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Introduction

During the last few years communication complexity theory gained popularity. In several papers
many interesting questions of complexity theory were answered by reducing them to several kinds
of communication games. Among others, this regards time—area tradeoffs for VLSI-circuits [1], [10],
time—space tradeoffs for Turing machines, width—length tradeoffs for oblivious and usual Q—branching
programs ([2],[4]), branching programs of bounded alternation [14], and threshold circuits of depth 2
[11] and depth 3 [7].

The graph connectivity problem for undirected graphs UCONN = (UCONN,,(,,_1))nen in distributed
form can be formulated as follows. Assume that we are given two not necessarily edge-disjoint
undirected graphs Gy = (V, Ey) and Gy = (V, E3) on a common n—set of vertices V', where both
graphs are represented as Boolean vectors of length (;) The question is whether or not the graph

d . . . . . .
el G1 UGy = (V, E1 U Ey) is connected, i.e. each pair of vertices in G is connected. In [18] the
major developments in understanding the complexity of the graph connectivity problem in several
computational models are surveyed.

In the following we investigate the modular communication complexity of UCONN. Let two graphs
G; = (V, E;), for i = 1,2, be given to two processors P; and Py. In order to solve UCONN both
processors have to communicate via a common communication tape. The computation of the whole
structure, which is called a communication protocol or simply a protocol, is going on in rounds. Starting
with Py the processors write alternatingly bits on the communication tape. These bits depend on the
input available to the processor which is to move and on the bits already written on the communication
tape before. We assume without loss of generality, that in each round exactly one bit is written
down on the communication tape. If the last bit written on the communication tape is “1” or “0”
the computation is called accepting or rejecting, respectively. So co-operative computations can be
thought of as to be Boolean strings. The length of the string is the communication complexity of
the computation. Since we consider the worst—case—complexity in this paper, we assume without loss
of generality, that all computations of a protocol are of equal length, say L. We shall assume the
processors to be nondeterministic. That’s why we have to define the output of a protocol via defining
acception modes. As it is common use an acception mode is called a counting mode if the output of
a protocol for a given input depends only on the numbers of accepting and rejecting computations
performed by the protocol accessing this input. In this paper we discuss the modular acception modes
in which the protocol accepts an input, if the number of accepting computations is not equal to 0
modulo m.

How to motivate the modular acception modes modulo m? In [20] it has been shown that all problems
computable by constant depth, polynomial size circuits with MOD,,-gates for arbitrary integers m,
are contained in certain counting communication complexity classes. In [5] these modes were formaly
introduced and studied. Several papers (see e.g. [6]) deal with comparing the power of different
counting acception modes. Roughly speaking, the computational power of the acception modes modulo
m;, 1 = 1,2, is uncomparable, provided that (my, my) = 1 (see [8]).

We conclude this section by reviewing the results and methods which are strongly related to ours and
by formulating the result of this paper. We use the notions and notations of Definition 1. Hajnal,
Maass, and Turan proved in [9] the following theorem.

Theorem A Comm(UCONN,,_y)) = O(nlogn). O

Their method involves the use of the Mdbius function u for the lattice of partitions of an n—set. Lovasz
and Saxe extended in [12] and [13] this ideas to a large class of problems, the so-called meet problems



for finite lattices, which can be formulated as follows. Let 5 be a finite lattice, and let both processor
P1 and P, be given an element z and y, respectively. Then they have to decide whether z A y = 0.

Theorem B Let MEETg be the meet problem of a finite lattice. Let S have a atoms and b Mébius
elements (i.e. elements x such that ;1(0,2) # 0). Then

logb < Comm(MEETg) < (loga)(logb).

Recently, Raz and Spieker [15] proved

Theorem C If processor Py as well as processor Py have an bipartite perfect matching on 2n vertices
with two colors of size n as an input, and if their goal is to determine whether the union of the two
matchings forms a Hamiltonian cycle, the nondeterministic communication complexity of the problem
is Q(nloglogn). O

Since the problem of Theorem C is a subproblem of UCONN (see Lemma 2), it follows
Corollary D N-Comm(UCONN,,(,_y)) = Q(nloglog n). O

It is the aim of this paper to show that modular acception modes help for detecting undirected graph
connectivity.

