Electronic Colloquium on Computational Complezity
ECCC TECHNICAL REPORTS SERIES 1995 REPORT NR: TR95-002

New Lower Bounds and Hierarchy Results
for Restricted Branching Programs

Detlef Sieling?

Received Januar 3, 1995

Abstract. In unrestricted branching programs all variables may be tested arbi-
trarily often on each path. But exponential lower bounds are only known, if on
each path the number of tests of each variable is bounded (Borodin, Razborov
and Smolensky (1993)). We examine branching programs in which for each path
the number of variables that are tested more than once is bounded by &, but we
do not bound the number of tests of those variables. A new lower bound method
admits to prove that we can enhance the expressive power of such branching pro-
grams by increasing k only by 1: For k < (1 —&)(n/3)"/?/log?? n, where ¢ > 0,
we exhibit Boolean functions that can be represented in polynomial size, if k
variables may be tested more than once on each path, but only in exponential
size, if (k — 1) variables may be tested more than once on each path. Therefore,
we obtain a tight hierarchy.

Keywords: Branching Programs, Lower Bounds, Hierarchy results

! FB Informatik, LS II, Univ. Dortmund, 44221 Dortmund, Fed. Rep. of Germany. Email:
sieling@Ils2.informatik.uni-dortmund.de. Supported in part by DFG grant We 1066/7-1.

Online access for ECCC:

FTP: ftp.eccc.uni-trier.de:/pub/eccc/

WWW: http://www.eccc.uni-trier.de/eccc/

Mail to: ftpmail@ftp.eccc.uni-trier.de,subject "MAIL ME CLEAR”, body "pub/eccc/ftpmail.txt”

1. INTRODUCTION

Branching programs are a powerful representation of Boolean functions. We can derive
branching programs from non-uniform Turing machines and lower and upper bounds
for branching programs imply lower and upper bounds for the space complexity of
non-uniform Turing machines and of any other reasonable model of sequential compu-
tation. For this reason branching programs and lower bound methods for branching
programs are extensively studied in complexity theory. Another application of bran-
ching programs is the use as data structure for Boolean functions. Restricted variants
of branching programs admit efficient algorithms for operations on the Boolean func-
tions represented by these branching programs. Such data structures are needed in
logic synthesis, test pattern generation, verification of VLSI designs and analysis and
synthesis of sequential circuits. The knowledge of lower and upper bounds for these
variants of branching programs is useful for the estimation of the expressive power of
the data structures.

A branching program is a directed acyclic graph with one source node. Sink nodes
are labeled by a Boolean constant 0 or 1. Non-sink nodes, also called inner nodes, are
labeled by Boolean variables and have two outgoing edges, one labeled by 0 and the
other labeled by 1. Each input @ = (a4, ..., a,) defines a path from the source node to
a sink node. In order to obtain this path for the input a we start at the source node.
At an inner node labeled by z; we follow the outgoing edge labeled by 0. if a; = 0, or
the outgoing edge labeled by 1, if a; = 1. This is iterated until we reach a sink node.
The label of this sink node is the value that the function represented by the branching
program takes for the input a.

The best known lower bound for unrestricted branching programs can be obtained
by methods due to Neciporuk (1966). But this bound is only of size Q(n?log™n).
Since we are interested in exponential lower bounds, we have to consider restrictions
of general branching programs.

If we want to use branching programs as data structure for Boolean functions, we have
to ensure that as many as possible important Boolean functions can be represented in
small size and that the operations on Boolean functions can be performed efficiently
on the data structure. The most important operations are evaluation, satisfiability,
synthesis and equality. An exhaustive list of operations and of applications is given in
Wegener (1993). For the evaluation we have to compute for a data structure represen-
ting the function f and an input a the value f(a). Satisfiability is the test, whether
there is some input a for which the function represented by the data structure takes
the value 1. Synthesis is the problem to compute a data structure for f; ® f;, where
data structures for f; and f, and a binary Boolean operation @ are given. For the
equality test we have to decide, whether two functions represented by data structures
are equal.

For unrestricted branching programs satisfiability is N P-complete and equality is
co-N P-complete. Therefore, only restrictions of general branching programs are usable

as data structures for Boolean functions. In the following we survey the most important
restrictions of branching programs.

For ordered binary decision diagrams (OBDDs) an ordering of the variables has to be
given. On each path from the source node to a sink node the variables have to be
tested according to this ordering. This also implies that each variable is tested at most
once on each path. OBDDs are the most popular data structure for Boolean functions,
because the operations can be performed efficiently on Boolean functions represented
by OBDDs (Bryant (1985, 1986)). Exponential lower bounds for the size of OBDDs for
integer multiplication and the hidden weighted bit function HW B (HW B is defined
below) are also proved by Bryant (1991).

