Electronic Colloquium on Computational Complezity
ECCC TECHNICAL REPORTS SERIES 1994 REPORT NR: TR94-021

My Favorite Ten Complexity Theorems of
the Past Decade

Lance Fortnow!

Received December 22, 1994

Abstract. We review the past ten years in computational complexity theory by
focusing on ten theorems that the author enjoyed the most. We use each of the
theorems as a springboard to discuss work done in various areas of complexity
theory.

Keywords: Computational Complexity

! Department of Computer Science, The University of Chicago, 1100 East 58th Street, Chicago,
lllinois 60637. Email: fortnow@cs.uchicago.edu. Partially supported by NSF grant CCR 92-
53582.

Online access for ECCC:

FTP: ftp.eccc.uni-trier.de:/pub/eccc/

WWW: http://www.eccc.uni-trier.de/eccc/

Mail to: ftpmail@ftp.eccc.uni-trier.de,subject "MAIL ME CLEAR”, body "pub/eccc/ftpmail.txt”

1 Introduction

Just about ten years ago, in the spring of 1985, T enrolled in a graduate compu-
tational complexity course taught by Juris Hartmanis at Cornell. That course
marked the beginning of study and research in computational complexity that
has been a major part of my life ever since.

As a decade has passed, I find it useful to review where complexity theory
has come during those years. I have found that complexity theory has flourished
during that time. No twenty page paper could possibly do justice to the past
ten years in complexity theory.

Instead I have taken a different approach. I have isolated ten theorems that I
have enjoyed the most during the past decade following a few self-imposed guide-
lines (See Section 1.1). T have then used these theorems as a basis to describe
many other results in complexity theory using each theorem as a springboard
into a subarea of computational complexity.

Please note that each area could have a twenty page survey of its own. I
cannot possibly mention all the important results in any given area. Nor am |
able to bring in all the different subareas in complexity theory.

I have found the past ten years in complexity theory quite exciting. Circuit
complexity has come of age during the past ten years and has provided us
with a rich source of combinatorial problems. Interactive proof systems have
surprised us all with their ability to use randomness to simulate alternation and
their important connections to program testing and hardness of approximation
algorithms. Algebraic techniques now seem to pervade all areas of complexity
especially circuit complexity, interactive proof systems and counting complexity.
We have also seen a lot of interest in probabilistic computation both in its power
in interactive proof systems and the many successful attempts to reduce and
eliminate randomness in various computation models.

Computational complexity theory has had steady growth since its inception
in the ’60s. T would guess that the number of active researchers in computational
complexity theory has doubled over the past decade. Complexity theory now
has a major conference, The IEFEFE Structure in Complexity Theory Conference,
as well as many smaller conferences and workshops.

However, complexity theory has had its disappointments. We seem no closer
to solving the famous P # NP problem than we were ten years ago. 1 have
found that really only one theorem (Theorem 4) gives us such fundamental re-
sults about complexity classes that would make it into an undergraduate course.
Despite these shortcomings, this paper shows that complexity theory has pro-
vided us with great theorems throughout the past ten years.

1.1 Guidelines

In choosing the ten theorems I used the following guidelines:

e Theorems chosen from the broad area of computational com-
plexity theory: There are several good theorems in other areas of the-
ory and computer science. However, I have my expertise in computational
complexity theory. T would not make a good judge in other areas.

e Theorems chosen from the past ten years: It would not be fair to
judge theorems before 1 was actively involved in complexity theory.

e Theorems chosen for importance of result, originality and diffi-
culty of technique and relationships with other results in com-
plexity theory.

¢ No theorems proven at The University of Chicago: T do not want
to play favorites.

e Theorems chosen for diversity: T wanted to get a representation of
many different areas of complexity theory.

e Theorems chosen as results instead of for people: T did not make
any attempt to choose people, instead T chose results that I enjoyed.

2 The Theorems

We present the ten favorite theorems in rough chronological order.

2.1 Branching Programs

In the last decade we have seen algebra play a much larger role in complexity
theory than ever before. Usually in these results algebra plays no role in the
statement of the theorem but simple algebraic properties lead to very beautiful
results.

No theorem captures this algebraic beauty more than our first theorem, a
surprising characterization of bounded-width branching programs due to Bar-
rington:

Favorite Theorem 1 ([Bar89]) Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC .

A branching program is a rooted directed acyclic graph where each internal
vertex is labelled by a variable name and for each input symbol there is a single
edge leaving that vertex labelled by that symbol. The leaf vertices are labelled
by “Accept” or “Reject”. The machine proceeds along a root to leaf path by
examining the input of the current vertex’s label and then follows the edge
corresponding to the value of that input. The machine accepts or rejects when
it comes to the corresponding leaf vertex.

A language I has bounded-width branching programs if for some &, for all
n there is a width k branching program using n inputs and at most n°(") nodes
that accepts exactly those strings of length n in L.

Recall that NC' consists of the languages accepted by constant fan-in and
logarithmic depth circuits.

One can easily show that every language that accepts bounded-width poly-
size branching programs must lie in NC' by divide and conquer. However, it did
not seem possible to count in a bounded-width program so many believed that
majority, an NC' function, did not have bounded-width branching programs.
In fact, Yao [Yao83] showed a super-polynomial lower bound for width-two
branching programs to compute majority.

Barrington used the fact that S5, the set of permutations on five elements,
formed a nonsolvable group. More precisely there are two five cycles o1 =
(12345) and o2 = (13542) in Ss, such that gioz07 05! = (13254) is a five
cycle. Barrington uses this simple fact to capture the computation of a circuit
by just remembering one of these cycles.

Barrington’s result has some implications for the complexity class PSPACE.
By the Chandra, Kozen and Stockmeyer [CKS81] result relating PSPACE with
alternating polynomial-time, one can view PSPACE computation as a uniform
NC' circuit of polynomial-depth.

Cai and Furst [CF91] showed that every PSPACE language L can be ac-
cepted by a Turing machine that has a polynomial-size “clock”, makes loga-
rithmic space computation then erases all but a few bits of its tape between
clock ticks. They prove their result by simulating an exponentially long but
easily describable bounded width branching program for the NC? circuit that
simulates the PSPACE machine.

Bovet, Crescenzi and Silvestri [BCS92] developed the concept of leaf lan-
guages. Think of a nondeterministic polynomial-time Turing machine M on
input « as generating an exponentially long string M (z) read off of the end of
the computation paths (leaves) of M on x. Given a machine M and a set of
strings A, we define the leaf language L as the set of « such that M (z) is in A.

