem 2.1 we first show that its claim may be
viewed as a learning result within a refinement of Valiant’s PAC-model [V]. This
refined version of the PAC-model (essentially due to Haussler [H]) is better applicable
to real world learning situations than the usual PAC-model:

- It makes no a-priori assumptions about the existence of a “target concept” or
“target function” of a specific type which explains the empirical data (i.e. the
“sample”).

- It allows for arbitrary “noise” in the sample (however it does not attempt to
remove the “noise”, instead it models the distribution including the “noise”).

- It is not restricted to the learning of “concepts” (i.e. 0 — 1 valued functions)
since it allows arbitrary real numbers as predictions of the learner and as target
outputs in the sample. Hence it is for example also applicable for investigating
learning (resp. approximation) of complicated real valued functions.

Of course one cannot expect miracles from a learner in such a real-world learning
situation. It is in general impossible for him to produce a hypothesis with arbitrarily
small true error with regard to the distribution A. This is clearly the case if the
distribution A produces inconsistent data, or if A is generated by a target func-
tion (with added noise) that is substantially more complicated than any hypothesis
function that the learner could possibly produce within his limited resources (e.g.
with a fixed neural network architecture). Hence the best that one can expect from
the learner is that he produces a hypothesis A whose true error with regard to A
is almost optimal in comparison with all possible hypotheses h from a certain pool
7 (the “touchstone class” in the terminology of [KSS]). This provides the motiva-
tion for the following definition, which slightly generalizes those in Haussler [H] and
Kearns, Schapire, Sellie [KSS].

Definition 2.2 Let A = |J A, be an arbitrary set of distributions over finite
neN

subsets of QF x Q' such that for any n € N the bit-length of any point (z,y) that is
drawn according to a distribution A € A, is bounded by a polynomial in n.

Let T = (T,)sen be an arbilrary family of functions from R* into R (with
some fizved representation system) such that any f € T, has a representation whose
bit-length is bounded by some polynomial in s. Lel H be some arbilrary class of
functions from R* into R'.

One says that T is efficiently learnable by H assuming A if there is an algorithm
LEARN and a function m(e,d,s,n) that is bounded by a polynomial in 1,1+ s and

e’ §?

6

n such that for any ¢,6 € (0,1) and any natural numbers s,n the following holds:
If one draws independently m > m(e, 6, s,n) examples according to some arbitrary
distribution A € A,, then LEARN computes from such a sample (with a number
of computation steps that is polynomial in the parameter s and the bil-length of
the representation of some h € H which has with probability > 1 — 6 the property

Egyealllh(z) —ylh] < e+ inl Eggealllh(z) - ylh]

h €T
In the special case H = U 7, we say that T is properly efficiently learnable
assuming A. SEN
Remark 2.3

a) It turns out in the learning results of Theorem 2.1 and Theorem 3.1 that the
sample complexity m(e, 8, s,n) can be chosen to be independent of s, n.

b) Note that Definition 2.2 contains as special case the common definition of
PAC-learning [V]: Assume that [= 1 and C; is some class of concepts over the
domain QF so that each concept C' € C, has a representation with O(s) bits.
Let T, be the associated class of characteristic functions yo : Q¥ — {0, 1} for
concepts C' € C,. Let X, be the domain QF, and let A, be the class of all
distributions A over X,, x {0, 1} such that there exists an arbitrary distribution
D over X, and some target concept Cr € |J Cs for which

SEN
A(< >) D(£>) ify:XC'T(£)
r,Y)) =
0 , otherwise.

Then by definition (7;)sen is properly efficiently learnable assuming A in the
sense of Definition 2.2 if and only if (Cy)sen is properly PAC-learnable in the
sense of [V] (see [HKLW] for various equivalent versions of Valiant’s definition
of PAC-learning).

In addition the learning model considered here contains as special cases
the model for agnostic PAC-learning of concepts from [KSS] (consider only
functions with values in {0,1} and only distributions over Q* x {0,1} in our
preceding definition), and the model for PAC-learning of probabilistic concepts
from [KS].

c¢) In the following the classes 7, and H will always be defined as classes of func-
tions that are computable on a neural network A" with a fixed architecture. For
these classes one has a natural representation system: One may view any as-
signment of values a to the programmable parameters of V' as a representation

for the function z — N%(z). We will always use this representation system in
the following.

d) We may now rephrase Theorem 2.1 in terms of the general learning framework

of Definition 2.2. Let A/ be as in Theorem 2.1, let 7, be the class of functions

f: R* — R' computable on N with programmable parameters from Q,,
and let H be the class of functions f : R* — R' that are computable with
programmable parameters from Q on the associated network architecture N.
Let A, be any class of distributions over QF x (Q, N B).

Then (7;)sen is efficiently learnable by ‘H assuming |J A,. Furthermore
neN

if all computation nodes in N have fan-out < 1 then (7;)sen is properly

efficiently learnable assuming |J A, in the sense of Definition 2.2.
neEN

For the proof of Theorem 2.1 we have to consider a suitable generalization of
the notion of a VC-dimension for classes of real valued functions. In the definition of
the VC-dimension of a class F of 0 — 1 valued functions (i.e. concepts) one says that
aset S is “shattered by F7 if Vb € {0,1}° If € F Va € S (f(z) = b(z)). However
for a class F of real-valued functions f (which need not assume the values 0 or 1)
one has to define in a different way that a set S is shattered by F: one allows here
that arbitrary “thresholds” h(xz) are assigned to the elements z of S. Then one can
reduce the notion of “shattering” for real valued functions to that for boolean-valued
functions by rounding for any f € F the value f(z) to 1 if f(z) > h(z), and to 0 if
f(z) < h(z). Analogously as in the definition of the VC-dimension one defines the
pseudo-dimension of a class F of real valued functions as the size of the largest set
S which is shattered by F. In this way one arrives at the following definition.