In a read-once branching program (BP1) each variable may be tested at most once
on each path from the source node to a sink node. Exponential lower bounds for the
size of read-once branching programs can be obtained by cut-and-paste techniques due
to Wegener (1988) and Zak (1984). Read-once branching programs are not usable as
data structure, because synthesis is N P-hard. Graph driven binary decision diagrams
(Sieling and Wegener (1992), Gergov and Meinel (1993)) are read-once branching pro-
grams for which a generalized variable ordering is given. Graph driven binary decision
diagrams have the same expressive power as read-once branching programs and the
most important operations can be performed efficiently.

Read-k-times branching programs may contain k tests of each variable on each path. In
read-k-times branching programs as well as in unrestricted branching programs null-
chains may occur, i.e. paths which are not chosen for any input. This happens, if
on a path at some node v the 0-edge leaving v is chosen and at some other node v’
labeled by the same variable as v the 1-edge leaving v is chosen. A path that is not
a null-chain is called consistent. In non-syntactic read-k-times branching programs
the number of tests of each variable is bounded by & only for consistent paths, while
in syntactic read-k-times branching programs this number is bounded even for null-
chains. An exponential lower bound for syntactic read-k-times branching programs
is proved by Borodin, Razborov and Smolensky (1993). It is conjectured that for
each k > 2 there are functions which can be represented by read-k-times branching
programs of polynomial size, but only by read-(k — 1)-times branching programs of
exponential size; this means that read-k-times branching programs of polynomial size
form a hierarchy. But for £ > 3 no such function is known so far. For non-syntactic
read-k-times branching programs no exponential lower bound is known at all.

A decision tree is a branching program for which the underlying graph is a tree, this
means each node except the source node has indegree one. We may assume that a
decision tree does not contain null-chains: If in a decision tree a variable is tested more
than once on a path, all tests but the first one are redundant and can be eliminated.
It is well-known that decision trees have exponential size even for simple functions like
parity. Therefore, decision trees cannot be used as data structure for Boolean functions.
Methods for the estimation of the decision tree complexity of Boolean functions are
presented in Wegener (1988).

We call a branching program leveled, if the node set can be partitioned into levels so

that each edge leaving a node at level 7 leads to a node at level (7 + 1). If at each level
the same variable is tested, the branching program is called oblivious. Exponential
lower bounds for oblivious branching programs of linear depth were first proved by

Alon and Maass (1988).

There are functions that can be represented in a natural way by branching programs
in which on each path each variable is tested at most once with the only exception that
at the end of each path one variable may be tested for a second time. An example for

such a function is the hidden weighted bit function HW B due to Bryant (1991). This
function is defined by

HWB,(z1,...,2,) = x5, where s = f: x;.
=1

Here we assume that zq = 0. It is easy to construct a branching program for HW B.
This branching program consists of two parts: The top part has (n+ 1) sinks numbered
from 0 to n and the j-th sink is reached, if }_ ; ; = j. The inner nodes are arranged
in n levels numbered from 1 to n. The j-th level contains j nodes labeled z;. The
0-successor of the i-th node in level j is the i-th node in level (5 + 1), the l-successor
is the (2 4+ 1)-th node in level (5 + 1). Hence, in this part the variables are tested on
each path in the order zq,...,x,. We obtain the bottom part, if we replace the -th
sink by a test of z; and the sink with number 0 by a 0-sink.

This branching program for HW B is neither an OBDD nor a read-once branching
program, because in the bottom part variables are tested for a second time. It is a
read-twice branching program, but we do not need the full expressive power of read-
twice branching-programs, because on each path at most one variable is tested twice.
It is even possible to construct a read-once branching program of polynomial size for
HW B (Sieling and Wegener (1992)), but the branching program constructed above
is much more closely related to the structure of HW B. Since there is no OBDD of
polynomial size for HW B (Bryant (1991)), we see that the expressive power of OBDDs
can be enhanced by allowing that one variable is tested for a second time at the end
of each computation path. This leads to the question whether the expressive power
of OBDDs in which one variable may be tested for a second time at the end of each
path can be further enhanced by allowing two repeated tests at the end of each path.
We have to prove a lower bound for OBDDs with one repeated test at the end of each
path. Our lower bound technique does not work only for OBDDs with k repeated tests
at the end of each path (OBDDyy), but also for read-once branching programs with
repeated tests and we can even omit the properties that the repeated tests have to be
performed at the end of each computation path and that the number of repetitions is
bounded by two.

Now we define branching programs with k repeated tests (BP1,;). On each path (con-
sistent or not) only k variables may be tested multiple times, while all other variables
may be tested at most once. On different paths the sets of variables which may be
tested more than once may be different. Since the number of variables which may be
tested more than once is also bounded for null-chains, we have a syntactic restriction.