Hertrampf, Lautemann, Schwentick, Vollmer and Wagner [HLS*93] show
that any language in PSPACE has a leaf language defined via a regular lan-
guage. Their proof uses Barrington’s result by simulating the branching program
with a finite automaton.

2.2 Bounded-Depth Circuits

In the mid-1980’s, theorems about circuits provided great excitement among
complexity theorists. The techniques used in complexity theory before then did
not seem to help prove the big theorems such as P # NP. Many theorists
believed that the new combinatorial and algebraic tools used in circuits could
prove some nontrivial separations in complexity classes.

Although this promise has remained unfulfilled, we have seen several sepa-
ration results in low-level circuit classes as well as many new combinatorial and
algebraic techniques. Because of the vast amount of effort devoted to circuit
complexity in the last decade we devote Sections 2.2 and 2.3 to circuit com-
plexity. Circuit complexity also comes up in connection with many of the other
theorems mentioned in this paper.

The early work in circuit complexity came out of an attempt to create an
oracle to separate the polynomial-time hierarchy from PSPACE. In order to
create such an oracle, an interesting combinatorial problem arose: One would
need to show that a simple problem, like parity, did not have small constant
depth circuits.

Furst, Saxe and Sipser [FSS84] and Ajtai [Ajt83] independently showed
that parity does not have constant-depth polynomial-size circuits. Yao [Yao85]
showed a strong enough bound to get the desired oracle separation. Hastad
greatly simplified Yao’s proof and achieved near tight bounds:

Favorite Theorem 2 ([Has89]) Parity does not have depth d circuits with
less than 2(1/10)n'* gates.

Hastad’s proof used random restrictions where some of the variables in a po-
tential circuit for parity are randomly set to zero or one with some probability.
Hastad’s main “switching” lemma showed that a random restriction of an AND
gate of small OR. gates resulted in an OR. gate of small AND gates. Hastad
then used an inductive argument by converting any depth d circuit claiming to
solve parity into a depth d — 1 circuit for parity. This switching lemma has also
found several other applications subsequently.

Razborov [Raz87] and Smolensky [Smo87] show that for primes p and g¢,
p # ¢, the MOD,, function requires an exponential number of gates for bounded-
depth circuits with AND, OR and MOD, gates. Their proof uses a new idea
of approximating bounded-depth circuits by low-degree polynomials over a finite
field.

Linial, Mansour and Nisan [LMN93] show using Fourier Transform methods
how to approximate bounded-depth circuits by low-degree polynomials over the
rationals and reals. Their proof uses the Hastad switching lemma. Their re-
sult has had some applications in circuit complexity and learning theory. Tarui
[Tar93] shows how to approximate bounded-depth circuits by low-degree poly-
nomials over the integers. His proof uses the Valiant-Vazirani [VV86] lemma
described in Section 2.8 and can be used to give an alternative proof of part of
Theorem 8.

2.3 Monotone Circuits

Hastad’s Theorem (Theorem 2) led hope that circuit complexity could now
lead to perhaps a combinatorial separation of machine-based complexity classes.

Since it is well known that every language in P has polynomial-size circuits, we
could separate P from NP by exhibiting some NP problem that does not have
polynomial-size circuits. We believe that such problems exist because Karp and
Lipton [KL82] showed that if every language in NP has polynomial-size circuits
then the polynomial-hierarchy collapses.

However, proving superpolynomial (or even superlinear) lower bounds for
such an NP problem seems extremely difficult. Razborov looked at answering
this question in a restricted model. In particular, he looked at monotone circuits,
i.e., circuits with no negations or negated variables. Of course a nonmonotone
problem cannot have such circuits so Razborov looked at a monotone NP-
complete problem, Clique:

Favorite Theorem 3 ([Raz85b]) The general clique function requires expo-
nentially large monotone circuits.

Instead of the restriction method used by Hastad (Theorem 2), Razborov
uses an approximation method. Razborov shows how to approximate each
AND and OR. with approximate AND and approximate OR.. Each approxi-
mation cannot cause too many errors in the inputs. However, he shows the final
approximated circuit must error in many inputs. Razborov then concludes that
the circuits must have had lots of gates. Alon and Boppana [AB87] strengthen
Razborov’s bounds.

Initially, many thought that perhaps we could extend these techniques into
the general case. Now it seems that Razborov’s theorem says much more about
the weakness of monotone models than about the hardness of NP problems.
Razborov [Raz85a] showed that matching also does not have polynomial-size
monotone circuits. However, we know that matching does have a polynomial-
time algorithm [Edm65] and thus polynomial-size nonmonotone circuits. Tardos
[Tar88] exhibited a monotone problem that has an exponential gap between its
monotone and nonmonotone circuit complexity.

Other results on monotone complexity come out of communication com-
plexity. Karchmer and Wigderson [KW90] show a direct connection between a
communication complexity game and circuit depth. They use this characteriza-
tion to show that graph connectivity requires Q(log2 n) depth in polynomial-size
monotone circuits. Razborov [Raz90] uses more general matrix methods to prove
similar lower bounds for other problems. Raz and Wigderson [RW92] show that
monotone circuits for matching require linear depth.

We also have seen several arguments that the techniques used in Theorems 2
and 3 will not help us settle the big questions like P = NP. Razborov [Raz89]
himself showed that approximation techniques like those used in the proof of
Theorem 3 will not work in the general case. Razborov [Raz94] later shows a
fragment of arithmetic strong enough to prove Theorems 2 and 3 cannot show
that NP does not have polynomial-size circuits. Razborov and Rudich [RR94]
show that under a strong cryptographic assumption, combinatorial proofs ful-

filling certain largeness and constructivity properties cannot show that NP does
not have polynomial-size circuits.

This last decade started with the promise of great separation results using
combinatorial techniques but ends finding us no closer to solving the big open
questions in complexity theory.

2.4 Nondeterministic Space

We usually use many factors to determine the “quality” of a result. If we look
solely at the importance of the statement of the theorem one result stands out.
Immerman and Szelepcsényi independently proved the following fundamental
theorem about nondeterministic space complexity:

Favorite Theorem 4 ([Imm88, Sze88]) Nondeterministic Space is closed un-
der complementation.

