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Abstract. We investigate the computational power of depth two circuits con-
sisting of MO D"—gates at the bottom and a threshold gate at the top (for short,
threshold-=MO D" circuits) and circuits with two levels of MO D gates (MO D?-
MO D1 circuits.) In particular, we will show the following results

(i) For all prime numbers p and integers ¢, r it holds that if p divides » but not
q then all threshold—M O D? circuits for MO D" have exponentially many nodes.
(ii) For all integers r all problems computable by depth two {AND,OR, NOT }-
circuits of (quasi) polynomial size can be represented by threshold-MO D" cir-
cuits with (quasi)polynomially many edges.

(iii) There is a problem computable by depth three {AN D, OR, NOT }—circuits
of linear size and constant bottom fan—in which for all r needs threshold—M O D"
circuits with exponentially many nodes.

(iv) For p,r different primes, and ¢ > 2, k positive integers, where p does not
divide ¢, every MODP*-MOD? circuit for MOD™ has exponentially many nodes.
Results (i) and (iii) imply the first known exponential lower bounds on the number
of nodes of threshold-MO D" circuits, r # 2. They are based on a new lower
bound method for the representation length of functions as threshold functions
over predefined function bases, which, in contrast to previous related techniques
works even if the edge weights are allowed to be unbounded and if the bases
are nonorthogonal. The special importance of result (iii) consists in the fact that
the known spectral-theoretically based lower bound methods for threshold-X O R
circuits can provably not be applied to ACy—functions. Thus, by (ii), result (iii) is
quite sharp and gives a partial (negative) answer to the (open) question whether
there exist simulations of ACy—circuits by small depth threshold circuits which
are more efficient than that given by Yao’s important result that ACC* C T'Cg 5
[Y90]. Finally we observe that our method works also for MO DP-M O D? circuits,
if p is a power of a prime.
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1 Introduction

1.1 Boolean Circuits and Threshold Circuits

Threshold circuits of small constant depth have become one of the most extensively studied
computational models in circuit complexity theory. On the one hand, several arithmetic
and Boolean operations of practical interest (addition, multiplication, division, ACC—
functions) have surprisingly efficient realizations by threshold circuits of depth smaller
than 4 [AB91,BS90,Y90,BHKS93, HHK91]. On the other hand, a lot of quite elementary
problems are open. For example, it is open to prove an explicite superpolynomial lower
bounds on the number of nodes of depth two threshold circuits.

In this paper we analyze the computational power of depth two circuits consisting of a
threshold gate at the top and MOD gates at the bottom, and circuits with two levels of
MOD gates. We do that by relating them to constant depth circuits over the Boolean
operations AND, OR, NOT, XOR, MOD".

In our setting the size of a circuit is defined to be the number of nodes, where the
weight denotes the number of edges. We denote by ACj, and ACj,[r] the classes in-
duced by {AND,OR, NOT }—circuits, {AND,OR, NOT, MOD" }—circuits, respectively,
of quasipolynomial size, i.e. size exp((logn)°™M) and constant depth k. (The star indi-
cates quasipolynomiality, see e.g. [Ba92] for a motivation why in the present context
quasipolynomial size classes are considered.) The classes ACy, ACg[r] and ACC* are
defined, correspondingly.

Following [B90,BS90,GHRY92] we denote by WZ and LT} the classes induced by depth
k threshold circuits of quasipolynomial weight, quasipolynomial size, respectively. For
convenience, we consider threshold circuits with respect to the {1, —1}-notation, i.e., the
input gates produce +1 or —1 and each inner node v is performing a linear threshold
operation {, given by

oY1y Ym) = Sgn (Z%‘?h) (1)

i=1

where m denotes the fan-in of v and ay,...,a,, the weights (=multiplicities) of ingoing

edges.

Unbounded fan—in circuits of (quasi)polynomial weight and constant depth & with sym-
metric gate operations can be simulated by (quasi)polynomial weight threshold circuits
of depth £+ 1. In contrast to circuits over AN D, OR and constant MOD’s the computa-
tional power of threshold circuits, relative to a fixed architecture, is growing significantly
if "large” (i.e. exponential) edge weights are allowed. For k € {1,2} it is proved that
Wz is properly contained in LT} [GHR92]. But edge weights don’t help too much. It is
known that any linear threshold function in n variables can be realized with weights in
exp(O(nlogn)) [MP68]. Moreover, for any (not necessarily constant) d depth d threshold
circuit of (quasi)polynomially size can be simulated by depth d + 1 threshold circuits of
(quasi)polynomial weight [GHR92,GK93], i.e., IT, C LTy C WZ_H, for all k& > 1.