We exhibit functions f* = (f*) that are closely related to the hidden weighted bit
function. For these functions we prove an exponential lower bound for the size of each
BP14(x-1). On the other hand these functions can be represented in polynomial size,
if k repeated tests are allowed. Therefore, polynomial size branching programs with k
repeated tests form a tight hierarchy. This hierarchy result even holds, if & is a function
that depends on the input length n and k < (1 —&)(n/3)'/3/log??n for some & > 0. If
k = O(log' = n) for some & > 0, we also obtain a hierarchy of polynomial size OBDDs
with k& repeated tests.

Branching programs with k repeated tests do not appear to be usable as data structure,
because synthesis is N P-hard even for read-once branching programs. But the lower
and upper bounds show how OBDDs have to be extended in order to enhance the
expressive power of OBDDs: It is necessary to test on each path some variables more
than once. But then we have to deal with null-chains. A data structure that admits
efficient algorithms for the operations on Boolean functions even in the presence of
null-chains are read-k-times ordered binary decision diagrams (kOBDDs) due to Bollig,
Sauerhoff, Sieling and Wegener (1993). In kOBDDs each path can be partitioned into
k parts so that in each part the variables are tested at most once and according to
a given ordering. The branching program for HW B is obviously a 20BDD. Bollig,
Sauerhoff, Sieling and Wegener (1994) prove that kKOBDDs and kIBDDs of polynomial
size form proper hierarchies. In KIBDDs the variable orderings in the &k layers may be
different. No other hierarchy results for restricted branching programs are known so
far.

Our main results are:

e We prove exponential lower bounds for new restrictions of branching programs.

e These lower bounds are obtained by a new lower bound method.

We get tight hierarchies of functions that can be represented by polynomial size

OBDDs and BP1s with k& repeated tests.

The new method allows to prove lower bounds close to the corresponding upper
bounds, which has not been possible so far by other lower bound methods.

2. THE CONSIDERED FUNCTIONS AND THE UPPER BOUNDS

The function f*: {0,1}" — {0,1} is defined on the set of variables X = {zo,..., %, 1}.
Let m be the largest number, where mk[logn| < n. We partition the variables to k
groups X', ..., X* each consisting of m numbers of bit length [log n]. Let s(j) be the
sum (modn, if n is odd, and mod(n — 1) else) of the numbers of the j-th group. Then

ff(:co, .. .,xn_l) =T51) D ... O Ts(r)-

Since in a BP1,; repeated tests are not only allowed at the end of each computation
path, we get different upper bounds for the size of OBDDs and BP1s with k repeated
tests for f*. We assume throughout this paper that n is an odd number.

Theorem 1:
a) The function f* = (f*) can be represented by an OBDD,; of size O(n**1).
b) The function f* = (f¥) can be represented by a BP1,, of size O(n?).

Proof: First we describe an OBDD P, that computes for X' the value s(l). This
OBDD has n sinks numbered from 0 to n — 1, and the i-th sink is reached, if s(l) = .
The depth of P, is bounded by m/[logn], since s(l) depends essentially on m[logn]
variables. The contribution of some variable z, to s() is ,27*() mod n, where pos(r)
denotes the position of x, in its binary number. Hence, width n is sufficient for each
level to store the partial sum mod n of the contributions of the variables tested before.
The nodes at each level are numbered beginning at 0, and the source is the 0-th node
at level 0. The 0-successor of the j-th node of the level where z, is tested is the j-th
node of the following level, the 1-successor is the [(j + 27*(")) mod n]-th node of the
following level.

The j-th node of some level is reached only if the sum of contributions of the variables
tested before equals j. This also holds for the sink nodes and, hence, P, computes the
desired function. The number of nodes can be estimated by O(nm[logn]) = O(n?/k).

The OBDD,; for f* consists of two parts. The top part is an OBDD with n* sinks
and computes the value of the vector (s(1),...,s(k)). This part consists of copies of P,
which are arranged in a complete n-ary tree of depth k. At the i-th level of this tree
the variables contained in the block X* are tested by copies of P; and the value s(7)
is computed. The value of (s(1),...,s(7)) is stored in the branching program, because
paths with different values for (s(1),...,s(¢)) are never joined. The number of copies
of P, in the tree is Zf;é n! = O(n*=1). Therefore, the number of nodes in the top part
is bounded by O(n*~!.n?/k) = O(n**!/k). We obtain the bottom part, if we replace
each sink of the top part, which is reached, if (s(1),...,s(k)) = (s*(1),...,s*(k)), by a
branching program of depth & that computes the parity of x4 (1), ..., zs). Hence, the
depth of the bottom part is k, and we really get an OBDD ;. The number of nodes in
the bottom part is bounded by O(k - n*), because there are n* different values of the
vector (s(1),...,s(k)).

