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1. INTRODUCTION
Branching programs are a well established computation model for discrete functions.

Definition 1: A branching program G for a function f: A" — B™, where A =
{0,...,a—1}and B ={0,...,b—1}is a directed acyclic graph. The sink nodes are labeled
by constants from B. The inner nodes are labeled by variables from X = {z,...,z,} and
have a outgoing edges labeled by the different elements from A. Fach node v represents
a function f,: A — B. The computation path for f, and the input ¢ € A” starts at v.
At an inner node with label z; the outgoing edge with label ¢; is chosen. The label of the
sink finally reached is defined as f,(c). The branching program G represents f, if each
coordinate function f;, 1 <3 < m, is represented at some node v;. The size of (7 is equal
to the number of its edges and is denoted by |G].

In this Introduction we like to describe why researchers working in complexity theory and
researchers interested in CAD tools for hardware verification and related problems are
interested in similar types of restricted branching programs. The questions they ask are
somehow different but nevertheless related. The researchers with different background
have worked for a long time independently. One reason is the different notation, e.g.
branching programs are called in applications binary decision diagrams. We apply later
complexity theoretic methods to models having applications. We start with the models
and results from complexity theory.

In the following we consider the Boolean case ¢ = b = 2 and one-output functions, i.e.
m = 1, if nothing else is mentioned.

The branching program size of Boolean functions f is known to be a measure for the space
complexity of nonuniform Turing machines and known to lie between the circuit size of f
and its {A, V, ~}-formula size (see e. g. Wegener (1987)). Hence, only small polynomial size
lower bounds (Neciporuk (1966)) can be proved for explicitly defined Boolean functions
(excluding diagonalization or counting methods for lower bounds).

Many types of restricted branching programs have been investigated. We mention those
two types most relevant for this paper.

Definition 2: A branching program is called read k times if each variable is tested on
each path at most & times.

Read-once branching programs have been investigated intensively. Exponential lower
bounds have been proved first simultaneously by Zak (1984) and Wegener (1988), even for
functions representable by read twice branching programs of polynomial size. For larger
k we have exponential lower bounds by Okolnisch’kova (1991) for k& < e(logn)/loglogn
and Borodin, Razborov and Smolensky (1993) for £ < elogn and even nondetermini-
stic branching programs. These lower bound techniques are too coarse to establish tight
hierarchies, i.e. it cannot be proved (for explicitly defined functions) that read k times
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branching programs of polynomial size can represent more Boolean functions than read
(k4 1) times branching programs of polynomial size (if & > 2). The considered functi-
ons are known to be representable in polynomial size only if & > n'/? (the functions of
Okolnisch’kova (1991)) or k > n? (the functions of Borodin, Razborov and Smolensky
(1993)).

Definition 3: A branching program is called oblivious, if the node set can be partitioned
into levels such that edges are leading from lower to higher levels and all inner nodes of
one level are labeled by the same variable.

Exponential lower bounds for oblivious branching programs of restricted depth have been
proved by Alon and Maass (1986), Babai, Nisan and Szegedy (1992), Krause (1991) and
Krause and Waack (1991). The method of Babai, Nisan and Szegedy works up to depth

o(nlog®n). Again we do not obtain tight hierarchies.

Besides this complexity theoretic viewpoint people have used branching programs in ap-
plications. In hardware verification, test pattern generation, symbolic simulation, logical
synthesis or analysis and design of circuits and automata (for a survey see Bryant (1992))
one needs representations of Boolean functions which allow efficient algorithms for many
operations, in particular synthesis (combine two functions by a binary operation) and
equality test (do two representations represent the same function?). The equality test
for f and ¢ is equivalent to the satisfiability problem for f @ ¢g. Hence, the satisfiability
problem plays an important role. Therefore, one has to use restricted types of branching
programs. Bryant (1986) in his seminal paper has introduced ordered binary decision

diagrams (OBDDs).

Definition 4:  An OBDD is a branching program respecting a fixed ordering = of the
variables, i.e. if an edge leads from an x;-node to an z;-node, the condition x(j) > = (¢)

has to be fulfilled.

