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Abstract. A syntactic read-k times branching program has the restriction
that no variable occurs more than & times on any path (whether or not con-
sistent). We exhibit an explicit Boolean function f, which cannot be computed
by nondeterministic syntactic read-k times branching programs of size less than
exp (Q (k@)) , although its complement —f has a nondeterministic syntactic
read-once branching program of polynomial size. This, in particular, means that
the nonuniform analogue of NLOGSPACE = co— NLOGSPACF fails for syn-
tactic read-k times networks with k£ = o(log n). We also show that (even for k£ = 1)
the syntactic model is exponentially weaker then more realistic "nonsyntactic”
one.
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1 Introduction

We will consider the classical model of switching-and-rectifier networks together with two its
restrictive versions - deterministic and non-deterministic branching programs. Let us briefly
recall their definitions. (Basic relationships between these models one can find in the survey
[8])-

A switching-and-rectifier network is a directed acyclic multigraph G' with a distinguished source
node s and a distinguished sink node . For each non-sink node, each edge directed out of the
node is either unlabeled or labeled by some variable or its negation.The size(G) is the number
of labeled edges in G. The network G computes a Boolean function f : {0,1}" — {0,1} in
the obvious way: for each u € {0,1}" we let f(u) = 1 iff there exists at least one (directed)
s-t path starting in the source node and leading to the accepting node and such that all labels
along this path are consistent with . Following [8] we denote the minimal possible size of a

switching-and-rectifier network computing a Boolean function f by RS(f).

There are several ways to restrict the power of switching-and-rectifier networks. The most
restrictive version is the well known model of branching programs. Namely, a deterministic
branching program is a switching-and-rectifier network in which the outdegree of each non-sink
node is exactly 2 and the two outgoing edges are labeled by z; and —z; for some variable asso-
ciated with the node. The branching program becomes nondeterministic if we allow ”guessing
nodes” that is nodes with both two outgoing edges being unlabeled. The measures correspond-
ing to the size of these devices are denoted by BP(f) and N BP(f).

A network is syntactic read-k timesif each variable occurs at most & times along each path going
from s. We denote the corresponding complexity measures by BPx(f), NBPi(f) and RSk(f).
We adopt the following notation: for a complexity measure M(f) let M denote the class of all
sequences of Boolean functions (f,|n > 0) for which M(f,) = n°). Then BP, C NBP, C RS,
and NBP. = RSy, i.e. in the case of syntactic restriction the read-k times models of non-
deterministic branching programs and switching-and-rectifier networks are equivalent. (We

will briefly discuss the "nonsyntactic” case in the last section).

The model of syntactic read-£ times networks was intensively investigated in the last ten years.
For small values of k the following separation results were proved (throughout, C means strong
inclusion): BP; C BP., [10, 11]; BP; C BP; [10]; NBP; C NBP,, [6]; BP; C NBP; C NBP,
and NBP; # co — NBPy [4, 5]. This last inequality was established in [4, 5] by proving that
the ”Fxact-Perfect-Matching” function in not in NBP; while its complement is obviously in
this class. Another proof of this inequality was recently given in [1] using ”Exact-Half-Clique”

function.



The progress in the field was made recently by Borodin, Razborov and Smolensky in [1] by
proving that NBP, C NBP, for k& = log, n. This was done using functions g, : Fg” — {0,1}
(¢ > 3) given by: gn(z1,. ., Tn, 41, 4n) = Viff 3501 @i jziy; = 0, where A = {a;;}
is an n x n matrix over the field F,, and proving that the (Boolean version of) g, is not in
NBP; if all sufficiently large minors of A have large rank. The next step was to prove that,
so called, Generalized Fourier Transform matrices and, in particular - Sylvester matrices, have

this property.

A similar result but for the weaker class of deterministic branching programs, namely, the
separation BP C BPﬁ for k ~ Inn/InIn n, was obtained independently by Okolnishnikova [7].
This was done by proving that the characteristic function of well-known Bose-Chaudhuri codes
requires deterministic read-k times branching program of size exp (Q (%)) . This function is

defined by

=1

fnid(m,...,xn) = 7\ (169 (éaijmj)) (1)

where A = {a;;} is an m x n 0, I-matrix with m < dlog(n + 1) rows and such that every 2d

columns of A are linearly independent over Fy. Such matrices are explicitly described in [2].

The function f, 4 have one nice property: the complement - f, ;is the OR of m parity functions,

and hence, is clearly in the class NBP;.