Definition 2.4 (see Haussler [H]).
Let X be some arbitrary domain, and let F be an arbilrary class of functions from

X into R. Then the pseudo-dimension of F is defined by

dimp(F) := max {|S| : SC X and 3~ : S — R such that
Vbe {0,1}° 3f € F Ve S(f(z) > h(z) & b(z) =1)}.

Note that in the special case where F is a concept class (i.e. all f € F are 0 —1
valued) the pseudo-dimension dimp(F) coincides with the VC-dimension of F (see
[M 94] and [M 95] for a survey of related results and open problems).

We will give in the following Theorem 2.5 for any network architecture N an
upper bound for the pseudo-dimension of the class F of all functions f of the form

(z,y) = |N(z) — ylls

for arbitrary assignments o to the programmable parameters of A'. Such a bound
(for the network architecture ./\7) will be essential for the proof of Theorem 2.1, since
it allows us to bound with the help of “uniform convergence results” due to Pollard
[P] and Haussler [H] (see the subsequent inequality (1)) the number of random
examples that are needed to train A'. Thereby one can reduce the computation of a
suitable assignment & to the programmable parameters of N to a finite optimization
problem. Or in other words: instead of minimizing the “true error” of N'¢ it can

8

be shown to be enough to minimize the “apparent error” of N2 on a “sufficiently
large” training set, where “sufficiently large” is specified by the bound m(1, %) in
terms of the pseudo-dimension of the associated function class F at the beginning

of the subsequent proof of Theorem 2.1.

Theorem 2.5 Consider arbitrary network architectures N of order v with k
input nodes, | output nodes, and w programmable parameters. Assume that each
gate in N employs as aclivation function some piecewise polynomial (or piecewise
rational) function of degree < d with at most q pieces. For some arbitrary p €

{1,2,...} we define
F = {[R"™ R :3acR"Veec R*Vy € R(f(z,y) = |IN%(x) — y|lp)}
Then one has dimp(F) = O(w?log q) tf v,d,l = O(1).

Proof: Set D :=dimp(F). Then there are values ({x;, yi, %))iz1,...,.p € (RAIHLD
such that for every b: {1,..., D} — {0, 1} there exists some a; € R" so that for all
ie{l,...,D}

IV (2i) = llp = 2 & b(i) = 1.

For each i € {1,...,D} one can define in the theory of real numbers the set
{a € R" : ||IN2%(zi) — yil|, > 2} by some first order formula ®; with real valued
constants of the following structure: ®; is a disjunction of < ¢* - 2! conjunctions of
< 2w+ [+ 1 atomic formulas, where each atomic formula is a polynomial inequality
of degree < (2vd)™. Each conjunction in this DNF-formula ®; describes one “guess”
regarding which of the < ¢ polynomial pieces of each activation function 79 of gates
g in N are used in the computation of N'2(z;) for the considered (fixed) network

number of gates in) < qw different “guesses”

input z;. Obviously there are at most gl
of this type possible. In addition each of these conjunctions also describes a “guess”
regarding which of the [output gates of N yield in the computation of N%(z;) a
number which is larger or equal to the corresponding component of the fixed “target
output” y;. There are 2! different possibilities for that. Thus altogether ®; consists

of at most ¢* - 2! conjunctions.

The atomic formulas of each of these < ¢* - 2! conjunctions of ®; consist of all
associated comparisons with thresholds of the activation functions. More precisely,
one has in each conjunction of ®; for each gate g in V' two atomic formulas which
compare the value ot the term 19(y;,...,y,) (this is the term to which the activation
function ¢ of gate ¢ is applied for the presently considered network input z;) with
two consecutive thresholds of the activation function 49. These two thresholds are
the boundaries of that interval in the domain of the piecewise polynomial function
~9 where 49 is defined as that polynomial piece which is “guessed” in this conjunc-
tion, and which is used in other atomic formulas of the same conjunction of ®; to
specify the arguments of activation function of subsequent gates in A" (for the same
network input z;). In addition for each output gate of A one has an atomic formula
which expresses that the output value of that gate is above (respectively below)

the corresponding coordinate of the “target output” y;, as specified by the “guess”
that is associated with this conjunction. Thus altog_ether each conjunction of ®;
expresses that its associated collection of “guesses” is consistent with the actual de-
finitions of the activation functions in A/. One exploits here that for the considered
computation of N (z;) the actual input to each activation function 49 can be written
as a polynomial in terms of the coordinates of a (and various constants, such as
the architectural parameters of N and the coordinates of z;), provided one “knows”
which pieces of the activation functions of preceding gates were used for this compu-
tation. The factor 2 in the degree bound arises only in the case of piecewise rational
activation functions.

By definition one has ®;(ay) is true if and only if b(i) =1 for i =1,...,D.
Hence for any b,6: {1,..., D} — {0,1} with b # b there exists some ¢ € {1,..., D}
so that ®,;(a;) and ®;(q;) have different truth values. This implies that at least one

of the < S:=D-q¢"- 2. (2w + [+ 1) atomic formulas that occur in the D formulas
®;,...,®p has different truth values for oy, ¢;.

On the other hand since each of the < S atomic formulas is a polynomial in-
equality of degree < (2vd)", a theorem of Milnor [Mi] (see also [R]) implies that
the number of different combinations of truth assignments to these atomic for-
mulas that can be realized by different o € R" is bounded by (S - (2vd)*)°®).
Hence we have 2P < (S - (20d)*)°(") which implies by the definition of S that
D = O(w) - (log D 4+ wlog ¢). This yields the desired estimate D = O(w?logq). 1

Remark 2.6 This result generalizes earlier bounds for the VC-dimension of
neural nets with piecewise polynomial activation functions and boolean network

output from [M 92], [M 93a] (for bounded depth) and [GJ] (for unbounded depth).

The preceding proof generalizes the argument from [GJ].

Proof of Theorem 2.1: We associate with A" another network architecture N/
as defined before Theorem 2.1. Assume that N has w weights, and let @ be the
number of weights in N. By construction any function that is computable by A
can also be computed by V.