An OBDD can be described also as an oblivious read-once branching program with n
levels labeled by the different variables. All important operations can be performed by
efficient algorithms for OBDDs (Bryant (1986)) but even simple functions have only re-
presentations of exponential size. The following less restricted model has been introduced

by Jain, Abadir, Bitner, Fussell and Abraham (1992).

Definition 5: A kIBDD is a branching program which can be partitioned to k layers
such that the i-th layer is an OBDD respecting the ordering =; and such that the edges
leaving the z-th layer reach only nodes of the layers j > ¢ and the sinks.

Bitner, Jain, Abadir, Abraham and Fussell (1994) present a lot of successful experiments
with IBDDs. Their satisfiability test is a clever heuristic algorithm. Such an approach
i1s necessary, since the satisfiability test is NP-complete already for 2IBDDs. Therefore,
we also investigate kOBDDs, a generalization of OBDDs, which are more restricted than

EIBDDs.



Definition 6: A kOBDD is a kIBDD, where the permutations 7y, ..., 7 are equal to
a fixed permutation .

In Section 2 we investigate the complexity of the satisfiability problem for AOBDDs and
kIBDDs. The most important result is that the satisfiability problem can be solved for
kOBDDs and constant k£ in polynomial time.

In Section 3 we apply methods from communication complexity (Nisan and Wigderson
(1993)) to prove that the classes PO(k) of Boolean functions representable by KOBDDs
of polynomial size form a tight hierarchy, i.e. PO(k) is a proper subclass of PO(k + 1), if
k= o(n'/?/1og®*n).

In Section 4 we prove that also the classes PI(k) of Boolean functions representable by
kKIBDDs of polynomial size form a tight hierarchy, i.e. PI(k) is a proper subclass of
PI(k +1),if £ < (1 —¢)loglogn for some & > 0.

In the final Section 5 we compare the classes PO(k) and PI(k). Obviously, PO(k) C
PI(k). It follows from the results of Section 3 and Section 4 that PO(k) € PI(k — 1), if
k < (1 —¢)loglogn for some ¢ > 0. We mention an example contained in PI(2) but not
in any PO(k) for constant k.

2. THE COMPLEXITY OF THE SATISFIABILITY PROBLEM

The satisfiability problem can be solved in linear time for read-once branching programs
(and, therefore, also for OBDDs), since it is sufficient to check whether the 1-sink is
reachable from the source. But the satisfiability problem is NP-complete for 2IBDDs. For
the sake of completeness we prove this folklore theorem.

Theorem 1: The satisfiability problem for 2IBDDs is NP-complete.

Proof: The problem is contained in NP, since a satisfying input can be guessed.

The satisfiability problem for general branching programs is NP-hard, since conjunctive
normal forms can be simulated by branching programs of the same size. Let G be a
branching program and let G’ be the following 2IBDD based on G. If G contains k(7)
nodes labeled by z;, these labels are replaced by ; 1, ..., #; z(;) such that each new variable
is used once. The 1-sink of G (w.1. 0. g. there is only one) is replaced by a simple OBDD of
size O(k(1) 4 ...+ k(n)) = O(|G]) testing whether for each ¢ the variables z;1,..., ;)
have the same value. It follows that G’ is a 2IBDD, |G'| = O(|G|) and that the function
represented by GG’ is satisfiable if and only if the function represented by (G is satisfiable.

O

As a corollary we obtain that for 2IBDDs it is NP-complete to decide whether they
represent different functions and to decide whether the function represented by a 2IBDD
depends essentially on the variable z;.



The reason for the difficulty of the satisfiability problem is the existence of so-called
null chains, i.e. paths which are not computation paths, since some z;-node is left via
the 0-edge and another x;-node is left via the 1-edge. Also KOBDDs contain these null
chains. Therefore, it is surprising that the satisfiability problem is solvable for KOBDDs
in polynomial time, if k& is a constant.

Theorem 2: The satisfiability problem for kKOBDDs and constant k is solvable in
polynomial time.