From the very beginnings of complexity theory, theorists have thought hard
about the relationship among the various deterministic and nondeterministic
time and space classes. The fundamental theorems in complexity theory re-
late these classes, such as the basic time and space hierarchy theorems due to
Hartmanis and Stearns [HS65] in 1965.

While the relationships between deterministic and nondeterministic time
classes remain the single most important open area in complexity, we know much
more about the related space complexity questions. In 1970, Savitch [Sav70]
showed that one can simulate a S(n) space nondeterministic Turing machine
by a S?(n) space deterministic machine. Thus, for example, NPSPACE =
PSPACE.

In the two and a half decades since, no one has improved upon this quadratic
increase from nondeterministic to deterministic space. From Immerman and
Szelepcsényi, we do get that only a linear blow up going from nondeterministic
(existential) space to conondeterministic (universal) space.

We can think of the computation of a s(n) space-bounded Turing machine M
on input z as a directed graph G on 2°¢(21)) nodes where each node represents
a configuration of M () and each edge represents a transition. Note that M (z)
accepts if and only if there is a directed path from the initial configuration to
an accepting configuration.

The proof of Theorem 4 uses inductive counting to show that there is no
path from s to ¢ in an n-node graph in nondeterministic O(logn) space. For a
directed graph GG and a node s of GG define the value ¢; as the number of nodes
reachable from s in G by a path of length at most i. They show how using a
nondeterministic log space machine they can verify the value of ¢; inductively
as ¢ goes from 0 to n. They can then use ¢, to determine if a node ¢ is not
reachable from node s.

Though Immerman and Szelepcsényi have similar proofs, they each went
about this theorem from different angles. Immerman has built up a theory

giving logical characterizations of complexity classes. Immerman looked at a
characterization of nondeterministic logarithmic space (NL) as sets of languages
describable by first-order expressions with transitive closure. Immerman showed
that having first-order with the complement of transitive closure led to the same
class. He then translated this proof to show that NL = coNL and then that
all nondeterministic space classes are closed under complementation.

Szelepcsényi looked at the question of whether context sensitive languages
are closed under complement. This was one of the few open formal languages
questions in Hopcroft and Ullman [HU79]. TLandweber [Lan63] showed that
context sensitive languages accepted exactly those sets in nondeterministic linear
space. Thus by proving that nondeterministic space is closed under complement,
Immerman and Szelepcsényi also showed that context sensitive languages are
closed under complementation.

Borodin, Cook, Dymond, Ruzzo and Tompa [BCD189b] extended the in-
ductive counting arguments used in the proof of Theorem 4 to show two other
results:

1. LOGCFL, the class of languages log-space reducible to context-free lan-
guages, is closed under complementation.

2. Undirected s—t connectivity has an errorless log-space expected polynomial-
time probabilistic algorithm.

2.5 Cryptographic Assumptions

In another trend during the past decade, researchers have looked at complexity
issues arising from cryptography. Cryptographers used many different hardness
assumptions in order to prove the security of their various protocols. Some
complexity theorists looked at the relative hardness of these assumptions.

Cryptographers designed their protocols with either hardness assumptions
about particular languages like factoring or discrete logarithm, or with some
general assumption. Usually a general assumption took one of the following
three forms:

1. One-way functions exist.
2. Pseudorandom generators exist.
3. Trap-door functions exist.

We will not define these notions formally in this paper, but keep in mind that
cryptographers usually require that hardness occurs for most inputs. It was well
known that the second two assumptions imply the first but ten years ago the
other directions remained open.

Impagliazzo, Levin and Luby settled one relationship:

Favorite Theorem 5 ([ILL89]) Pseudorandom generators can be constructed
from any one-way function.

This problem has a very interesting history. Blum and Micali [BM84] show how
to create pseudorandom generators based on the hardness of discrete logarithm.
Yao [Yao82] generalizes their algorithm to create a generator based on any one-
way permutation. Levin [Lev87] shows a technical one-way property of functions
that he can use to create secure pseudorandom generators. Goldreich, Krawczyk
and Luby [GKL93] show how to convert a “regular” one-way function to a
pseudorandom generator. Impagliazzo, Levin and Luby then showed Theorem 5.
Finally, Hastad [Has90] extended the techniques of Impagliazzo, Levin and Luby
to show how to construct pseudo-random functions from any uniformly one-way
function.

The proof of Theorem 5 uses a new idea of computational entropy. In other
words, they use a one-way function to create a distribution that may not have
large real entropy or randomness but does have large entropy in a computational
sense. They then use this pseudoentropy distribution to create the pseudoran-
dom generator. Their techniques make important use of a result of Goldreich
and Levin [GL89] that shows how to get a “hard-core” bit out of any one-way
function.

The relationship between one-way functions and trap-door functions appear
much more difficult to resolve. Impagliazzo and Rudich [TR89] give some rela-
tivization results that shed light on this difficulty.

2.6 Isomorphism Conjecture

Back in the late 70’s, Berman and Hartmanis [BH77] looked at the structure of
the known NP-complete sets via many-one reductions. They developed some
conditions under which one could show two sets were isomorphic, i.e., there
existed a polynomial-time computable polynomial-time invertible bijection re-
ducing one to the other. They then showed that all the NP-complete problems
known at that time were isomorphic. They conjectured that all NP-complete
problems are isomorphic. Since their conjecture implies P # NP (or one would
have finite sets isomorphic to infinite sets) they thought that maybe that difficult
problem could be attacked by looking at the structure of complete sets.

The isomorphism conjecture would imply that every NP-complete set A has
exponential density, i.e., for all n, |[A N 2<?| > gn), Mahaney [Mah82] gave
some evidence to this direction by showing that there are no sparse (polynomial
dense) NP-complete sets unless P = NP.

What about complete sets via other notions of reductions. Karp and Lipton
[KL82] show that if there exist sparse sets NP-hard via Turing reductions then
the polynomial-time hierarchy collapses to the second level. However, what kind

of reductions to sparse sets can we rule out by only assuming P # NP?

Many people tried extending the techniques of Mahaney. Ogiwara and
Watanabe made large progress with a brand new trick to solve the problem
for bounded truth-table reductions, i.e., nonadaptive reductions that make a
constant number of queries to the set.

Favorite Theorem 6 ([OWO91]) There are no sparse sets hard for NP wia
polynomual-time bounded truth-table queries unless P = NP.