We first reduce with the help of Theorem 2.5 the computation of appropriate
weights for N to a finite optimization problem. Fix some interval [by, ;] C R such
that B C [by, by], b1 < by, and such that the ranges of the activation functions of the
output gates of N are contained in [b;, by]. We define

b == [-(by—10b) , and
F = {f :RF x[by,b)] —[0,0]:
Ja e R” Vo € R*Vy € [bi, b’ (f(z,y) = [[V*(z) — y[h)}-

The preceding Theorem 2.5 implies that the pseudo-dimension dimp(F) of this
class F is finite. Therefore one can derive a finite upper bound for the minimum size

10

of a training set for the considered learning problem in the following way. Assume
that parameters ¢,6 € (0,1) with ¢ < b and s,n € N have been fixed. For conve-
nience we assume that s is sufficiently large so that all architectural parameters in

N are from Q,. We define

12
m (l l) = 257 b (2 . dimp(}_) . Zn?)geb + Zn§) .

e é e? €)
By Corollary 2 of Theorem 7 in Haussler [H] one has for m > m(2, 1), K :=¥27 ¢
(2,3), and any distribution A over Q* x (Q, N [by, by])!
1 €
(1) Preean |3 €F || = 3 [f@y) | = Fapeal/@)| > 21| <&

() €C

where Ey ealf(z,y)] is the expectation of f(z,y) with regard to distribution A.

We design an algorithm LEARN that computes for any m € N, any sample

and any given s € N in polynomially in m, s,n computation steps an assignment
a of rational numbers to the parameters in N such that the function A that is
computed by N2 satisfies

@ el -ulh < (1-F)er it 3HNe) —ulh

QEQZJ mi:l

It suffices for the proof of Theorem 2.1 to solve this finite optimization problem,
since (1) and (2) (together with the fact that the function (z,y) — [[N%(z) — y]| is
in F for every a € R") imply that, for any distribution A over QF x (Q,, N [b1, ba])
and any m > m(é, %), with probability > 1—§ (with respect to the random drawing
of (€ A™) the algorithm LEARN outputs for inputs ¢ and s an assignment & of
rational numbers to the parameters in A such that

EggeallNe(z) = ylh] < e+ inf EggeallV22) — ylh].
aeQy

We have now reduced the problem of computing appropriate weigths for N to
the finite optimization problem (2) for the algorithm LEARN. However it turns out
that this finite optimization problem is highly nonlinear, and hence has no readily
available algorithmic solution. In the remainder of this proof we show how this
finite nonlinear optimization problem can be reduced to linear programming. More
precisely, the algorithm LEARN computes optimal solutions for polynomially in m
many linear programming problems LPy,..., LP,, in order to find values & for

11

the programmable parameters in N so that N satisfies (2). The reduction of the

computation of & to linear programming is nontrivial, since for any fixed input z

the output /\N/Q(g) is in general not linear in the programmable parameters a. This

becomes obvious if one considers for example the composition of two very simple

gates g; and g, on levels 1 and 2 of A, whose activation functions 71,7, satisfy

7(y) = 72(y) = y. Assume z = Zk: a;z; + ag is the input to gate gy, and ¢
i=1

g
receives as input - oy; + afy where y; = y1(2) = z is the output of gate g;. Then
=

k q

g2 outputs o - (Z ;i + a()) + >- aly; + ay. Obviously for fixed network input
=1 7=2

z = (xq,...,x)) this term is not linear in the weights o, a4, ..., ay.

An unpleasant consequence of this observation is that if the output of gate
g2 1s compared with a fixed threshold at the next gate, the resulting inequality
is not linear in the weights of the gates in N. If the activation functions of all
gates in NV were linear (as in the example for g; and g¢2), then there would be no
problem because a composition of linear functions is linear (and since each activation
function is applied in the here considered case v := 1 to a term that is linear in the
weights of the respective gate). However for piecewise linear activation functions it
is not sufficient to consider their composition, since intermediate results have to be
compared with boundaries between linear pieces of the next gate.

We employ a method from [M 93a] that allows us to replace the nonlinear con-
ditions on the programmable parameters o of A" by linear conditions for a trans-
formed set ¢, 8 of parameters. We simulate N'® by another network architecture

N[Q]Q (which one may view as a “normal form” for _/\7'&) that uses the same graph
(V,E) as N, but different activation functions and different values 3 for its program-
mable parameters. The activation functions of/\A/[g] depend on |V| new architectural
parameters ¢ € RVl which we call scaling parameters in the following. Whereas
the architectural parameters of a network architecture are usually kept fixed, we
will be forced to change the scaling parameters of N along with its programmable
parameters 3. Although this new network architecture has the disadvantage that it

requires |V| additional parameters ¢, it has the advantage that we can choose in N[g]
all weights on edges belween computation nodes to be from {—1,0,1}. Hence we can
treat them as constants with at most 3 possible values in the system of inequalities
that describes computations of N[g] Thereby we can achieve that all variables that
appear in the inqualities that describe computations of N[Q] for fixed network inputs
(the variables for weights of gates on level 1, the variables for the biases of gates on
all levels, and the new variables for the scaling parameters ¢) appear only linearly in
those inqualities.