Proof: Let G be a kOBDD and let us denote the layers by Gy,...,Gy. If a is a satisfying
input the computation path for a leads through some layers (1) = 1 < {(2) < ... < I(r) <
k of GG, where (rj(;) is reached at some node v; (vy is the source of (), and from some
node in (7y,) the l-sink is reached. We consider each of the at most |G|*~! possibilities
to choose r,1(2),...,l(r),vq,...,v, separately. For a specific choice of the parameters we
consider the layers 71y, ..., Gy and the sinks. From G;y we construct an OBDD Gg(i)
with source v;. An edge e leaving G;) is replaced by an edge to a 1-sink, if either s < r
and e leads to v;y; or 2 = r and e leads to a I-sink. All other edges leaving G;) are
replaced by edges to a 0-sink.

We conclude that G has a satisfying input if and only if for some r,1(2),...,1(r),vq,..., v,
the OBDDs Gg(l), cee G;(r) have a common satisfying input. Since the OBDDs Gg(l), ce
G;(T) respect the same ordering, the synthesis algorithm for OBDDs (Bryant (1986)) can
be applied to obtain in time O(|G|*¥) an OBDD G* of size O(|G/|*) representing the con-
junction of the functions represented by G§(1)7 ey GQ(T). Finally, the simple satisfiability
algorithm for OBDDs is applied to G*.

Altogether the satisfiability algorithm for the KOBDD ( runs in time O(]G|**~1) which
is polynomial, if k& is a constant. O

3. A TIGHT HIERARCHY FOR kOBDDs

Let PO(k) be the class of Boolean functions representable by kOBDDs of polynomial
size. We present explicitly defined functions which are contained in PO(k) but not in

PO(k — 1). This implies that the classes PO(k) build a proper hierarchy.

It is obvious that kK OBDDs are oblivious branching programs of depth kn. But the lower
bound techniques for oblivious branching programs are not precise enough to separate
PO(k—1) from PO(k). We prove the lower bounds by communication complexity methods
introduced by Nisan and Wigderson (1993) (and based also on Duris, Galil and Schnitger
(1984), Halstenberg and Reischuk (1988), Lam and Ruzzo (1989) and McGeoch (1986)).
Nisan and Wigderson (1993) have investigated the following communication game with
two players A and B. The input is a directed bipartite graph on V = {vg,...,v,_1} and
W = {wo,...,w,_1} where each node has outdegree 1. Hence, there is a unique path
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p = (po,p1,-..,Pm) of length m starting at py = vo. Player A knows the edges leaving V
and player B knows the edges leaving W. They cooperate to compute p,,. The number of
communication rounds is bounded by m. If A may start the communication, a protocol
of length O(mlogn) is sufficient. If B has to start the communication, for some ¢ > 0 a
protocol of length eén — mlogn is not sufficient to compute only a single bit of p,,.

We investigate pointer jumping functions similar to the problem described above. But our
situation is different. In a variable ordering the pointers leaving V and W may be mixed
and even the bits describing some pointer may be distributed arbitrarily in the ordering.
We overcome these problems in two steps, first we consider functions, where each variable
describes a whole pointer, i.e. the variables take values in {0,...,n — 1} and the output
range is also {0,...,n — 1}. In a second step we consider Boolean functions.

We investigate graphs on the node set U UV U W, where U = {u}, V = {vg,...,v,_1}
and W = {wy, ..., w,_1}. The variables z, zg, ..., 2n_1,Y0, - ., Yn_1 take values in {0,...,
n — 1}. If z = ¢, the pointer from u points to v;. If z; = ¢, the pointer from v; points to
w;. If y; = 4, the pointer from w; points to v;. (See also Fig. 1.)

(Insert Fig. 1 here.)

The unique path of length 2k + 1 starting at u is denoted by p = (po = u, p1, ..., P2kt1)-
The pointer jumping function PJiklffZ works on z, g, ..., Tn_1,Y0,...,Yn—1 and outputs j, if
p2k+1 = v;. For the Boolean variant PJ?‘;OI we assume that n = 2" and replace each variable
by [ = logn Boolean variables, e.g. z; by ;i-1,...,%;0. In order to obtain a Boolean
output we add the Boolean variables ¢y, ..., ¢,—1 describing a coloring ¢ : V — {0,1} of
the nodes in V. The output of PJE%OI is ¢(pag+1), the color of pogyq.