The proof uses a new technique known as “left-sets”. For a satisfiable formula,
Ogiwara and Watanabe create a step function based on the lexicographically
least witness. They then use the reduction to find this step and thus a witness.

Homer and Longpré [HL94] give a very clear proof of Theorem 6 with
stronger bounds.

Complexity theorists have proven many other interesting results relating
to the isomorphism conjecture in the past decade. Joseph and Young [JY85]
conjecture that one could use certain one-way functions to create NP-complete
sets nonisomorphic to SAT. Ko, Long and Du [KLD87] show that one-way
functions exist if and only if there exist two sets reducible to each other via
injective length-increasing reductions but not isomorphic to each other. Kurtz,
Mahaney and Royer [KMR&9] show that relative to a random oracle, those two
sets could be NP-complete. On the other hand, Hartmanis and Hemachandra
[HH91] show that there exists a relativized world where no one-way functions
exist but the isomorphism conjecture fails.

Kurtz, Mahaney and Royer [KMR88] show there exists some set such that all
sets many-one equivalent to it are isomorphic to it. Fenner, Fortnow and Kurtz
[FFK92] give a relativized world where all the NP-complete sets are isomorphic,
i.e., the Berman-Hartmanis conjecture holds.

2.7 Simulating Randomness

Probabilistic computation has played a major role in complexity theory during
the last decade. In Section 2.10 we will see how interactive proof system models
use randomness as a powerful verification tool. In this section we will look at
an opposite approach—to look at how we can reduce or eliminate randomness
from some computational models.

We have seen many important results in this area over the past decade.
Noam Nisan has played an important role in many of these results so in this
section I would like to highlight one of his more general results:

Favorite Theorem 7 ([Nis92a]) For any r(n) and s(n) there ezxists a pseu-
dorandom generator that converts a random seed of length O(s(n)logr(n)) to
r(n) bits that looks random to any algorithm using s(n) space.

Nisan’s generator builds on universal hashing, a technique to generate pairwise
independence (or close to it) without using many random bits. Nisan then builds
a random string by recursively applying a specific universal hash function.

Theorem 7 has important applications to the problem of universal traversal
sequences. Aleliunas, Karp, Lipton, Lovasz and Rackoff [AKLT79] show that
for every n there exist polynomial in n length universal traversal sequences
that traverse every connected undirected graph on n nodes. Constructing such
sequences has remained an important open question. Istrail [Ist88] requires
a difficult proof just to show a constructible sequence for cycles. Theorem 7
implies that n®(°8") length universal traversal sequences can be constructed in
O(log” n) space.

Nisan [Nis92b] extends the techniques of Theorem 7 to show that every
language accepted in randomized logarithmic space like undirected graph con-
nectivity can be accepted by a deterministic Turing machine running in polyno-
mial time and O(log” n) space. Also building on the generator from Theorem 7,
Nisan, Szemerédi and Wigderson [NSW92] show that undirected connectivity
can be computed in O(logl‘5 n) space.

Nisan and Zuckerman [NZ93] show how to simulate any randomized s(n)
space bounded Turing machine that uses poly(s(n)) random bits in deterministic
space s(n). Their proof uses a procedure that extracts randomness from a
defective random source using a small additional number of truly random bits.

Suppose we had a probabilistic algorithm A that gave the correct answer
with probability 2/3 using r random coins. If we wanted to get this probability
up to 1 —27% we can use the standard trick of running A O(k) times and taking
majority vote. However, this method will take O(nk) random coins.

Can we achieve the same result using fewer random coins? Impagliazzo and
Zuckerman [IZ89] give a tight answer to this question. They show how to achieve
the 1 — 27% error using only O(n + k) random coins. Their proof uses a new
idea of taking a random walk on an expander graph.

2.8 Counting Complexity

In 1979, Valiant [Val79a] looked at the question of computing the permanent of
a matrix. Unlike the determinant where we knew polynomial-time algorithms,
the permanent seemed a much more difficult problem to handle.

In order to capture the power of the permanent, Valiant developed a new
function class #P. A function is in #P if there exists a nondeterministic
polynomial-time Turing machine M such that f(z) equals the number of ac-
cepting computations of M (z). Valiant showed that the permanent is #P-
complete. In future work, Valiant [Val79b] showed that several other natural
counting questions are F#£P-complete.

Clearly, #P functions are hard for NP. But we knew little about their
relationship to other complexity classes. In perhaps the best complexity result of
the last decade, Toda showed a surprising relationship between the polynomial-
time hierarchy and #P functions:

10

Favorite Theorem 8 ([Tod91]) FEuvery language in the polynomial-time hier-
archy can be reduced in polynomial-time to a single query of a #P function.

In other words, one can use counting to simulate a constant number of alterna-
tions.

Toda’s proof uses several new and exciting ideas making this theorem one
of the prettiest structural complexity results in the last decade. Toda actually
proves two separate theorems. First he shows how to randomly reduce every
language in the polynomial-time hierarchy to a @P question, where L € P if
there exists a #P function f where @ € L if and only if f(z) is odd. Then Toda
shows how to reduce languages probabilistically reducible to @P to a single #P
question.

Valiant and Vazirani proved the following extremely useful lemma:

Lemma 1 [VV86] There exists a random reduction v mapping CNF formulas
to CNF formulas such that for all formulas ¢ of n variables

1. If ¢ is not satisfiable then (@) is never satisfiable.

2. If ¢ 1is satisfiable then with probability at least ﬁ, () has exactly one
satisfying assignment.

Papadimitriou and Zachos [PZ83] show that ®P%F = P, ie. a ®P ma-
chine that asks arbitrary @P questions to an “oracle”.

Toda uses Lemma 1 in a novel way combined with the Papadimitriou and
Zachos result to show how to probabilistically reduce every NP language to a
@P language. Toda then uses a nice induction again with some new tricks to
show that every language in PH (the polynomial-time hierarchy) probabilisti-
cally reduces to a @P set.

Toda then shows for any polynomial ¢, how to modify a # P function f to
a new function g such that f(z) mod 2 = g(x) mod 24(12) for all 2 € ¥*. Using
this fact, Toda can combine the randomness and the ®P question into a single
#P question thus completing his proof.

Toda’s theorem sparked renewed interest in counting complexity. Much of
the work has centered on classes defined by counting functions. We will discuss
this work in Section 2.9.