We briefly indicate the construction of A'. Consider the activation function 7
of an arbitrary gate in A. Since v is piecewise linear, there are fixed architectural
parameters t; < --- < lg, ag,...,as, bg,...,bs (which may be different for different

12

gates ¢) such that with t5 := —oo0 and t,4; := 400 one has y(z) = a;z + b;
for . € R witht; < o < t;y1; ¢ = 0,...,s. For an arbitrary scaling parameter
¢ € RT we associate with v the following piecewise linear activation function ~°:
the thresholds of 4 are ¢-t5,..., ¢t and its output is 7°(z) = g,z + ¢+ b; for z € R
withe-t; <o <c-tip1;0=0,...,5 (set ¢- g := —00,¢-teq1 := +00). Thus for all
reals ¢ > 0 the function 7° is related to v through the equality:

Vo € R(y¥(c 1) = ¢+ 7(z).
Assume that a is some arbitrary given assignment to the programmable para-
meters in . We transform N2 through a recursive process into a “normal form”

./\A/'[g]ﬁ in which all weights on edges between computation nodes are from {—1,0,1},
such that

vz € RF (W2(z) = Nd2()) -

. q
Assume that an output gate of N'& receives as input o;; + ag. where
p Yout 1% Yi 0>

=1
ai,...,qq, ap are the weights and the bias of g, (under the assignment) and
Y1,---,yg are the (real valued) outputs of the immediate predecessors g¢1, ..., g, of

g. For each v € {1,...,q} with a; # 0 such that g; is not an input node we replace
the activation function ~; of g; by ’yzla”, and we multiply the weights and the bias
of gate g; with |o;|. Finally we replace the weight «; of gate g, by sgn(e;), where
sgn(a;) :=1if o; > 0 and sgn(a;) := —1 if a; < 0. This operation has the effect
that the multiplication with |o;]| is carried out before the gate g; (rather than after
gi, as done in ./\N/g), but that the considered output gate g, still receives the same
input as before. If a; = 0 we want to “freeze” that weight at 0. This can be done
by deleting ¢; and all gates below ¢; from N.

The analogous operations are recursively carried out for the predecessors g; of
gour (note however that the weights of ¢; are no longer the original ones from N &,
since they have been changed in the preceding step). We exploit here the assumption
that each gate in A has fan-out < 1.

Let B consist of the new weights on edges adjacent to input nodes and of the

resulting biases of all gates in N. Let ¢ consist of the resulting scaling parameters
at the gates of /. Then we have Vz € R* (Ng(g) = N[Q]ﬁ(g)) Furthermore ¢ > 0

for all scaling parameters ¢ in c.

At the end of this proof we will also need the fact that the previously described
parameter transformation can be inverted. One can easily compute from any as-
signment é,é to the parameters in N with ¢ > 0 for all ¢ in ¢ an assignment & to
the programmable parameters in N such that Vz € R* (/\N/Q(g) = ./\A/[é]g(g)) This
backwards transformation is also defined by recursion. Consider some gate g on
level 1 in A that uses (for the new parameter assignment ¢) the scaling parameter
¢ > 0 for its activation function v°. Then we replace the weights aq,..., a; and bias

13

ap of gate ¢ in N[E]é by 24 ..., %k 20 and 4¢ by 4. Furthermore if r € {—1,1}
was in A the weight on the edge between g and its successor gate ¢’, we assign to
this edge the weight ¢ - r. Note that ¢’ receives in this way from g the same input
as in ./\A/H (for every network input). Assume now that o, .. oz; are the Weights
that the i 1ncom1ng edges of ¢' get assigned in this way, that ag is the bias of ¢’ in

the assignment ﬂ, and that ¢/ > 0 is the scaling parameter of ¢’ in N[dP. Then we

assign the new weights i—;l, ey % and the new bias ‘i—, to ¢', and we multiply the
weight on the outgoing edge from ¢’ by ¢’

In the remainder of this proof we specify how the algorithm LEARN computes
for any given sample ¢ = ((%i,¥:))i=1,..m € (in x (Q,, N [b1,b5])")™ and any given
s € N with the help of linear programming a new assignment ¢, 3 to the parameters

in A such that the function A that is computed by /\A/[é]E satisfies (2). For that
purpose we describe the computations of N for the fized inputs z; from the sample
¢ = ({xi,9i))i=1,..m by polynomially in m many systems Li,..., Ly, that each
consist of O(m) linear inequalities with the transformed parameters ¢, as variables.
For each input z; one uses for each gate ¢ in N two inequalities that specify the
relation of the input s? of ¢ to two adjacent thresholds ¢,¢" of the piecewise linear
activation function +° of ¢g. By construction of N the gate input s can always be
written as a linear expression in ¢, 3 (provided one knows which linear pieces were
used by the preceding gates). A problem is caused by the fact that this construction
leads to a system of inequalities that contains both strict inequalities “s; < s;”
and weak inequalities “s; < s5”. Fach scaling parameter ¢ in ¢ gives rise to a strict
inequality —¢ < 0. Further strict inequalities “s; < s,” arise when one compares the
input s; of some gate ¢ in N with a threshold s, of the piecewise linear activation
function ~¢ of this gate ¢g. Unfortunately linear programming cannot be applied
directly to a system that contains both strict and weak inequalities. Hence we
replace all strict inequalities “s; < s3”7 by “s; + 277 < 3,7, where

p =2 (.s . size(./\/))depth(N)_l . (52 . depth(N) . (k + 2) . n) .

This construction, as well as the particular choice of p will be justified in the last
paragraph of this proof. A precise analysis shows that in the preceding construction
we do not arrive at a single network architecture N but at up to 2% < 27 different
architectures, where @’ is the number of edges between computation nodes of N
(thus @' < (number of gates in N =: #), and 0 is the number of weights in . This
is caused by the special clause in the transformation from N2 to N2 for the case
that o; = 0 for some weight o; in a (in that case the initial segment of the network
below that edge is deleted in N) There are at most 2° = O(1) ways of assigning
the weight 0 to certain edges between computation nodes in N, and correspondingly
there are at most 27 variations of A" that have to be considered (which all arise from
the full network by deleting certain initial segments). Each of these variations of N
gives rise to a different system of linear inequalities in the preceding construction.

A less trivial problem for describing the computations of N for the fixed network
inputs 1,...,2, € Q" by systems of linear inequalities (with the parameters ¢, 3

14

as variables) arises from the fact that for the same network input z; different values
of the variables ¢, 3 will lead to the use of different linear pieces of the activation
functions in A. Therefore one has to use a whole family Ly, ..., Lym) of p(m)
different systems of linear inequalities, where each system L; reflects one possibility
for employing specific linear pieces of the activation functions in N for specific
network inputs zq,...,2,, for deleting certain initial segments of N as discussed
before, and for employing different combinations of weights from {—1,1} for edges
between computation nodes.