Theorem Let m be arbitrary. Then MOD,,-Comm(UCONN,,(,_1)) = O(n).
Proof. The claim follows directly from Proposition 2 in Section 3 and from Proposition 4 in Section
4. O

We use the technique related to the Mébius function to prove the upper bound of Proposition 2. The
lower bound of Proposition 4 follows from rank and reduction arguments.

1 The computational model

Let f : 51 x 82 — {0,1} be given in distributed form. A protocol of length L consisting of two
processors Py and P, that access inputs of 57 and 55, respectively, can be described by two functions

®; : 8 x {0,1}*F = {0,1},

i =1,2,and {0,1}*" = {w € {0,1}*|1 < |w| < L}. The interpretation is as follows. Let 7 =
Y12 Yk € {0, 1} If @;(s;,v) = 1, and if |y| — ¢ is even, then the corresponding processor P; is able
to write 7; on the communication tape provided that it has read 7;...7;-; on the communication
tape and that it has s; as input. If, however, ®;(s;,7) = 0, then P; is not able to write ;.

Now we define two #5; x #5,—matrices Ace?’ and Rej? associated with the protocol P of length L
by

L
def
Aech = > T ®14(G+1)mod ) (S14((+1)mod2)s 1 - - -75) (1)
ML €{0,1}F, =1 j=1
L
Rejl, By (s - : 2
6]51,52 - Z H 1-|-((]-|-1)rnod2)(81+((]+1)m0d2)7 Y1 7]) ( )

Y.L €401}, =0 J=1



Clearly, Accfhs2 gives the number of accepting computations of the protocol P on the input (sq,s2),
whereas Reji’s2 is the number of the rejecting computations. In order to make this approach unique,
we agree that ®;(s;,7) =1, if |y| — 7 is odd, for i = 1,2. We may give an equivalent definition of the
above two matrices as follows. Let 7 € {0,1}* be a computation. Define

def
Xt (si,y) = II ®i(si,7"), (3)
v €{0,1}1L, 4=y

for i = 1,2. Then we get directly from the equations (1) and (2)

Accl ,, = > xPGs1.7) X (52,7) (4)
~v€{0,1}7, yp=1
Rejl . = > Xt (s1.7) x5 (s2,7) (5)

v€{0,1}F, v7,=0

Definition 1 1. A counting acception mode u for a protocol P is a function y : IN* — {0,1} such
that P accepts an (sy,s3), if and only if, /,L(ACCZ7S2,R€]'£7S2) = 1. Otherwise P rejects the input.
A protocol P equipped with an acception mode p is called a p-protocol. The function computed
is sometimes denoted by Comp(P,u). If we are given a function f : Sy x Sy — {0,1} then

p-Comm( f) = min{ L| Comp(P, i) = f, L is the length of P}.

2. We define the following acception modes.
def

Nondeterministic mode: N(ny,ng)=1 < ny >0,
Modular modes: MOD,,(ny,n2) =1 &L ny #0 (mod m),

By the way, a deterministic communication protocol is not characterized by a special acception mode
but by a property of the underlying protocol, namely ®;(s;,70)+ ®;(s;,71) < 1, for s, € 55,1 = 1,2,
and v € {0,1}*. For such protocols all reasonable counting modes coincide.

Lemma 1 [f my|mgy, then MOD,,,-Comm( f) < o MOD,,,-Comm( f), for each function f.

Proof. Clearly, m2|m;°;1;:”2, if and only if, mq|ms.
Let P be the MOD,,,—protocol for f. We describe the following protocol P’.
First, processor P; chooses nondeterministically an index k£, 1 < k < Z—f and sheds k.

Second, Py and P; proceed in the same way as P; and P do according to the protocol P. We get

that Accf;’ =2 Accl;. Consequently, Accgl =0 (mod mz) <= Accgl =0 (mod my). If Lis
the length of protocol P, then Z—f - I is the length of protocol P. a

Now we have to define what we mean by reductions. Fortunately, this is much easier here than in
machine—based complexity theory.