Toda’s result also has implications in circuit complexity. Allender [Al189]
shows how to use Toda’s proof to show that every constant depth circuit has an
equivalent depth-three quasipolynomial-size threshold circuit. The class ACC
consists of those circuits accepted by bounded depth circuits with AND, OR
and MOD, gates where ¢ is a fixed integer not necessarily prime. Yao [Yao90]
and Beigel and Tarui [BT91] extend the ideas of Theorem 8 to show that every
language in ACC is recognized by depth-two circuits with a symmetric (inde-
pendent of input order) gate at the root and quasipolynomial AND gates of
polylog fan-in at the leaves.

11

Fenner, Fortnow and Kurtz [FFK94] developed the notion of GapP. The
function class GapP consists of functions f(x) where there exists a nondeter-
ministic polynomial-time Turing machine M where f(z) is equal to the num-
ber of accepting paths of M (z) minus the number of rejecting paths of M ().
Equivalently, GapP consists of the closure of P functions under subtraction.
Fenner, Fortnow and Kurtz show that many of the #P closure properties also
hold for GapP and that looking at GapP functions simplified many counting
complexity arguments.

Toda and Ogiwara [TO92] extend part of Toda’s work to show that every
function in GapPPH probabilistically reduces to a GapP function. Their result
shows that in addition to @P, PH probabilistically reduces to many other
counting classes such as PP (see Section 2.9).

Toda’s result leads to one of the more intriguing open questions to arise
in the last decade: Does P#F = PSPACE? In other words, can counting
simulate polynomial alternations?

2.9 Counting Classes

As described in Section 2.8, counting complexity played a major role in com-
plexity theory in the past decade. Instead of asking whether an NP question
has a solution, we now ask how many. In Section 2.8 we looked at the com-
plexity of functions defined this way. In this section we will look at complexity
classes based on counting functions.

Gill [Gil77] in his seminal paper on probabilistic complexity classes defined
the basic probabilistic classes that we look at today including the class PP
- Probabilistic Polynomial-time. The class PP consists of those languages ac-
cepted by probabilistic polynomial-time Turing machines that accept with prob-
ability greater than a half.

This class also plays an important role in counting complexity. A language
L is in PP if there is some nondeterministic polynomial-time Turing machine
M such that z is in L if and only if the accepting paths of M (z) outnumber the
rejecting paths or equivalently when some GapP function f(z) is greater than
7er0.

Such a class contains NP. By binary search, one can show that PP = P#F,
Thus by Theorem 8, we have that PH C PFF and thus if PP C PH then the
polynomial-time hierarchy collapses.

Clearly PP is closed under complementation but surprisingly there is no
easy way to show that PP is closed under intersection. That question remained
open until the ’90s when Beigel, Reingold and Spielman showed us that PP
does indeed have this closure property.

Favorite Theorem 9 ([BRS94]) PP is closed under intersection.

The proof of Theorem 9 really makes use of the connection between GapP
functions and low-degree polynomials. Beigel, Reingold and Spielman make

12

use of the fact that there exist rational functions that very closely approximate
the absolute value function and use it to create a rational function of GapP
functions that take on a positive value if and only if both GapP functions are
positive. They then show how to test for this condition with a PP predicate.

Fortnow and Reingold [FR91] extend the techniques of Beigel, Reingold and
Spielman to show that PP is closed under truth-table reductions. Beigel [Bei92]
created a very useful oracle relative to which PN ¢ PP and thus PP is not
closed under Turing reductions.

We have seen many other counting classes arise in complexity theory recently.
We unfortunately only have room to review a few of them.

The class ModgP consists of those languages . where there exists a #P
function f such that 2 € L if and only if f(z) modk = 1. Papadimitriou
and Zachos [PZ83] look at the special case of ®P = Mods;P and show that
@PPP = @P. Beigel and Gill [BG92] and Hertrampf [Her90] extend this result
for ModgP where k is prime. We have also already seen the importance that
@P plays in the proof of Theorem 8.

Fenner, Fortnow and Kurtz [FFK94] formalize a notion of complexity classes
defined via GapP functions (see Section 2.8). They define a class SPP where
a language L lies in SPP if there exists a GapP function f such that f(z) =
xr(z). They show that SPP is contained in every reasonable Gap-definable
class.

2.10 Interactive Proof Systems

No review of complexity theory in the past decade could be complete without
mentioning interactive proof systems. In order to keep this section manageable
we will concentrate only on the complexity theoretical aspects of interactive
proof systems. T recognize the importance of many interesting zero-knowledge,
program testing and approximation results that arise from the theory of in-
teractive proof systems but will leave most of the discussion of them to other
surveys.

We highlight the last of the truly great results in interactive proof systems,
a paper by Arora, Lund, Motwani, Sudan and Szegedy that characterizes NP
by a simple verification procedure:

Favorite Theorem 10 ([ALM192]) Every language in NP has a probabilis-
tically checkable proof system where the verifier uses only O(logn) random coins
and asks only a constant number of queries to the proof.

In order to appreciate Theorem 10, we first give a history of the complexity of
interactive proof systems.

Goldwasser, Micali and Rackoff [GMR89] and Babai [Bab85, BM88§] inde-
pendently developed interactive proof systems. The model has an arbitrarily
powerful prover that tries to convince an untrusting polynomial-time proba-
bilistic verifier about whether some string is in a language. Goldwasser and

13

Sipser [GS89] show that the power of the model does not depend on whether or
not the prover can see the verifier’s coins.

A bounded-round interactive proof system only allows a fixed number of
polynomial-length messages between the prover and the verifier. Babai [Bab85]
shows that every bounded-round proof system has an equivalent system consist-
ing of a single message from the verifier followed by a single message from the
prover. Boppana, Hastad and Zachos [BHZ87] show that if every coNP lan-
guage has bounded-round interactive proof systems then the polynomial-time
hierarchy collapses to ¥5. Goldreich, Micali and Wigderson [GMW91] show that
graph nonisomorphism has a bounded-round interactive proof system. As an
immediate corollary, we get that graph isomorphism is not NP-complete unless
the polynomial-time hierarchy collapses.

