Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:

E( :( :( : FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
TR95-004 Email:  ftpmail @ftp.eccc.uni-trier.de with subject” HELP ECCC’

Feasible Time-Optimal Algorithms for Boolean Functions on

Exclusive-Write PRAMs*

Martin Dietzfelbinger! Mirostaw Kutylowski*
Fachbereich Informatik Heinz Nixdorf Institut and
Universitat Dortmund Fachbereich Mathematik-Informatik
D-44221 Dortmund Universitat—Gesamthochschule-Paderborn
Germany D-33095 Paderborn
Germany

Riidiger Reischuk®
Institut fur Theoretische Informatik
Medizinische Universitat Lubeck
D-23560 Liibeck

Germany

*A preliminary version of these results was presented at the Second Annual ACM Symposium on Parallel
Algorithms and Architectures, Crete, July 1990.

tPartially supported by DFG grant ME 872/1-4 and by DFG-Forschergruppe “Effiziente Nutzung paralleler
Systeme, Teilprojekt 4”. This author was affiliated with the Universitat—-GH—Paderborn while this paper was
written.

{Partially supported by the Alexander von Humboldt-Stiftung (while visiting TH Darmstadt), by program
RP.I.09 by the Polish government, by DFG grant ME 872/1-4 (while visiting Paderborn), and by KBN grants
211979101 and 8 S50300207. This author was affiliated with the University of Wroclaw while this paper was
written.

$Partially supported by the International Computer Science Institute, Berkeley, California. This author was
affiliated with the Technische Hochschule Darmstadt while this paper was written.



Running head:

Time-Optimal Algorithms on CREW PRAMs

Mailing address:

Prof. Martin Dietzfelbinger
Fachbereich Informatik
Lehrstuhl 1T

Universitat Dortmund
D-44221 Dortmund

Germany

email: dietzf@ls2.informatik.uni-dortmund.de

ii



Abstract

It was shown some years ago that the computation time for many important Boolean
functions of n arguments on concurrent-read exclusive-write parallel random-access machines
(CREW PRAMS) of unlimited size is at least ¢(n) &~ 0.72log, n. On the other hand, it is
known that every Boolean function of n arguments can be computed in ¢(n) + 1 steps on
a CREW PRAM with n - 27~! processors and memory cells. In the case of the OR of n
bits, n processors and cells are sufficient. In this paper it is shown that for many important
functions there are CREW PRAM algorithms that almost meet the lower bound in that
they take ¢(n) + o(logn) steps, but use only a small number of processors and memory
cells (in most cases, n). In addition, the cells only have to store binary words of bounded
length (in most cases, length 1). We call such algorithms “feasible”. The functions concerned
include: the PARITY function and, more generally, all symmetric functions; a large class
of Boolean formulas; some functions over non-Boolean domains {0,...,k — 1} for small k,
in particular parallel prefix sums; addition of n-bit-numbers; sorting n/l binary numbers of
length [. Further, it is shown that Boolean circuits with fan-in 2, depth d, and size s can be
evaluated by CREW PRAMs with fewer than s processors in (2¢) + o(d) ~ 0.72d + o(d)
steps. For the exclusive-read exclusive-write model (EREW PRAM) a feasible algorithm is
described that computes PARITY of n bits in 0.86 log, n steps.

Key words. parallel random-access machine, exclusive-write, concurrent-read, exclusive-
read, parallel time complexity, Boolean functions, Boolean formulas, Boolean circuits, sym-

metric functions, parallel prefix, parity, addition, sorting

AMS(MOS) subject classifications. 68Q10, 68Q05, 68Q25

iii



1. Introduction

1.1 Motivation

The parallel random-access machine (PRAM) is a powerful machine model that is often used for
the design of parallel algorithms. Several variants of this model have been studied, which differ
in the rules that regulate concurrent access to memory cells in shared memory. In this paper,
we concentrate on exclusive-write machines (CREW and EREW PRAMs), which do not allow
concurrent write access to shared memory cells. CREW PRAMs allow concurrent reading of one
cell, EREW PRAMs do not. (Precise definitions of the models used will be given in Section 2.
For a survey of PRAM models and algorithms for such models see [15, 27].)

The time complexity of Boolean functions on CREW PRAMs is quite well understood: using
certain parameters corresponding to structural properties of such functions (“block-critical com-
plexity” or “degree”, see below) it is possible to characterize their time complexity on CREW
PRAMs up to a constant factor [23]. Methods were developed that allow proving lower bounds
for the time complexity of many functions that are exact up to a small additive constant

[9, 12, 17, 25].

In this context, both for upper and lower bounds, we use the standard definition of the “ab-
stract CREW PRAM?” from [9]. Each computation step consists of three phases, a READ, a
COMPUTE, and a WRITE phase, which are executed synchronously by all processors. (For
details see Section 2.) This machine model abstracts from the cost of internal computations
of the processors; the bounds hold regardless of the number of processors and the wordsize of
the common memory cells. Such a strong model is perfectly acceptable for lower bound proofs.
However, also the general upper bounds that hold for Boolean functions on such machines are

formulated with respect to the abstract PRAM. We consider two examples of such statements.

FacT 1.1 Every Boolean function of n arguments can be computed in [logn] + 1 steps' by an

EREW PRAM with n processors and n memory cells of wordsize n.

The algorithm behind this fact (in a binary tree fashion, collect the whole input in one processor,
which then computes and writes the output bit) is of limited value for concrete functions since
it requires that the PRAM has a wordsize of n, i.e., the common memory cells store numbers of

binary length up to n.

'Throughout the paper, log stands for the logarithm with respect to base 2



Before describing the second example, we introduce a function that plays a central role in the
exact upper and lower bounds for computing Boolean functions on abstract CREW PRAMs.
Let

w(n) = min{j | Fy41 > n} ,forn>1,

where F; denotes the ith Fibonacci number, i.e., Fy = 0,F; = 1, and Fi4o = Fiyq1 + F;, for
i € IN. Note that from the well-known formula F; = (& — &)/\/5 for & = 5(1+/56) and
d = 1(1 —/5) it easily follows that for b := ®2 = 1(3 4+ /5) we have

loggn < @(n) < logyn+134 , foralln>1. (1.1)
Also note that log, 2 &~ 0.72, and hence ¢(n) = 0.72logn.

Consider the function OR,(z1,...,2,) = @1 Vaa V- -V z,. It is known ([9]) that OR,, can
be computed by an EREW PRAM with n processors and n memory cells of wordsize 1 in ¢(n)

steps. Using this algorithm, it is easy to observe that all Boolean functions of n variables can

be computed on CREW PRAMs almost as fast as OR,, ([9], see also [17]):

Fact 1.2 Every Boolean function f of n arguments can be computed in ¢(n) + 1 steps by a
CREW PRAM with n-2"~1 processors and n-2"~1 memory cells of wordsize 1. Moreover, after
step p(n) + 1, there is a processor that knows all input bits.

For many Boolean functions f this fact corresponds to an algorithm with an optimal running time
[12]. But again, this algorithm (essentially, for every possible input vector a = (aq,...,a,) €
J7Y(1) there is a team of n processors that checks whether the actual input (z1,...,2,) equals a
and if so writes the result 1 to the output cell) is practically worthless, because of the exponential
number of processors required. Moreover, the algorithms to be carried out by the processors
completely ignore any structure present in the function f: they simply represent the list of
inputs in f7(1). Algorithms of a similar kind are used in the general upper bound proofs of
[23].

Our focus in this paper is on algorithms for computing specific functions on exclusive-write
PRAMs that are time-optimal up to small additive terms and whose implementation is “feasible”
in a sense discussed in the following. Specifically, we are interested in methods that do not use
more than n processors and n common memory cells for computing functions of n arguments.
For many interesting functions there are “critical inputs” (see [9] and Section 1.2), for which
each input bit must be read by some processor; this implies that Q(n/logn) processors are

necessary if logarithmic computation time is to be achieved.



How strongly the hardware size may influence the parallel time complexity is shown, for example,

by the PARITY function:
PARITY ,(z1,...,2n) == 21D 22® - Bz, ,forn>1.

On a concurrent read concurrent-write (CRCW) PRAM with exponentially many processors and
a common memory of exponential size this function can be computed in two steps. However,
with only n processors the time complexity increases to @(logn/loglogn) [2]. A similar tradeoff
holds with respect to the memory size. In general, we require that an n-processor machine has
a common memory of size at least n. Otherwise, separate read-only input cells are necessary

and the time complexity increases significantly due to the small communication bandwidth [32].

We may assume that the memory cells of a PRAM can store only binary numbers. Following
[4], a PRAM is said to have wordsize w if the cells of its common memory can only hold
binary words of length at most w. Although bounded wordsize may seem to be a reasonable
requirement in combination with a processor of bound of n, it is a severe restriction, since for
most Boolean functions of n arguments the computation time is at least n/w—o(n/w) on PRAMs
with n processors and wordsize w [4]. The algorithms for special Boolean functions that will be
presented in this paper require only constant wordsize; in most cases wordsize 1 suffices. Note
that in case the algorithms were implemented on a “concrete” PRAM with processors with local
memories, this restriction on the wordsize would not apply to the memory cells or registers used
by each processor in its local memory, which, e.g., have to hold addresses of common memory
cells. These have to have wordsize at least logarithmic in the number of processors and global

memory cells; this will also be sufficient for our algorithins.

Finally, we aim at simple programs for each processor. There seems to be no general agreement
on what exactly this should mean, and we do not attempt to formalize this criterion; for a possible
approach see for example [31]. Nonetheless, we feel that the PRAM algorithms presented in this

paper fulfill this condition for any reasonable definition of “simple program”.

The fundamental example of a feasible, time-optimal CREW algorithm is the method for com-
puting OR,, in ¢(n) steps mentioned above [9], which even works on an EREW PRAM. It is
feasible since only n processors and n memory cells are used, all cells have wordsize 1, and the
processors execute a very simple program. At the first glance it may seem that at least logn
steps are necessary for computing OR,. The essential observation that makes it possible to
achieve the speedup from logn to ¢(n) is that in certain situations a processor can transfer
information into a common memory cell without destroying the information of that cell. This

cannot be done by a direct WRITE to the cell since its prior contents would be overwritten;



however, it can be achieved by not writing. This idea is exploited as follows in the algorithm for
computing OR,, [9]: Assume that a processor P knows y; € {0,1} and a cell C' stores a value
y2 € {0,1}. By a single WRITE operation C' can be set to the value of y; Vys. Namely, if y; = 0,
then P does not have to write, since y; V y3 = y2. If y1 = 1, then P writes a 1 into C'. Again,
this gives the correct result, since y1 Vy, = 1V yy = 1. Using this trick, in one computation step
(consisting of a READ, a COMPUTE, and a WRITE phase) the processors of a CREW PRAM
can increase the amount of information stored in common memory cells by more than a factor

of 2. As a consequence, it is possible to compute OR,, in fewer than logn steps.

1.2 Lower and upper bounds

Essentially, two general methods are known for proving lower bounds for the time complexity
of Boolean functions on CREW PRAMs. The first one is based on the concept of critical
complexity. The critical complexity ¢(f) of a function f : {0,1}" — {0,1} is defined as the
maximal number k for which there is an input @ = (ay,as,...,a,) and aset J C{1,2,...,n} of

cardinality k£ such that

fla) # fla1,...,a;—1,7G;,Gi31,...,0,) , forallie J.

A “critical input” a is one for which this condition is true with J = {1,...n}. A lower bound

for CREW PRAMs on the basis of ¢(f) has been proved in [9] (improved in [25]):

Fact 1.3 The time for a« CREW PRAM lo compute a funclion [ is al least %log c(f), no
matter how many processors and cells are used. Furthermore, the wordsize may be arbitrarily

large, and the computational power of the processors may be unlimiled.

A generalization of the critical complexity, the so-called block-critical complexity (or “block
sensitivity”), be( f), was considered in [23], where it was shown that the lower bound of Fact 1.3

can be improved to %log be(f), and that the time complexity of f an abstract CREW PRAMs
is O(be(f)).

The second general lower bound method is based on an approach proposed in [17]. The idea is
to consider the degree of a Boolean function when regarded as a polynomial over the integers.
This useful complexity measure and variants thereof have applications far beyond complexity
analysis of the CREW model, see for example [6, 24, 28, 29]. (The notion of “degree” of a
Boolean function used in the lower bound proof for CRCW PRAMs of [2] is different.) Each



Boolean function f can be represented by a polynomial over z1,...,z, with coeflicients from
7. This representation is unique if each 2%, for d > 1,1 < i < n, is reduced to z;. The degree of
the polynomial representing f is called the degree of f, denoted by deg(f). In [12], the authors

have shown the following;:

FacT 1.4 At least ¢(deg(f)) steps are required for computing a Boolean function f on an ar-
bitrarily large and powerful CREW PRAM.

For the function OR,, this gives the lower time bound ¢(n), which, in view of the upper bound
obtained in [9], is best possible. The lower bounds based on critical complexity and on degree
complexity are not identical in the sense that there are functions f such that %log(be(f)) is
smaller by a constant factor than (deg(f)) = 0.72log(deg(f)) and vice versa. However,
deg(f) and be( f) are polynomially related [12, 23, 29]; hence these two lower bounds differ from
each other and from the CREW complexity of f at most by a constant factor.

There are Boolean functions that nontrivially depend on n arguments and still can be computed
in o(logn) steps on a CREW PRAM. But for almost all functions of n arguments we have
¢(f) > n—1[7], which implies a lower bound §log(n — 1). One can even show that almost all
functions of n arguments have degree n [12], hence they cannot be computed faster than in ¢(n)
steps. On the other hand, we have the upper bound ¢(n)+ 1 noted in Fact 1.2, which holds for

all Boolean functions.