The goal of this note is to extend the results of [1] and [7] by proving that the function
fn,d requires also nondeterministic read-k times branching programs of size exp (Q (k@)) .
Thus, although —f, ; € NBPy, the function f, ; itself does not belong to NBPy if £ < kg =
(1/2 —¢€)Inn/InInn. This fact means that

co— NBP; \ NBP;, # 0,

and hence, for all k£ < kg
NBPy # co — NBPy.

In particular, this shows that the Immerman-Szelepcsényi [3, 9] constructions, yielding the

equality NBP = co — NBP, necessarily require at least logarithmic multiplicity of reading.

Let us also mention that we derive our lower bound for f, ; using only the fact that:

(i) this function accepts sufficiently many vectors, namely, at least 2"(n + 1)~%, and

(ii) the Hamming distance between any two accepted vectors is also sufficiently large, namely,
at least 2d + 1.



2 The Theorem

For a Boolean function f, let |f| denote the number of vectors in f~'(1) and H(f) denote the

minimal Hamming distance between any two vectors in f~'(1).

Theorem let a,k,d be positive integers, a > k + 1, and let f be a Boolean function in n
variables with H(f) > 2d 4+ 1. Then

NBPy(f) >

(20utn)- LY. 2

DN —

where

9 d
n
Aai(f) = (W) :

We postpone the proof of the theorem to the next section.

The theorem yields large lower bounds for any Boolean function which accepts many vectors
with large Hamming distance between them. Thus code functions are good candidates for large

lower bounds.

To illustrate this, let us take the characteristic function f, ; of Bose-Chaudhuri code defined
by (1). Tt is well known that for this function we have (see [2]): |fua| > 2"(n + 1)7¢ and
H(fn4) > 2d+ 1. Thus, taking @ = £+ 1 in (2) after simple computations we obtain the

following

Corollary 1 Ifd < \/(77 —1)/(2(k 4 1)kek+1) then

N BPy(fn,d) > exp <Q (%)) ) (3)

In particular, for the maximal possible d,
n
NBPy(fnd) > exp (Q (k—\/?;>) . (4)

Corollary 2 Let kg = (1/2—¢€)Inn/Inlnn, ¢ > 0. Then for any k = k(n) < ko we have that
co— NBP; \ NBPy, # 0 and hence NBPy # co — NBPy.

Proof. By (4) we have (for appropriate values of d = d(n)) that N BPy,(fs,4) = exp ((n)).On
the other hand, = f, 4 is the OR of m < dlog(n+1) parity functions, and hence, NBPi(=f, 4) =
O(n?). I



3 The Proof

First we recall from [1] the following result stating that functions computed by read-k times
programs can be represented in some special form. Say that a Boolean function g(zy,...,2,)

is a (k, a)-rectangle if g can be represented in the form

ka
9=\ gi(X:)
=1

IA

where g; is a Boolean function depending only on variables from X; C {z1,...,z,}, |Xi
[n/a] and each variable belongs to at most k of the sets {Xq,..., Xgq}.

Lemma 3 [1] Let f be a Boolean function and k,a be positive integers. Let T =
(2N BP.(f))***. Then f is an OR of at most T (k,a)-rectangles.

Thus, in order to prove the lower bound (2), it is enough to prove that each (k,a)-rectangle
g < f can accept at most 2" /A, x(f) vectors from f~1(1), i.e. that |g] < 27/A, x(f). We split

the proof of this fact into two simple lemmas.

, . . ky~1 k
Convention: Throughout this section, let a = (%") ~and g =1- 2.

Lemma 4 Let g(z1,...,2,) be a (k,a)-rectangle. Then g can be represented in the form
9=9"(X")Ag'(X") (*)

where | X9\ X' > an and | X'\ X°| > fn.

Proof. Let g = g1(X1) A+ A gm(Xm) be a (k,a)-rectangle, m = ka. We consider a random
subset I C {1,...,m} with |I| = k, and associate with it the following two sets of variables:
X% =U,er Xiand X' = U;gr Xj- For a variable z € {21,..., 2}, put Jo = {i|lz € X;}. Since
each variable z belongs to at most & of the sets { X1, ..., X,,,}, we have that |J,| < k, and hence,
Priz € X°\X'|=Pr[I D J,] > (7;3)—1 = a. This implies that the mean of | X%\ X'| is at least
an. Fix any set I in ([7;:]) for which | X%\ X'| > an. Since | X;| < [n/a] for all i = 1,...,m,
we have that | XY] < [n/a]|l|. Hence | X'\ X°| =n — |Xo| > n—[n/a]l - k> (1 —k/a)n = fBn

which completes the proof of the lemma. 0

Lemma 5 Let g be a Boolean function in n variables. If g < f and g can be represented in

the form (x) then

IMSZ%kUy



Proof. Define the r-th degree D,(f) of a Boolean function f to be the maximal possible
number of vectors in f~1(1) such that all of them coincide in at least i coordinates. In other
words, D,(f) is the maximum of |f,_y| over all Y C X with |Y| = r and all assignments
o:Y —{0,1}. Hence, Do(f) = |f| and D,(f) — 1 as r — n.