Recent very nontrivial results on realizing and approximating ACy— and AC'C—functions
by low degree integer polynomials [R87,587,A89,Y90,ABFR91] imply very depth efficient
realizations of these functions by threshold circuits. In fact, it holds ACC* C TT, [Y90].
Our paper partially answers the open question (studied, e.g., in [BS90,ABFR91,T91,B92])
whether AC—circuits can be efficiently simulated by even more restricted types of thresh-
old circuits.

A lot of recent papers on circuit complexity are dealing with depth two circuits over
threshold— and MOD-gates [B90,BS90,ABFR91,KW91,GHR92,KORS91]. Our special in-

terest is devoted to the following related complexity classes.

Definition 1.1 For all natural r > 2 let QT[r] and QT[r] contain all sequences of
Boolean functions computable by threshold—M O D" —circuils of quasipolynomial size, quasi-
polynomial weight, respectively. Following [B90,BS90] the classes QT[2] and QT[2], r €
IN are shortly denoted by QT and QT, respectively. QT —functions are sometimes called
quasipolynomial threshold functions.

Using the described basic results it is straightforward to see that QT[r] C TT, for all
r € IN.

The problem of proving exponential lower bounds on the number of nodes is solved for
threshold circuits of depth two if the number of edges is bounded [HPMST87,K90,KW90],
and for threshold—M O D*-circuits [B90,BS90,KORS91].

The underlying methods enabled to prove a number of nontrivial relations between ()7T-
, LT— and ACq[r]-classes. Tt has been shown that LT, ¢ QT [BS90] and QT ¢ TT,
[GHRY2], i.e., both LT, and QT are properly contained in LT.

Till now the problem of proving exponential lower bounds on the size of threshold-MO D"
circuits, r # 2, was open. This has to do with natural limitations of the spectral-theoretic
approach used in [B90,BS90,KORS91] which will be briefly discussed in the next subsec-
tion. Using a more straightforward approach (section 2) we establish the first effective
lower bound method for threshold-M QO D"—circuits, r € IN. This allows to prove that
MOD" ¢ QT|[q] if there is some prime p dividing r but not ¢ (section 3). Consequently,
QT]r] is a proper subclass of LT, for all » € IN. Our result also improves a very recent
result of Goldmann [G93] saying that if there is a prime number p dividing r but not ¢
then MOD™ & QT][q].

Exhibiting the orthogonal structure of the inner product mod 2 function it has been
shown that ACo[2] € QT [BS90] and AC,[2] € LT, [HPMSTS7]. Using an alternative
lower bound method the last relation has been generalized in [KW90], i.e., ACy[r] Z T T,
for all r > 2. Observe that our result mentioned above yields ACo[r] Z QT for all r > 2. In
other words, both LT, and QT—circuits are not strong enough for efficiently simulating

AC C—=circuits.

However, what about AC,? The L.,—norm of ACj—functions is at least exp(— log®® n)
(subsection 1.2) and this prevents a successful application of the known lower bound
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methods for ﬁ; and QT to ACj-functions. The resulting question is whether AC) is
even contained in one of the classes LT, ﬁ;, or QT[r], r > 2.

In section 3 we give a partial negative answer. There exists a problem computable by
AC s—circuits of constant bottom fan-in which does not belong to Q7'[r| for all r > 2.
This is a sharp bound. In section 4 we will show that for all integers r ACg, C QT'[r].

In [R87,587] the fundamental observation was made that ACg[p]-functions can be rep-
resented by randomized IF ,—polynomials of polylogarithmic degree. This is one main
basis for the simulation results [A89,Y90] mentioned above and allows to prove, e.g., that
MODP ¢ AC¢lq] for all different primes p, ¢. But apart from Yao’s result ACC* C LT,

very little is known about circuits over different (prime) MOD-operations.

For depth 2 circuits with a MOD™ gate on the top and arbitrary symmetric functions
on the bottom, Krause and Waack [KW91] proved an exponential lower bound for the
sequence identity function. The proof is based on communication complexity theory. Using
a different technique, Yan and Parberry [YP94] proved an exponential lower bound for
MOD*-MOD?, p prime, circuits computing conjunction. The lower bound problem for
circuits of depth greater two is open.

In section 5 we show that our lower bound technique works also in the case of circuits
consisting of two layers of MOD—gates (MOD"-M O D?—circuits). In particular, we prove
that for p,r different primes, and ¢ > 2, k positive integers, where r does not divide ¢,

every MODP -MOD? circuit for MOD" has exponential size.