Definition 2 Let F' = (fy, : X" x X" — {0,1})pen and G = (gon, : I" x I — {0,1}),en be two
decision problems. We say that F is rectangular reducible to GG with respect to q, where ¢ : IN — IN is
a nondecreasing function, iff there are two transformations l,,, v, : ¥" — 1'"") such that for all n and
Jor all &, § € X" we have fou(T,§) = Gaq(n)(In(¥), 7n(¥)). We write I <1, G.

We can utilize rectangular reductions for proving lower bounds. Let ¢ : IN — IN be an unbounded
nondecreasing function. Then we define ¢(=1) by ¢(=V(i) = max{j| ¢(j) < i}. For example let



p:IRT — IRT be an unbounded monotone increasing continous function and let p~! : RT — Rt be a
right—inverse to p, i.e. pop~™" = 1. If we define ¢ : IN — IN to be ¢(i) = [p(i)], then ¢(=1(i) = [p~'(4)],
for almost all natural numbers.

The proof of the following lower bound reduction argument is easy.

Lemma 2 Assume that we are given two sequences of functions F' = (foy, : X" X X" — {0,1})pen
and G = (ggn, : I X I'" — {0,1})pen. If p-Comm(F) > ¢(n) and if F <%,. G, then p-Comm(G) >

—Tec

coq=Y(n). O

One efficient way to get rectangular reductions is to handle with projection reductions. The variables
over {0, 1}" are coordinate functions z; : {0,1}" — {0, 1} such that z;(o1,...,0,) = 0;. In accordance
with Skyum and Valient (see [17]) we define.

Definition 3 1. Let I}, : {0,1}" — {0,1}and g,,, : {0,1}™ — {0,1}. F, is called reducible to g,
via a projection Ty @ {Y1,- s Ym} — {1,y Tn, 21, ..., 02, 0,1} and we write F, <, Gm,
where the y; and the z; are the Boolean variables of I, and g,,, resp., if

Fn(mla .- '7mn) = gm(ﬂ-(yl)a SRR ﬂ-(ym))

2. If F, and g,, are given in distributed form, i. e. F, : {0,1}"/% x {0,1}*/? — {0,1} and
Gr {0,112 x {0,1}™/2 — {0,1}, then we say that the reduction © respects the distribution of
the variables, if

Yz, T2y T T 2} S YLy s Ymy2)
and
ﬂ';l{xn/ﬂ_l, s Ty T o4t 0} S AYmyat1s e Um )

3. There is a transpose 7!, : {0,1}" — {0,1}™ of the projection reduction w. It is defined by

T(@) = (T (y1)(); - Ty ) (T)),
where 4 = (21(#),...,2,(%)) € {0,1}" is any Boolean vector of length n.

4. If ' = (Fy)nen and G = (Gp)nen are sequences of functions, if Il = (7,)ueN is a sequence
of projection reductions defined in the first item of this definition, i. e. F, <, gm, and if
m < p(n), then we say that 11 ist a p(n)-projection reduction and we write I <[, G. If both F
and G are given in distributed form, then the definition of the notion “m respects the distribution
of the variables” can be done by analogy with the second item of this definition.

If the elements of {0,1}" are representations of graphs, then we visualize the graph which is the
transpose 7/ (&) of a vector @ € ¥ in such a way that the edges which are not constant are labelled
by the corresponding literal (see figures 1 and 2). The meaning is that such an edge belongs to the

graph, if and only if, the labelling literal is true.

Due to Lemma 2 we get

Lemma 3 Assume that we are given two sequences of functions F' = (fan, @ {0,1}" x {0,1}" —
{0,1})pen and G = (Gam : {0,1}™ x {0,1}™ — {0,1})men such that F <§, G, where p: N — N is
increasing, and 11 = (7,),en 1S a sequence of projection reductions which respects the distribution of
the variables. If u-Comm(F) > ¢(n), then u-Comm(G) > ¢ o ¢(=1)(n). ]



2 Rank arguments for upper and lower bounds

We shall derive rank arguments for proving upper and lower bounds on the length of protocols equipped
with the modular acception modes from Definition 1. We adopt the concept of variation ranks of
communication matrices developed in [11]. Throughout this section let f denote a function f :

S1xSq — {0,1}, N = #51 = #55, and let M/ denote the communication matrix, where ]VIZ-{j = f(4,7),
fore,7=1,..., N.