Theorem 3: The functions PJiknjZ and PJE;’ZOI can be computed by kOBDDs of size
O(kn?).

Proof: We consider the integer case first. At the source (level 0) z is tested. On level 7,
1 <@ < 2k, we have n nodes labeled by the variables zq,...,z,_1, if 7 is odd, and by
Yo, - - -y Yn—1, if 2 1s even. On level 2k + 1 we have n sinks labeled 0,...,n — 1. Edges from
level ¢ lead to level ¢ 4 1. If the edge label is j, the edge reaches the node with label z;,
y; or 7. Hence, we follow the path p. This branching program represents PJiklffI with size
O(kn?). Tt is a kOBDD respecting the ordering z,zg, ..., Tn_1,Y0,- -+, Yn_1-

For the Boolean case the inner nodes are replaced by binary decision trees for the Boolean
variables replacing the considered integer variable. The sink with label j is replaced by a
test of the color variable ¢;. The a-successor of this test is the sink with label a € {0, 1}.

O

Theorem 4: Each (k — 1)OBDD for PJ™ has size 2%"/¥) /n. Each (k — 1)OBDD for
PJE%OI has size 220" */8) /.



Proof: The following proof strategy is used. Let s be the size of a (k—1)OBDD G repre-
senting PJikI}; or PJE;’LOI. Based on the ordering of the variables used by G a communication
game for a suitable subfunction of the pointer jumping function is discussed. From G an
upper bound on the minimal protocol length for this communication game is derived. To-
gether with the lower bound on the protocol length due to Nisan and Wigderson (1993)
we obtain the bound on s.

First we consider a (k—1)OBDD for PJ?; . We change the variable ordering such that z
becomes the first variable. The size of (¢ is increased at most by a factor n, since we may
use n disjoint copies of (&, where the tests of z are deleted, as successors of the source. The
new (k — 1)OBDD is again called (G. We define a communication game. Let L be the list
representing the ordering of the x- and y-variables used by G. We break L in the middle
into L4 and Lg. If L contains at least n/2 z-variables, player A of the communication
game obtains z and the z-variables in L4 and player B the y-variables in Lg. Otherwise
player A obtains z and the y-variables of L4 and player B the z-variables of Lg. Let
V' CV and W' C W be the sets of nodes v; resp. w; such that z; resp. y; is given to some
player. The set of inputs is restricted to those graphs, where the edges from V' (resp.
U U W) reach nodes in W' (resp. V'). The players A and B have to evaluate PJ}™, in
2k — 2 rounds of communication, where A writes in the first round.

Using the (kK — 1)OBDD @ it is easy to obtain a communication protocol of length
(2k — 2)[log s] + [logn]|. First the tests of variables not given to some player are eli-
minated by fixing these variables, e. g., to 0. Then the 2-th layer of G can be partitioned
into two sublayers such that player A knows the variables tested in the first sublayer and
player B knows the variables tested in the second sublayer. The computation path starts
at the source. It a player knows at which node the computation path reaches one of his
sublayers, he computes and writes the number of the first node on the computation path
not belonging to his sublayer. The number of the sink is written not later than in the
(2k — 2)-th round. The bound on the protocol length follows, since A may write in the
first round, which copy of GG is used. Afterwards each node can be coded with [log s] bits.

A lower bound of en—(2k—2)[log n| for some € > 0 for the protocol length follows directly
from the proof of Theorem 2 in Nisan and Wigderson (1993). Our input restriction is not
crucial, since V' and W' contain at least n/2 nodes each. The lower bound works for 2k —1
rounds of communication and even for 2k rounds, if player A gets y-variables.

Combining the bounds we obtain log s = Q(n/k) — logn.

For the Boolean case we cannot apply directly the result of Nisan and Wigderson (1993)
that the lower bound holds even if only a single bit of psz+1 has to be computed. This is
for our communication game no longer true. The nodes in V/ may have the same, e. g., last
bit. This is the reason why we have introduced the color variables for the Boolean variant
PJ?‘;OI. The second problem is that the Boolean variables representing some pointer may
be distributed arbitrarily over the variable ordering used by G.