1.2 Representing Boolean functions as threshold functions over
given function bases

A representation of a Boolean function f as threshold function over a basis H of Boolean
functions over {0,1}" is given by a collection {wy; h € H} of integers so that for all
inputs x

f(z) = sgn (Z wy, - h(ac)) .

heH
The relevant cost measures of such representations are the length, given by the number of
all h € H with wy, # 0, and the weight, given by > cx |ws|. In this paper we prove lower
bounds on the length; let us note that our techniques work also in the case when f(x)
is represented as the sign of a small (sublogarithmic) degree polynomial of the functions

he H.

Important: If not stated otherwise, all Boolean functions are supposed to map into {1, —1}.
We are switching from the usual {0, 1}- to the {1, —1}-notation by replacing 0 by 1 and
1 by —1.

Definition 1.2 Let Iy (f) and Ty (f) denote the minimum length, minimum weight, re-
spectively, of a representation of f as threshold function over H. Let ly(f) = oo if there
s no such representation.



We will call H to be a complete basis if H generates the whole R {1, =1} as real vector
space. It is straightforward to check that if H is complete then each Boolean function has
a threshold representation over H.

In this paper we investigate the basis of MO D"—functions over {0,1}", r,n € IN, con-
sisting of all functions of the type MOD} ., d,c € {0,...,r — 1}"*'. For all inputs
r=(21,...,2,) € {0,1}" let

=1, if ¥ aix;+c=0modr.

MODj} (z) = { :

,  otherwise.

We will denote by MOD;, the function MOD?,, where ¢ denotes the vector consisting
only of ones. A quite straightforward calculation shows that for all natural r > 2 the basis
of n—ary MOD"functions is complete. Consequently, [.q,(f) < 2" for each Boolean
function f.

Further observe that l.q -(f) and Thnoq »(f) correspond to the minimal size and the
minimal weight, respectively, of threshold-M O D" —circuits for f.

Clearly, MO D*~functions are exactly the IF ,~linear functions. If the domain is supposed
to be {1, —1}" then MOD? ; equals the monomial z* = T[], ,,_; z;. We write, for short,
x® instead of MOD;O and denote lg = l,04 2-

Previous lower bound results on threshold representations are based on three different
techniques, the discriminator method developed in [HPMST87], a geometric method for
estimating probabilistic communication complexity [K91,KW91] and a spectral theoretic
method for orthogonal bases developed in [BS90]. We give short descriptions of the first
and the third method.

Proposition 1.1 (Discriminator Lemma) Suppose that f can be represented as a thresh-
old function over H. Then for all probability distributions R on the inpul sel there is
h € H so that |Eg[f-h]| > Ty(f)™'. O

Consequently, for proving exponential lower bounds on Ty(f) one has to construct a
probability distribution R on {0, 1}" so that max{|Eg[f - h]|} is exponentially small in n.
This technique has been successfully applied in several interesting situations [HPMST87,
GHR92, G93, MSS91], but as representations of large weight may have small length this

method is not suited for estimating representation length.

Till now only one general method has been known for deriving exponential lower bounds

on lg(f) for complete function bases H [BS90].

Proposition 1.2 Consider the real vector space R {1, -1} with respect to the positive

definite scalar product
(fLgp=27" > fla)g(z)
ze{l,—1}"



and suppose that the functions in H form an orthogonal system with respect to this scalar
product. Then lg > (max{|[(f,h)|, h € H})™" for all Boolean functions f : {1,—1}" —
{1,-1} O.

This method is formulated in a more general fashion of generalized spectral coefficients and
"nearly” orthogonal bases in [KORS91]. But the only natural example of an orthogonal
basis is the set {z®, a € {0,1}"} of all linear functions. The corresponding representation
[ =Y,(f,z*)x™ is called the spectral representation of the Boolean function f, where
the maximum over all values |(f, z*)| is called the L.,—norm of f. Proposition 2.1 yields

Corollary 1.1 [BS90] ls(f) > Leo(f)™!. O

Using this method exponential lower bounds on lg are shown, e.g., for the inner product
mod 2 function and for the quadratic sum function [BS90]. However, the following lemma
shows that Proposition 2.1 can not be applied to ACj—functions.

Lemma 1.1 For all (f,), ¢ N € ACj il holds Leo(fn)™" € exp (10g0(1) n) _

This is a quite straightforward corollary of the following result of Lineal, Mansour, Nisan

[LMNO0].

Proposition 1.3 Let [ be an n—nary Boolean function computable by an unbounded fan—

in {AND,OR, NOT}-circuit of depth d and size M. Then for all t <n

oo (fe®)? < M7 O
aE{O,l}n,|a|>t

The resulting questions are how to prove exponential lower bounds on (g for non-
orthogonal function bases H such as for MOD"functions, r # 2, and how to prove
exponential lower bounds on lg for functions which have "big” L. ,—norm such as AC;-
functions 7 In the following we solve these problems by applying a new lower bound
method which will be described in the next section. In particular, we prove

Theorem 1 Suppose a prime p does not divide q. Then l0q ( MODE) > " for some
c>1.