1.3 Results

In this paper, we will consider the following general problem.

Let a Boolean function f on n arguments with deg(f) = Q(n) be given. Design a
feasible CREW PRAM algorithm that computes f in ¢(n)+ o(logn) steps, i.e., in

almost optimal time.

In general, such algorithms do no exist, by the results in [4]: For most Boolean functions of n
arguments, if the number of processors is polynomially bounded in n and the wordsize is bounded
by o(n/logn), then the CREW complexity becomes much larger than log n. Nonetheless, we

will construct feasible algorithms for many important and natural functions.



First, we consider a variant of the task just mentioned for EREW PRAMs, which seems to
be substantially harder than for CREW PRAMs, due to the following observations. No lower
bounds for EREW PRAMs are known that would not be valid for CREW PRAMs as well. On
the other hand, most known CREW PRAM algorithms use the concurrent-read operation in
a substantial way. Moreover, no fast simulation of the concurrent-read operation on EREW
PRAMs is possible [3], which makes it necessary to design efficient EREW algorithms by com-
pletely different techniques than CREW algorithms. There are some results elaborating on
what EREW PRAMSs can do less efficiently than CREW PRAMs [3, 14, 30], but still a deep
understanding of the EREW PRAM model is missing. We will construct a feasible algorithm for
the EREW PRAM that computes PARITY, in approximately 0.86 logn steps (Theorem 3.1).
This is the second example—after the algorithm for OR,,—of an EREW algorithm with time

complexity below logn for a function of degree n.

For the CREW PRAM model we will obtain the following results with respect to PARITY ,:

e PARITY,, can be computed in ¢(n)+1 steps with 20 (log’n) processors and cells of wordsize

1, i.e., with significantly less than exponential hardware size (Theorem 4.1).

e PARITY, can be computed in time ¢(n)+ O(y/logn ) with n processors and n cells of
wordsize 1 (Theorem 5.1).

Computing OR,, or PARITY,, amounts to evaluating a formula built with an associative operator
over a 2-valued domain. We may generalize the results for these special functions to Boolean

functions that are described by formulas or circuits:

¢ Any Boolean circuit of depth d and size s (with gates of fan-in 2) can be evaluated in
©(29) 4+ O(d/loglogd) =~ 0.73d + o(d) steps by a CREW PRAM with o(s) processors
(Theorem 5.5); if the circuit is a formula (i.e., the gates have fan-out 1), then 2¢/logd

processors can evaluate it in time ¢(2¢) + O(d/logd) (Theorem 5.6).

The results just mentioned can further be generalized to formulas F(1,...,2,) = 21 ® - @ &y,
where ® is an associative binary operator over a k-valued domain, say, {0,1,...,k—1}, for some
k> 2:

e Any such F' can be computed in ¢(n)+ 1 steps on a CREW PRAM with 20 (log*n-log k)
processors and cells of wordsize 1, with the obvious exception of the cells storing the input

and the output (Theorem 6.1).



e Any such F' can be computed in ¢(n) + O(y/logn -logk ) steps on a CREW PRAM with
n processors and n cells of wordsize ||k — 1||, where [|7|| denotes the number of digits in

the binary representation of r, i.e., ||7|| = [log(r 4 1)] for integers r > 0 (Theorem 6.4).

The results concerning Boolean circuits and formulas may also be generalized to arbitrary circuits

and formulas over k-valued domains (Theorems 6.5 and 6.6).

Further, we develop a method for computing in parallel all prefix products 21 ® --- ® 2; of
1®T2®- - -®x,, for an arbitrary associative operator @ over a k-valued domain. The complexity
bounds are the same as those for computing the product only (Theorem 7.3). The parallel prefix

operation has many applications; we consider just one of the most important ones:

¢ An n-processor CREW PRAM with a common memory of size n and wordsize 2 can add

two binary numbers of length n in time ¢(n) 4+ O(y/logn ).

In Section 8 we will present feasible algorithms with almost optimal running time for symmetric

functions:

e Every symmetric Boolean function of n variables can be computed in ¢(n) + O(log?n -
loglogn) steps by an n-processor CREW PRAM with n memory cells of wordsize 1 (Co-
rollary 8.9).

The methods developed for symmetric functions can be used to show that also the problem of

sorting bits or numbers can be solved by feasible algorithms in almost optimal time:
e n bits can be sorted in time ¢(n) 4+ O(log?*n -loglog n) by an n-processor CREW PRAM
with n memory cells of wordsize 1 (Theorem 9.1).

o An m? .k processor CREW PRAM can sort m binary numbers of length % in time
o(m-k)+0(log**m-loglog m) using m-(m+1)-k memory cells of wordsize 1 (Theorem 9.3).

REMARK 1.5 Theorem 5.5 (mentioned above) provides a general way for obtaining a fast, fea-

sible CREW PRAM algorithm for a Boolean function f of n variables, as follows:

(1) Design a circuit (with gates of fan-in 2) for f with depth d as small as possible and size
s =0(n);



(2) evaluate the circuit via the algorithm given in Theorem 5.5.

(Recall that if f is nondegenerate, i.e., f depends on all n variables, we must have d > logn.) In
some cases, it will even be possible to describe f by a formula of small depth over a 2-valued or a
k-valued domain, for small k£, and thus benefit from Theorem 5.6 or 6.6 (mentioned above). Note
that step (1) has been carried out for many functions already, so results from the literature can
be used. This approach will yield close to optimal time bounds (¢(n) + o(logn)), with a small
number of processors (o(n)) for some functions treated in this paper, like OR, or PARITY,
or the addition of two binary numbers of n bits. However, in all these cases the additional
o(log n)-term is much smaller in the direct approach than in the algorithm resulting from the
general method. For some other functions, e. g., the symmetric functions or the sorting function,
no circuits are known whose simulation would yield a feasible algorithm with a running time of
@(n)+ o(logn), since the best linear size circuits known have depth (1 + 2(1))logn. The most
drastic example of the failure of this approach to constructing fast CREW PRAM algorithms is

provided by the well-known storage access function

k
SA]CZ {0, 1}k+2 3 (yk—lv s Yo Ty ey $2k_1) — m(yk_l,m’yoh € {0, 1} s

where (yx—1,...,90)2 € IN is the number with binary representation yx_1 ...yo. The minimum
depth of a circuit for this function is k + log k + O(1) [34, p. 78], but there is a CREW PRAM
algorithm for this function that uses 2% processors, i.e., fewer than the number of variables, and
has running time (k)4 O(1), i. e, only logarithmic in the depth of the circuit (use Lemma 8.8
below).

2. Preliminaries

We recall the definition of abstract CREW and EREW PRAMs (cf.[9]). A parallel random
access machine consists of some number of processors Pj, P,... and common memory cells
C1,C4,. .., which can be read from and written to by each of the processors. The computation
proceeds in steps; each step consists of three phases. During the first phase a processor may
read from a memory cell (the READ phase); during the second phase a processor changes its
internal state according to the information read; during the third phase a processor may write
into one memory cell (the WRITE phase). More precisely, we can describe the way a PRAM
M works as follows. Let ) be the set of internal states of the processors of M and ¥ the set
of symbols that can be written into the memory cells. Associated with each processor P; of M

there are an initial state ¢ € Q; a read-address function p; : @ — IN; a state transition function



0 Q@ x (XU{S$}) — @, for § ¢ ¥ ; a write-address function 7; : @ — IN; and a write-value

function o; : ) — X.

During a single step, if processor P; is in state ¢, then it reads from cell C';, where j = p;(¢) > 1;
it does not read if p;(¢) = 0. If P; reads a symbol v € ¥, then the state of P; changes to
¢' = 6i(q,u). If P; has decided not to read, then P; changes its state to ¢’ = 6;(¢,$). During the
third phase, P; writes a symbol v = 0;(¢’) into cell Cs, where j' = 7;,(¢') if 7;(¢') > 0, and does

not write if 7;(¢’) = 0.

A PRAM M is a CREW (concurrent-read exclusive-write) PRAM if for no admissible initial set
of values stored in the memory cells it happens that during some step in the computation of M
two or more processors of M write into the same memory cell. In other words, M is a CREW
PRAM if no write conflicts occur during a computation of M. A CREW PRAM M is an EREW
(exclusive-read exclusive-write) PRAM if additionally two processors never read from the same

cell during any step.

We say that a PRAM M computes a function f in T steps if the following holds. Initially, the
arguments of f are stored in some fixed memory cells of M, each argument in a separate cell.
After executing at most T steps the value of f on the given arguments is stored in one or several
dedicated memory cells and all processors have stopped their computations. Here we are mainly
interested in computing Boolean functions, that is, functions f of the form f : {0,1}" — {0,1}™,

for n, m € IN. A PRAM is said to have wordsize < w for some w > 1 if |X| < 2%,

3. Fast Computation of PARITY on EREW PRAMs

This section deals with the EREW model. Our goal is to show that, like the OR, the PARITY of
n bits can be computed in fewer than log n steps. The key to the method is a way for computing
the PARITY of five bits in just two steps. Two technical tricks are necessary to achieve this goal.
The first one is useful for CREW PRAMs, too, and will be exploited again in later sections.
The second one is specific for EREW PRAMs and one of the basic elements of a time-optimal
feasible broadcasting EREW algorithm presented in [3].

The first trick: If an algorithm wants to compute the PARITY of n bits in fewer than logn
steps, it must in a single writing phase combine information known to a processor with some
other information stored in a memory cell. By direct writing this is not possible since the old
content of the memory cell would be overwritten. As in the fast OR-algorithm of [9] processors

will transmit the information by not writing. The details are as follows. Let processors P, and



Py know a Boolean value y; and cells Cp, C7 store a Boolean value y,. (We say a processor P;
knows a value y at the end of step ¢ if this value is a function of the state ¢ of processor P;
at the end of step . One may imagine that part of the state of P; is a register that explicitly
contains y.) In order to leave information in some cell that is sufficient to determine y; & yz,

the following instruction is executed in parallel for ¢ = 0,1 (see Figure 1):

e P; writes x into cell C; if and only if y; # <.

O O

b1 P
writes * writes *
| |
0 1

Figure 1: The first trick: Combining information by not writing

Afterwards, one memory cell contains * while the other remains unchanged. Suppose that
y1 = 0. Then C is set to * and Cy still contains ys. If a processor reads Cy, it encounters a
symbol z different from #, and can conclude that y; must be equal to 0. Hence, it can deduce
that y1 & yy is equal to z. If yy = 1, then Cy is set to * while y; remains in Cy. If a processor
reads z in Cy, it can deduce that y; ®y2 = 1@ 2. In both cases, the processor that has read (Cy
or C1, respectively) knows y; @ ya.

The second trick: In order to use the first trick two different memory cells are needed that
store the same value. We show how in one step a single processor can “write” a single value into
two different cells (see Figure 2). Suppose that a processor P has to write y € {0, 1} into cells
Co, C1. The cells Cy, Cq are prepared in advance so that C; contains ¢. If y = 0, then it suffices
to change the contents of C'1 from 1 to 0, otherwise Cy has to be corrected. Hence in each case
it suffices that processor P writes y into the cell C';_,. In the algorithm below the preparation
of Cy and C'y will be done by free processors immediately before the writing of P occurs. Thus,

no additional time is needed for the preprocessing.

THEOREM 3.1 For each n, the function PARITY,, can be computed by an n-processor EREW

PRAM with 2n memory cells of wordsize 1 in time

2+ 2[logs 2] ~ 0.86-logn .

10



P

O

writes 1 / AN writes 0
ity=1 N\ fy=0
/ N

e

N
0]

Co Cy

Figure 2: The second trick: Writing two identical bits in one step

Proof. For the sake of simplicity we assume that n = 2-5* for some k € IN. In the first step
of the EREW algorithm and the READ phase of its second step each input z;, 1 <1 < n, is
copied to an additional cell (say z; from input cell €} to Cpyy) and for each j, 1 < j < F, two

processors (say Pp;_1 and Py;) compute PARITY (29,1, 22;).

After this preprocessing the main procedure starts. It consists of k stages, where each stage
comprises 4 phases of alternating WRITEs and READs, starting with a WRITE. Thus a stage
is made up of the last part of an EREW step (a WRITE), a complete step and the first part of
another step (a READ).

The input for stage i for i = 1,..., k, is described by a sequence of Boolean values yi, 45, ..., yfw

where n; = n/571, such that
PARITY (21, ...,,) = PARITY(yi,95....,95.) -

The following properties are demanded at the beginning of each stage i:

e For each 1 <[ < n; there exist two cells that contain the value yf .

e For every 1 < j < n;/2 two processors know PARITY(yé]-_l, yéj).

Assume that these properties hold at the beginning of stage i. Divide %}, 45, .. ,yﬁh into groups
of ten elements each:

{95 ¥iods Wi ¥a0ds -
For each j, to get the cells storing yé‘ﬁl, yé‘]l-'l and the processors knowing PARITY(yé‘ﬁl, yé}'l)
the machine uses only the cells and processors associated with the jth group. Since the

computation for each group is essentially the same, we describe only how yi‘H, yé‘H and

11



PARITY (y ZH, y%“) are computed. To simplify the exposition, processors and cells are named

as follows. Let at the beginning of stage @

processors P, P know PARITY(yi,yé) ,
processors Ps, Py know PARITY(’H;’?JD ;
processors Pr, Ps know PARITY (g%, y3)
processors Py, Py know PARITY(yéayio) ;
cells Cs,C! contain yt and
cells Ce, Cg contain yé .

o oM
1st WRITE:if\()\

1st READ:

2nd WRITE: if 7\if><if 7\j‘f 0

Figure 3: Flow of information within a stage

1st WRITE: During the first WRITE the information known to processors Py, P is combined
with the information stored by the cells C5, CL (and the information known by Pr, Py with that
stored in Cg, C§), using the first trick described above:
If PARITY (9}, y5) = 1, then P, writes * into Cj.
If PARITY (3%, y%) = 0, then P, writes * into C%.
o If PARITY (yi, ) = 1, then Pr writes * into Cs.
(y5,98) =

o If PARITY (9, %) = 0, then Pg writes * into C§.