Let the sequence equality function be defined by SEQs,(z1,..., 20, %1, Un) = Aimi(1 — ((2i +
y;) mod 2)). Here 51 = Sy = {0,1}".

Definition 4 1. Two N x N -matrices A and B over the ring of integers are defined to be mod,, —
equivalent, where m is a natural number, if and only if, for all indices 1, j,

a;; =0 (modm) <= b;=0 (modm).

2. Let A be an integer matriz. We define Var-rankz/mz(A mod m) to mean the minimum of all
numbers rankz ;,,z (B mod m), where B is an integer matriz which is mod,, —equivalent to A.

A 0-1 matrix is interpreted as an R—matrix, where R an arbitrary semiring, in the canonical way. As
usual, the R-rank of a m X n—matriz A over R, which we denote by rankrA, is defined to be the
minimal number k£ such that A = B -, where B is a m X k—matrix and C' is a k¥ X n—-matrix over R.
A straightforward calculation yields the next lemma.

Lemma 4 Let A be an integer matrix.
1. rankz ), 7(A mod m) = max{rankz,,, z(A mod m;) [i=1,...,r},
provided that m = my - ... my, where (m;,m;) =1, for all i # j.
2. rankz /,,7(A mod m) = min{rankz D | D is mod,, —equivalent to A}. O

Lemma 5 Let R be any semiring. Let P be a protocol of the length L on the input set 51 X Sy, #51 =
#55 = N, and let Acc? and be the N x N-matriz defined in equation 1. Then rankp(Accl’) < 20-1,

Proof. The inequality follows directly from equation 4. |

Now we can fully charaterize the modular communication complexity im terms of variation ranks.

Proposition 1

log, (var-rankz ,,z(M?)) < MOD,,-Comm( f) < log, (var-rankz ,,,z(M?)) + 2log, m + 1.
/ /

Proof. The left inequality follows directly from Lemma 5 and from Definition 4. Let us turn to the
right one. We choose by Lemma 4 an integer matrix B which is mod,,—equivalent to M/, such that
r = rankgz,,,z(B mod m) = var—rankz/mZ(Mf). Then B = B 4 ... 4+ BU) where the B*) have
Z/mZ-rank 1. This is equivalent to BZ(J]-C) = Uz-(k) -Vj(k) (mod m), for Ui(k),‘/}(k) €{1,...,m}, and
fori,7=1,...N.

Now we can describe the following protocol P. Assume that the input is (i,7) € 51 X 52.

First, processor P; chooses nondeterministically some indices k, 1 <k <r,and l;,1 <[} < UZ-(]‘C)7 and

sheds (k,1y).



Second, processor Py chooses nondeterministically some index Iy, 1 < [, < Vj(k), and sheds (I, 1).

Clearly, there are > 54 v . Vj(k) = B;; (mod m) many accepting computations assigned to the

k3

input (7,7). It follows that Comp(P,MOD,,) = f. Obviously, the length of the protocol is bounded
above by log, r + 2log, m + 1. |

In the case of m being a prime number, we can even do better.

Corollary 1 If m = p is a prime number, we have

1 1
f f
— -log, (rankz/pz(ﬂ/[ )) < MOD,-Comm(f) < e (log2 (rankz/pz(ﬂ/[ )) + 2logy p + 1) .

Proof. By means of Fermat’s Little Theorem each protocol of length L can be transformed into a
protocol P’ of length (p — 1)L such that for all inputs (i, 7)

P pyp=1 _ J 0 (mod p) if Accf; =0 (mod p);
Accj; = (Accij) { 1 (mod p) if Accf; Z0 (mod p).

3 The Mobius function and upper bounds on the length of MOD,,—
protocols for undirected graph connectivity

In this section we transform a method due to Lovasz and Saxe (see [12], [13]) for proving lower bounds
on the length of deterministic protocols to the case of MOD,,—protocols in oder to prove upper bounds.
We can only give a very brief treatment on M6bius functions. For more see [16].