Let g have the representation (). Take Y C X°\ X' and Y' C X'\ X? with |Y"| = an and
V! = fn. Let Z= X\ (YOUYY).

Any assignment ¢ — Z of constants to variables in Z leads to the subfunction g,z of ¢
which can be represented in the form g,z = h°(Y°) A h1(Y!) where YO N Y1 = (. Thus, for
each assignment ¢ — 7 there are at most Djyo|17/(f) Diz14p1|(f) < Da—pyn(f) Da—ayn(f)

1—-a—B)n

vectors in g~'(1) consistent with o. Since there are exactly 214! = 2 such assignments

o — Z, we conclude that
lgl < Q(I_Q_ﬁ)nD(l—a)n(f) Dyl f)- (5)

Next, observe that either D,(f) =1 (ifr >n — H(f)) or
n—r\"
(5 o

Indeed, take a set A C f~'(1) and suppose that all the vectors in A coincide on some set of
coordinates I C {1,...,n}, |/| = r. Let A” C {0,1}"" be the projection of A onto the set of
remaining indices [n]\ /. For each vector z € A’ draw the Hamming ball By(z) C {0,1}"~" of
radius d with the center in z. Each such ball has exactly 1+ 3%, ("77) > (") vectors. On the
other hand, the condition H(f) > 2d 4+ 1 means that all these balls must be pairwise disjoint.
Since |A] = |A!| < 2"", we obtain the desired upper bound 2"~" (n;'f‘)—l on the number of
possible balls By(z) with z € A’, and hence, the desired upper bound for the number of vectors

in A.
Using (6), we have by (5) that |g| < 2"/N where

2\ ¢ 9 d
= () (455) > () > 2

which completes the proof of Lemma 5, and thus, the proof of the theorem 0

4 Concluding remark

In ”syntactic” read-k times networks, each variable is allowed to be tested at most & times

in any path (consistent or not). This restriction for inconsistent paths is somewhat artificial.



In order to capture space limitations in so-called eraser Turing machines which erase each
input cell after a fixed number £ of readings, one has to consider "nonsyntactic” read-k times
networks, i.e. networks in which only consistent paths are required to test each variable at most
k times (no matter how many times variables appear on inconsistent paths). Namely, say that
a switching-and-rectifier network is read-k times if each variable occurs at most k£ times along
each consistent path going from the source s. Let k-BP(f), k-NBP(f) and k-RS(f) denote

the corresponding complexity measures.

Although we have that 1-BP = BP; and 1-NBP = NBP; = RS;, the following simple observa-
tion shows that nonsyntactic read-k times devices can be much more powerful than syntactic

ones and we need new lower bound arguments for them (even for small values of k).
Proposition 6 BP; C RS; C 1-RS.

Proof. The first inclusion was established in [4, 5] by the ”FExact-Perfect-Matching” function.
This is the function f(X)in n? variables which, given a n x n matrix X = {z; ;|1 < 4,5 < n},
computes 1iff X is a permutation matrix, i.e. iff each row and each column of X has exactly one
1. It is known ([4, 5]) that RS1(f) > exp(£(n)). Since for any function f, BPr(—f) = BPy(f)
and BPy(f) > RSk(f), we have that — f does not belong to BP;. On the other hand, = f(X) =1
iff there is a line (i.e. a row or a column) in X which has either no ones or at least two ones.

Thus, = f belongs to RS;.

To prove the second inclusion, it is enough to verify that the function f itself has a read once
switching-and-rectifier network of polynomial size. Define the network G(X) as the AND of
two networks G'1(X) and G2(X ) where

3

Gi(X) = /\ \/ T, and Ga(X) = /\ \/ 24
7=1k=1

1=1j5=1 ]

.

W
E

Observe that G1(X) = 1 iff each row of X has at least 1 one, and G5(X) = 1 iff each
column of X has at least n — 1 zero. Thus, G(X ) computes f(X) and has size O(n?). Finally,
since GG; has no edge labelled by a negated variable and all the edges in G5 are labelled by
negated variables, we have that in each consistent path, starting in s, each variable is tested at
most once (otherwise the path becomes inconsistent). Hence, G is a (non-syntactic!) read-once

switching-and-rectifier network.
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