1st READ: Since the other processors do not know which of the cells C5, C% contain the full

information about PARITY(y{7 Y, yfr,), we use two processors to read both cells in parallel.

e Processor P5 reads C'5 and processor Py reads Cf.

12



One of them encounters * and terminates its work. The other one, call it P’, using the informa-

tion read and its own knowledge of PARITY (y3, y4), determines
PARITY (41, 3, 95, 4, 95) = 91" -

e Processor Py reads Cg and processor Pig reads cell C§.

Similarly, one of them halts while the other one, call it P”, computes

PARITY (&, yb, vk, vd, yio) = v+t

2nd WRITE:

The purpose of this writing round is that P’ writes y*! into some cells C; and € and P” writes
yé"’l into some cells Cy and C). For this, we apply the second trick described above. Thus, the
cells Cy, Cf, Cy, C4 must be prepared so that C'; and Cy contain 0 and C{ and C contain 1
(this can be done by processors Ps, Py, Py, Pig during the first WRITE). Then

o P’ writes 1 into cell Cy if yi"'l = 1 and writes 0 into C7 if yi'*'l =0.

o P" writes 1 into cell Cy if g5 = 1 and writes 0 into C if it = 0.

2nd READ:
e Processor P’ reads cell C; and processor P” reads cell C;.

Now, knowing yit! and yit!, both can compute PARITY (yit!, yit1).

After performing stage ¢, there will be two cells containing yi"'l (cells C1, CY), two cells containing

Yt (cells Cy, Ch), and two processors (P’ and P") knowing PARITY (yi+!, yit!), as required.

Note that during this procedure concurrent READ or WRITE operations do not occur, as long
as each pair of processors (Py, Py), (Ps, Py), (Pr, P3) and ( Py, P1g) agree on their specific role.
Assuming that this is guaranteed for stage ¢, it can also be achieved for the next stage by
declaring P’ (the unique “survivor” of Ps, Py) as first. Also, stages can easily be lined up, since

the communication between stages is through fixed memory cells.

For n = 2. 5%, the algorithm uses k stages to compute PARITY (yF, y¥) = PARITY (z1,...,2,).
In an extra writing phase the first processor of the two processors knowing PARITY(y{“,y%)

writes the result into the output cell. The total number of steps is equal to

S+2k+4 = 2+2-[logs 2] ~ 0.86-logn .

13



REMARK 3.2 The upper time bound for computing PARITY on EREW PRAMs presented
above is not optimal. One can modify the algorithm to get a slightly smaller computation time.

However, the construction is much more complicated, and therefore will be omitted.

4. A time-optimal CREW algorithm for PARITY

with subexponentially many processors

Time bounds for computing the PARITY function on machines with a bounded number of
processors have extensively been studied. For the most powerful PRAM model, the CRCW
PRAM, in [2] an optimal lower bound of order log n/loglog n is proved for the case where the
number of processors is bounded by a polynomial. In [12] it has been shown that computing
PARITY,, on a CREW PRAM takes at least ¢(n) steps (and for some n even @(n) + 1, see
[18]) regardless of the number of processors. In this section we will prove that the time bound
@(n) 4+ 1 can be achieved for PARITY,, with much less than exponential hardware size. The
algorithm described in this section is not feasible in the sense discussed in Section 1, because it
uses too many processors and cells and hence too large addresses as well. However, in the next
section the algorithm will be used as a component of a feasible algorithm for PARITY,, that is

almost time optimal.

THEOREM 4.1 Letn = Fy:_q. Then PARITY,, can be computed by a p-processor CREW PRAM
M with m common memory cells of wordsize 1 in t = 1 + @(n) steps, where p = n - 20H112

n - 2(0.26 log®n) and m = n - (215—1 + 1) ~nl72

Proof. The only property of PARITY,, used in the construction below is that this function
can be computed by an iteration of an associative binary operator. This makes it possible to
generalize the construction for PARITY,, to any associative operator (see Theorem 6.1), but

here we will describe only the simple case of PARITY,.

The CREW PRAM M constructed below combines the method used in [9] to compute the
logical OR with the technique used by the fast EREW PRAM algorithm of Section 3. Since the
algorithm is quite involved, we will describe it incrementally, each time giving more technical
details. In order to achieve the computation time ¢(n) + 1, during each WRITE the processors
must combine their knowledge with the information stored in the memory cells. By direct
writing, that is by overwriting, this is not possible; instead, we will use a variation of the “first

trick” from the previous section.

14



t/2 processors and n groups of 21 memory cells. (Each group

There are n groups of 2(t+1)
corresponds to a single processor or a cell from the algorithm of [9] for computing OR,,.) During
the computation, each processor and each cell is either active or dead. (Dead cells are those that
contain the symbol #.) Initially, all processors and cells are active. Once a cell or a processor
becomes dead it remains in this state until the end of the computation. At any moment all
active processors of a group have the same knowledge, and all active memory cells of a group
code the same information about the input string. Which processors and cells are active depends
on the current time step and on the input. A processor changes from the active to the dead
state if it reads a dead cell; a cell changes to the dead state when # is written into it. During

the computation more and more processors and cells die, but for each group there is always a

processor or a cell that is still active.

Each of the 2!~ memory cells in a group has a name, which is a binary string of length ¢ — 1.
The information carried by an active cell is not its content, but its name: the names of all active
cells of a group agree in a prefix of a certain length, and this prefix codes all information the cells
have about the input string. We briefly explain how this works. Let C be one of the groups of
cells. During the first WRITE there is a group of processors that has to send a value 3, € {0, 1}
to the memory cells of group C.

o If yy = 0, then each cell of C with a name starting with 1 receives * , the cells with names
starting with 0 remain unchanged.

o If y; = 1, then the roles are reversed: the cells in C with names starting with 0 are “killed”,

the other cells remain active.

During the second WRITE a different group of processors has to send a value y, € {0,1} to the
cells of C.
o If y5 = 0, then all cells in C whose name has a 1 in the second position receive .

o If y5 =1, then all cells in C whose name has a 0 in the second position receive .

Obviously, the names of those cells in C that “survive” both WRITEs start with bits y, ys.
Similarly, during step s, all cells of group C are killed that have names whose sth bit differs from
some ys. In that way, after step s all active cells of C have names that agree in a prefix of length
s. So if a cell of C with a name wjuy---u;—1; does not contain * after step s, then it carries
the information that y; = wy,y2 = us,...,ys = us, where yy,y2,...ys are the bits representing
the information transmitted to C by the processors. In that sense, at each step, information

“written” by processors does not overwrite information carried by cells.

Why do we need so many processors in each group? During a single READ the active processors

of one group read the memory cells of some other group. It would be best to read only the active

15



cells; but as it is impossible to foresee which of the cells are active, the active processors are
distributed evenly among the cells of the group and read all of them. Most of the processors
die because they read dead cells, but always a small fraction survives. Because this fraction is
getting smaller with each step, in each group the number of processors has to be much larger

than the number of memory cells.

Now we describe the basic properties of the flow of information during the computation of M.
For each ¢ < n, during the first step M writes * into each cell of group ¢ whose name has the
bit Z; in its first position. In this way x; is coded by the memory cells of group . Afterwards,
the cell contents are not changed except that more and more cells die (receive a ). For each
1,7 < n, after step k,

e all active memory cells of group 7 code the value of PARITY (z;, %it1,...,%itF, 1),

e all active processors of group j know the value of PARITY (¢, % j41,..., %45, _,-1)
(compare with the algorithm in [9] for OR,,). It may happen that i+ Fy,—1 > nor j4+ Fr_1—1 >

n. So, for [ > n, by z; we mean z; where I’ = [ mod n. Similarly, when we talk about a group

i of processors (cells) and ¢ € {1,...,n}, then we mean a group ¢ for ¢ = i mod n.

Now let us describe what happens during step k£ + 1. The active processors of group j read from
the cells of group j 4+ F3r_1. A lot of processors encounter dead cells and terminate their work.

Each of the active processors can deduce the value
PARITY (24P s+ s TjtFop_s+Fox—1) = PARITY (2511, ., .. '7xj+F2k+1—1)
from the address of the cell it reads, hence it can compute

PARITYY(:C]', ey Ty _1) e, PARITY(:Cj_}_F%_l RN xj+F2k+1_1)
= PARITY (%, %41, s Tj4Fpppy—1)

= PARITY(2j, %541, s Tj4 Fyppr)on—1);

which is the value the processors of group j have to know after step £ + 1. During the WRITE
phase of step k + 1 the active processors of group j write into some cells of group 7 — Fi. The

way of writing depends on the value
s = PARITY (2, 25415+, Tj1Fypyi—1)

known to the processors. The symbol * is written into all cells of group j — Fb; with a name

whose (k + 1)st bit differs from s. Recall that the first & bits of the name of each cell that are

16



still active before step k + 1 code
PARITY (2B, Tj—Fopt1s - - - Tj— Fopt Foy—1)

= PARITY(2;_r,, Zj—Fypt1s-- - Tj—1) -

On the other hand, bit £ + 1 of the name of the cells that are active after step k& + 1 is equal to

s, hence each such cell now codes
PARITY(ﬁj_FQk,.T]‘_F%_H,...,.Tj_l) ® s
= PARITY(.r]‘_F%, RN xj_l) S, PARITY(m]‘, RN xj+p2k+l_1)

= PARITY(‘rJ—F%? e "x(j—FQk)+(F2k+F2k+1_1))

= PARITY(.Q?]_F%, .. "m(j—FQk)+F2(k+1)_1) .

Note that this is the value that must be coded by the active cells of group j — Fy; after step

k+ 1. After step t — 1, the remaining active processors of the first group know
PARITY (z1,22,..., 2R, _,) -
They try to determine the value
PARITY (25, o4ty -y TFy_atFy_n) = PARITY(2m,_ 41,y 2R, ) »

by reading from the remaining active cell of group Fy;_3+ 1. One of them survives the reading

and computes

PARITY (#1,22,...,25,_,) ® PARITY (2p, o41,---,2Fy_,)
= PARITY(zy,29,...,25,_,) ,

which it then writes into the output cell. Since Fy;_1 = n, this is the correct output.

In order to finish the description of the algorithm we need to solve two problems: how to assign
the processors to the cells for reading and how to choose the processors for writing to avoid a
write conflict. There are 2(t+1)t/2 processors in each group named by binary strings of length
(t + 1)t/2. Let s(0) = 0 and for k > 0 define s(k) = Y5_, I . The memory cells and processors

are assigned for reading and writing in such a way that after step k:

e in each group, the first k£ bits of the names of the active cells are identical, the remaining

bits are arbitrary,

e in each group, the first s(k — 1) bits of the names of the active processors are identical,

the remaining bits are arbitrary.

17



We show how the cells and processors are assigned for reading and writing during step k£ + 1
to preserve these properties. During step k£ + 1 each active processor of group j reads that
memory cell of group 7+ Fy;_1 whose name agrees with the name of the processor from position
s(k— 1)+ 1 through s(k — 1) 4 (¢t — 1). After step k the names of the active memory cells of
group j + Fyr—1 have identical prefixes of length k. Hence after the READ operation the names
of active processors in group j have the same prefix 741 of length s(k — 1) + & = s(k); the

remaining bits of their names may be arbitrary.

Now we must select processors for the WRITE operation. The processors of group j have to
write into cells of group j — Fyi. For a cell with a name wyug---u;—1 we select the processor
with the name mp4quywg - - - ug—100 - - -0 (this is the unique active processor that has a name with
suffix wywg -+ -u;—100---0). This processor sends the symbol * into the chosen cell if and only
if upyr # PARITY (2,241, .. '737J'+F2k+1—1)- Note that after this WRITE operation the names
of the active cells of group j — Fs; have the same bit k£ 4 1, so together all bits from 1 through
k + 1 are fixed.

After the last READ, for the names of active processors, a prefix of length s(¢) = (¢ + 1)t/2 is
fixed, that is, a complete name. So exactly one active processor remains in each group. The

active processor of the first group writes the result into the output cell. a

REMARK 4.2 Simple but tedious modifications in the above algorithm make it possible to re-

move the assumption that n is a Fibonacci number from Theorem 4.1.

REMARK 4.3 Let ®(y) = (¢(y)+2) - (¢(y)+1)/2 (hence p = p(n) := n-2%(") in Theorem 4.1).
Knowing that log, z < ¢(z) < logy z + 1.34, for b = £(3 + /5) (eq. (1.1)), one can easily derive
that ®(n) > 0.25log?n, for all n, and that ®(n) ~ 0.26log?n, for sufficiently large n. Already for
n > 16 we have ®(n) < 4log?n. Hence n - 90.25log™n <p(n)<n -24103?2“, for n > 16.

5. Fast formula and circuit evaluation by CREW PRAMs

with a linear number of processors

In the previous section we proved that the function PARITY,, can be computed in time ¢(n)+1
with subexponentially many processors. In this section we show that PARITY, can also be
computed with a linear number of processors, while the computation time can be kept close

to ¢(n). In a second step, the proof of this result is varied to obtain a method for evaluating

18



Boolean circuits of depth d in ¢(2%) 4 o(d) = 0.72...d + o(d) steps on CREW PRAMS with a

linear number of processors.