Note that this implies a more general statement:

Corollary 1.2 Suppose a prime p divides r but does not divide any of the numbers
Gis---,qr. Then, for some ¢ > 1, every depth two circuil for MOD" consisting of MO D% -
gates at the bottom, 1 <1 < k, and a threshold gate at the top has size > ¢".

Theorem 2 For every q there exists ¢ > 0 so that o4 (Spn2) > 2.

Hereby, the Sipser function Six 2 depending on 2lk variables {x; ;. yi;; 1 <1< [[1 <5<
k} is defined as
Stra(z,y) = Aoy Vi (2i; Ayij)-



2 The General Method

Our results are based on estimating the voting polynomial degree of Boolean functions.

Definition 2.1 For all Boolean functions f let deg(f) be the minimal number k for which
[ can be written as threshold function over functions depending on al most k variables.
Fquivalently, deg(f) denotes the minimal bottom fan—in for which [ has a depth two
realization with a threshold gate at the top.

There are several important results on the voting polynomial degree. Clearly, deg(f) < n
for all n—ary Boolean functions f. In [ABFR90] it is shown that deg(XOR,) = n. In
the next section we give a generalization: It holds deg(MOD}) > I_Z%j for all primes p.
Observe further the following result of Minsky and Papert [MP68].

Lemma 2.1 For alln € N it holds deg(P, 4,2) > n, O

where for all [,k € IN the function P, depending on z;;, 1 <1 < k,1 <3 </, is defined
as
Ik
Pie(z) = NV @i
=1 j=1

Obviously, functions f of big voting polynomial degree may have very sparse realizations as
threshold over the linear functions (take, e.g., XOR). In the following we give a procedure
for constructing a hard function from f.

Definition 2.2 For all n—nary Boolean functions f = f(z) and all x = (z1,...,2,),y =
(Y1y-- s yn)yz2 = (21,...,2,) € {0,1}" let

fop<$7yaz> - f(ula' . 'aun>
where for all i, 1 <t <n, u;=(zZANxi)V (2 Ay).

Proposition 2.1 For all Boolean functions f it holds lg(f?) > odeg(f).

Proof:

Observe that for each assignment ¢ to the z—variables (for short, z—assignment) ( f°?)° and
[ are equivalent. (f°?)° depends on those z; for which ¢(z;) = 0 and on those y; for which
¢(z;) = 1, the remaining n z— and y-variables are redundant.

Let GG be a minimal set of 3n—ary linear functions so that f? = sgn (deg wy -g) .
Clearly, for each z—assignment ¢ the induced threshold representation for ()" over G° =
{g9% g € G} contains basic functions depending on redundant variables.

The crucial property is that those basic functions can be removed from the representation.
This is due to the following lemma which is the key also for other lower bounds that we
shall prove below.



Lemma 2.2 Let f:U — {—1,1} be a function, let g; : U xV — {—=1,1}, 1 € I be some
gates, and let w; € R, 1 € I be arbitrary weightls. Suppose

f(u) = sgn ) wig(u,v),
1
for every uw € U, v € V. Let P, be a probability distribution on V' for u € U. Then

f(w) = sgn X wiBpg(u,v).
T
Proof: Let u be given. If 37 w;g(u,v) is positive (resp. negative) for every v, then

Ep, (Z wig(u, v)) - XI: wiEp,g(u, v)

I

is positive (resp. negative). O

The proof of the following statement is straightforward and will be left to the reader.

Lemma 2.3 Lel z1,...,%n,Y1,...,Ym be Boolean variables and denote by U the uniform
distribution on the set of all y—assignments b. Then for each linear function z*y®, B # 0™,
and each x-assignment a it holds Ey[z®y®(a,b)] = 0. O

We now prove Proposition 2.1 by a probabilistic argument.

We will call a basis function g € G large if it depends on at least deg(f) z— and y-
variables. Consider the set of all 2" assignments to the z—variables as probability space
with the uniform distribution.

We say that a z—assignment ¢ destroys g € G if g depends on variables which are redundant
for (foP)°. It is straightforward to derive that for each large ¢ the probability that ¢ does
not destroy ¢ is at most 27 de&(/),

Consequently, with probability at least 1 — |G| 27 98(/) there is some z—assignment which
destroys all large g € G.