In a BP1,; we may perform the test of z,;) immediately after the computation of s(/),
i.e. we replace the i-th sink of P, by a test of z; and obtain a branching program Py
that computes for the I-th block the value z,;. Then Py and two copies of each P,
[> 1, are sufficient for the computation of z1) & ... D z4x)- O

The upper bound for the OBDD, is of polynomial size only if £ is a constant. At the
end of Section 3 we modify the function f* by adding dummy variables. For this new
function we obtain a polynomial upper bound for the size of an OBDD,, for all &, and
a superpolynomial lower bound can be shown, if £ = O(log'~*n) for some & > 0.

3. THE LOWER BOUND

First we prove the following property of the function f*: Even if we replace a large
number of input bits by arbitrary constants, it is possible to obtain each value in
{0,...,n —1}* for (s(1),...,s(k)) by choosing a suitable assignment to the remaining
bits (Lemma 2). Then we consider some node v in a given BP1,_y) for f*. Using
Lemma 2 we show that the sets of variables tested on different consistent paths from
the source node to v cannot differ too much, if the number of variables tested on some
consistent path to v is not too large (Lemma 3, Corollary 4, Lemma 5). This allows
us to rearrange the given BP1,(;_1) and to estimate the number of consistent paths
leading from the source node to v (Lemma 6, Lemma 7). In the proof of Theorem 8 we
define a set of marked nodes in the BP1,(;_1) and prove a lower bound for the number
of consistent paths leading from the source node to all marked nodes. Together with
the upper bound of Lemma 6, we obtain the desired exponential lower bound for the
size of each BP1, ;1) for f*. The hierarchy results are stated in Theorem 9.

Lemma 2: Let ¢(1),...,¢(k) € {0,...,n — 1}. If in the input & = (zo,...,2z,—1) at
most (m — 1) bits are replaced by arbitrary constants, there is an assignment to the
remaining bits so that s({) = t(/) for all [€ {1,...,k}.

Proof: If at most m — 1 bits are replaced by constants, there is in each group some
binary number in which no bit has been replaced. For each group we can replace all
bits outside this number by arbitrary constants and then we can choose a suitable value
for this number in order to get s(I) = ¢(1). O

Next we want to show that in each BP1(z_y) for F* the numbers of variables tested on
different consistent paths from the source node to some node v cannot differ too much,
if these numbers of variables are not too large. We consider the situation depicted in
Figure 1. On the path P from the source node to v the variables z;x),..., %;w) are
tested, this means, we run through the path P. if appropriate values are assigned to
Ti(1)s - -+ Tiw)- In the following we show that it may be necessary to test arbitrarily
chosen variables (1), ..., %k ¢ {zi1),-..,Ti()} on some path R starting at v. This
implies that on each path @) leading from the source node to v at most (k— 1) variables
of Zj(1),...,%;x) and, therefore, at most (k—1) variables not tested on P may be tested;
otherwise the number of variables tested more than once on the path ()R would exceed

(k—1).

Lemma 3: Let u <u*:=m —2k—2. Let Xy, X5 and X3 be a partition of X, where
| X1| = u, | X3| = k and | X3| = n —u — k. For each assignment to the variables in X,
there is an assignment to the variables in X3 so that the resulting subfunction cannot
be computed by a decision tree of depth less than k.

Proof: Let an assignment to the variables in X; be given. We have to compute a
suitable assignment to the variables in X3. The variables in X3 are called free, until
they are fixed to a constant.

Figure 1

The possible contribution of each variable to its binary number is a power of 2. Let
r(1),...,r(k) be the possible contributions of the variables in X5.

We claim that for some R € {0,...,n — 1} the numbers R and (R + r(¢)) modn,
1 <@ < k, are indices of free variables. Each of the v+ k < u*+ k variables that are not
free excludes at most k+1 numbers R. Hence, it is sufficient to prove (u*+k)(k+1) < n.
This follows from the inequality

n k+1
logn &k

K3k —2<n,

which holds for every n and k.

Since n is odd and the numbers r(z) are powers of 2, we have r(i) Z 0 mod n and,
therefore, R # (R + r(2)) mod n for all ¢ € {1,...,k}. Hence, it is possible to assign 0
to g and 1 to L(R+r(1))modns + + + » L(R+r(k))modn -

Now the variables zr, Z(R4r(1))modns - - - » T(R4r(k))modn are no longer free. The number
of variables that are not free is still bounded by v + 2k +1 < m — 1.

Hence, by Lemma 2, there is an assignment to the free variables such that s(1) =
. = s(k) = R, if the variables in X5 have value 0. By this assignment we obtain a

7

subfunction f* depending only on the variables in X,. In order to prove that the depth
of each decision tree for f* is k, we compute the critical complexity of f*.