THEOREM 5.1 There is an n-processor CREW PRAM M with n cells of wordsize 1 that com-
putes PARITY,, in p(n)+ O(y/logn ) steps.

Proof. We may assume that n = 2¢ for some integer d. The computation of M on input
Z1,...,T, proceeds in stages ¢ = 1,..., m, where m is determined below. The input for stage ¢
are n; binary values y}, 45, .. .,yfu stored in n; fixed cells, so that the invariant

PARITY (z1,...,2,) = PARITY(yi, 95, ..., 9.) (Z:)

is maintained. A preprocessing phase in which groups of 8 processors each compute the PARITY
of 8 bits in 4 steps (in the obvious binary tree fashion) allows us to assume that we can start
with 71 = n/8 = 2973 values y%,...,y}“. The output of stage ¢, 1 < ¢ < m, is the input
sequence yi‘H, yé“, .. .,y;ﬂl for the next stage; the output of stage m is a single bit y{nH =
PARITY (z1,...,2,), the desired result. Now we describe stage ¢, ¢ > 1. We split the values
yiLyl, .. ,yfzz into disjoint groups y}s_l_l, . '7yéj+1)s of equal size s and compute PARITY within
each group by the optimal algorithm of Theorem 4.1, which takes ¢(s) 4+ 1 steps and needs
5-(290) £ 1) < 5-2%0) cells and s - 2%() processors for each group, where ®(s) = (¢(s) + 2) -
(¢(s)+1)/2 (cf. Remark 4.3). The n;11 := n;/s output bits of the groups are y'*!, yé“, .. ,yfztrll
As n processors are available for a total of n; bits, we can use sn/n; processors for each group.
If we define w; := log(n/n;), i.e., n; = 297" then s-2% processors are available for each group.
Thus, any s with s -2%0¢) < s.2% or ®(s) < w;, is suitable. Since it is convenient to have
groups of size a power of 2, we let u; be the maximal integer u such that ®(2*) < w;, and define
the group size s; for stage i by s; := 2%. (Note that w; > wy; = 3, since n; < n; = n/8, and
®(2') = 3, by inspection; hence u; > 1, for i > 1.) The only exception to this rule occurs in the
last stage: Let m := min{i | 2% > n;}; i.e., m is the minimal ¢ with w; + u; > d. In stage m we
form one group of size s; := n; and use n; . ®(27) < 2d—wi gwi — 9d — processors to compute

PARITY of all s; := n; bits left.

The correctness of the algorithm is obvious, as is the fact that only n processors and memory
cells are used. We analyze the computation time. Note first that the equalities s; = n;/n;41,
for 1 < i < m, and s, = n,, imply [[/%; s; = nq < n. Using the inequalities log;(z) < ¢(z) <
logy(z) + 1.34, valid for all z, by eq. (1.1), we may estimate the total number T of steps as

follows:

m m

T = (p(si) +1) <> (logy(si) +2.34) = logb<ﬁ sz-) + 2.34m

=1 =1 =1

19



< logy(n) 4 2.34m < p(n) + 2.34m.

In order to prove the theorem, it remains to estimate m. We may conclude from the equality
2d-wit1 — niy1 = nifs; = 2d=wi=ui ] at wit1 = w; + u;, for 1 < ¢ < m. This implies
w; = wy -I—E;-;ll uj, for 1 <4 < m. The number m is characterized as the smallest ¢ that satisfies
w; + u; > d; thus, m = min{i | wy + Eé‘:l u; > d}. Now the desired estimate m = O(y/Togn)
is given by the following lemma (choose parameters A =2, ¢ =0, 7= 10, and ¢ = 1). a

For later use, we formulate and prove the technical lemma missing in the previous proof in a

slightly more general way than needed here.

LEMMA 5.2 Let integers A > 2, ¢ > 0 and some constant € {0,1} be fized, let d > 1 be an
integer, and ¢ € [1,d] be arbitrary. If the integer sequence v;, i > 1, is defined recursively by

i—1

vz-:max{v|n-v—}—c-vq-(I)(A”)§77+C<I>(A)+Zvj},foriZl,
J=1

and m = m(c,d) is defined by m = min{i | n + c®(A) + Z;’:l v; > d}, then
m = 0((d+! - ¢)!/(at+2)),

(The constant factor in this bound depends on A and q.)

Proof. Obviously, v1 = 1 and v;, ¢ > 1, is a nondecreasing sequence. For [ > 1, let ¢; denote the
largest ¢ such that v; <1 (the fact that v; > 1 implies that ¢; is a well-defined integer). Further,

let ig = 0. Let S} = 4; — 7;_1, the number of indices ¢ with »; = [. Obviously,
v 44, =51+ 25 4+ 15 ,for I > 1.

Let
lo=min{l | n+ c®(A)+ 51+ 2524+ ---+15 > d}.

It is immediate from the definitions that m < 250:1 S7. The following two claims are sufficient

to prove the lemma.
Claim 1. S;=0O(c-19), for [ > 1.
Claim 2. lo = O((d/e)"/(a+2)),

Namely, using the two claims, we have:

20



lo lo ) d\ (a+1)/(a+2)
m < ZS; = ZO(C A7) = 0(e¢- lg+ )= O(c- <—> ) = O((d"*? .6)1/(9'1'2))7

C

as desired.

Proof of Claim 1: Fix | > 1, and assume S; > 1. (If S; = 0, there is nothing to show.) From

the definitions we have that
nl+c17-O(A) <+ c®(A) + 51+ 25+ -+ (1-1)S_1
and
N4 e®(A)+ 51 +25 4+ -+ (I=D)S 1 +1(S—1)<n-(I+1)+e-(I+1)7- (AT,

Adding these inequalities yields [(5; — 1) < n+¢- ((l +1)7-d(AFY) — 7. <I>(Al)), or

<1t e ()7 @A)~ 17 3(A))
Since 1+ 7/l < 2, for proving Claim 1 it suffices to show that

(I+1)7-d(AFH — 1. 9(4h) = 0(17Y). (5.1)
Recall that for u > 1 we have ®(A*) = (p(A*) + 1)(¢(A*) + 2)/2 and (cf. Remark 1.1)

Bu =logy A* < p(AY) < log, A* +1.34 = Bu+ 1.34,
where 3 = log;, A = log(A)/log((3 + v/5)/2). Thus, we may estimate:
2- (14 1)7- @(A1) - 17 &4

I+ DB+ 1)4+234)(B(I+1)+3.34) = 11(BL+ 1)(Bl + 2)
= B4 )" - gHet 4 o(1rH)
= O™y,

INA

This proves (5.1) and Claim 1.

Proof of Claim 2: The definition of [y resp. [g — 1 implies that

g —1

nelotclo” - (A°) <+ e®(A)+ Y v < d.
=1

Substituting the inequality ®(A%) > @(Al)2/2 > %2/2, for 3 = log, A, we conclude that
¢-lo?-3%2/2 < d, which implies lo = O((d/¢)"/(**?). Thus, Claim 2 and Lemma 5.2 are proved.
a

21



Computing PARITY ,, with n = 2¢ may be viewed as the problem of evaluating a certain Boolean
formula that has the form of a complete binary tree of depth d with all operators equal to . A
more general question is how fast Boolean formulas built from arbitrary binary operators may be
evaluated or, even more generally, how fast Boolean circuits of depth d with gates of fan-in 2 may
be evaluated. Of course, the best one can hope for is ¢(29) & 0.72d steps, since for example OR,,
for n = 29 variables requires (n) steps and has a circuit of depth d. In the following we show
that circuits of depth d can indeed be evaluated in ¢(2%) + o(d) steps on CREW PRAMs with
quite small hardware expenditure. Subsequently we shall see that the special case of Boolean

formulas (all gates have fan-out 1) allows a further reduction of the additive term o(d).

For Boolean circuits, we use the standard notation as introduced e.g. in [34, p. 9]. We assume
that all gates that have fan-in 1 or 2; there are no restrictions on the types of gates or on the
fan-out. The depth of the circuit (i.e., the length of the longest path from an input to an output
gate) is denoted by d, its size (i.e., the number of gates, not counting the inputs) by s. In
order to compute functions with several outputs, some of the gates are marked as output gates.
Since our algorithms will determine the values at all gates, the positions of the output gates are

irrelevant.

We will need to subdivide the gates of a circuit into levels of a certain size (the width), in the
following (slightly unusual) sense. We say that a circuit C' can be arranged in X levels of width up
to w if the set of gates of C' can be partitioned into levels Ly, ..., Ly with |L;] <w for 1 <1< A
such that a wire may only connect an output of a gate on level L; with an input of a gate on
level L; if i < j. The n inputs for C' form a separate level Ly, which is not subject to the width

condition.

Trivially, every circuit C' of depth d and size s can be arranged in d levels of width up to s.

Using a simple variant of Brent’s scheduling principle [5], we obtain arrangements with smaller

width.

LemMA 5.3  Let C be a Boolean circuit of size s and depth d, and let w > 1 be arbitrary.
Then C' can be arranged in d 4 |s/w] levels of width up to w.

Proof. As noted above, C' can be arranged in d levels Lq,..., Lg of width up to s. For 1 < < d,
level L; is further subdivided into [|L;|/w] sublevels: ||L;|/w] of these consist of w gates and
at most one consists of fewer than w gates. An order for the sublevels within one level is fixed
arbitrarily. Clearly, overall there are at most |s/w| sublevels with exactly w gates and at most

d sublevels with fewer than w gates. O

22



The following technical lemima is the basis for our fast evaluation results for circuits and formulas.

LEMMA 5.4 Let C be a Boolean circuit of size s that can be arranged in A levels of width up
to w. Let v > 1 be arbitrary. Then there is a CREW PRAM with w - 22"%" processors and
54w - 22" memory cells of wordsize 1 that for arbitrary inputs for C' computes the values of

all s gates of C' in
log,(2*) + O @) =0.72...- A+ 0 <5)

v

steps.

Proof. The computation proceeds in stages t = 1,2,...,[A/v]. For simplicity, we assume that
v divides A; to cover the general case, only slight changes are necessary. During stage ¢, the
gates in levels I; for (1 — 1)v + 1 <[ < tv are evaluated simultaneously by groups of processors
working independently. The values of the gates are stored permanently in s designated cells.
Consider one gate g at level L;. By the fan-in restriction and the fact that wires only run from
lower-numbered to higher-numbered levels we know that the value of g is a function of the values
of at most 2/=(=1)¥ gates in levels L (the inputs), Lq,.. - L1_(t-1),, which are available at the
beginning of stage ¢. By Fact 1.2, the value of g can be obtained in (2/=(=1") 11 < p(2¥) + 1

steps by
ol—(t—1)r42!=(=1v—1 < 92 HI=(t=1)v—1

processors, using the same number of memory cells. Summing over the (up to w) gates on level
L; and summing over ({ —1)v+ 1 < < tv, we see that stage ¢ is finished in ¢(2") 4 1 steps and
requires
w - zy: 9241 4 924y
r=1

processors and memory cells, besides the memory cells for (permanently) storing the newly
computed values of the gates in L;, (t — 1)v +1 < [ < tv. Since the same processors and
memory cells can be used in all stages, the claimed bounds for these resources are proved. It
remains to estimate the running time. Using eq. (1.1), we see that the total number of steps

made in all stages is bounded by

R >

- (log,(2¥) 4 2.34) = logy(2*) + O (%) :

NCCIERIE
O

It is now only a matter of adjusting the parameters w and v to obtain a CREW PRAM with

fewer than s processors that can evaluate a circuit C' of size s and depth d in time 0.72...-d+o(d).

23



THEOREM 5.5 Let f:{0,1}"™ — {0,1}™ be a Boolean function that is computed by a circuit C
of depth d and size s.

(a) Letv > 1 and p be arbitrary. Then f can be computed by a CREW PRAM with p processors
and p + s memory cells of wordsize 1 in p(2%) + O (2217 - s/p) + O (d/v) steps.

(b) If p is such that loglog(pd/s) > 3, then there is ¢ CREW PRAM with p processors and
p + s memory cells of wordsize 1 that computes f in p(2%) + O(d/ loglog(pd/s)) steps.

(¢) Assume loglog(pd/s) > 3. If p > s/V/d, the running time in (b) is ©(2%) + O(d/ loglog d);
if p> s/(d/logd), it is p(2%) + O(d/logloglog d).

Proof. (a) If 2217 > p/2, there is nothing to show, since then C' can be evaluated in O(s) =
O(p - (s/p)) = O(2¥*" - (s/p)) steps by one processor. Thus, assume p > 22T+, Tet w =
|p/22°+7| > 2, and apply Lemma 5.3 to see that C' can be arranged in A = d + [s/w] levels of

width w. By Lemma 5.4, C' can be evaluated by w - 22”1 < p processors in time
log,(2") 4 O <5> = logy(24) 4 0 <i> +0 <§> e ( s )
v w v w v

= logy(2%) + O (g) +0 (5) .

Now it suffices to observe that

S S 2s
2 — < —92.
w o |p/2¥tv] T pj22ty

(b) We use (a) with v := |loglog(pd/s) — 2] > 1. Then d/v = O (d/(loglog(pd/s))), and

y y d d
22 +l/_§<22 +1 f <2%log(pd/s)_f20 -0 < > )
P P P Vpd/s log log(pd/s)

(c) Immediate from (b). ]

. 22”-}-1/

| ®»

For the special case of formulas, i.e., circuits in which all gates have fan-out 1, a better additive

error term can be achieved, as noted in the following.