Thus, if |G| < 298(/) we can find some z—assignment ¢* fulfilling this property. Following
Lemma 2.2, all ¢°°, g large, can be removed from the induced representation of (f7°)°".

We obtain a threshold representation which guarantees deg((f?)") < deg(f) and this is
a contradiction. O

As P, = S,.4n2,2 obviously belongs to ACy 5 we obtain

n,4n

Corollary 2.1 AC,3; € QT. O

In the next section we apply this method in a more complicated way to more natural
functions and obtain exponential lower bounds also on l,4 », r # 2.



3 Lower bound proofs

In this section we shall prove Theorems 1, 2. First we need to estimate the voting poly-
nomial degree of general MO D—functions.

Lemma 3.1 For all n € N and prime numbers p it holds deg(MOD?) > [ ~ J . g

=
Proof: It suffices to prove it for n with p — 1|n. Fix a representation
MODE(z) = sgn(F(x)),

where each monomial in F has degree at most deg(MOD?). Suppose that MOD? depends
on the {0,1}-variables z;,...,z, and take an arbitrary partition of {zy,...,z,} into
blocks of size p — 1, say {z1,..., 251}, {xp, ..., 22p—2}, .-, {@Zp_p_1, ..., 2, }. For each of
these blocks choose p strings from {0,1}?~! with different sums modp, say

000...0, 100...0, 110...0, ..., 111...1.

Now consider only the inputs from {0,1}” which have such a form on the blocks. Then we
can think of the MOD function and F' as functions defined on [p|™ = {0,1,...,p — 1},
for m = -25. The monomials of degree < m of I are some general functions, but can be

represented as polynomials of degree < m on [p]™.

Now we can argue as in the case p = 2 in [BS90] we only need to choose suitable orthogonal
basis of functions. Here we need to use functions f : [p|™ — € with complex values in
order to get a nice basis. The basis is

1 2ms m

b= {_GT'ZM ude [p]“} |
pm

Let us denote by B’ C B the subset of functions of the basis which do not depend on all

variables {zy,..., 2}, i.e. a; = 0 for some 7. Since F' is a sum of functions which do not
depend on all variables, we have

F(z) = Z we f(x),

feB’!

for some w; € C. Denote by ‘
ge(z) = e 7 2= Ko

Thus for k # 0, g is orthogonal to all functions in B’. Consider the following function

h(z) = iz::gk(:v).

Since
p_l omi
e
2mi g
er =0,

k=0



we have

v )p=1 if Ya;=0modp
h<$)_{—1 if Y x; # 0mod p.

Thus h(z) has the same sign as MOD"(z), consequently the same sign as F'(z). Hence

0< Y M) = (h F) =3 3" wylan ) =0,

zE[p]™ k=1 feB'
which is a contradiction. O

Instead of proving Theorem 1 we prove a more general theorem.

Theorem 3 Suppose a prime p does not divide ¢ and X is a constant. Let C be a depth
3 circuit for MOD?, with a threshold gate on the top (unbounded weights), arbitrary gales

of fan-in < X\ on the middle level and MOD? gates on the bottom. Then the size of C is
> ", where ¢ > 1 is a constant which depends only on p, ¢ and \.

First we shall show that such circuits can be reduced to a special form. We shall call a
AMODg’Cfgate stmple, if all coeflicients a; are either 0 or 1; the domain of such a gate is the

set of variables where the coefficients are 1. Two gates MOD} LMODZ;

7.0 are disjoint, if

cf

they have disjoint domains.

Lemma 3.2 Let C' be a depth 3 circuil with a threshold gale on the top (unbounded
weights), arbitrary gates of fan-in < X on the middle level and MOD?—gates on the
bottom. Then there exists a circuit C', of the same type such that |C'| = O(|C|), the gales
on the middle level are products of fan-in < X, where the constant X' depends only on g
and X\, and each product consists of disjoint simple MO D?—gates.

Put otherwise, C' is the sign of a polynomial of degree < X of simple MO D?-gates such
that the gates in each monomial are disjoint. Thus it is clear that this lemma does not
depend on the particular representation of boolean functions: we can use 1,—1, or 0, 1.
Note that in the 0,1 representation the products are conjunctions.