Each of these systems L; has to be consistent in the following sense: if L; contains
for some network input z; the inequalities £ < s? and s? 4277 < 1/ for two adjacent
thresholds ¢,t¢" of the activation function ¢ of some gate ¢ in N, and if f is the
linear piece of 4° in the interval [¢,¢’), then this linear piece f is used for describing
for this network input z; and for all subsequent gates ¢’ the contribution of gate ¢
to the input of ¢’ in the two linear inequalities for ¢’ in L;. It should be noted on
the side that the scaling parameter ¢ occurs as variable both in the thresholds ¢,¢ as
well as in the definition of each linear piece f of the activation function v°. However
this causes no problem since by construction of AN the considered terms s, 1,1 as
well as the terms involving f are linear in the variables ¢, 3.

It looks as if this approach might lead to the consideration of exponentially in
m many systems L;: We may have to allow that for any set S C {1,...,m} one
linear piece of the activation function 7 of a gate ¢ is used for network inputs z;
with ¢ € S, and another linear piece of 7 is used for network inputs z; with ¢ ¢ S.
Hence each set S might give rise to a different system L;.

One can show that it suffices to consider only polynomially in m many systems
of inequalities L; by exploiting that all inequalities are linear, and that the input
space for N has bounded dimension k. A single threshold ¢ between two linear pieces
of the activation function of some gate g on level 1 divides the m inputs z1,..., 2,

in at most 2% . (TZ) different ways. Omne arrives at this estimate by considering

all (7}:) subsets S of {z1,...,2,} of size k, and then all 2* partitions of S into
subsets S7 and S3. For any such sets S; and S; we consider a pair of halfspaces
Hy = {z € RF:z2-4+27" < t} and Hy = {z € RF:z-4> t}, where the
weights & for gate ¢ are chosen in such a way that z; - & + 277 =1 for all 2 € 5
and z; - & =1 for all 2 € S;. If the halfspaces Hy, Hy are uniquely defined by this
condition and if they have the property that z; € Hy U H; for ¢« = 1,...,m, then

they define one of the < 2% . (T;) partitions of z1,...,z, which we consider for the
threshold t of this gate g. It is easy to see that each setting & of the weights of gate
g such that Vi € {1,...,m}(z; € Hy U H;) for the associated halfspaces H; and
H, defines via threshold t a partition of {z1,...,z,,} which agrees with one of the

previously described partitions. Each of these up to 2% - (TZ) many partitions may
give rise to a different system L; of linear inequalities.

In addition each threshold ¢’ between linear pieces of a gate ¢’ on level > 1

15

gives rise to different partitions of the m inputs, and hence to different systems
L;. In fact the partition of the m inputs that is caused by t' is in general of a
rather complicated structure. Assume that &’ is the number of thresholds between
linear pieces of activation functions of preceding gates. If each of these preceding
thresholds partitions the m inputs by a hyperplane, then altogether they split the
m inputs into up to 2% subsets. For each of these subsets the preceding gates will in
general use different linear pieces of their activation functions (see the consistency
condition described before). Hence threshold ¢’ of gate ¢’ will in general not partition
the m network inputs by a single hyperplane, but by different hyperplanes for each
of the 2¥ subsets of the m inputs. Even if in each of the 2¥ subsets one only
has to consider two possibilities for the hyperplane that is defined by threshold
t" of ¢', one arrives altogether at 92" possibilities for this hyperplane. Thus the
straightforward estimate for the number of different systems L; yields an upper
bound that is double-ezponential in the size of N'. However we want to keep the
number p(m) of systems L; simply exponential in the size of N. This is not relevant
for the proof of Theorem 2.1, but for the parallelized speed-up of LEARN that will
be considered in the subsequent Remark 2.7.

In order to get a better estimate for the number of systems L; we exploit that the
input to the considered gate ¢’ is not only piecewise linear in the coordinates of the
input, but also piecewise linear in the weights for gates on level 1 and in the scaling
factors of preceding gates. Hence we now view these weights and scaling factors
as variables in the expression that describes the input to gate ¢’. The number of
these variables can be bounded by the number @ of variables in A/. The coefficients
of these variables in the input to gate ¢’ consist of the coordinates of the network
input and of the fixed parameters a;, b; of the linear pieces © — a;xz + b; of the
activation functions of preceding gates. We may assume that one has fixed for each
of the preceding gate which linear piece of each activation function is applied for
each of the m fixed network inputs. Hence each of these m network inputs defines
a unique vector of @ coefficients for the @ “new variables” in the input to gate ¢'.
The set of these m coefficient vectors from R™ can be partitioned in at most O(m™)
different ways by a pair of hyperplanes in R” with distance 2=7. Hence we have
to consider only O(m™) possibilities for the choice of the subset of the m network
inputs for which the input to gate ¢’ is less than t'. We would like to emphasize that
we consider here the weights on level 1 and the scaling factors as variables, and we
examine the effect on the values of the input to gate ¢’ for the considered m network
inputs if we change these variables. It will be justified in the last paragraph of the
proof of Theorem 2.1 that we may assume that the input to gate ¢’ has at least
distance 277 from ¢’ if its value lies below this threshold #'.

The preceding argument yields an upper bound of m®@? for the number of
linear systems L; which arise by considering all possibilities for using different linear
pieces of the activation functions for the m fixed network inputs (where ¢ denotes
the number of computation nodes in N) In addition one has to consider 3% different
choices of weights from {—1,0,1} for the gates on level > 1 in N. Thus altogether

at most mP®? different systems L; of linear inequalities have to be considered.