THEOREM 5.6 Let n = 2¢. If the Boolean function f:{0,1}" — {0,1} can be represented by a
formula F of depth d, then [ can be evaluated by a CREW PRAM with p processors and p 4+ n

memory cells in
n log n
#lm) + [ﬂ o <log10g n)

steps.

24



Proof. We may assume w.l.o.g. that p < n and that p is a power of 2. Assume first that p = n.
In a first phase, the 29~ Va1 subformulas of F are evaluated that correspond to the 29~ [Vd]
subtrees of depth [\/L_H at the bottom of F. Clearly, each such subformula can be evaluated in
]—\/EW + 1 steps by Va1 processors in the same number of memory cells of wordsize 1, even in
an EREW fashion. Overall, n processors and cells are sufficient. We are left with the problem
of evaluating a formula of depth d' = d — [\/E 1. Trivially, this formula is a circuit that can be
arranged in levels of width at most w := 27", By Lemma 5.4, for arbitrary v this circuit can be
evaluated by p = w- 22"t processors and 7+ w - 2"+ memory cells in log, (2%) + O(d'/v) steps.
We choose v = |+loglogn| = |$logd], and obtain that w-22"+» < 24~ [Vd] . 9d'/*+(1/3)logd <
2?7 = n (for d sufficiently large) and, of course, log,(d') < (2%) and O(d'/v) = O(d/logd). In
case p < n, we first reduce the size of the formula to p leaves by having each of the p subformulas
of F of depth d —log p evaluated by one processor in n/p steps. Afterwards we proceed as before.

O

6. Many-valued formulas and circuits

Some of the previous results can be extended to k-valued formulas and circuits, i.e., devices
that compute functions {0,...,k — 1}* — {0,...,k — 1} for some k > 3 and are built from

gates that compute functions
®:4{0,...,k—1}*—=H{0,...,k—1}.

For CREW PRAMs that compute such functions the n arguments are stored in input memory
cells of wordsize ||k — 1|, each argument in a separate cell. A component of the result is either
given as a single value in an output cell of wordsize ||k — 1|| or, coded in binary, in ||k — 1||
cells of wordsize 1. We start with considering simple k-valued formulas, that is, functions
Flzq,...,2,) =21 @22 ® - - - ® &, for an associative operator @ over {0,...,k— 1}, with values
in {0,...,k — 1}. Such functions are direct generalizations of the functions AND,,, OR,,, and

PARITY,, from the case k = 2. Theorem 4.1 may be generalized as follows.

THEOREM 6.1 A simple k-valued formula F of size n can be evaluated by a CREW PRAM M
with p = n- KEDY2 processors and n - (k' 4+ 1) memory cells int = ¢(n)+ 1 steps, where each

of the common memory cells of M, except the cells used for input and output, are of wordsize 1.

The proof of this theorem is almost identical to the one for Theorem 4.1. The only difference

is that instead of binary strings we use strings over the alphabet {0,...,k — 1} as names for

25



cells and processors. If during the :th WRITE a group of processors wants to send a number
s € {0,...,k — 1} to a group of cells C, the symbol * is written to all cells in C with a name

whose ith position differs from s, thus changing the state of these cells to “dead”.

REMARK 6.2 We note that the result of such a computation can be written in binary in ||k — 1||
memory cells in one extra step. Indeed, we can prepare k different cells, all storing the same
symbol. The processor that knows F(Z) after the READ of step ¢(n) 4+ 1, marks one of these
cells, namely the jth cell, where j = F(Z)+1. During step ¢(n)+2, another k- ||k —1|| processors
read these cells in parallel (||k — 1|| processors for each cell); during the following WRITE the
||k — 1|| processors that encountered the marked cell in parallel write the binary code of F(&).

In this way the algorithm uses only memory cells of wordsize 1 (except for the input cells).

REMARK 6.3 It is interesting to note that in many cases a Boolean formula that is not nicely
balanced like the formulas of Theorem 5.6 can be considered as the restriction of a simple formula
over a k-valued domain. (The well known fact that any unbalanced Boolean formula of size n,
say, can be restructured to get an equivalent one of depth O(logn) does not help in constructing
a fast CREW algorithm for the formula, because the constant factor in front of the logarithm
in the depth bound (about a factor of 3) outweighs the saving from logn down to ¢(n).) As an

example, consider the Horner type formula

Flzy,...,2,) = (- ((m1 Azg) Vag) ANzg)Vas) - Azy,)

of size n = 2m and depth n — 1, which is extremely unbalanced. We define an associative
operator @ on the 3-valued domain {k,p,g} by u@k =k, u®g =g, u®@p = u, for u € {k,p,g}.
Furthermore we define functions G : {0,1}* — {k,p,g} and H : {0,1} x {k,p,g} — {0,1} by
G(z,1)=yg,G(1,0) = p, G(0,0) = k and H(z,k) =0, H(z,p) =2, H(z,g9) =1, for z € {0,1}.
Then it is easy to see that

F(xlv sy xn) = H(:Ul, G(x% 5133) ® G(w47 $5) @ ® G(wn—Qv wn—l) ® G(:I?n, O))

Therefore, by Theorem 6.1, one can evaluate F(zy,...,2,)in ¢(n)+4 steps on a CREW PRAM
with subexponentially many processors and cells. The degree of F'is n, hence at least ¢(n) steps

are necessary to compute F, by Fact 1.4.
We generalize Theorem 5.1 to k-valued domains.

THEOREM 6.4 Let F(zy,...,2,) = 21 ® -+ ® 2, be a simple k-valued formula. Then there is
an n-processor CREW PRAM M with n memory cells of wordsize ||k — 1|| that evaluates F' in

w(n) + O(y/logn -log k) steps.

26



Proof. We may assume that k& < n, since logn + 1 steps are certainly sufficient, which is
O(y/Togn -log k) for k > n. We proceed essentially as in the proof of Theorem 5.1. The input
for stage 7 comsists of n; = 297" values y!, .. 7%1 in {0,...,k — 1} so that F(zy,...,2,) =
Y- yﬁh In stage 7, the y;:, 1 < j < ny, are subdivided into n;11 := n;/s; blocks, or groups,
of s; = 2% consecutive values; the operation ® is applied within each group to yield one new

1

value yj-"' . This computation takes time ¢(s;) + 1, according to Theorem 6.1. The maximal

group size we can afford without exceeding the processor bound can be easily calculated: Let u;
be the largest u such that [log k] - ®(2*) < w;. Then for each group s; - 2[108k1-(2") > 5, . (i)
processors are available, which is sufficient for applying Theorem 6.1. For this to work, we need

u; > 1, or [logk] - ®(2') < w;. In order to reach such a situation, we start with a preprocessing

phase of 3[log k] = O(y/Tognlogk ) steps in each of which simply adjacent pairs of values 33, _,
and yél are combined to form y?+1. Thus, the first stage starts with ny = 2971 values 41, .. .y}“
with 3[logk] < wy. Stage i is the last stage if n; < 2" in this case there is only one group
of size s; = n;. The number of stages is denoted by m. The analysis now is very similar
to the proof of Theorem 5.1. Let T be the computation time (without preprocessing). Then

T < ¢(ny) +2.34m < @(n) + 2.34m. For estimating m, we prove just as in Theorem 5.1 that

i—1
u; = max{ u ‘ flog k] - ®(2*) <> uj + 3[log k] } ,for1<i<m, and
7=1

m:min{i|3]—10gk-\ + > uj Zd}.
j=1

Lemma 5.2, applied with parameters A = 2, ¢ = 0, n = 0, and ¢ = [logk ] yields m =

O(y/dlogk) = O(y/lognlogk ), as desired. O

The last algorithm can be modified so that it uses only memory cells of wordsize 1. The
simple idea is to store the intermediate results y, .. .,yfu passed from stage ¢ — 1 to stage ¢ in
binary encoding. For (sequentially) reading and writing these codes in each stage 2|k — 1|| =

O(logk) extra steps are sufficient. In this way, the computation time increases to @(n) +
0 <\/ log n -10g3k>.

Finally, we generalize Theorems 5.5 and 5.6 to k-valued domains. The notion of a circuit
consisting of gates with fan-in 2 that compute functions {0,...,k —1}? — {0,...,k — 1} is an
easy generalization of the binary case. (The prime example here is an arithmetic circuit over a
ring or a field with & elements.) The definitions of the depth of such a circuit and of arranging

the circuit in A levels of width up to w (cf. Section 5) carry over directly, as does Lemma 5.3.

THEOREM 6.5 Let C be a circuit of depth d consisting of s gales over the domain {0,...,k—1}.

27



(a) Let v > 1 and p be arbitrary. Then C can be evaluated by a CREW PRAM with p

processors and s + p memory cells of wordsize ||k — 1|| in

e vo (2 2) vo ()

14

steps.

(b) If p satisfies loglog(pd/s) —loglogk > 3, then there is a CREW PRAM with p processors

and memory cells of wordsize ||k — 1| that evaluates C' in

d
d
#(2)+0 <1og log(pd/s) — loglog k:)

steps. (Note that this is ¢(2%) + o(d) whenever k is fized and p = w(s/d).)

Proof. We may assume that 2+ . k2" < p/2, since otherwise even one processor can evaluate
in 2s =0 (21 - k¥ - s/p) steps. Let w:= |p/(2"*F! - k*¥)| > 2, and arrange C'in A = d+ |s/w]
levels of width w (cf. Lemma 5.3). As in the proof of Lemma 5.4, the s gates are evaluated in
stages t = 1,2,...,A/v. Evaluating gate ¢ at level [, (t — 1)v + 1 <[ < tv, with the values of
all the gates in levels Lo, L1, ..., L;_(;_1), already available, amounts to computing the value of
a function with 2!=¢=D" inputs from {0,...,%k — 1} and an output in {0,...,%k — 1}. This can
be done in @(2!=¢=1v) 11 < ©(2¥) + 1 steps by R gl=(t=1)v processors. (The method

is practically the same as in the binary case: For each of the at most 2

possible inputs
a team of 2!=(=1)¥ processors checks whether the actual input equals the input associated with
the team. This is done by computing the OR of 2/=(¢=1¥ bits. The unique successful team
writes the result into the output cell.) The total number of processors used is bounded by
w-2-20 kY = w2t k¥ < p. Proceeding exactly as in the proofs of Lemma 5.4 and
Theorem 5.5 we may estimate the running time by ¢(2¢) + O (21! - k¥ - s/p) + O (d/v).

(b) Define v := |loglog(pd/s)—loglog k—2| > 1. Clearly, d/v is bounded as required. Moreover,

2y+1 . k2u . f < k2v+1 . f < k2(loglog(pd/s)—1)—loglogk . f
p P p
— k(1/2)-log(pd/s)/logk . f — d
P Vpd/s
= O gtogpareyetoeF)
B loglog(pd/s) —loglogk )
Thus, both O-terms in (a) can be bounded as claimed. 0

In the case of k-valued formulas of depth d and size n = 27 (e.g., balanced arithmetic expressions

over finite fields) the last result may be somewhat sharpened, in analogy to Theorem 5.6.

28



THEOREM 6.6 Letn = 27 and let k < 2Y/4. If the function f :{0,...,k—1}" = {0,...,k—1}
can be represented by a formula F' of depth d (with arbitrary binary operators over {0,...,k—1}),
then [ can be evaluated by a CREW PRAM with p < n processors and p + n memory cells of

wordsize ||k — 1|| in

n log n
wln) + [;-‘ +0 <1oglogn — 2loglog k)

steps. (If logk = o(y/logn) and p = w(n/logn), the number of steps is bounded by ¢(n) +
o(logn).)

Proof. We follow the proof of Theorem 5.6 and consider here only the case p = n. Subformulas
of depth [v/d] may be evaluated in [v/d] + 1 steps in the k-valued case as well. The remaining
formula F' can be arranged in d' = d — [v/d] levels of width at most w := 2%. Let v :=
{% logd —loglogk —1|. Then v > 1 by the assumption k& < 9Vd/4, By the proof of Theorem 6.5,
w211 k2" processors can evaluate F” in ¢(2%)4+0(d'/v) = p(n)+0(d/(loglog n—2loglog k))
steps. It remains to note that w - 2v+1 . k2" < 24~ NCA >iah < 24- Va7l . pVd/logk — 9d — 4

a

The algorithms described in Theorems 6.4, 6.5, and 6.6 are unsatisfying in that they lead to
computation times of ¢(n)+o(logn) only if k is sufficiently small relative to n. Designing feasible
algorithms that run in almost optimal time for arbitrary & seems to be difficult. However, in
Section 8 we present a feasible algorithm for computing an important (n + 1)-valued function,

namely the sum of n bits, in almost optimal time.

7. Parallel prefix and addition

Let ® be an associative operator over some domain. We say that a PRAM computes the parallel
prefix for the product 1 ® 22 ® - - - @ &, if on input 21, x9,..., 2, the PRAM computation results

in the values of the n products

1, T1Q@x2, T1®T2O0T3, ..., T1® - QTy

stored in n fixed memory cells. Parallel prefix computation is a fundamental problem, which
has been studied extensively for different computational models. Optimal realizations for the
circuit model can be found in [19] and [13]. For unbounded fanin circuits, which relate to the

CRCW PRAM model, see for example [10].

29



In this section we show that parallel prefix for k-valued domains can be computed on a CREW
PRAM within practically the same complexity bounds as the single product 1 ® 2 ® --- ® x,,
(Theorem 6.4).