Feldman [Fel86] showed that in interactive proof systems we can assume
the prover runs in polynomial-space and thus every language accepted by in-
teractive proof systems lies in PSPACE. Lund, Fortnow, Karloff and Nisan
[LFKN92] show that every language in PH has an (unbounded-round) inter-
active proof system. Shamir [Sha92] extends the techniques of Lund, Fortnow,
Karloff and Nisan to show that, every language in PSPACE has an interac-
tive proof system. The proof uses the low-degree structure of some #P and
PSPACE-complete problems. These results are some of the very few known
that do not relativize: Fortnow and Sipser [FS88] exhibit an oracle relative to
which some coNP language does not have an interactive proof system.

Ben-Or, Goldwasser, Kilian and Wigderson [BGKW88] developed a multiple-
prover interactive proof system where many separated provers try to convince
the verifier that a string lies in a language. Fortnow, Rompel and Sipser [FRS94]
showed that every language accepted by such proof systems lies in NEXP.
Babai, Fortnow and Lund [BFL91] showed that every language in NEXP has
such a proof system. Babai, Fortnow and Lund’s proof uses a relativizable form
of the Lund, Fortnow, Karloff and Nisan protocol combined with a multilinearity
test. Feige and Lovdsz [FL92] show that very language in NEXP in fact has a
two-prover one-round proof system.

Arora and Safra [AS92] define a probabilistically checkable proof system where
the prover must write down a perhaps exponentially long proof system that
the polynomial-time probabilistic verifier can check using random access to the
proof. Fortnow, Rompel and Sipser [FRS94] show the equivalence between the
multiple-prover interactive proof system model and an arbitrary probabilisti-
cally checkable proof. Arora, Lund, Motwani, Sudan and Szegedy, building on
ideas of Arora and Safra [AS92], proved Theorem 10.

Arora, Lund, Motwani, Sudan and Szegedy’s result also has implications
for approximation problems. Papaditimitriou and Yannakakis [PY91] define a
class MAXSNP of NP optimization problems such as finding an assignment
that maximizes the number of clauses made true in a formula. A corollary of
the result of Arora, Lund, Motwani, Sudan and Szegedy shows that for every
MAXSNP-hard language L, there is some constant ¢ > 0 such that one could

14

not approximate problems in L within a 1 + ¢ factor unless P = NP.

3 Conclusions

One can draw several interesting conclusions about the theorems on the list:

e No theorem stands alone. Every theorem chosen either has a long line of
results leading up to it and/or has several results that use the theorem or
technique in an important way.

e No one person has dominated complexity theory. Though a few strong
theorists do stand out from the last decade, no single person has proven
more than one of the theorems T have chosen.

e No single country dominates the list. The twenty authors of these ten
results represent no fewer than nine separate countries.

Here’s to hoping that computational complexity theory can achieve as many
great results in the next decade as it has in this past one.

Acknowledgments

I would like to thank Satyanarayana V. Lokam, Dieter Van Melkebeek and
Sophie Laplante for their comments and help on this paper.

References

[AB87] N. Alon and R. Boppana. The monotone complexity of Boolean
functions. Combinatorica, 7(1):1-22, 1987.

[Ajt83] M. Ajtai. ©1-formulae on finite structures. Annals of Pure and Ap-
plied Logic, 24:1-48, 1983.

[AKL*79] R. Aleliunas, R. Karp, R. Lipton, I.. Lovész, and C. Rackoff. Ran-
dom walks, universal traversal sequences, and the complexity of
maze problems. In Proceedings of the 20th IEEE Symposium on
Foundations of Computer Science, pages 218-223. TEEE, New York,
1979.

[A1189] E. Allender. A note on the power of threshold circuits. In Proceed-

ings of the 30th IEEFE Symposium on Foundations of Computer
Science, pages b80-584. IEEE, New York, 1989.

15

[ALM+92]

[AS92]

[Bab85]

[Bar89]

[BCD*89a]

[BCD+89b)

[BCS92]

[Bei92]

[BFLI1]

[BGY2]

[BGKWSS]

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof
verification and hardness of approximation problems. In Proceed-
ings of the 33rd IEEE Symposium on Foundations of Computer
Science, pages 14-23. IEEE, New York, 1992.

S. Arora and S. Safra. Probabilistic checking of proofs: A new
characterization of NP. In Proceedings of the 33rd IEEE Symposium
on Foundations of Computer Science, pages 2-13. IEEE, New York,
1992.

L. Babai. Trading group theory for randomness. In Proceedings of
the 17th ACM Symposium on the Theory of Computing, pages 421—
429. ACM, New York, 1985.

D. Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC'. Journal of Computer and

System Sciences, 38(1):150-164, 1989.
A. Borodin, S. Cook, P. Dymond, L. Ruzzo, and M. Tompa. Erra-

tum: Two applications of inductive counting for complementation

problems. STAM Journal on Computing, 18(6):1283, 1989.

A. Borodin, S. Cook, P. Dymond, I.. Ruzzo, and M. Tompa. Two
applications of inductive counting for complementation problems.
SIAM Journal on Computing, 18(3):559-578, 1989. See also Erra-
tum [BCD*89a).

D. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to
define complexity classes. Theoretical Computer Science, 104:263-
283, 1992.

R. Beigel. Perceptrons, PP and the polynomial hierarchy. In Pro-
ceedings of the 7th IEEE Structure in Complexity Theory Confer-
ence, pages 14-19. TEEE, New York, 1992.

.. Babai, L.. Fortnow, and C. Lund. Non-deterministic exponential
time has two-prover interactive protocols. Computational Complez-
ity, 1(1):3-40, 1991.

R. Beigel and J. Gill. Counting classes: Thresholds, parity, mods,
and fewness. Theoretical Computer Science, 103:3-23, 1992.

M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-
prover interactive proofs: How to remove intractability assump-
tions. In Proceedings of the 20th ACM Symposium on the Theory
of Computing, pages 113-131. ACM, New York, 1988.

16

[BHT77]

[BHZ87]

[BM&4]

[BM8S]

[BRS94]

[BT91]

[CF91]

[CKS81]

[Edm65)

[Fel36]
[FFK92]

[FFK94]

I.. Berman and J. Hartmanis. On isomorphism and density of NP
and other complete sets. SIAM Journal on Computing, 1:305-322,
1977.

R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short
interactive proofs? Information Processing Letters, 25(2):127-132,
1987.

M. Blum and S. Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal on Computing,
13:850-864, 1984.

L. Babai and S. Moran. Arthur-Merlin games: a randomized proof
system, and a hierarchy of complexity classes. Journal of Computer

and System Sciences, 36(2):254-276, 1988.