The critical complexity ¢(g,a) of a Boolean function g € By, for an input a € {0,1}* is
the number of inputs o', which differ from a in exactly one bit and for which g(a') #
g(a) holds. The critical complexity ¢(g) is defined as the maximum of ¢(g,a) for all
a € {0,1}*. Tt is proved by Bublitz, Schiirfeld, Voigt and Wegener (1988) that the

depth of each decision tree for ¢ is at least ¢(g).
We compute ¢(f*,(0,...,0)). If 2 = (0,...,0), we have s(1) = ... = s(k) = R and

f*(0,...,0) =0, because xgr = 0. Now we consider an input x, where exactly one bit

z* is equal to 1. Let x* be contained in the j-th group. Then we have z,;) = 1 and

x50y = 0 for all [# j. Therefore f*(z) = 1.

Since there are k inputs x with exactly one bit equal to 1, the critical complexity of f*
and, therefore, the depth of each decision tree for f* is k. O

Corollary 4: Let a BP1,;_y) G for 1% be given and let u* = m — 2k — 2. Let
u < u* and let v be a node in the branching program that is reachable from the source
via a consistent path P, on which u variables z;y), ..., ;) are tested. Then on each
other path @) from the source node to v at most (k — 1) variables not contained in
{ziq), -+ Tiw)) are tested.

Proof: We assign to z;(),..., ;) those values for which the path P is chosen (see
also Figure 1). For each choice of k variables z;),..., &) € {Ziq),--.,Tiw)} We can
apply Lemma 3 for X; = {ju),..., %} and Xo = {z;a),..., 2%). We obtain a
subfunction f*: Xy — {0, 1}, which is not computable by a decision tree of depth less
than k. This implies that each decision tree and also each branching program for f*
must contain a path, on which all the variables z;(),..., ;%) are tested.

It is obvious how we obtain a branching program for f,,—. from a branching program
for f. By this procedure we obtain a branching program G* for f* starting from the
branching program G for f*. By the definition of f* it follows that G* contains only
nodes of the part of GG with source v. Since the branching program for f* contains a
path on which z;),..., z;x) are tested, there is also such a path in G starting at v. At
most k — 1 tests may be repeated, therefore, on each path @) leading from the source
to v at most k — 1 of the variables z;),..., 2) are tested. This holds for all choices
of ay,...,zjm & {i1), ..., Tiq} and the claim follows. O

Let v be a node in a branching program. For each consistent path leading from the
source node to v we count how many variables are tested on this path before v is
reached. We denote the largest of these numbers by L(v) and the smallest by S(v). If
some path contains several tests of some variable, this variable is counted only once.
Since we consider only consistent paths, null-chains can affect neither S(v) nor L(v).

Lemma 5: Let v be a node in a BP1,(;_q for fff and let v* = m —2k —-2. If
S(v) < wu*, then S(v) > L(v) — k + 1.

Proof: We assume S(v) < L(v)—k+1 or equivalently S(v) < L(v)— k. This implies
that on some path related to L(v) at least k variables are tested which are not tested
on some path related to S(v) in contradiction to Corollary 4. O

In order to compute a lower bound for the number of nodes in a branching program
with (k — 1) repeated tests for f* we mark a set of nodes in a given BP1 (1) We
prove a lower bound for the number of consistent paths leading from the source node
to all marked nodes. Together with an upper bound for the number of consistent paths
leading to a single marked node, we obtain the desired lower bound. In the following
Lemma we prove the upper bound for the number of consistent paths leading to a
single marked node.

Lemma 6: Let v be a node in a BP1 (1 for 5 and let w* = m — 2k — 2. If
L(v) < u*, then the number of consistent paths leading from the source node to v is
k—1

bounded by O(n*~22v"(55)),

Proof: Let T be the decision tree for f* such that for all inputs the sequence of
tested variables is the same as in the given BP1,z_1). Let V* be the set of nodes
in T representing the given node v and being reached in 7" on a consistent path. We
partition the set of paths leading from the source of T' to some node v* € V* into sets
P(j), 1 <35 < A,, of paths on which exactly the same variables are tested. Lemma 6

k—1

is proved by proving an upper bound O(n?~%) for A, and an upper bound kot (55)
for the size of the sets P(j).