Let GG be an ordered read (k— 1) times branching program representing PJE";OI with size s.
Again it can be assumed w.l.0.g. that zi,gn—1,..., 20 are tested only at the top of &. Let



L be the list representing the ordering of the x- and y-variables used by (5. For each ¢ we
mark in L the (logn)/2-th Boolean variable ;. and the same for the y; .-variables. Now
we break I into L4 and Lg. The breakpoint is the n-th marked variable. If L4 contains at
least n/2 marked z-variables, player A of our communication game obtains the z-variables
and those z; -variables of list L4, such that the marked x; .-variable belongs to L4, and
player B obtains those y; .-variables of list Lg, such that the marked y; .-variable belongs
to Lp. In the other case L4 contains at least n/2 marked y-variables and player A gets the
z-variables and some y-variables chosen in a similar way as in the first case the x-variables.
In the same way player B gets some z-variables. Let V/ C V and W’ C W be the sets of
nodes v; resp. w; such that some ;.- resp. y; .-variables are given to some player.

The variables not given to some player are now fixed. Variables belonging to nodes in
V—V'or W — W' are set to 0. Let v; € V' (the case w; € W' is handled similarly).

There are r < n'/? different ways to fix the z; -variables not given to some player. This
gives a partition of W into r subsets of equal size n/r > n'/2. Since W' contains at least
n/2 nodes, the z; -variables not given to some player can be fixed in such a way that at
least n1/2/2 nodes in W' are reachable by an edge from v;.

We investigate a random coloring of the vertices in V', It holds for each w; € W' that the
probability that less than a third of the nodes in V' reachable by an edge from w; has
color 0 or less than a third of these nodes has color 1 is exponentially small (Chernov’s
bounds). Hence, the color variables can be fixed in such a way that for each w; € W' at
least a third of the nodes in V' reachable by an edge from w; has color 0 and at least a
third has color 1.

After having fixed the variables in the way described above the players A and B have to

evaluate PJE;’ZOI in 2k — 2 rounds, where A writes in the first round.

We investigate this new communication game. The upper bound (2k — 2)[log s] + [log n]
follows in the same way as in the non Boolean case, since we have fixed enough variables
such that (G can be divided into 2k — 2 sublayers and all variables of each layer are known
by one of the two players.

The lower bound on s follows, if we can prove a lower bound of en'/? — (2k—2)log n on the
protocol length. For the proof of the lower bound on the protocol length we consider only
a subset of the still possible graphs. Let V! C V' be the set of possible direct successors of
w; € W'. We choose V" C V/ such that |[V"| > n'/2/3 and exactly one half of the nodes in
V!" has color 0. The input is chosen at random from the set of all possible graphs, where
the edge from u leads to V', the edge from v; € V' leads to some node in W/, the set
of possible successors in W', the edge from w; leads to some node in V/". Now the proof
method of Nisan and Wigderson (1993) can be applied directly to obtain the proposed
lower bound on the protocol length. O

We remark that the lower bounds of Theorem 4 hold even for KOBDDs, if in the k-th

layer only the ¢-, - and z-variables may be tested.

As a corollary we obtain the proposed hierarchy result. Here we have to take into account



that PJ?‘;OI is defined on ©(nlogn) Boolean variables.
Corollary 1: PO(k—1) C PO(k), ifk= o(n'/?/10g®? n).

If we consider functions on n variables taking values in {0,...,n — 1}, a corresponding
hierarchy result is proved even for k = o(n/logn).

Remark: The results of this section are contained already in the extended abstract

Sieling and Wegener (1994).

4. A TIGHT HIERARCHY FOR kIBDDs

Let PI(k) be the class of Boolean functions representable by KIBDDs of polynomial size.
The upper bounds for the pointer jumping functions proved in Theorem 3 hold also for

kIBDDs. Hence, we look for lower bounds.

Theorem 5: FEach (k — 1)IBDD for PJi,:fI has size 220*/(-2%) /5, This bound grows

exponentially, if & < (1 —¢)logn for some ¢ > 0. The size of (k — 1)IBDDs for PJE;LOI is
not polynomially bounded, if k¥ < (1 —¢)loglogn for some ¢ > 0.