Proof:We shall use 0, 1 representation of boolean functions. Consider a gate g on the mid-
dle level and the MO D? gates below. Each MO D? gate defines a partition of the variables
into < ¢ blocks according to the coefficients at the variables. Take the smallest common
refinement of these partitions. Then the function computed at ¢ can be represented as a
function f of simple MOD? gates whose domains are the blocks of this partition. Repre-
sent [ as a polynomial, i.e. as a sum of conjunctions. The number of monomials is bounded
by a constant, since we assume that g has constant fan-in. Note that in each conjunction
there can be only one simple MO D? gate on a given block, otherwise the conjunction is
always false. Merge this sum with the sum in the threshold function on the top and we
get a circuit of the required form. O



Proof of Theorem 3: Let us fix a representation of MOD? as threshold function of prod-
ucts of MO D?functions, each product of size < A. lLe. fix sets G; of MOD?—functions
and integers wy, t € I so that |G| < A and

MOD?(z) = sgn (E wy [ g(:v)) :

tel g€G:

By Lemma 3.2 we can also assume that each product contains disjoint simple MOD7—
gates. We shall say that a simple MO D?—gate is large, if its domain has size at least en,
(e > 0 will be specified below). We shall say that a set Z C {1,...,n} is good for a simple
MODi-gate, if all ;, ¢ € Z are in the domain of the gate.

Choose randomly independently m disjoint sets A;,.... A, C {l,...,n} of size r =
p(g — 1) where m = {%J . Let A = UL, Aj; thus |[A] = mr < 5. We shall estimate the
probability for a fixed large ¢ € GG that at least one A; is good for ¢g. Think of A;,..., A,
as chosen one after another. Then in the 5 — th step there remain still at least

en

en — |A| > 5
variables in the domain of g. Thus

Pr[A; is good for g] > (;—Z) = (%) .

Hence

q

where ¢ > 0 is some constant. Thus, if 3, |G| < ¢", we have nonzero probability that

Pr[A; is good for g] > 1 — (1 - (;) ) >1—c",

there exists a sequence Ay,..., A, such that for each large gate ¢ € |J; GGy there is A;
good for g¢.

Let ny = n — mr, nyg = mr. We take ¢ > 0 such that

6n<l Ky <l nomr .
“Alp—=1|" Al p—-1

Then each small gate has size < % L%J .

In order to apply Lemma 2.2, we split the variables {z1,...,z,} into two parts Y and

Z : Y are those z;’s for which ¢ € A, 7 is the rest; |Y| = ny, |Z| = na. Now we define a
subset V C {0,1}". For each j € {1,...,m} divide A; into blocks Aj1,..., Aj,-1 of size
p. Think of vectors v € {0,1}" as mappings v : A — {0,1}. Let V consist of vectors v
such that for every 1 < j < m, there exists 1 < k < ¢ such that

v;=1 for 1€ A;;U...UAj;_y and
v;=0 for € Aj,k Uu...u Aj,q—l-

10



Thus for v € V,
Z v; =0 mod p, (2)

€A

and for each A; and £,

Pr

Zvizkmod q:| :l,

€A, 4q
where v is taken with uniform distribution on V| since p is coprime with g¢.

Hence, if g(u,v) is a large gate, we have

T-(g=1)+(=1)-1 -2
By g(u,0) = (g—D+(=D-1 _g¢ ’
q q
where the expectation is taken over the uniform probability distribution on V. Thus

Evg(u,v) is constant for all .

Now consider a product ] cq, g(u,v). Let GE, resp. G, be the large, resp. small gates
of Gy. Let ¢ be the variables on which the small gates of GY depend, i.e. the union of
their domains. Fix a particular string &, of values for €. Since all gates in the product are
disjoint, we can rewrite the conditional expectation as follows:

Ev(H g(uav)|§=§o) =

9€G:

= II 9o)-EBv [ IT 9(u,v)

geG; g€eGT

We shall show that Ey (HQGGtL g(u,v)) is constant. Choose a good set from Ay,..., A,

for each gate ¢ € GF and let ¢ be the variables on which these gates depend and which
are not in the chosen good sets. Take a particular string (o of values for ¢ and consider

Ey ]___[ g(“a”) | (=Co

gEGL

Since the gates are disjoint and the probability distribution is independent on the domains
(after fixing ( = (p), we can distribute the product to

IT Ev(g(u,v) | (=)

geGE
By the above argument each term is the constant ’1;—2, thus the product has the value

_\IGE] .
(QT) independently of (5. Thus

Ey (H g(u,v)) =

9€G

11



depends only on small gates. In particular it depends on at most A -en < L%J variables.

On the other hand, by (2), MOD?(u,v) = MOD?, (u), for v € V. Hence MOD?, (u,v)

is computed using gates of size smaller than L%J which is a contradiction with Lemma
3.1. O

Proof of Theorem 2: Let ¢ > 2 be given. Set

1
E=—7,
qg+1

and consider the Sipser function Sy 2(x,y) where

for some sufficiently large n. Thus we have k[ variables x;; and kl variables y;;.