1. An upper bound for A,

Let Vp denote the set of variables tested on the (consistent) path P from the source
node to v. We do not include the variable tested at v in Vp. Select for P a path that
maximizes |Vp|. Let () be some other (consistent) path to v. Due to Corollary 4 we
can obtain Vg from Vp, if we remove k* variables from Vp, where k* < k — 1, and add
at most k* other variables. Then the number of possible sets V; is bounded by

k-1 o+
Vi A
Z (l 1:|) Z (n) — O(n2k—2)'
k*=0 k 7=0 J
This is the desired upper bound for A,.
2. An upper bound for the size of P(y)
Let us consider some set P(j) and let U = {zy1),..., 2w} be the set of variables

tested on the paths in P(j). We know that u < u*, since L(v) < u*. Since the subtrees

9

whose sources are contained in V* are isomorphic, it is possible to merge all nodes in
V* which belong to paths in P(j). Let v* be the resulting node and 7™ the decision
tree whose source is v*. On each path in T* at most £k — 1 variables contained in U
are tested. We rearrange 7™ in such a way that the U-variables are tested at the end
of each path. Let Y := X — U. Perform on the decision tree successively the following
operations for each z* € Y:

e Create a new source node labeled by x*. The successors of this node are two
copies of the previous decision tree.

e Eliminate redundant tests and nonreachable nodes and edges.

In the second step all nodes labeled by x* except the new source node are removed. The
new decision tree computes the same function as the old one. Before the rearrangement
on each path in the decision tree at most (k — 1) of the variables Ti(1)s« -+ Ti(u) are
tested. The same holds afterwards, because only tests of #* € Y are inserted. Now
the tests of x;(),...,ziu) are the last tests on each path. These tests are arranged in
small decision trees of depth (k — 1) in the bottom of the decision tree with root v*
(see Figure 2). In the following we examine which functions have to be computed by
these small decision trees.

Each path from the source to v* defines an assignment to zq1),...,7iw). We call
(s*(1),...,s"(k)) the value of this partial assignment, if after assigning 0 to all variables
in Y we get s*(z) as the sum mod n of the numbers in X* for alli € {1,...,k}. We derive
an upper bound for the number of those paths leading from the source node to v* for
which the values of the partial assignments are equal to a fixed vector (s*(1),...,s*(k)).
We multiply this upper bound by n* in order to obtain the upper bound for the number
of all paths leading to v*.

Now we fix (s*(1),...,s*(k)) and consider only assignments to z;(), ..., Tiw) With value
(s*(1),...,s"(k)). Lemma 2 implies that we can choose for (s(1),...,s(k)) every value
in {0,...,n—1}* and can assign suitable values to the variables in Y in order to obtain

that for 2 € {1,...,k} the sum modn of the numbers in X* is equal to s(i). On the
other hand this assignment to the variables in Y determines a path starting at v* and
leading to one of the small decision trees in the bottom part.

We assign values to the variables in Y so that s(1) = (1), s(2) = i(2),...,s(k) = (k).
Then the value of fff is ;1)@ - - Ti(r). According to the assignments of the variables in
Y we reach one of the small decision trees in the bottom part which computes a function
91(Zi(1), - -, Ti(w)). This is also the value that the branching program computes. Since
91(Ziq1), - - - Ti(w)) is computed by a decision tree of depth (k — 1), it is different from
Ti(1) @ - D xir). Among the assignments to (), ..., 2 with value (s*(1),...,s*(k))
only those may define paths leading to v*, for which the equation

L) D D xigr) D 1 (Tia), - - -5 Tigw) =0
holds.

10

V*

Figure 2

11

/o

/N

top part:
Ti(1), - -+, Ti(u) are tested

middle part:
variables in Y are tested

bottom part:

on each path at most (k — 1)
variables of x;(),..., 2 are
tested

We can derive more equations by choosing assignments to the variables in Y for which

s()y=uk+1), s(2)=uk+2),..., s(k)=1i(2k)or
s(ly=12k+1), s(2)=1i2k+2),..., s(k)=1i(3k)
and so on.
Therefore, all of the following equations have to be satisfied by assignments to z;(1), . .., i)

with value (s*(1),...,s*(k)) which define paths leading to v*.

Ti1) G D iy D gr(Tiay, .-, Ti)) =0
: (1)
Ti((t=1)k+1) D+ D Tiery D Ge(i) -+ -5 Ti(w)) =0

Here we assume w.l.o.g. that ¢t := u/k is an integer. The function g¢; is the function
computed by the decision tree of depth (k£ — 1) which is reached for the corresponding
assignment to the variables in Y.

The number of solutions of the system of equations (1) is an upper bound for the number
of paths with value (s*(1),...,s*(k)) leading to v*. In the following we show that the
number of solutions is 2“(*%). Since there are n¥ possible values for (s*(1),...,s*(k)),
the number of paths leading to v* is bounded by nk2¢(5%) . This implies the desired
upper bound nk‘Zu*(%), because u < u*.

Let Gj(zi(1), .- ., Zigk)) denote the left-hand side of the j-th equation of (1), i.e.
Gi(@i(1)s - - 5 Tigek)) 2= Ti((—1)ks1) O = O Tigin) D Gi(Tiays - - -5 Tiu))-

For the calculation of the number of solutions of (1) we prove the following Lemma:

Lemma 7: For each J C {1,...,t},J # 0 there are exactly 2*/2 assignments to
Ti(1)y -« - -5 Ti(tk) SO that

D Gi(ziq), - - Tign) = 0.