Proof: IBDDs may use different variable orderings in different layers. Hence, the set of
variables given to the players has to be chosen more carefully. We assume again that z is
tested only at the source and consider first a (k — 1)IBDD G of size s representing PJ}:;.

The set of good variables GV is initialized as set of all z- and y-variables. Let L; be the
list representing the ordering of the good variables in (GV;_; with respect to the variable
ordering of the i—th layer of (G. We break L; in the middle. One part contains at least
one half of the z-variables in GV;_; and the other part contains the same number of y-
variables in G'V;_;. The set of good variables GGV; contains exactly these variables. The
final set GV,_; contains at least n/2k_1 xz-variables and at least n/2k_1 y-variables.

Let V' resp. W' be the set of nodes v; resp. w; such that z; resp. y; is good. The set of
inputs is restricted to those graphs, where the edges from V' (resp. U UW’) reach nodes in
W' (resp. V'). Player A obtains in each case z and the good z-variables, if they are tested
in the first layer of G before the good y-variables, and the good y-variables otherwise.
Player B obtains the good variables not given to player A. Both players have to evaluate
PJiklffz in 2k — 2 rounds and player A starts writing.

It may happen that in some layers of G the good z-variables are tested before the good
y-variables while in other layers of G the good y-variables are tested before the good
z-variables. This makes the communication game for the players even simpler. Simulating
(G a protocol of length (2k — 2)[log s| + [logn] is obtained. The results of Nisan and



Wigderson (1993) lead to a lower bound of en/2"~1 — (2k — 2)[log(n/2*"1)]. From both
bounds on the protocol length the bound log s = Q(n/(k2*)) —logn on the (k — 1)IBDD

size s can be derived.

For the Boolean case we combine the ideas of the proof of Theorem 4 for the Boolean case
and the ideas for the integer case above. The set of good variables GGV4 is initialized as
set of all x- and y-variables. Let L; be the list representing the ordering of the variables
in GV;_; with respect to the variable ordering =; used in the -th layer of (G. The list
L; contains for at least n/2"~! V-nodes at least (logn)/2:~! Boolean variables each and
the same holds for W. For each node such that a Boolean variable representing this node
is contained in I; the middle variable with respect to L; is marked. Then the middle
variable with respect to all marked variables in L; is determined and we break L; after
this variable. One part called V-part contains at least n/2° marked V-variables and the
other part called W-part at least n/2! marked W-variables.

A variable z;. is included in G'V; if it is in the V-part of L; and if the marked Boolean
variable for v; is also in the V-part of L;. W-variables are treated in a similar way. The
final set GVj_; contains for at least n/2k_1 V-nodes and for at least n/2k_1 W-nodes at
least (logn)/28~! Boolean variables each.

Player A obtains the z-variables and the V-variables in GVj_1, it they are before the
W-variables in GV,_; with respect to I; and the W-variables in GV,_; otherwise. Player
B obtains the other variables in GVj_;.

The variables not given to some player are fixed. Let V! C V and W' C W be the sets of
nodes v; resp. w; such that some z; .- resp. y; .-variables are given to some player. Variables
belonging to nodes in V. — V' or W — W' are set to 0. Let v; € V' (the case w; € W' is
handled similarly). At most (1 —27(=1))1og n variables of type z;. have to be fixed and
at least n /2! of the nodes of W are in W'. Hence, by the pigeonhole principle we can
fix the z; -variables not in GVj;_; in such a way that at least

N(k) = (n/257") /=207 = 2070 970y

nodes in W' are still reachable from v;.

If k < (1 —¢)loglogn for some ¢ > 0, N(k) = 298" and N(k) grows faster than any
polylogarithmic function. The following holds for a random coloring of the nodes in V".
By Chernov’s bounds the probability that less than a third of the nodes in V' reachable
from w; € W' has color 0 (or color 1) is bounded above by 27N for some a > 0.