16

Hence the algorithm LEARN generates for each of the polynomially in m many
partitions of zq,..., 2, which arise in the previously described fashion from thresh-
olds between linear pieces of activation functions of gates in N, and for each as-
signment of weights from {—1,0,1} to edges between computation nodes in N a
separate system L; of linear inequalities, for j = 1,...,p(m). By construction one
can bound p(m) by a polynomial in m (if the size of N can be viewed as a constant).

We now expand each of the systems L; (which has only O(1) variables) into a
linear programming problem LP; with O(m) variables (it should be noted that it is
essential that these > m additional variables were not yet present in our preceding
consideration, since otherwise we would have arrived at exponentially in m many
systems of linear inequalities L;). We add to L; for each of the [output nodes v of

VooV

N 2m new variables u?, v}

fore =1,...,m, and the 4m inequalities

i) < (yi)y +ud —vf, i) = (yi)y +ud —vf, w20, v >0,

where ((xi,yi))i=1,..,m is the fixed sample ¢ and (y;), is that coordinate of y; which
corresponds to the output node v of N'. In these inequalities the symbol t;‘(ﬁ)
denotes the term (which is by construction linear in the variables ¢, 3) that represents
the output of gate v for network input z; in this system I;. One should note that
these terms 2%(z;) will in general be different for different j, since different linear
pieces of the activation functions at preceding gates may be used in the computation
of N for the same network input z;. Furthermore we expand the system L; of linear
inequalities to a linear programming problem LP; in canonical form by adding the
optimization requirement

m
minimize E E (uf +vf).
i=1 p output

node in A

The algorithm LEARN employs an efficient algorithm for linear programming
(e.g. the ellipsoid algorithm, see [PS]) in order to compute in altogether polynomially
in m,s and n many steps an optimal solution for each of the linear programming
problems LPy,..., LP,,). Note that we assume that s is sufficiently large so that

all architectural parameters of NV (respectively N) are from Q,.

We write h; for the function from R* into R' that is computed by ./\A/'[g]é for the
‘l m

optimal solution ¢, 3 of LP;. The algorithm LEARN computes — S k(i) — yillh
=1

fory=1,....p(m). Let 7 be that index for which this expression has a minimal value.
Let ¢, é be the associated optimal solution of L P (i.e. N[é]g computes h:). LEARN

employs the previously described backwards transformation from é,é into values &

for the programmable parameters of N such that Vz € Rk(./vé(g) = N[é]é(g))
These values & are given as output of the algorithm LEARN.

17

We will show that & := h; satisfies condition (2), i.e.

1 & 2) o
SR (R FECR S sl CER RS
=1 a € Q
In fact we will show that % satisfies the stronger inequality, where (1 — %) WORT
replaced by 0. Fix some o’ € Q) with

mZHNQ —yilh = inf ZHNQ — yilh-
a € QY

Let o' consist of corresponding values from Q, such that Vz € R* (/\/”’() ./\7al())-
According to the previously described construction one can transform o into para-
meters ¢, B from Qg gy such that Va € Rl‘“(/\/a (z) = N[c]%(z)). We use here
our d&bumptlon that all architectural parameters in N have values in Q,. Since
by definition of the transformation from A into N we delete initial segments of N
below edges with weight 0 in o/, we can assume ¢ > 0 for all remaining scaling
parameters ¢ in c.

It follows that for these values of ¢, 3 each term that represents the input of
some gate g in ./\A/'[g]ﬁ for some network input from Qi has a value in Q,,/, for p :=
2(s- size(./\/))depth(N)_ (8% - depth(N) - (k + 2) - n). Hence whenever the input s; of
some gate g in N[12 satisfies for some network input from QF the strict inequality

“s1 < s9” (for some threshold s, of this gate g), the inequality “s; + 277 < 557
is also satisfied. Analogously each scaling parameter ¢ > 0 in ¢ satisfies ¢ > 277,
These observations imply that the values for the parameters ¢, 3 that result by

the transformation from o give rise to a feasible solution for one of the linear

programming problems LP;, for some j € {1,...,p(m)}. The cost Z > (w4

2=1 v output

node in N
v¥) of this feasible solution can be chosen to be Y- [N (z;) —yi|| (for each i, v set at
=1 _ -
least one of u?, v¥ equal to 0). This implies that the optimal solution of L P; has a cost

ofatmostZHN—(i) —yill1- HencewehaveZHh(i) — y2||1<2||/\/—(i) —yillh

by the deﬁnltlon of algorithm LEARN. Therefore the desired 1nequahty (2) follows
from (3). This completes the proof of Theorem 2.1. |

Remark 2.7 The algorithm LEARN can be speeded up substantially on a par-
allel machine. Furthermore if the individual processors of the parallel machine are
allowed to use random bits, hardly any global control is required for this paral-
lel computation. The number of processors that are needed can be bounded by
O(w) - poly(n, s). Each processor picks at random one of the systems L; of linear
inequalities and solves the corresponding linear programming problem LP;. Then

m

the parallel machine compares in a “competitive phase” the costs Y ||h;(z;) — yil|1
=1 _ -

18

of the solutions h; that have been computed by the individual processors. It outputs
the weights & for A that correspond to the best ones of these solutions h;.

In this parallelized version of LEARN the only interaction between individual
processors occurs in the competitive phase. Even without any coordination between
individual processors one can ensure that with high probability each of the relevant
linear programming problems LP; for j = 1,...,p(m) is solved by at least one
of the individual processors, provided that there are slightly more than p(m) such
processors with random bits. Each processor simply picks at random one of the
problems L P; and solves it. It turns out that the computation time of each individual
processor (and hence the parallel computation time of LEARN) is polynomial in m
and in the total number w of weights in N . The construction of the systems L; (for
J=1,...,p(m)) in the proof of Theorem 2.1 implies that only polynomially in m
and w many random bits are needed in order to choose randomly one of the linear
programming problems LP;, j = 1,...,p(m). Furthermore with the help of some
polynomial time algorithm for linear programming each problem LP; can be solved
with polynomially in m and w many computation steps.