As in the proof of Theorem 1 we shall prove a stronger statement on circuits with an
extra middle level of constant fan-in A\. By Lemma 3.2 we assume that we have products
of size < X of disjoint simple MOD? gates. Fix such a representation of Sy 2,

Stk2(z,y) = sgn (Z w, ] 9(5”)) )

el 9€G,

where (G, denote sets of 2kl-ary simple MO D?-gates.

We shall say that such a gate g is large, if its domain has size at least A™'(kl)'~*. Choose
randomly independently Ay,..., A, C{1,...,k} x {1,...,{} of size ¢ — 1 where

(ki)'
A<l
A= 55

Let A = U, A¢, thus

The meaning of a good set is the same as in the previous proof, but now we are only
interested in variables x. We shall estimate the probability that at least one A; is good
for some large g € |, G, :

Pr[3t A, is good for g] >

12



(kn)'— J
2(g=1)

- (1 B (2A)q-1(1kl>5(q‘”) |

g—1 2 1
fg—-l)=—=1-——<l—-e=1—- ——,
q+1 qg+1 q+1

Since

The expression above is
> k)

b

for some ¢; > 0. Thus, if L = |U, G,| there is a good set A; for each large gate with

probability at least
| - [emte 3)

Let p = 81%/k. Consider a random assignment p of 0’s and 1’s to variables y, where 1 is

assigned with probability p. We shall use the following Chernoff-type bound, cf. [HR89]:

Lemma 3.3 Let S = X1 +...+ Xy, where X; are independent 0-1 random variables with
Pr(X;=1]=p, let M = pN. Then

Pr[|S = M| > aM] < 2¢~"M/3,

O

First we observe that the number of 1’s in p is at most 2pkl = 16/° with probability

> 1 — e kB — | _9e=%1,

(4)
The number of 1’s among y;;’s for a fixed ¢ is at least %pk = 41? with probability

> 1 —2e7 PP = 1 — 2¢750

J

hence this is true for all 2+ with probability

_22

>1 125", (5)

If g € U, G, is small, then the probability that there are fewer than 2pA~'(kl)' ¢ pairs
(¢,7) such that z;; is in the domain of ¢ is at least

1 — 26—4p/\_1(k1)1_5/3.

Let us estimate the expression pA=' (ki)' ~*:

2
pA‘l(kDI‘E::§é—A‘1(k01‘5::8A‘1P‘5k‘5::

13



8! ([n])** (8n2)_5

This is asymptotically n to the power
e3—¢e)—2c=c—¢e?<e.
Thus we can conclude that the probability that there are < A~'[ such pairs is at least
1—2e7"7,
for a constant ¢ > 0. The probability that this holds for all small ¢ € |J, G, is at least

1 —2Le™™”. (6)

Now we can put things together. Our goal is to reduce the circuit so that we can use 2.1:

We take the random assignment p of 0’s and 1’s to variables y. Then we get a AV z;; over
those pairs (i, j) for which p;; = 1. The estimate (5) gives the probability that A, \/?l:1 Tij
will be a subfunction of it. The estimate (6) gives the probability that small g € |, G, will
depend on < A7l remaining variables. Thus it remains to get rid of the large ¢ € |, G..
With probability estimated by (4), p will assign kI — 16{° > m(q — 1) zeros. Thus we can
choose Ay,..., A,, so that

(i,j) €A = p;=0.
Since we are choosing from a randomly chosen set, this choice is also random, and we can
use the estimate (3) plus (4) for a successful choice. Then we estimate the large g € |, G,
in the same way as in the previous proof. Namely, we consider assignments to those z;;’s
for which p;; = 0 (hence the restricted function does not depend on them) such that for
each Ay = {(41,51),- -5 (g=1,Jg=1) 1}, Tirjy = ... 24, = 1 and Tiprings = Tig_rjyms = 0,
forh=0,...,¢9—1.
The probability that all this can be arranged is given by (3)-(6):

1 — Le~(RDT _ 9= _ 91e=31" _ 9L~

All the exponents are asymptotically —n® for some « > 0, thus the probability is positive,
if L < e™, for a suitable a > 0.

Using the same argument as in the proof of Theorem 1 we get that the restricted function
is a threshold function of functions which depends on < [ variables which is a contradiction
with Lemma 2.1. O

4 An upper bound
In this section we show

Theorem 4 For all natural r AC5, C QTIr].

14



Proof:
It is sufficient to show that for all primes p P, = Aiuy Vi, 2, ; is in QT'[p].

Denote A" ={0,...,p—1}"x{1,...,p—1} x{1,...,n} , and denote for all (o, b,2) € A"
by m®»" the MO DP—function defined by

n
o,b,t _
meN g Tan) =1 = ZOCJ'.TZ'J‘ = b mod p,
=1
and ma’b"‘(l‘m. vy Tppn) = 0 otherwise.