JjeJ

Proof: Let J C {1,...,t},J # 0 be given. We partition the set of all assignments
to x;1),. .., Tik) Into classes consisting of two elements. Then we show, that for the
assignments in each class @ ;¢ Gj(;c,-(l), ey xi(tk)) takes different values. Therefore, the
numbers of ass.ignments with @;¢; Gj(xz-(l), o Tigr)) = 0and @ G.]‘(.Ti(l), e Tiek)) =
1 are equal. Since there are 2% assignments to Ti1), - - - Tiek) the claim follows.

We describe the partition by a procedure that computes for each assignment p the
other member p of the class p belongs to. Let us look at the paths that are chosen
in the decision trees for the functions g;,j € J, if we assign values to), ..., T
according to p. Since the depth of these decision trees is bounded by (k — 1), there
are at most |J|(k — 1) variables on the paths selected for this input. The &-sum
@B ey Gi(zia), - - -, Tier)) consists of the B-sum By gi (i), - -, Tier)) and the G-sum
of |.J|k single variables. Therefore, some of the single variables are not tested on any

12

path selected by p. Among these variables we choose as z* the variable with the
smallest index. We obtain the assignment p from p by negating the value of z*. In the
decision trees the same paths are activated by p and by p, because z* is not tested on
any of these paths. This implies ,5 = p and, therefore, this procedure really gives a
partition of the set of assignments.

For both p and p the @-sum @;c;g;(Ti1), .., Tigr)) takes the same value, becau-
se in the decision trees the same paths are activated. But the @-sum of single va-
riables takes different values, because z* is different for p and p. Therefore, also

@Bjcs Gi(Tiay, - - -, Tigw)) takes different values for p and p. O
Let Ny,w € {0,1}', denote the number of assignments to z;),...,Ziw), for which
(G1(ziqy, - - Tiger))s - - - Ge(@i), - - -, Tigry)) = w. The number of assignments satis-

fying all equations in (1) is No,.0. We show N, = oth—t _ ou(*3h) ot only for
w = (0,...,0), but even for all w € {0, 1}".

Since there are 2 assignments to Ti(1), - -+ Ti(ehy, We get the following equation:
> N, =2 (2)
we{0,1}¢

Now fix J C {1,...,t},J # 0. The number of assignments to z;(), ..., z;ux), for which
@B;cs Gilziqys - - - Tigr)) = ¢, where ¢ € {0,1}, can be written as

YN
w|®wjzc

JjEJ

Lemma 7 implies that this sum takes the same value for ¢ = 0 and ¢ = 1. This leads

to
S No— Y N,=0. (3)
w| @ w;=0 w| @ w;=1

JEJT JjEJT

Since there are 2* — 1 choices for the set .J, we get 2! — 1 equations of the form of (3).
Together with equation (2) we obtain a system of 2¢ linear equations with 2! variables

Ny, w € {0,1},

It is easy to check that N, = 2%*~* for all w € {0,1}! satisfies all linear equations.
Therefore, it suffices to prove that this is the unique solution. We have to show that
the rank of the matrix of coefficients is 2°.

We index the columns of this matrix M by vectors w € {0,1}" and the rows of M by
sets J C {1,...,t}. The row indexed by the empty set belongs to equation (2) and the
rows indexed by J #) correspond to the equations of the form (3). The entry of M
at position (J,w) is
+1 if Gaj'wj =0
) — J€
MU =3) i @, =1
jed

13

We see that M is a Sylvester-matrix. The rank of Sylvester-matrices is maximal (see
e.g. MacWilliams and Sloane (1977)). This completes the proof of Lemma 6. 0

Now we are ready to prove the lower bound:

Theorem 8: The number of nodes in each OBDD,;_1) and each BP1,;_q) for
—Sklogn—Qk)

ey (5

If kis a constant, we get the lower bound 2%(*/1°67) But the proof also works for

non-constant k. If k < (1 —¢)(n/3)/3/log?® n for some ¢ > 0, we get the lower bound
20(71”3).

Proof: Let a BPlyy_1) for f be given and let u* = m — 2k — 2. In the given
branching program we mark all nodes v for which L(v) < u* and S(v) > u* — 2k + 2.
We claim that each consistent path from the source node to a sink node contains at
least one marked node. First we know that on each such path more than u* variables
are tested, because Lemma 3 implies that the subfunction of f* obtained by assigning
constants to u* variables is not a constant function. Now we search on such a path for
that node v, at which the (u* — k4 2)-th variable is tested. Therefore, S(v) < u*—k+1
and L(v) > u* — k+ 1. Using Lemma 5 we conclude

Lv) < Sw)+k—1<(v"—k+1)+k—-1=u"
Sv) > Lv)—k+1>Ww —k+1)—k+1=u"—2k+2.