Since n2-*N*) < 1 for large n, we can fix the color variables in such a way that each
w; € W' has the property that at least a third of the possible successors in V' has color

0 and at least a third has color 1.

Now we continue as in the proof of Theorem 4. The upper bound on the protocol length
is O((loglogn)log s + logn) and the lower bound Q(2%0°¢™) — (loglogn)logn). Hence,
log s = 22098 %) and s is not polynomially bounded. O



Corollary 2:  PI(k—1) C PI(k), if k < (1 —¢)loglogn for some ¢ > 0.

The corresponding hierarchy for functions on n variables taking values in {0,...,n — 1}
is proved even if £ < (1 — ¢)logn for some ¢ > 0.

We have ideas for an improved hierarchy result but we are not able to solve the following
communication game.

There are k node sets Vi,...,V; containing n nodes each. To simplify the notation let
Vis1 = V4. Some node v; € Vj is fixed. The functions f; : V; — Vi1 describe pointers
from V; to Viy1. We are interested in the (k + 1)—th node on the unique path starting at
v1. The path is p = (vy,..., vk, Vkt1), Wwhere v; € V.

There are k players and player ¢ knows all f; except f;. Each player may write one message
and the players have to write according to their numbers, first player 1, then player 2 and
SO on.

Conjecture: For some ¢ > 0 protocols of length en® are not long enough to compute
vi41 or only a single bit of vgy1.

Communication games, where player ¢ knows everything except the :—th part of the infor-
mation, have already been considered by Babai, Nisan and Szegedy (1992). They proved
large lower bounds for difficult functions. Their methods cannot be used here, since our
game becomes trivial, if the players may write in arbitrary order. Player 2 may write v,
and then player 1 may write vyy;. This protocol has length 2[log n].

Remark: The communication game has not been published before. After a talk at the
Oberwolfach conference on complexity theory (1994) Noam Nisan pointed out that he and
others have also tried to solve the same communication problem and that a proof of the
conjecture has even more implications. Independently Babai, Kimmel and Lokam (1994)
have considered this communication game and they have obtained results, if all players
have to write their messages simultaneously.

We sketch our ideas how we obtain an improved hierarchy for AKIBDDs of polynomial size,
if the conjecture holds.

We describe a new pointer jumping function PermPJy ,, on k[log k] + (nk +1)[logn] +n
Boolean variables:

— k[log k] variables describe a permutation o on {1,...,k}.

— [log n] variables z;, 0 < [ < [logn], describe a pointer, a number in {0,...,n — 1},
for a node wu.

— nk[logn] variables z; ;;, 1 <1<k, 0<j<n-—1,0<1[< [logn]|, describe pointers
for the nodes v; ;.

10



— n variables ¢;, 0 < 7 < n — 1, describe a coloring of n nodes.

The pointer jumping function works on an input in the following way. One starts at wu,
the pointer from u leads to a node p; in V1), the pointer from p; leads to a node p;y; in
Vi (i41), where o(k +1) := o(1). The output is the color of pyiq, where the color variables
describe a coloring of the nodes in V(441) = Vo).

Lemma 1: The pointer jumping function PermPJy , is contained in PO(k), if k =
O(log n)/(loglog n).

Proof: The following variable ordering is chosen. First the permutation variables followed
by the z-variables, then the z-variables and, finally, the color variables. In the first layer a
complete decision tree for the permutation variables is used. It is of polynomial size, since
k = O((logn)/(loglogn)). The following parts of the kKOBDD are disjoint for different
permutations. Still in the first layer it is possible to compute p;. Then p;1; is computed
in the :-th layer. In the last layer it is possible to compute also the color of py4q. O

If £ = o((logn)/(loglogn)) and the conjecture holds, the pointer jumping function
PermPJy ,, is not contained in PI(k — 1). To prove this claim we consider a (k — 1)IBDD
(¢ of size s representing PermPJ; ,,. We assume that the permutation variables and the
z-variables are only tested at the top of G. We can always achieve this property without
increasing the size of G by more than a polynomial factor. Later we fix the permutation
variables and the z-variables.