REMARK 7.1 In the construction of an adder for two n-bit numbers by Ladner and Fischer [22]
a k-valued circuit for the parallel prefix problem is described that has depth logn and size
4n. We could apply the general Theorem 6.5 to obtain a CREW PRAM algorithm for parallel
prefix with n processors that runs in time @(n) + o(n) if logloglogn — loglog k = w(1), that
means, k = o(loglogn). The direct construction presented in the following works for k with

log k = o(logn).
We start with a simple lemma.

LEMMA 7.2 Lel ® be an associative operator {0,...,k —1}? — {0,...,k — 1} over a k-valued
domain. Then there is an FREW PRAM M with n processors and n memory cells of wordsize
||k — 1|| that computes the parallel prefiz for x1 @ 23 ® --- ® x,, in [logn] 4+ 1 steps.

Proof. Without loss of generality we assume that » = 2?. During the computation, the
arguments zi,...,x, are divided into blocks; after step ¢ these blocks consist of 2!~1 varia-
bles. Namely, for each i < n, let B! = {z;}, and for t > 1, B*! = BL. , U BL. So
B! = {:L'(Z-_l)_2r-1+1,:L'(Z-_l),Q:-1+2,...,.’L'Z-_2r-1}. Let [] B! denote the product of the elements
of B, that is, ¥ (;_1).2t-141 @ T(i_1).20-1412 @ ==+ @ Tyge-1. By prefix(s, Bf) for x5 € B} we denote

T(im1)ot-141 @ T(i_1)ge-142 @ - ® T, The algorithm maintains the following invariant:

o After step ¢, for each s < n, processor Ps knows [[ B! and prefix(s, Bf), where B! is the

block that contains z;. Moreover, cell C; stores [] BY.

The first step is simple: each processor P, for s < n, reads from cell Cs. To describe step ¢ + 1
assume that the property above holds up to step ¢. Let s < n and z, € BI*' = BL._, U BL..
If 2, € BS,_; then during step ¢ + 1 processor Py reads from cell Cqe-1, which stores [] Bi;
(since 24,901 € BL). If zy € BY,, then P, reads from cell C;_,.-1, which stores [T B%,_,. Tt is
easy to check that this does not lead to a read conflict. Note that in both cases after the READ
operation processor Ps knows [ BL; as well as [] BL;_;. Then P, computes [] Bf‘H and writes it
into cell Cs. Also, Py computes prefix(s, BIT), knowing that prefix(s, BIt!) = prefix(s, BY;_,),
if z, € BS._,, and prefix(s, BitY) = [] BL,_, @ prefix(s, BL,) if 25 € B;. The computation stops

30



when B! = {z1,...,2,}, hence t = log n+ 1. During the WRITE phase of step ¢, each processor
P; writes prefix(s, BY) into Cj, instead of [[ Bi. Thereby, after step ¢, we get the correct output.
O

THEOREM 7.3 Let @ be an associative operator over a k-valued domain. The parallel prefix for
1 ®ra @ - - @y, can be computed by an n-processor CREW PRAM in p(n)+ O(y/logk -logn )

steps using 2n memory cells of wordsize ||k — 1||.

Proof. We may assume that k& < n and n = 2. (If & > n, use the algorithm of Lemma 7.2. If
n is not a power of 2, take n’ = 2187 and compute the parallel prefix for y; @ y2 @ - - @ Y,
where y; = 9;,_1 ® z9; for i < n —n' and y; = Tit(n—n') for n — n' < i < n'. Then the products
1@ --®wj, 1 <j < n,can be obtained in two additional steps.) The idea of the algorithm is to
divide the input variables into disjoint blocks and to compute the parallel prefix of each block.
Then the input variables are partitioned into larger blocks and the parallel prefix of each block
is computed, using the previous results. The second step is repeated until there is only one block
consisting of all variables. At each time during the computation, cell C, for r < n, stores the
value of the product 2; ® z;41 ® - -+ ® x,, where z; is the beginning of the block that currently
contains z,. The remaining n memory cells are used for auxiliary data. Since after the last step
there is a single block containing all variables, cell C. stores the value of 1 ® 29 ® --- ® 2,

which is the correct result.

The computation consists of a preprocessing phase and of stages ¢ = 1,...,m. At the begin-
ning of stage i, the following situation is given: The input variables are divided into blocks
B;1,Bia,..., By, of the same size, say 2"; hence 2" - n; = n, or n; = 24-wi - For each block

Bip ={wj %5 415+, Tj; 11 —1) there is a memory cell that stores

[IBir=2i, ®zji,41© D) 1-
Let y, = [[ Bi, , for p < n;. Further, cell C, stores Tj, @Tj 41 @ ® Ty, where B;, is the
block that contains z,. Stage ¢ consists of the following computation: M splits y1,y2,...,Yn;
into blocks Yy = {y(p—1).5,41 Y(p—1)-si425 - - -» Yp-s; } Of some size s; , where 1 < p < i1 1= n;/si,
and computes the parallel prefix of the values yy,ys,...,y,, within each block Y, (details are

given below). Each block B;y1, consists of s; blocks of the form B; ;, namely,
Bit1p = Bi,(p—l)-SH-l U Bi,(p—l)-SH-? U---UBjp.s,.

Of course, there are n;4; such blocks B;iq,. Assume that 2, is in B; 3 C Bjt1,. At the

beginning of stage ¢ + 1, cell €, must store the value of z;,,, ® =z, +1 ®---®z,. Note that

Tiivi,p ® Ljip1 ptl Q- Rz, (7.1)

31



= (H B (p-1)sit1 ® H B (p-1)si42®@ - ® HBz',q—l) ® (2, @5 41® - Q1y)
= (y(p—l)-si-l-l ® Yp-1)si+2 © @ Yg—1) ® (mji’q T, 410 ® Ty) .

The value of zj, @ zj;, .41 @ -+ ® z, is stored in cell C;. The product y,_1).5,41 @ Y(p—1).5;42 @
- ® Yq—1 is computed during stage 7 as one of the prefixes of block Y, and stored in some
fixed memory cell. Some processor reads this cell as well as cell €, computes the product

Tiirp @ Tjipy 41 @ -+ @ 7, according to (7.2), and stores the result in C,.

It remains to fix the sizes of the blocks and the algorithm used within the stage, and to analyze

the running time.

We start with a preprocessing phase, in which the parallel prefix is computed within blocks of

length 2*1 ) where wy = 1+ 3[logk |, by the algorithm of Lemma 7.2. This takes 2+ 3[logk| =

O(y/lognlog k) steps.

During stage ¢, ¢ > 1, we must compute the parallel prefix within each block Y,, for 1 <
p < niy1. Each single prefix product yg,_1y.5,41 ® Ypo1).s;42 ® -+ @ yg—1 is computed by a
separate group of processors and memory cells, by the algorithm of Theorem 6.1. For each
such group, we employ p(s;) = s; - k%05 processors (and fewer than p(s;) memory cells), where
B(s;) = (2(s;)+2) - (p(s;) +1)/2, as before. Since n; products are to be computed, n; - s; - k(%)

processors are required overall. If we let u; be the largest integer u that satisfies

ng - 2% . 2|'logk'|~<1>(2“i) <n

= bl

that means, u; + [log k] - ®(2%) < w;, then we may choose s; = 2%. By the preprocessing stage,
we have u; > 1 for all 7. The last stage, m, is characterized as the minimal ¢ with n; < 2%. Here,
we choose s; = n;. The analysis of the running time (disregarding the preprocessing phase) is now
practically the same as in Theorem 6.4. Stage ¢ takes (p(s;)+1)+2 = o(s;)+3 < logy(s;)+4.34
steps, and the overall time T' can be estimated by T < ¢(n) 4+ 4.34m. In order to estimate m,

we note that wu; is given by the recursion

i—1
ui:max{u ‘ u+[logk}-¢(2“)§1+3[logk}+Zuj-} ,for 1 <i<m, and

i=1

m = min{i | 1 + 3[log k] + Z u; > d}.
7=1
In this situation, Lemma 5.2 is applicable (with A =2, n =1, ¢ = [log k], and ¢ = 0); it yields

m = 0(e-d)=0(/Tognlogk). ]

A CREW PRAM M adding two n-bit numbers gets the input bits in separate cells and has to

generate the binary representation of the sum of these numbers, each bit in a separate cell.

32



COROLLARY 7.4 For each n, there is an (n+1)-processor CREW PRAM with 2(n+ 1) memory
cells of wordsize 2 that adds two n-bit numbers in p(n)+ O(y/logn ) steps.

Proof. When computing in parallel a sum of two binary numbers, the main problem is to
compute the carry bits. Once all carry bits are known, the sum can be computed in a few

parallel steps. Let the carry propagation operator @ : {0,1,p}? — {0,1, p} be defined by
pRz=2,02x=0, 1@z =1.

It is well known that this operator is associative and that the ith carry bit ¢; equals z; ® 2,1 ®
---® xg , where zg = 0 and for ¢ > 0, z; = 1, if both added numbers have 1’s in position ¢;
xz; = 0, if there are two 0’s in position 7; and x; = p if there is a 0 and a 1 in position i. If we
define 2 @ y = y ® z, then ¢; = 2o @ 21 ® -+ ®" ;. So, to compute the carry bits one has
to compute the parallel prefix of g ® 27 ® -+ ®' z,,. By Theorem 7.3, this can be done in
¢o(n)+ O(y/Togn ) steps by a CREW PRAM with n 4 1 processors and 2(n 4 1) memory cells

of wordsize 2. In a few additional steps, this machine computes each bit of the sum. a

REMARK 7.5 The currently best known construction of a circuit for adding two n-bit numbers
was given by Krapchenko (see [34, p. 42]). This circuit has depth logn + O(y/logn ) and size
O(n). Applying Theorem 5.5 to this circuit yields a CREW PRAM algorithm with running
time ¢(n) 4+ O(logn/logloglogn). Comparing with Theorem 7.4 we see that the time bound is

slightly better and that the structure of the algorithm is clearer for our direct construction.

8. Symmetric functions

A Boolean function is called symmetric if it only depends on the number of 1’s in the input. In
this section we describe feasible algorithms with an almost optimal running time for computing
symmetric functions. An obvious way to compute such a function is to count the 1’s in the input
and then to determine the function value depending on the count. Thus, we start with studying

the following task.
“Sum of n bits”:  For an input consisting of n bits zq,...,2, stored in n different memory

cells, compute the binary representation of Y 1 ; z;, and store it in ||n|| memory cells (each

bit in a separate cell).

33



We will describe a feasible algorithm for summing 7 bits, and apply it to the task of evaluating

symmetric functions in time ¢(n) + o(logn) with n processors.

REMARK 8.1 For the bit summation problem no circuits (with fan-in 2) of depth log n+ o(log n)
are known. Thus, the CREW PRAM algorithm described here is faster by a constant factor
than what what can be obtained by simulating the best known circuits for this problem. The

same applies to the problem of computing arbitrary symmetric functions.

Let us first discuss two well-known methods, one for adding a sequence of bits, another one for
adding a sequence of binary numbers. Although these methods are not good enough for our
purpose, we will need them as subroutines; moreover, our main algorithm is a generalization of
the second method described. The first method that we will describe is based on a well-known
VLSI algorithm ([21], Section 1.1.4). It yields an algorithm for adding n bits that takes O(logn)
steps on an EREW PRAM with n processors and n memory cells of wordsize 1.

LEMMA 8.2 There is an n-processor EREW PRAM with n memory cells of wordsize 1 thal

compules the sum of n = 2% bils in 4d steps.

Proof. We may assume that each READ phase consists of reading from two different cells. Such
a machine, which we call a 2-READ PRAM, can be simulated by a usual EREW PRAM that

makes twice as many steps. We prove the following by induction on k:

Claim: There is a 22READ PRAM M}, with 2¥ — 1 processors and memory cells Cy, ..., Cor_;
of wordsize 1 that for an input z1,..., 2, writes the binary representation bybr_1 - - - bg of
Z?il x;, starting at step k with the least significant bit by, and writing b; into cell C; at
step k + i. The cell C; is not used by M}, after step k + i. (The total number of steps is
2k.)

M reads the two input bits in step 1 and writes the two output bits in steps 1 and 2. So we
assume that M} exists and use it to construct Myy;. We split the 2¥t1 input bits into two groups

of 2% bits each and use two copies M/ and M}’ of My, one for each group. Let C}, ..., k1

and CY,...,Cl_, be the cells used by M and M;/, respectively. By C; let us mean the cell
C!,if i < 2%, or the cell Cl oy if i > 2k, In steps t = k,k + 1,...,2k the machines M} and
M} produce the bits b, by, ..., b, and by, b, ..., b} of their (partial) sums. In addition, there is

another processor P, whose task it is to add up the two sums produced by M} and M}, by using

34



the standard “paper and pencil” method. Processor P keeps an internal variable ¢ (“carry”)
initialized with 0; it is idle for the first k steps. In steps t =k + 1,...,2k + 1 processor P reads
bi and b, for i =t — (k 4+ 1), the values written by M and M} in step ¢ — 1 into cells C! and
CY, and adds b}, b and ¢, which results in a 2-bit number sy55. Then P writes sy as the next
output bit into cell C; (the same cell as C}) and puts ¢ := sy (s; is the next carry bit). In step
t = 2k + 2 processor P writes ¢. Obviously, P outputs the bits of 22221 x; in the proper order
and with the required timing. Altogether 2(2% — 1) + 1 = 2%*! — 1 processors are used. a

The second method that we describe is an adaptation of the “Wallace tree” construction for a
circuit of depth O(logu + log k) for adding u k-bit numbers. This construction is based on the
idea of “carry-save addition” [33, 34].