R. Beigel, N. Reingold, and D. Spielman. PP is closed under in-
tersection. Journal of Computer and System Sciences, 1994. To ap-
pear. Paper also appeared in Proceedings of 23rd STOC conference,
1991, pages 1-9.

R. Beigel and J. Tarui. On ACC. In Proceedings of the 32nd IEEE
Symposium on Foundations of Computer Science, pages T83-792.
IEEE, 1991.

J. Cai and M. Furst. PSPACE survives constant-width bottlenecks.
International Journal of Foundations of Computer Science, 2:67—

76, 1991.

A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of
the ACM, 28(1):114-133, 1981.

J. Edmonds. Paths, trees and flowers. Canadian Journal of Math-
ematics, 17:449-467, 1965.

Feldman. The optimum prover lives in PSPACE. Manuscript, 1986.

S. Fenner, L. Fortnow, and S. Kurtz. The isomorphism conjecture
holds relative to an oracle. In Proceedings of the 33rd IEEE Sym-
positum on Foundations of Computer Science, pages 30-39. IEEE,
New York, 1992.

S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting
classes. Journal of Computer and System Sciences, 48(1):116-148,
1994.

17

[FL92]

[FRI1]

[FRS94]

[FS88]

[FSS84]

[Gil77]

[GKL93]

[GL8Y]

[GMRS9]

[GMWO1]

[GS89]

[Has89]

U. Feige and L. Lovasz. Two-prover one-round proof systems: Their
power and their problems. In Proceedings of the 2/th ACM Sym-
posium on the Theory of Computing, pages 733-744. ACM, New
York, 1992.

I.. Fortnow and N. Reingold. PP is closed under truth-table re-
ductions. In Proceedings of the 6th IEEE Structure in Complexity
Theory Conference, pages 13—15. IEEE, New York, 1991.

L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-
prover interactive protocols. Theoretical Computer Science A, 1994.
To appear.

L.. Fortnow and M. Sipser. Are there interactive protocols for co-NP
languages? Information Processing Letters, 28:249-251, 1988.

M. Furst, J. Saxe, and M. Sipser. Parity, circuits and the
polynomial-time hierarchy. Mathematical Systems Theory, 17:13-
27, 1984.

J. Gill. Computational complexity of probabilistic complexity
classes. STAM Journal on Computing, 6:675-695, 1977.

0. Goldreich, H. Krawczyk, and M. Luby. On the existence
of pseudo-random generators. SIAM Journal on Computing,

22(6):1163-1175, December 1993.

0. Goldreich and L. Levin. A hard-core predicate for all one-way
functions. In Proceedings of the 21st ACM Symposium on the The-
ory of Computing, pages 25-32. ACM, New York, 1989.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge com-
plexity of interactive proof-systems. STAM Journal on Computing,
18(1):186-208, 1989.

O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield noth-
ing but their validity or all languages in NP have zero-knowledge
proof systems. Journal of the ACM, 38(3):691-729, 1991.

S. Goldwasser and M. Sipser. Private coins versus public coins in
interactive proof systems. In S. Micali, editor, Randomness and
Computation, volume 5 of Advances in Computing Research, pages

73-90. JAT Press, Greenwich, 1989.

J. Hastad. Almost optimal lower bounds for small depth circuits. In
S. Micali, editor, Randomness and Computation, volume 5 of Ad-
vances tn Computing Research, pages 143-170. JAI Press, Green-
wich, 1989.

18

[Has90]

[Her90]

[HHY1]

[HL94]

[HLS*93]

[F1S65]

[HUT9]

[TLL89]

[Tmm388§]

[TR89]

[Ist88]

[1Z89]

J. Hastad. Pseudo-random generators under uniform assumptions.
In Proceedings of the 22nd ACM Symposium on the Theory of Com-
puting, pages 395-404. ACM, New York, 1990.

U. Hertrampf. Relations among MOD classes (note). Theoretical
Computer Science, T4:325-328, 1990.

J. Hartmanis and .. Hemachandra. One-way functions and the non-
isomorphism of NP-complete sets. Theoretical Computer Science,

81(1):155-163, 1991.

S. Homer and L. Longpré. On reductions of NP sets to sparse sets.
Journal of Computer and System Sciences, 48(2):324-336, 1994.

U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and
K. Wagner. On the power of polynomial time bit-reductions. In
Proceedings of the 8th IEEFE Structure in Complexity Theory Con-
ference, pages 200-207. TEEE, New York, 1993.

J. Hartmanis and R. Stearns. On the computational complexity
of algorithms. Transactions of the American Mathematical Society,

117:285-306, 1965.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata The-
ory, Languages and Computation. Addison-Wesley, Reading, Mass.,
1979.

R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random number
generation from one-way functions. In Proceedings of the 21st ACM
Symposium on the Theory of Computing, pages 12-24. ACM, New
York, 1989.

N. Immerman. Nondeterministic space is closed under complemen-

tation. SIAM Journal on Computing, 17(5):935-938, 1988.

R. Impagliazzo and S. Rudich. Limits on the provable consequences
of one-way permutations. In Proceedings of the 21st ACM Sympo-
stum on the Theory of Computing, pages 44-61. ACM, New York,
1989.

S. Istrail. Polynomial universal traversing sequences for cycles are
constructible. In Proceedings of the 20th ACM Symposium on the
Theory of Computing, pages 491-503. ACM, New York, 1988.

R. Impagliazzo and D. Zuckerman. How to recycle random bits. In
Proceedings of the 30th IEEE Symposium on Foundations of Com-
puter Science, pages 248-253. IEEE, New York, 1989.

19

[JY85]

[KL.82]

[KL.D87]

[KMRSS]

[KMRS9]

[KW0]

[Lan63]

[Lev8T]

[LFKN92]

[LMN93]

[Mah82]

[Nis92a]

[Nis92b]

D. Joseph and P. Young. Some remakrs on witness functions
for poynomial reducibilities in NP. Theoretical Computer Science,

39:225-237, 1985.

R. Karp and R. Lipton. Turing machines that take advice.
L’Enseignement Mathematique, 28:191-209, 1982.

K. Ko, T. Long, and D. Du. A note on one-way functions
and polynomial-time isomorphisms. Theoretical Computer Science,

47:263-276, 1987.