Let S be a finite partially ordered set, R be a commutative ring with 1. The R—valued incidence
algebra A(S, R) is defined as follows. Consider the set of functions of two variables f(z,y), for z and y
ranging over S having values in R, and with the property that f(z,y) = 0 whenever z £ y. The sum
and the multiplication by scalars are defined pointwise. The product of f and g is defined as follows.

(f9)(2,9) Z S f(z,2)9(z,y)

Clearly, Kronecker’s é—function is the 1 of A(S, R). The R-valued zeta function ((z,y) € A(S, R) is

defined by ((z,y) = 1if z < y and ((z,y) = 0 otherwise. The function «(z,y) = ((z,y)— 6(z,y)is
called the incidence function.

The following formula is the key to prove Lemma 6.

o(z,y) = —ﬁzﬂm,z)g(z,y)wz,y) (6)

It allows a recursive definition of the inverse of f, provided that the f(z,z) are units in R.
Lemma 6 An element of A(S, R) is a unit, if and only if, T[], f(x,z) is a unit in R. O

Consequently, we can define the R-valued Mébius function to be the inverse of the zeta function. Let
us denote this function for a moment by u().



Analogously to the standard real-valued case, we have the Mébius inversion formula. Let f(z) be
an R-valued function, for z ranging over the finite poset S, and let g(z) = 3, f(y)¢(y,z). Then
f(@) =3, 9(y)uB(y, ).

If v denotes the real-valued Mobius function, then because of formula 6 p takes values only in Z.
Consequently, if Ry C R is the prime ring of R, which equals either Z or Z/mZ, for some m € Z,
then

(R) _ [z, y) if Ro = Z;
w (e y) = {,u(ac,y) mod m if Ry=Z/mZ.

Now, of course, we can drop the notation ,u(R).

Again from formula 6 it follows that u(z, y) only depends on the the structure of the interval. Moreover,
we know, that if g* is the M&bius function of the dual poset S*, then p*(z,y) = p(y, z).

Let us assume from now on that the poset S is a lattice. In line with [12] we shall consider the meet
problem MEETg : § x § — {0,1} of the finite lattice 5, defined by MEETg(z,y) = 6(0,2 A y). We
proceed as follows. Let M be a 0-1 matrix. Check whether there are two equal rows or colomns in
M and if this is the case, then delete one of them. Do that as long as possible. The resulting matrix
M is called the core of M. Clearly, the communication complexity of the underlying problems is the
same. Now it is not difficult to see that the core of M YCONNu@m-1 equals the core of MMEETP(H)*,
where P(n)* is the lattice dual to the lattice of partitions of an n-set.

Lemma 7 Let M be the communication matriz of the meet problem assigned to the finite lattice 9,
and let p be a prime number. Then rankz /,z(M) = #{z € §|p(0,2) #0 (mod p)}.

Proof. Let M be the diagonal matrix diag(u(0,z))scs, and let ¢ = ({(%,y))eyes be the matrix
associated with the zeta function. Wilf observed in [19], that (T - M - = M. The claim follows from
the Mobius Inversion Formula. O

Now let us compute #{z € 5| 1(0,2)# 0 (mod p)} in a special case.

Lemma 8 Let P(n)* be the lattice dual to the lattice P(n) of partitions, let p < n be a prime number,
and let p* be the Mébius function of P(n)*. Then #{z € P(n)*| p*(0,2)# 0 (mod p)} < p”.

Proof: The following three facts are well-known.
Fact 1. If 2 € P(n), and if b(z) is the number of blocks of the partition z, then [z, 1] 2 P(b(z)).
Fact 2. If p is the Mobius function of P(n), then p*(0,1) = p(0,1) = (=1)""'(n — 1)L

Fact 3. Let S(n, k) denote the number of partitions of an n—set into exactly k blocks (Stirling numbers
of the second kind), then

S S B)[X T = X7,

k=0
where X is an indeterminant and [X]; = X - (X —1)-...-(X — k + 1) is the falling factorial.
The next equality follows from Fact 1 and from Fact 2. The next but one from Fact 3.
P
> S(nk) = #{zeP(n)"|p*(0,2) Z0 (mod p)}
k=0
P P
> S(nk) < Y S(n,k)plk=p"
k=0 k=0



Proposition 2 Let m be arbitrary. Then MOD,,-Comm(UCONN(,,_y) = O(n).