LemMMA 8.3 (a) If b; = b;g_1bi4—2---bio, for i = 1,2,3, are three binary numbers with by +
by + bs < 2%, then there are lwo binary numbers 9; = 9j,d-195,d—2 """ §;0, for j = 1,2, so that
b1+ by + b3 = g1 + g2 and so that there is an EREW PRAM of wordsize 1 with d processors that
computes the bits g; . from the bits b; y in 4 steps.

(b) If w numbers b; are given by their binary representations b; 4_1---b;o, for 0 < i < u,
and if s = EE‘;& b; < 2%, then the binary representation sy_qi---Sy of s can be compuled in

O(logu + log d) steps by an EREW PRAM with d - u processors and d - u cells of wordsize 1.

Proof. (a) Let for 0 <1 < d the sum by 2 4 by + b3; have the binary representation ¢;s;. Define
g1 = s for 0 <1 < d,and gg) := ¢j—y for 1 <1 < d, and g3 := 0. (Note that ¢;_; = 0.)
Obviously, g1 + g2 = b1 + by + b3. The method for calculating the numbers ¢g;; on an EREW
PRAM is obvious.

(b) The computation proceeds in stages. At the beginning of each stage we have a collection
of binary numbers with sum s. During a stage, we split these numbers into groups of three
each, and then these three numbers are replaced by two new ones that have the same sum, as
described in part (a). In that way, each stage reduces the number of the remaining numbers by
a factor of % Further, each stage needs at most d - u processors and d - u cells, and takes four
steps. These stages are performed until only two numbers are left. It is not hard to see that the
number of stages does not exceed 1+ logz/, u. Finally, to add up the two d-bit numbers that
remain after the last stage we use the algorithm of Corollary 7.4. The whole computation takes

no more than 4 - (1+logz/; u) + O(log d) = O(log u + log d) steps. ]

Now we turn to the key result of this section.

35



THEOREM 8.4 The sum of n bits can be computed by an n-processor CREW PRAM with n
memory cells (of wordsize 1) in time @(n) + O(log*/>n - loglog n).

Proof. Let zq,...,z, be the input bits, where w.1.0.g. n = 2¢. Qur aim is to compute the binary
representation of the sum s = Y_* , z; consisting of ||n|| bits. The central idea of the algorithm
is to generalize the addition method presented in Lemma 8.3 by using groups of more than 3
elements. Again, the algorithm proceeds in phases. The result of phase i — 1 is a sequence
Yids. .- Yin; of binary numbers, each represented by ||n|| bits, such that 3772, y;; = s. The
numbers y; ; are split into groups of a suitably chosen size a; (as opposed to size 3 in Lemma 8.3),
and from the a; numbers in each group a set of ||a;|| new numbers is computed that has the same
sum. By collecting the new numbers from all groups we obtain numbers yit11,. .., Yit1,ni415
where n;41 is substantially smaller than n;. We have to show how to perform one such phase
efficiently, i.e., in almost optimal time, and how to choose the parameters a; and n; in such a

way that the numbers n; decrease so fast that not too many phases are necessary.

In addition, the algorithm has a preprocessing phase and a postprocessing phase. The prepro-

n
n17

cessing phase is necessary to get ny numbers y; 1,..., 91, With sum s where the number of
processors per cell, exceeds a minimal value necessary to start the main procedure. The post-
processing phase begins after stage m, if n,, is sufficiently small. Then we add the remaining
numbers using the procedure of Lemma 8.3(b). (We could also let the main procedure run until
the end; however, this would unnecessarily complicate the analysis.) For the sake of simplicity
assume throughout the proof that n is a sufficiently large number. (For small n, the algorithm
from Lemma 8.2 is used.) We start by describing an efficient method for transforming @ numbers

given in binary into ||¢|| new numbers that have the same sum.

LEMMA 8.5 Let ¢ > 3 and n = 2¢ > 1 be integers. Then there is a CREW PRAM with

|n|| - a - a®®) processors and memory cells of wordsize 1 that, when presented with the binary

representations of numbers vq, ..., v,_1 with ;‘;S v; < n, in @(a)+ 3 steps computes the binary
representalions of numbers 2o, . .., 2|q||-1 thal salisfy
[laf| -1 a—1

SRR SIS 1)
(=0 7=0

Proof. Let v;q---v; be the binary representation of v;, for j = 0,...,a—1. For each bit position

¢ € {0,...,d}, consider the binary representation be,jlajj=1 "+ ~bejo Of be := Z?‘;é vj.. We may

rearrange these [|a|| - (d 4 1) bits so as to form ||a|| numbers of length ||n|| = d + 1 (see Figure 4

36



Vo5 Up4 Vo3 Vo2 Vo1 Voo = o

Va5 V44 V43 V43 V41 V40 = U4
boz bo1 boo = Sum of last column
bia b1 bio = Sum of next to last column

bz a1 bao
baz bar bao

bsa bs1 bso = Sum of first column

| Rearrange

bag baz b1z bo2 0 O = 2y
bar b31 b1 b1 bor O =z
bso bao b3o b2o bio boo = 2o
Figure 4: Forming ||a|| = 3 numbers from a = 5 many by the procedure of Lemma 8.5, ford = 5

37



for an example). Namely, let z; be the number with binary representation by bg—1—1 - - -bOJOZ.
Then

a—1 a—1 d d a—1 d
D = DD vie 2 = Z(Z”f"c) 2= ) b
7=0 j=0¢=0 c=0 \j=0 c=0
d_ a1 llal[-1 / 4 [laf| -1
_ Z Z by -2t = Z (Zbc,Z'QHC) _ Z .
c=0 [=0 (=0 c=0 (=0

(For the last equality recall that b, - 2° < Z;‘;& v; <n, and hence b.; =0 for [ + ¢ > d,i. e, for
¢ > d —1.) Thus, the numbers 2 satisfy eq. (8.1).

By the definition, the binary representation of the numbers zo, ..
rearranging the bits of the binary representations of by, ..., bs. By Theorem 6.1 and Remark 6.2,

each b, can be computed in ¢(a) 4+ 2 steps by a CREW PRAM with a - a®(®) processors and
®(a)

-5 Z||a||~1 can be obtained by

cells of wordsize 1. So for d + 1 = ||n|| numbers b. we need ||n|| - a -« processors (cells)

altogether. In one additional step, the bits are rearranged so that we get binary representations
O

of the numbers zo, . .., 2||q||1-

We now describe and analyze the algorithm for summing n bits. It consists of a preprocessing

phase, a main procedure (in m stages), and a postprocessing phase.

Preprocessing phase. The input bits are split into groups of 2" elements with wy :=

[log||n|| ] + 4®(16). The sum of the bits in each group

Lemma 8.2. As a result, we get ny := 2971 numbers Yid, .-

up with leading zeroes) such that > 2, 41, = s. For the

is computed using the algorithm of
<y Y1,n, Of binary length ||n|| (filling

preprocessing phase n processors, n

cells, and 4wy = O(loglog n) steps are sufficient.

Next we describe stage ¢ of the main procedure, for ¢« > 1. The number m of stages, as well as
the parameters a; = 2% and n; = 2%7% (where u;, w; € IN) will be defined by recursion in the

course of the description.
Stage

Input: the numbers y; 1, ..
with [|n]| bits.

-5 Yin; With z;“:l y;,; = s. Bach y; ; is given by a binary representation

Computation: the numbers y; ; are split into n;/a; groups of a; elements each. Using the method

of Lemma 8.5, each group is replaced by ||a;|| new numbers with the same sum.

Output: Let n;iyq = 2 [log|la:ll] - n;/a;. Output the numbers Yit1,15+ > Yi+1,n;4, Obtained by

collecting the ||a;|| results from each group, padded with 0’s to obtain n;41 numbers.

38



LEMMA 8.6 (a) nit1 < 2-|lail| - ni/as;
(i)

(b) stage i can be performed by n; - ||n|| - a? processors and cells in ¢(a;) + 3 steps.

Proof. (a) Obvious. (b) Each of the n;/a; groups uses ||n|| - a; - a?(ai) processors (cells). Hence,
O (ai)

n; - ||n|| - a; processors (cells) are used altogether. m]

Now we define the numbers n; and a; for ¢ > 1 (hence also w;, since n; = Qd_wi). Assume that

(2:) processors (cells) are needed for
@(ai)

performing stage i, thus we must have n = 2¢ > n; - [|n|| - a; \*".

n; has been determined already. By Lemma 8.6, n; - ||n|| -a?

Define u; as the largest number u € IN that satisfies n > n; - [|n|| - 2¢®2") and let a; = 2%.
Note that u; > 4 since n/n; = 2" > 2" > 9log|Inll+4-2(2)  The number m of stages of the main
procedure is defined to be the minimal i such that a; > n;, i.e., 2% > 29=% or u; + w; > d. In
stage m, only one group of size n,, is formed; since a,, > n,,, the stage can be performed by

the n processors. The result of the last stage are ||nm,41]| < ||»|| numbers that have sum s.

Postprocessing phase. The algorithm of Lemma 8.3 is applied to the up to ||n|| numbers of
||n|| bits with sum s that result from the main procedure. This algorithm outputs the binary
representation of s after O(log||n||) = O(loglogn) steps, using ||n|| - [|n|| = o(n) processors and

cells.

It remains to analyze the main procedure. It is clear that n processors and memory cells are

sufficient. The crucial step is to estimate m.
LEMMA 8.7 The number m of stages of the main procedure is O((logn)*/?).

Proof. From the construction, it is easily seen that the numbers u;, w;, for ¢ > 1, obey the

following recursive definition:

wi = [log[n||]T+4-&(16);
w; = max{u| [log|n||]] +u-®(2") < w;} ,fori>1;
wiyr = w; + u; — [log||2“]|] , for i > 1.

Since w; > wy = [log||n||] + 4 - ®(16), we have u; > 4 for all 7; hence w;y; > w; + iu,- for all

i, since [log[|2*|]] < 3u for u > 4. It is not clear how to analyze exactly the behaviour of the

39



sequence u;, ¢ > 1. Instead, we use a lower bound that is easier to handle: We recursively define

a sequence v;, ¢ > 1, by
i—1
v; = max{v ‘ 4v - ®(2') < 49(16) + Zvj} ,fori>1.
j=1

A straightforward induction on 7 shows that v; < w; and wy + vy + -+ -v;_1 < w; for all i. As m

is the minimal ¢ such that w; + u; > d, it follows that
m < min{i | wy + vy + v, > d}.

To the last expression we apply Lemma 5.2 with ¢ =1, A = 16, n = 0, and ¢ = 4, which yields
the bound m = O((d? -4)1/3) = O((log n)2/3). -

We may now finish the time analysis. For ¢ < m, stage ¢ of the main procedure takes ¢(a;) + 3
steps Lemma 8.6(b). So, altogether stages 1 through m take >_'",(¢(a;) + 3) steps. Both pre-
processing phase and postprocessing phase take O(loglog n) steps. Thus, the total computation
time 7' can be estimated as follows, using Lemmas 8.7 and 8.6(a):

m

T < ) (wla)+3)+O(loglogn)

=1

< Zlogb a; + O(m) + O(loglog n)
=1

< Z(logb n; — logy n;41) + Zlogb(QH(zi”) + 0(10g2/3 n)
=1 =1

< logy ny + m -logy(2||n|]) + 0(10g2/3 n)

< @(n)+ 0(log?3 n - loglog n).
This completes the proof of Theorem 8.4. a
Theorem 8.4 is the key for computing symmetric functions with n processors fast. We need

another auxiliary result:

LEMMA 8.8 An arbitrary Boolean function F of k arguments can be computed by a CREW
PRAM with 2% processors and 2% memory cells of wordsize 1 in time w(k)+ 3. Moreover, after
the READ phase of step o(k)+ 3, there is a processor that knows the whole input string.

Recall that a CREW PRAM with k - 25~ processors can compute F in time (k) + 1. On the
other hand, with only k& processors for almost all Boolean functions the computation takes Q(k)

steps provided that memory cells of wordsize 1 are used [4].

40



Proof. Let ki = |k/2] and ko = n — k1. We split the input string 1, ...,z into substrings
U =21,...,2k and & = T, 41,...,2; of length ky and kq, respectively. To ¢ and @ apply the
algorithm of Fact 1.2, so that after the READ phase of step ¢(k2) + 1 there is a processor Py
that knows ¢ and a processor Pz that knows . Note that &y - k=1 4 By 2kl < | oke o 9k
processors (memory cells) have been used. We may assume that there are two sets Ag, ..., Aok, _4
and By, ..., By, _; of memory cells, all initialized with 0. These cells may be used to code ¥ and
w: processor Py writes a “1” into cell A; , where s is the number with binary representation 7,
and processor Pg writes a “1” into cell B, , where r is the number with binary representation
@. (This is done during the WRITE phase of step ¢(k2) + 1.) Since we have 2% = 21 . 2k
processors, we may assume that they are labeled P; ;, for 0 <i < 2f 0 < j < 2%, For each i, j,
during the next two steps processor P;; reads cells A; and B;. Only processor P;, reads a “1”
both times. Then P;, knows that the input string is @ = 2y,..., 2, and may write the value

F(zy,...,21) into the output cell, during the WRITE phase of step ¢(k2) +3 < p(k)+3. O

THEOREM 8.9 An arbitrary symmeltric function of n arguments can be computed by an n-

processor CREW PRAM with n memory cells (of wordsize 1) in time

o(n) + 0(log?>n -loglogn) .