This implies that v is a marked node and that each consistent path from the source node
to a sink node contains at least one marked node. We also know that on each consistent
path at least u*—2k+2 variables are tested before a marked node is reached. Therefore,

—2k+2

there are at least 2" consistent paths from the source node to all marked nodes.

If we select a single marked node v, we know because of Lemma 6 that the number of
. . * (k=1

consistent paths from the source node to v is bounded by O(n3+-22* (T)). Hence, the

number of marked nodes is at least

Q(gu* —2k+2) B 20($—Bklogn—2k)

n3k—29u* (551)

We obtain a tight hierarchy of polynomial size branching programs with k repeated
tests, if £ < (1 — 5)(n/3)1/3/10g2/3n for some ¢ > 0. Since the upper bound of
Theorem 1 for OBDDs with & repeated tests becomes superpolynomial for non-constant
k, we get a hierarchy of polynomial size OBDDs with £ repeated tests only for constant
k. By adding dummy variables we obtain an upper bound of polynomial size for a

14

function f* = (fff) Let 7 := [n'/*]. The function fff : {0,1}" — {0,1} depends
essentially only on the variables x;_1,...,xq. It is defined by

fff(xn_l, o) = fE(xaly, ..., 20).

Due to Theorem 1 we get for the size of OBDDs with k repeated tests for f* the upper
bound O(RF+1) = O(n'+1/%).

If £ = O(log'~®n) for some ¢ > 0, we can also apply Theorem 8 and get the superpo-
lynomial lower bound 228 n) for the size of each OBDD,; for f*.

Let P(BP1,;) and P(OBDD,}) denote the sets of of Boolean functions that can be
represented by a polynomial size BP1,; and OBDD_, resp. We have proved:

Theorem 9:
a) P(BPlyg_1)) & P(BP14y), if k < (1 —¢)(n/3)'/3/log™* n for some & > 0.
b) P(OBDD,x—1)) g P(OBDD4y), if k = O(log"'~* n) for some ¢ > 0. m

Since the classes of both hierarchies are separated by the same functions, we also have

P(OBDD) € P(BPly(k-1)), if k = O(log' ~* n) for some ¢ > 0.

Acknowledgment

I thank Ingo Wegener for many helpful remarks on earlier versions of this paper.

REFERENCES

Alon, N. and Maass, W. (1988). Meanders and their applications in lower bound
arguments. Journal of Computer and System Sciences 37, 118-129.

Bollig, B., Sauerhoff, M., Sieling, D. and Wegener, 1. (1993). Read k times ordered
binary decision diagrams — efficient algorithms in the presence of null-chains. Tech.
Report, Universitat Dortmund.

Bollig, B., Sauerhoff, M., Sieling, D. and Wegener, 1. (1994). On the power of different
types of restricted branching programs. Submitted to Theoretical Computer Science.

Borodin, A., Razborov, A. and Smolensky, R. (1993). On lower bounds for read-k
times branching programs. Computational Complexity 3, 1-18.

Bryant, R.E. (1985). Symbolic manipulation of Boolean functions using a graphical
representation. In Proceedings of Design Automation Conference’85, 688—694.

15

Bryant, R.E. (1986). Graph-based algorithms for Boolean function manipulation.
IEEFE Transactions on Computers 35, 677-691.

Bryant, R.E. (1991). On the complexity of VLSI implementations and graph represen-
tations of Boolean functions with application to integer multiplication. IEEE Trans-
actions on Computers 40, 205-213.

Bublitz, S., Schiirfeld, U., Voigt, B. and Wegener, 1. (1986). Properties of complexity
measures for PRAMs and WRAMs. Theoretical Computer Science 48, 53-73.

Gergov, J. and Meinel, C. (1993). Frontiers of feasible and probabilistic feasible Boo-
lean manipulation with branching programs. In Proceedings of STACS’93, 576-585.

MacWilliams, F.J. and Sloane, N.J.A. (1977). The Theory of Error-Correcting Codes.
North-Holland Publishing Company.

Neéiporuk, E.IL (1966). A Boolean function. Soviet Mathematics Doklady 7(4):999—
1000.

Sieling, D. and Wegener, 1. (1992). Graph driven BDDs — A new data structure for
Boolean functions. To appear in Theoretical Computer Science 143, 1995.

Wegener, 1. (1988). On the complexity of branching programs and decision trees for
clique functions. Journal of the ACM 35(2):461-471.

Wegener, 1. (1993). Efficient data structures for Boolean functions. To appear in
Discrete Mathematics (Special Volume on “Trends in Discrete Mathematics”).

74k, S. (1984). An exponential lower bound for one-time-only branching programs. In

Proceedings of MFCS’84, 562-566.

16