Proof. Let p be a prime number such that p|m. By Lemma 1 we have

T MOD,-Comm(UCONN).

MOD,,,-Comm(UCONN) < —
p

The claim follows from Corollary 1, Lemma 7, and Lemma 8. a

4 Variation ranks and lower bounds on the length of MOD,,—protocols
for undirected graph connectivity

The following lemma improves the corresponding one from [11].

Lemma 9 Let I denote the identity N x N -matriz. Let m = pll1 «...opl be a natural number which
is given by its primary decomposition. Then var-rankz /7 (In) = [N/r].

Proof. First we prove that [N/r] is a lower bound. Let A be an integer matrix such that A is
mod,,—equivalent to Iy and Var—rankz/mZ(IN) = rankyz A, which exists by Lemma 4. By definition
we have, for all i, a;; Z0 (mod m), and a;; =0 (mod m), for all j # 4. Forall7 € {1,..., N} there
isake{l,...,r} such that a;; #0 (mod p'). We conclude that there is a primary component pif
of m, which we denote for simplicity by p', a set of indices

IC{1,2,...,N},#Z > N':=[N/r],

and, for all ¢ € Z, natural numbers v; € {1,...,[;}, such that

a; = 0 (mod pl_”i),
a; # 0 (mod pl_”""'l),
a; = 0 (mod ph),

for all j € Z, 7 # i. After deleting all rows and columns of A whose indices do not belong to 7, we
get an integer N’ x N'-matrix B. It is sufficient to show that det B # 0. It is easy to see that

NI
bipce. by # 0 (mod pN =i %) but
Nl
bl,a(l) LE— bN’,a(N’) = 0 (mod le'l+1_Zi=1 yi),
for all permutations o of the set {1,..., N’} different from the identity permutation. Consequently,

det B = b171 L bN’,N’ §_é 0 (mod pN"H_l_ZzJ'\;l yi)_

Second let us prove that [N/r] is an upper bound. Let f; = pz-_li [T=1 pif, F; = (f1,...,f;), and
A; = F]-T < F;fori,7=1€{1,...,7r}. Agis defined to be the unique 0 x 0—matrix, which, of course,
has rank 0. Clearly, A; mod m is a j x j-diagonal matrix of Z/m#Z-rank 1, for j € {1,...,r}. Define
the matrix A to be the following direct sum of matrices.

where v’ = N (mod r), and 7’ € {0,...,7—1}. It follows that A mod m is a diagonal N X N—matrix,
and that rankz/mZ(A mod m) < [N/r]. O



Proposition 3 For m arbitrary, we have that MOD,,-Comm(SEQ,, ) = O(n).

Proof. The claim follows from Proposition 1 and from Lemma 9. |

Lemma 10 SEQ = (SEQ,,),en s reducible to UCONN = (UCONN,(,_1))nen given in distributed
form via a O(n?)-projection reduction with respect to the partition of the variables.

Proof. Consider an input (1,...,%,,u1,...,uy,) of SEQ,, The projection reduction
Tn(n-1) {wZ]vyZJ | L,j=1,...,n,1< ]} - {Ovlytllvuuv_'tuy_'uu | v=1,.. .,TL},

where the values of the Boolean variables z;; and y;; define the graphs GG; and G5 accessible to the
processors Py and Py, is defined by the help of Figure 1 and Figure 2, in which the transpose

ﬂ-’fb(n—l)(tla R L PR ’Mn)
is shown. Clearly, this graph is connected, if and only if,

SEQ2n(t1,. . .,tn,ul,. . .,Un) =1.

O
Now it is easy to prove the lower bound.
Proposition 4 Let m be arbitrary. Then MOD,,-Comm(UCONN,,(,_y)) = Q(n).
Proof. The claim follows from Lemma 10, Lemma 3 and Proposition 3. a
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(K3,5 denotes full bipartite graph having 2 x 2 nodes, G(t,,u,) is defined in Figure 2.)
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Figure 2: The graphs G(t,,u,) of Figure 1
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