The total number of processors for this parallel version of LEARN is simply
exponential in w. However even on a parallel machine with fewer processors the
same randomized parallel algorithm gives rise to a rather interesting heuristic learn-
ing algorithm. Such a “scaled-down” version of LEARN is no longer guaranteed
to find probably an approximately optimal weight setting in the strict sence of the
PAC-learning model. However it may provide satisfactory performance for a real
world learning problem in case that not only a single one, but a certain fraction of
all linear programming problems LP; yields for this learning problem a satisfactory
solution. One may compare this heuristic consideration with the somewhat analo-
gous situation for backprop, where one hopes that for a certain fraction of randomly
chosen initial settings of the weights one is reasonably close to a global minimum of
the error function.

3 Learning on Neural Nets with Piecewise Poly-
nomial Activation Functions

In this section we extend the learning result from section 2 to high order network
architectures with piecewise polynomial activation functions.

Theorem 3.1 Let N be some arbitrary high order nelwork architecture with k
inputs and 1 outputs. We assume that all activation functions of gates in N are
piecewise polynomial with architectural parameters from Q. Then one can construct
an associated first order network architecture N with activation functions from the
class {heaviside, v +— x, x +— x*} such that the same learning property as in

Theorem 2.1 holds.

19

Remark 3.2 Analogously to Remark 2.3 d) one can also formulate the result
of Theorem 3.1 in terms of the strong version of the PAC-learning model from
Definition 2.2. Furthermore on a parallel machine one can speed up the learning
algorithm that is constructed in the proof of Theorem 3.1 in the same fashion as
described in Remark 2.7 for the piecewise linear case.

Proof of Theorem 3.1: The only difference to the proof of Theorem 2.1 lies
in the different construction of the “learning network” A'. One can easily see that
because of the binomial formula y -z = 1 ((y 4+ 2)? — y* — 2?) all high order gates in
N can be replaced by first order gates through the introduction of new first order
intermediate gates with activation function z — x%. Nevertheless the construction
of N is substantially more difficult compared with the construction in the preceding
section. Piecewise polynomial activation functions of degree > 1 give rise to a new
source of non-linearity when one tries to describe the role of the programmable
parameters by a system of inequalities. Assume for example that ¢ is a gate on
level 1 with input a;z; + aszz and activation function 79(y) = y*. Then this
gate g outputs afa? + 2aa9 29 + a3, Hence the variables ay, ap will not occur
linearly in an inequality which describes the comparison of the output of ¢ with
some threshold of a gate at the next level. This example shows that it does not
suffice to push all nontrivial weights to the first level. Instead one has to employ
a more complex network construction which was introduced for a different purpose
(it had been introduced in order to get an a-priori bound for the size of weights in
the proof of Theorem 3.1 in [M 93a], see [M 93b] for a complete version).

That construction does not ensure that the output of the network architecture N
is for all values of its programmable parameters contained in [by, by)' if the ranges of
the activation functions of all output gates of N are contained in [by, by]. Therefore
we supplement the network architecture from the proof of Theorem 3.1 in [M 93a]
by adding after each output gate of that network a subcircuit which computes the
function

b , if z<b
VAl d z 5 if bl S 4 S bQ
by , if 2z > by

This subcircuit can be realized with gates that use the heaviside activation function,
gates with the activation function z — =z, and “virtual gates” that compute the
product (y,z) — y-z. These “virtual gates” can be realized with the help of 3
gates with activation function z +— z* via the binomial formula (see above). The
parameters by, by of this subcircuit are treated like architectural parameters in the

subsequent linear programming approach, since we want to keep them fixed.

Regarding the size of the resulting network architecture N we would like to
mention that the number of gates in N is bounded by a polynomial in the number
of gates in N and the number of polynomial pieces of activation functions in N,
provided that the depth of AV, the order of gates in V', and the degrees of polynomial

pieces of activation functions in A are bounded by a constant.

20

The key point of the resulting network architecture N is that for fixed network
inputs the conditions on the programmable parameters of A" can be expressed by
linear inequalities, and that any function that is computable on \ is also computable
on N. Apart from the different construction of N the definition and the analysis of
the algorithm LEARN proceeds analogously as in the proof of Theorem 2.1. Only the

.3 depth(]\/)'

parameter p is defined here slightly differently by p := size(N) - (n + s)
If one assumes that all architectural parameters of A as well as by, b, are from
Q,, one can show that any function A : R* — R’ that is computable on N with
programmable parameters form Q, can be computed on N with programmable
parameters from Q_ depth(xy - Furthermore any linear inequality “s; < s,” that arises
in the description of this computation of 2 on N for an input from QF (where s1, $2
are gate inputs, respectively thresholds) can be replaced by the stronger statement
“s1 + 277 < s9”. This observation justifies the use of the parameter p in the linear
programming problems that occur in the design of the algorithm LEARN. Note that
in contrast to the proof of Theorem 2.1 there are no scaling factors involved in these
linear programming problems (because of the different design of ./\7)

Since N contains gates with the heaviside activation function, the algorithm
LEARN has to solve not only one, but polynomially in m many linear programming
problems (analogously as in the proof of Theorem 2.1). |

4 Conclusion

It has been shown in this paper that positive theoretical results about efficient PAC-
learning on neural nets are still possible, in spite of the well known negative results
about learning of boolean functions with many input variables ([J], [BR], [KV]).

In the preceding negative results one had carried over the traditional asymptotic
analysis of algorithms for digital computation, where one assumes that the number
n of boolean input variables goes to infinity. However this analysis is not quite ad-
equate for many applications of neural nets, where one considers a fized neural net
and the input is given in the form of relatively few analog inputs (e.g. sensory data).
In addition for many practical applications of neural nets the number of input vari-
ables 1s first reduced by suitable preprocessing methods. For such applications of
neural nets we have shown in this paper that efficient and provably successful learn-
ing is possible, even in the most demanding refinement of the PAC-learning model.
In this most realistic version of the PAC-learning model no a-priori assumptions
are required about the nature of the “target function”, and arbitrary noise in the
input data is permitted. Furthermore this learning model is not restricted to neural
nets with boolean output. Hence our positive learning results are also applicable to
the learning resp. approximation of complicated real valued functions, such as they
occur for example in process control.