Observe that if for an input matrix = to P,, the «-th row is nonzero then for all b €
{1....,p— 1} the vectors a fulfilling m®®i(z) = 1 form an affine hyperplane in IF i

Consequently, if we consider A™ as probability space with the uniform distribution then
for any fixed input z it holds the following.
If P,n(z) =1 then for all ¢, € {1,...,n}
: p"~p—1 1
Pr[moti(a) = 1)i =i, = L P =1 _ L
prp=1) p

and, consequently, Prim®"i(z) = 1] = zlo_

On the other hand, if P, ,(z) = 0 then there is an ¢, € {1,...,n} fulfilling
Pr[ma,b,i(_r) =1li =1,] =0,

i.e., Prim®"(z) = 1] < % = ]l) — %_

Using Lemma 3.3 it is straightforward to prove the existence of numbers K, M € O(n?)
such that for randomly, independently chosen (ay,bi,1),. .., (am,bar,ir) from A™ and
each input = to P, , the following is true.

If P,,(z) =1 then Pr[y M, movhit(z) < K] < 277",
lf Pn,n(«f) == 0 then P?"[Zgl mal,bz,h(z) > I(] < 2_n2.

Now an standard argument shows the existence of (a1, b1,41), ..., (aar, bar,iv) in A" so
that for all inputs x

M
Pon(z)=1 <= S m™"(z)> K,

=1

and, thus, that Tpoq ,(Pay) € O(nt). O

5 Two levels of MOD gates

In this section we prove

15



Theorem 5 Let p,r be primes, ¢ > 2, k > 1 integers. Then for some ¢ > 1 every
MOD? -MOD? circuit for MOD? has size > c”.

The method is based on the following version of Lemma 2.2. In contrast to previous
sections we suppose here that all functions map into {0,1}.

Lemma 5.1 Lel f:U — {0,1}, ¢, : U xV — {0,1}, 2 € I, let m be an integer m > 2.
Suppose
F(u) = X g, ) modm 7
I

for every u,v. Furthermore suppose that |V| has the inverse modm. Then

f(U)EZ|17|

el

Z gi(u,v) modm.

veEV

O

The application of this lemma is the same as of Lemma 2.2: if ¢; is a large MOD? gate,
we can make Y, cy ¢i(u,v) mod m constant and thus we reduce the bottom fan-in of the
circuit. However the representation in (7) is not of the form that we have in a circuit with
a sum modulo m on the top. In order to be able to use Lemma 5.1 we have to transform
the circuit in a similar way as in the above proofs.

Lemma 5.2 Suppose that
f(z) = MOD¥ (g1, .., gm),

where each g; ts a MOD? function of . Then [ can be represented as

77’1,/

> hi(x) mod p,

i=1

f(z)

where each h; is a product of at most X simple disjoint MOD? gates, A is a constant and
m' is bounded by a polynomial of m.

Proof: It is well-known that

T

=0 modp* o \v’i<k()50 mod p.
pZ

Thus counting modp* can be reduced to counting modp :

=0 modp® <«  Pi(z)=0 modp,
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where Py () is the polynomial

-n(-()7)

Moreover this polynomial takes on only values 0 and 1 for  a nonnegative integer. Ex-
panding the polynomial as a sum of monomials we get a representation as a sum modp
of constant size conjunctions.

The rest is the same as in the proof of Lemma 3.2. O

Finally we need the following result of Smolensky [S87] which was recently extended to
composite numbers m by Tsai [Ts93]

Lemma 5.3 Suppose
MOD; (z) = F(x) mod m,

where r is a prime which does not divide m and F(z) is a polynomial, then the degree of
F is al least én for some 6 > 0 depending only on r and q. O

Now the proof of Theorem 5 follows almost exactly the proof of Theorem 1. We choose
the U and V' in the same way as in the proof of Theorem 1, we have only to check that
|V| has inverse modulo m. But |V| = ' (where ¢ is the number of blocks in the set A)

and m = p is a prime different from the prime r. Thus |V| has the inverse. O

6 Open Problems

It remains open to prove exponential lower bounds on the size of general depth 2 threshold
circuits. Another open problem is to show that ACy € LT,. We conjecture that even

ACos € LT,

The next step in the ACC problem is to find a function which is not in ACqs[m] for
a composite m. This is open even for depth 3 circuits which use only MOD™ gates. A
natural conjecture is that MOD? & ACy3[m], if p is a prime which does not divide m.
This conjecture is open also for ACy2[m], our result gives only a partial answer.
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