S. Kurtz, S. Mahaney, and J. Royer. Collapsing degrees. Journal of
Computer and System Sciences, 37(2):247-268, 1988.

S. Kurtz, S. Mahaney, and J. Royer. The isomorphism conjecture
fails relative to a random oracle. In Proceedings of the 21st ACM
Symposium on the Theory of Computing, pages 157-166. ACM,
New York, 1989.

M. Karchmer and A. Wigderson. Monotone circuits for connectivity
require super-logarithmic depth. SIAM Journal on Discrete Math-
ematics, 3:255-265, 1990.

P. Landweber. Three theorems on phase structure grammars of type

1. Information and Control, 6(2):131-136, 1963.

L. Levin. One-way functions and pseudo-random generators. Com-

binatorica, 7:357-363, 1987.

C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM, 39(4):859-868,
1992.

N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits,
fourier transform, and learnability. Journal of the ACM, 40(3):607—
620, 1993.

S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of
Berman and Hartmanis. Journal of Computer and System Sciences,

25:130-143, 1982.

N. Nisan. Pseudorandom generators for space-bounded computa-
tion. Combinatorica, 12(4):449-461, 1992.

N. Nisan. RL is contained in SC. In Proceedings of the 24th ACM
Symposium on the Theory of Computing, pages 619-623. ACM,
New York, 1992.

20

[NSW92]

[NZ93]

[OW91]

[PY91]

[PZ83]

[Raz8ba)

[Raz85b]

[Raz85c]

[Raz87]

[Raz89]

[Raz90]

[Raz94]

N. Nisan, E. Szemerédi, and A. Wigderson. Undirected connectivity
in O(logl‘5 n) space. In Proceedings of the 33rd IEEFE Symposium on
Foundations of Computer Science, pages 24-29. IEEE, New York,
1992.

N. Nisan and D. Zuckerman. More deterministic simulation in
logspace. In Proceedings of the 25th ACM Symposium on the Theory
of Computing, pages 235-244. ACM, New York, 1993.

M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-
table reducibility of NP sets to sparse sets. SIAM Journal on Com-
puting, 20(3):471-483, 1991.

C. Papadimitriou and M. Yannakakis. Optimization, approxima-
tion, and complexity classes. Journal of Computer and System Sci-

ences, 43:425-440, 1991.

C. Papadimitriou and S. Zachos. Two remarks on the power of
counting. In Proceedings of the 6th GI Conference on Theoretical
Computer Science, volume 145 of Lecture Notes in Computer Sci-
ence, pages 269-276. Springer, Berlin, 1983.

A. Razborov. Lower bounds of monotone complexity of the logical
permanent function. Mathematical Notes of the Academy of Sci-
ences of the USSR, 37:485-493, 1985.

A. Razborov. Lower bounds on the monotone complexity of some
boolean functions. Dokl. Akad. Nauk SSSR, 281(4):798-801, 1985.
In Russian. English Translation in [Raz85c]|.

A. Razborov. Lower bounds on the monotone complexity of some

boolean functions. Soviet Math. dokl., 31:485-493, 1985.

A. Razborov. Lower bounds on the size of bounded depth circuits
over a complete basis with logical addition. Mathematical Notes of

the Academy of Sciences of the USSR, 41(4):333-338, 1987.

A. Razborov. On the method of approximations. In Proceedings
of the 21st ACM Symposium on the Theory of Computing, pages
167-176. ACM, New York, 1989.

A. Razborov. Applications of matrix methods to the theory of lower
bounds in computational complexity. Combinatorica, 10(1):81-93,

1990.

A. Razborov. Bounded Arithmetic and lower bounds in Boolean
complexity. Feasible Mathematics II, 1994. To appear.

21

[RR94]

[RW92]

[Sav70]

[Sha92]

[Smo87]

[Sze88]

[Tar88]

[Tar93]

[TO92]

[Tod91]

[Val79a]

[Val79b]

[VV86]

[Yao82]

A. Razborov and S. Rudich. Natural proofs. In Proceedings of the
26th ACM Symposium on the Theory of Computing, pages 204-213.
ACM, New York, 1994.

R. Raz and A. Wigderson. Monotone circuits for matching require

linear depth. Journal of the ACM, 39(3):736-744, 1992.

W. Savitch. Relationship between nondeterministic and determin-
istic tape classes. Journal of Computer and System Sciences, 4:177—

192, 1970.

A. Shamir. TP = PSPACE. Journal of the ACM, 39(4):869-877,
1992.

R. Smolensky. Algebraic methods in the theory of lower bounds
for Boolean circuit complexity. In Proceedings of the 19th ACM
Symposium on the Theory of Computing, pages T7-82. ACM, New
York, 1987.

R. Szelepcsényi. The method of forced enumeration for nondeter-
ministic automata. Acta Informatica, 26:279-284, 1988.

E. Tardos. The gap between monotone and nonmonotone circuit
complexity is exponential. Combinatorica, 8:141-142, 1988.

J. Tarui. Probabilistic polynomials, AC°® functions and the
polynomial-time hierarchy. Theoretical Computer Science A,

113:167-183, 1993.

S. Toda and M. Ogiwara. Counting classes are at least as hard
as the polynomial-time hierarchy. SIAM Journal on Computing,
21(2):316-328, 1992.

S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM
Journal on Computing, 20(5):865-877, 1991.

L. Valiant. The complexity of computing the permanent. Theoret-
tcal Computer Science, 8:189-201, 1979.

L. Valiant. The complexity of reliability and enumeration problems.

SIAM Journal on Computing, 8:410-421, 1979.

.. Valiant and V. Vazirani. NP is as easy as detecting unique solu-
tions. Theoretical Computer Science, 47:85-93, 1986.

A. Yao. Theory and applications of trapdoor functions. In Proceed-
ings of the 23rd IEFEE Symposium on Foundations of Computer
Science, pages 80-91. IEEE, New York, 1982.

22

[Yao83]

[Yao85]

[Ya090]

A. Yao. Lower bounds by probabilistic arguments. In Proceedings
of the 2/th IEEE Symposium on Foundations of Computer Science,
pages 420-428. IEEE, New York, 1983.

A. Yao. Separating the polynomial-time hierarchy by oracles. In
Proceedings of the 26th IEEFE Symposium on Foundations of Com-
puter Science, pages 1-10. IEEE, New York, 1985.

A. Yao. On ACC and threshold circuits. In Proceedings of the 31st
IEEE Symposium on Foundations of Computer Science, pages 619—
631. IEEE, New York, 1990.

23