The proofs of the main theorems of this paper (Theorems 2.1 and 3.1) employ

21

rather sophisticated results from statistics and algebraic geometry in order to pro-
vide a bound not just for the apparent error (i.e. the error on the training set)
of the trained neural net, but also for its true error (i.e. its error on new exam-
ples from the same distribution). In addition, these positive learning results employ
rather nontrivial variable transformation techniques in order to reduce the nonlinear
optimization problem for the weights of the considered multilayer neural nets to a
family of linear programming problems. The new learning algorithm LEARN that
we introduce solves all of these linear programming problems, and then takes their
best solution in order to compute the desired assignment of weights for the trained
neural net.

This paper has introduced another idea into the theoretical analysis of learn-
ing on neural nets that promises to bear further fruits: Rather than insisting on
designing an efficient learning algorithm for every neural net, we design learning al-
gorithms for a subclass of neural nets N whose architecture is particularly suitable
for learning. This may not be quite what we want, but it suffices as long as there are
arbitrarily “powerful” network architectures A" that support our learning algorithm.
It is likely that this idea can be pursued further with the goal of identifying more
sophisticated types of special network architectures that admit very fast learning
algorithms.

Acknowledgements

I would like to thank Peter Auer, Phil Long, Hal White and two anonymous referees
for their helpful comments.

References

[BH] E. B. Baum, D. Haussler, “What size net gives valid generalization?”,
Neural Computation, vol. 1, 1989, 151 - 160

[BR] A. Blum, R. L. Rivest, “Training a 3-node neural network is NP-
complete”, Proc. of the 1988 Workshop on Computational Learning
Theory, Morgan Kaufmann (San Mateo, 1988), 9 - 18

[BEHW] A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth, “Learn-
ability and the Vapnik-Chervonenkis dimension”, J. of the ACM, vol.
36(4), 1989, 929 - 965

[C] T. M. Cover, “Capacity problems for linear machines”, in: Paltern

Recognition, L. Kanal ed., Thompson Book Co., 1988, 283 - 289

22

[GJ]

M 92]

[M 93a]

[M 93b)]

[M 93¢]

[M 94]

P. Goldberg, M. Jerrum, “Bounding the Vapnik-Chervonenkis dimen-
sion of concept classes parameterized by real numbers”, preprint (Feb-

ruary 1993).

D. Haussler, “Decision theoretic generalizations of the PAC model for
neural nets and other learning applications”, Information and Com-

putation, vol. 100, 1992, 78 - 150

D. Haussler, M. Kearns, N. Littlestone, R. E. Schapire, “Equivalence
of models for polynomial learnability”, Information and Computation,

vol. 95, 1991, 129 - 161

J. S. Judd, “Neural Network Design and the Complexity of Learning”,
MIT-Press (Cambridge, 1990)

M. Kearns, L. Valiant, “Cryptographic limitations on learning boolean
formulae and finite automata”, Proc. of the 21st ACM Symposium on
Theory of Computing, 1989, 433 - 444

M. Kearns, R. E. Schapire, “Efficient distribution free learning of
probabilistic concepts”, Proc. of the 31st IEEE Symposium on Foun-
dations of Computer Science, 1990, 382 - 391

M. J. Kearns, R. E. Schapire, L. M. Sellie, “Toward efficient agnostic
learning”, Proc. of the 5th ACM Workshop on Computational Learn-
ing Theory, 1992, 341 - 352

R. P. Lippmann, “An introduction to computing with neural nets”,

IEEE ASSP Magazine, April 1987, 4 - 22

W. Maass, “Bounds for the computational power and learning com-
plexity of analog neural nets”, IIG-Report 349 of the Technische Uni-
versitat Graz, (October 1992).

W. Maass, “Bounds for the computational power and learning com-
plexity of analog neural nets” (extended abstract), Proc. of the 25th
ACM Symposium on Theory of Computing, 1993, 335 - 344

W. Maass, “Computing on analog neural nets with arbitrary real
weigths”, submitted for publication

W. Maass, “Agnostic PAC-learning of functions on analog neural
nets” (extended abstract), Advances in Neural Information Processing

Systems, vol. 6, Morgan Kaufmann (San Mateo, 1994), 311 - 318

W. Maass, “Perspectives of Current Research about the Complexity
of Learning on Neural Nets”, to appear in Theorelical Advances in
Neural Computation and Learning, V. P. Roychowdhury, K. Y. Siu,
A. Orlitsky eds., Kluwer Academic Publishers

23

W. Maass, “Vapnik-Chervonenkis Dimension of Neural Nets”, to ap-
pear in the Handbook of Brain Theory and Neural Nelworks, M. A.
Arbib ed., MIT-Press

J. Milnor, “On the Betti numbers of real varieties”, Proc. of the Amer-

ican Math. Soc., vol. 15, 1964, 275 - 280

C. H. Papadimitriou, K. Steiglitz, “Combinatorial Optimization: Al-
gorithms and Complexity”, Prentice Hall (Englewood Cliffs, 1982)

D. Pollard, “Empirical Processes: Theory and Applications”, NSF-
CBMS Regional Conference Series in Probability and Statistics, vol.
2, 1990

J. Renegar, “On the computational complexity and geometry of the
first order theory of the reals, Part 17, J. of Symbolic Computation,
vol. 13, 1992, 255 - 299

D. E. Rumelhart, J. .. McClelland, “Parallel Distributed Processing:
Exploration in the Microstructure of Cognition, volume 1: Founda-

tions”, MIT-Press, 1986

J. E. Savage, “The Complexity of Computing”, Wiley (New York,
1976)

L. G. Valiant, “A theory of the learnable”, Comm. of the ACM, vol.
27,1984, 1134 - 1142

24