Proof. Let F be a symmetric function of n arguments. There is a function G of k = ||n||
arguments such that if y; -- -y is the binary representation of ) iy a;, then F(w1,...,z,) =
G(y1,...,yk). The machine that computes F' first finds the sumn of the input bits using the algo-
rithm of Theorem 8.4. Thus it obtains k bits yy,. .., yr such that F(zq,...,2,) = G(y1, ..., Yr)-
During the next two steps all processors read the cells storing 1, y2. Then the machine uses the
algorithm of Lemma 8.8 for a function G, ,,, where G ;(y3, Ya, ..., yx) = G(4,7, Y3, Ya, - - -, Yi)-
The number of processors that we need for this phase is 2k=2 = 2flog(n+1)[-2 < olog(n+1)-1 _
24l Obviously, the total computation time is bounded by ¢(n) + O(log??n - loglog n) +
O(loglogn) = @(n)+ O(log*>n -loglogn). ]

9. Sorting algorithms

In this section we present algorithms for sorting n bits and sorting n binary numbers on small
CREW PRAMs. In comparison to other sorting algorithms of logarithmic time complexity for
networks and PRAMs [1, 8, 26], which sort arbitrary numbers, but have a running time bound

C' -logn with a constant C' much larger than 1, the method below achieves optimal time up to a

41



lower order term for sorting bits. Finally, this method is extended to sorting arbitrary numbers

given in binary representation.

THEOREM 9.1 An n-processor CREW PRAM with n memory cells (of wordsize 1) can sort n
bits in time @(n) + O(log?*n -loglogn).

Proof. The computation consists of three phases. During the first phase the sum of the input
bits is computed and written in binary. By Theorem 8.4, this can be done in ¢(n)+ 0(10g2/3n-
loglog n) steps. During the second phase, the algorithm of Lemma 8.8 is applied in order to get a
processor knowing the sum of the input bits, say a number s < n. This phase takes ¢(||n||)+3 =
O(loglogn) steps. During the third phase, in O(loglogn) steps the number 1 is written into
the cells C'y,...,Cs, and the number 0 is written into the cells Csyq,...,C,, thus getting the
correct output. We describe the third phase in detail below. Given the claimed time bounds
for the phases, it is clear that the whole computation takes at most () + O(log?*n -loglog n)
steps.

The third phase consists of several stages. After each stage we get the correct output values
written into all cells except for a small block of decreasing size. If at the beginning of a stage
we start with an “unresolved” block B of size m, then during the stage the correct values are

written into all cells of B except for some subblock of a size approximately equal to /m.

At the beginning of each stage we have the following situation:

e There is a block of adjacent memory cells B and a number z € IN such that in order to
get the correct output the number 1 should be written into the first z cells of B and the

number 0 into the rest of them.

e There are | B| processors knowing that B is an “unresolved” block, one processor associated

with each cell of the block. There is one processor that knows the number z.

e All memory cells except for those in B already contain the correct output values.

We will only describe the first stage. The other stages are essentially the same, except for the last
one when the unresolved block has constant size and the output values are written sequentially
by one processor. Without loss of generality we may assume that n = 2%, At the beginning of
the first stage, the “unresolved block” consists of all cells. Let Dy = 2[%/21 D, = 214/2] and
s=(r—1)- Dy + sy, where 0 < s; < Dy (hence also r < Dy, since s < n = DyD;). We divide

42



the memory cells Cy,...,C, into blocks of size Dq; namely, for ¢ < Dy, block B; consists of the

cells C;_1).p,41,Ci—1).Dy 425 - - > CieDy -

Let P be the processor that knows s. In order to get Dy processors knowing r, the cells
C1,...,Cp, are cleared so that they contain 0’s. Then processor P writes a 1 into cell C. Next,
cells Cq,...,Cp, are read by the n processors, each cell exactly by D; of them. The processors
that encounter a “1” know r. Then the blocks By, ..., B,_1 are marked for filling with 1’s and
the blocks By41, ..., Bp, for filling with 0’s. Only block B, might contain both 0’s and 1’s, so
B, cannot be filled at this stage of the computation. The marking of the blocks can be done in
such a way that the symbol j is written into the first two cells of a block, if this block should
be filled with symbol j. The first two cells of block B, receive 0 and 1 to indicate that this
block should not be filled now. The marking can be done in two steps, since we have Dy > Dy

processors knowing r.

Then all n processors will be used again. For ¢ < n, processor P; reads the marked cells of the
block containing cell C; and according to the situation writes 0 or 1 into cell C;, or does not

write if C; lies in the block marked with 0 and 1.

This is the end of the first stage. Note that B, is the “unresolved” block, there are D1 processors
knowing that B, is the “unresolved” block (namely, the processors knowing ) and that processor
P knows s, hence also s;. To obtain the correct output, a “1” is to be written into the first s;
cells of B,., and a “0” is to be written into the remaining cells of B,.. Hence we are in the correct
situation for the beginning of the next stage.

Let y(m) be the time required by the procedure of the third phase for a block of m cells. By the
construction, y(2¢) = 7(2[%1 ) + 6. It follows that v(2%) = O(log d), i. e., ¥(n) = O(loglog n), as

required. O

Next we show that binary numbers of arbitrary fixed length can be sorted in almost optimal
time with small resources. As a preliminary step, we consider the problem of comparing two

binary numbers.

Fact 9.2 For each k, there is an FREW PRAM with k processors and 2k memory cells of

wordsize 2 that compares two k-bit binary numbers in (k) + 2 steps.

Essentially, the algorithm for comparing two numbers is the same as for computing the logical

OR. We briefly sketch the idea. Let a = ap_1---ag and b = by_q - - - by be two binary numbers.

43



Define operators @ and © as follows. For z,y € {0, 1},

g ifzx>y,
r®y = e ifx=y,
s ifz<uy.

For 27 Z/ E {97678}7

202 =

{ 2 oifz=ce,
z otherwise.

Clearly, comparing @ and b can be done by computing the product zz_1 ® 25—2 @ - - - @ 20, where

zi=a; ®b;, fori=0,...,k—1.

After computing the symbols z; in two parallel steps, the product zz_1 @ -+ © zg is computed
using the same method as that for the logical OR [9]. This is possible since the only properties
of the OR used are the associativity of the operator V and that
if x =0,
rVy = { Y
x otherwise.

(The difference is that the operator © is defined over a domain of three elements.) We leave the

details to the reader.

THEOREM 9.3 There is a CREW PRAM with m* -k processors and m-(m+1)-k memory cells

of wordsize 1 that sorts m binary numbers of length k in time

o(m - k) 4+ O(log¥?m - loglog m) .

Proof. Let k-bit numbers aq, ..., a,, be given. With each number a;, for 1 < j < m, we associate
a group G; of m - k processors and m - k cells C;1,...,C; k. The processors of GG; determine
the position that is to be taken by a; in the sorted string and copy a; to this place. This works

as follows:

(1) The processors of G; copy the numbers ay, ..., a,, into the cells of G;.

(2) For each ¢ < m, the number a; is compared with a; in ¢(k) + 2 steps by k processors. Let

b — {1 if a; < a; or (a; = a; and j > 1),
" 0 otherwise.

For each ¢ < m, the number b;; is written into cell C';;. (Note that the number of 1’s in

the string b;1,...,b; ., determines the position of a; in the sorted string.)

44



(3) The bits bj1,...,b;nm are sorted in p(m)+O(log?*m -loglog m) steps; the resulting vector

is written into cells C1,...,Cj .

(4) For each i < m, there are k processors that read the cells C;; and C;;41. In that way,
some k processors detect the last cell C'; ; containing a 1. These processors copy the binary

representation of a; into cells Csq,...,Cs k.

Clearly, the cells Cy1,...,C1 ;C20, ..., Cogy .5 Cpny oo, Oy contain the correct output after
phase (4). Phases (1) and (4) require a constant number of steps, so the whole computation
takes p(k) + o(m) 4+ O(log??m - loglogm) steps. But ¢(k) + @(m) = logy k + log, m + O(1) =
logy(k-m) + O(1) = ¢(k - m)+ O(1). Hence the computation time is bounded as claimed. O

Acknowledgment

We thank Marcin Kik for many discussions and for pointing out that the algorithm of Theo-
rem 6.1 can be used as a subroutine by the algorithm of Lemma 8.5. The constructive comments
of two anonymous referees are gratefully acknowledged. The results on the simulation of circuits

were found following a question of one of the referees.

References

[1] M. AsTal, J. KoMLos, AND E. SZEMEREDI, Sorting in clogn parallel steps, Combinat. 3
(1983), 1-19.

[2] P. BEAME AND J. HASTAD, Optimal bounds for decision problems on the CRCW PRAM,
J. ACM 36 (1989), 643-670.

[3] P. BEaME, M. Kik, AND M. KuTYLOWSKI, Information broadcasting by Fxclusive-Read
PRAMs, Parallel Processing Letters 4 (1994), 159-169.

[4] S. J. BELLANTONI, Parallel random access machines with bounded memory wordsize, In-

formation and Computation 91 (1991), 259-273.

[5] R. P. BRENT, The parallel evaluation of general arithmetic expressions,J. ACM 21 (1974),
201-208.

[6] J. BRUuCK, Harmonic analysis of polynomial threshold functions, SIAM J. Discrete Math.
3 (1990), 168-177.

45



[7] S. BuBLiTz, U. ScHURFELD, B. VoiagT, AND I. WEGENER, Properties of complexity
measures for PRAMs and WRAMs, Theoret. Comput. Sci. 48 (1986), 53-73.

[8] R. CoLE, Parallel Merge Sort, STAM J. Comput. 17 (1988), 770-785.

[9] S. Cook, C. DWORK, AND R. REISCHUK, Upper and lower time bounds for parallel random
access machines without simultaneous writes, STAM J. Comput. 15 (1986), 87-97.

[10] A. CuANDRA, S. FOrRTUNE, AND R. LipTON, Unbounded fan-in circuits and associative
functions, in Proc. 15th Annual ACM Symposium on Theory of Computing, 1983, 52-60.

[11] M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK, Fzact time bounds for com-
puting Boolean functions on PRAMs without simultaneous writes, in Proc. 2nd ACM Sym-

posium on Parallel Algorithms and Architectures, 1990, 125-135.

[12] M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK, Ezact lower bounds for com-
puting Boolean functions on CREW PRAMs, J. Comput. Syst. Sci. 48 (1994), 231-254.

[13] F. FicH, New bounds for parallel prefiz circuits, in Proc. 15th Annual ACM Symposium
on Theory of Computing, 1983, 100-109.

[14] F. Fica aND A. WIGDERSON, Towards understanding exclusive write, in Proc. 1st ACM
Symposium on Parallel Algorithms and Architectures, 1989, 76-82.

[15] R. M. KARP AND V. RAMACHANDRAN, Parallel algorithms for shared-memory machines,
in J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. A, Algorithms

and Complexity, pp. 869-941.

[16] M. KuTyrowsKl, Fast algorithms for threshold functions on CREW PRAMs, Technical
Report, University of Wroctaw, (Wroctaw), Poland, January 1991.

[17] M. KuTYytowsKl, Time complexity of Boolean functions on CREW PRAMs, STAM J. Com-
put. 20 (1991), 824-833.

[18] M. KuTvrtowsKl AND R. REISCHUK, FEwvaluating formulas on parallel machines without
simultaneous writes, Technical Report, Institut fiir Theoretische Informatik, TH Darmstadt,

(Darmstadt), Germany, January 1990.

[19] R. E. LADNER AND M. J. FISCHER, Parallel prefiz computation, J. ACM 27 (1980), 831
838.

[20] K. LANGE, Unambiguity of Circuits, Theoret. Comput. Sci. 107 (1993), 77-94.

46



[21] T. LEIGHTON, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hy-

percubes, Morgan Kaufmann Publishers, San Mateo, California, 1991.
[22] R. LADNER AND M. FISCHER, Parallel prefiz computation, J. ACM 27 (1980), 831-838.

[23] N. NisaN, CREW PRAMs and decision lrees, in Proc. 21st Annual ACM Symposium on
Theory of Computing, 1989, pp. 327-335.

[24] N. NisaN AND M. SzEGEDY, On the degree of boolean functions as real polynomials, in
Proc. 24th Annual ACM Symposium on Theory of Computing, 1992, pp. 462-467.

[25] 1. PARBERRY AND P.Y. YAN, Improved upper and lower time bounds for parallel random
access machines without simultaneous writes, STAM J. Comput. 20 (1991), 88-99.

[26] M. PATERSON, Improved sorting networks with O(logn) depth, Algorithmica 5 (1990),
75-92.

[27] J.H. REIF, ed., Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, San Ma-
teo, California, 1993.

[28] R. SMOLENSKY, Algebraic methods in the theory of lower bounds for Boolean circuil com-

plexity, in Proc. 19th Annual ACM Symposium on Theory of Computing, 1987, pp. 77-82.

[29] M. SZEGEDY, Algebraic Methods in Lower bounds for Computational Models with Limited

Communication, Ph.D. Dissertation, University of Chicago, 1989.
[30] M. SNIR, On parallel searching, SIAM J. Comput. 14 (1985), 688-708.

[31] L. STOCKMEYER AND U. VISHKIN, Sirnulation of parallel random access machines by cir-
cuits, STAM J. Comput. 13 (1984), 402-422.

[32] U. VisHKIN AND A. WIGDERSON, Trade-offs between depth and width in parallel compu-
tation, SIAM J. Comput. 14 (1985), 303-314.

[33] C.S. WALLACE, A suggestion for a fast multiplier, IEEE Transactions on Comput. 13
(1964), 14-17.

[34] 1. WEGENER, The Complezity of Boolean Functions, Wiley-Teubner, Stuttgart, 1987.

47