The block B; contains all variables z; . Let GV; (set of good variables) contain all z-
variables and let C'Vj (set of chosen variables) be empty. We ensure that C'V,_; contains
for each of the i — 1 blocks By1),...,Bs(i-1) (0(1),...,0(z — 1) will be defined step by
step) for at least n/k nodes (logn)/k variables each and that (GV;_; contains for the other
k—14 1 blocks for at least (k—74 1)n/k nodes at least (k—i+1)(logn)/k variables each.
Let L; be the list representing the variables of GV;_; according to the variable ordering
7; used in the i-th layer of G. We run through L; in the reversed order until we have
found for at least n/k nodes of some block B at least (logn)/k variables each. Then
o(2) is defined such that B = Bs(:). The set C'V; contains the variables of C'V;_; and for
n/k nodes of B,y (logn)/k of those variables we have found. The set Gi'V; contains all
variables fulfilling the following conditions:

— the variables are in GV,_;.

— the variables do not belong to B, .

the variables do not belong to nodes for which we have found at least (logn)/k
variables.

the variables have not been found during our run through L;.
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It is easy to prove that the proposed conditions on GV; and C'V; are fulfilled. Finally, o(n)
is defined such that ¢ is a permutation. The set C'V contains the variables of C'Vj_; and
for at least n/k nodes of B,y at least (logn)/k variables each, where these variables are
chosen from G'V},_;.

The permutation variables are fixed to describe o. The node sets Vi, ...,V are reduced
to sets V/,..., V] containing only nodes belonging to chosen variables. The variables for
nodes in V; — V' are set to 0. Let v,(;),; € VJ;). The variables z,(;) ;. not chosen are fixed

with the help of the pigeonhole principle in such a way that at least n'/* /k nodes in Vo/(i+1)
are reachable. Using Chernov’s bounds and the fact that n'/*/k grows faster than any
polylogarithmic function, we can fix the color variables in such a way that for each node
in Va’(k) the same number of Q(n'/*/k) nodes of each color class in Va/(1) is reachable. The

z-variables are fixed in such a way that a node in Vo’(l) is reached from u.

Player ¢ obtains all chosen variables except those from B,;. For this situation we con-
sider the communication game. The protocol length cannot be smaller than for the ge-
neral situation with n'/*/k nodes in each node set. If the conjecture holds and k =
o((logn)/(loglogn)), the protocol length is not bounded by any polylogarithmic function
in n.

The given (k — 1)IBDD G for PermPlJ;, leads to a protocol for the communication
game. After fixing variables in the prescribed way, we can divide the layers of (G in the
following way. In layer i the chosen variables from block B,(; are tested after all other
chosen variables from blocks B,(;), where j > 1. We partition the i-th layer into these two
sublayers. Player 1 knows everything in the first sublayer of layer 1, player: € {2,..., k—1}
knows everything in the second sublayer of layer : — 1 and in the first sublayer of layer z,
and player k& knows everything in the second sublayer of layer £ — 1. Hence, we obtain a
protocol of length k[log s].

Combining the two bounds we see that log s is not bounded by a polylogarithmic function
and s is not polynomially bounded.

5. A COMPARISON BETWEEN £OBDDs AND £IBDDs

By definition it is obvious that PO(k) C PI(k) for all k. Since our hierarchy results have
been proved for the same pointer jumping functions, we conclude that PO(k) € PI(k—1),
if k < (1 —¢)loglogn for some e > 0. It is not always possible to save one layer, if it is
allowed to change the ordering from layer to layer. But the change of the variable ordering
can be quite powertul.

Proposition 1:  PI(2) is not contained in the union of all PO(k), where k£ € IN.

Proof: Let PERM be defined on n x n Boolean matrices X. PERM(X) equals 1 if and

only if X is a permutation matrix, or equivalently, if each row and each column of X
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contains exactly one entry 1. It is easy to see that PERM € PI(2). In the first layer a
rowwise ordering of the variables is used and in the second layer a columnwise ordering.
Krause (1991) has shown that PERM is not contained in any PO(k). O
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Figure 1: PJi:al?(ta(Zaxoa---743573/07---,3/5) = 1 for the input in the figure, since p =
(uvvlvw37v57w07'vo,‘w2,‘v1).
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