Electronic Colloquium on Computational Complexity - Reports Series 1995 - available via:
E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/

T R95' 005 Email: ftpmail @ftp.eccc.uni-trier.de with subject "HELP ECCC’

The Sublogarithmic Alternating Space World

Maciej Liskiewicz* Riidiger Reischuk’

University of Wroctaw Med. Universitit zu Liibeck

October 1994

Abstract

This paper tries to fully characterize the properties and relationships of space classes defined
by Turing machines that use less than logarithmic space — may they be deterministic, nondeter-
ministic or alternating (DTM, NTM or ATM). We provide several examples of specific languages
and show that such machines are unable to accept these languages. The basic proof method is a
nontrivial extension of the 1™ — 1"*™ technique to alternating TMs.

Let llog denote the logarithmic function log iterated twice, and X Space(S), I Space(S)
be the complexity classes defined by S —space-bounded ATMs that alternate at most k—1 times
and start in an existential, resp. universal state. Our first result shows that for each k£ > 1 the
sets

YrSpace(llog) \ IIrSpace(o(log)) and
Iy Space(llog) \ XrSpace(o(log))

are both not empty. This implies that for each S € Q(llog) No(log) the classes

¥1Space(S) C X2Space(S) C X3Space(S) C ...
C XrSpace(S) C Xpt+1Space(S) C ...

form an infinite hierarchy. Furthermore, this separation is extended to space classes defined
by ATMs with a nonconstant alternation bound A provided that the product A - S grows
sublogarithmically.

These lower bounds can also be used to show that basic closure properties do not hold for
such classes. We obtain that for any S € Q(llog) No(log) and all £ > 1 X.Space(S) and
11, Space(S) are not closed under complementation and concatenation. Moreover, Y Space(S)
is not closed under intersection, and II;Space(S) is not closed under union.

It is also shown that ATMs recognizing bounded languages can always be guaranteed to halt.
For the class of Z —~bounded languages with Z < exp S we obtain the equality co-XrSpace(S) =
I Space(S) .

Finally, for sublogarithmic bounded ATMs we give a separation between the weak and strong
space measure, and prove a logarithmic lower space bound for the recognition of nonregular
context-free languages.

Key words. space complexity, sublogarithmic complexity bounds, alternating Turing machines, halt-
ing computations, complementation of languages, complexity hierachies, closure properties, context-
free languages, bounded languages.

AMS(MOS) subject classifications. 68Q05, 68Q10, 68Q25, 68Q45

*Instytut Informatyki, Przesmyckiego 20, 51-151 Wroclaw, Poland (liskiewi@ii.uni.wroc.pl)
The research of this author was supported by the Alexander-von-Humboldt-Stiftung and KBN grant 211979101
TInstitut fiir Theoretische Informatik, WallstraBe 40, 23560 Liibeck, Germany (reischuk @ informatik.mu-luebeck.de)
Most of the work was done while both authors were working at the Technische Hochschule Darmstadt,
some parts were done at the ICSI Berkeley.

1 Introduction

It is well known that if a deterministic or nondeterministic TM uses less than llog space then
the machine can recognize only regular languages, and that there exist non-regular languages in
DSpace(llog). Therefore, let SUBLOG := Q(llog) N o(log) denote the set of all nontriv-
ial sublogarithmic space bounds, where llog abbreviates the twice iterated logarithmic function
n — |loglogn]. On the other hand, the logarithm seems to be the most dramatic bound for space
complexity since most techniques used in space complexity investigations only work for bounds above
this threshold. There are several important results for such space classes known, and it is an open
question if they also hold for space bounds between llog and log. One of the most exciting problem
of this type is whether the closure under complement for NTM

NSpace(S) = co-NSpace(S)

shown by Immerman and Szelépcsenyi [13],[22] remains valid for sublogarithmic space bounds. If this
equality were not valid for a function S € SUBLOG then obviously DSpace(S) C NSpace(S) 1.

A special situation holds for bounded languages containing only strings of a certain block structure.

Definition 1 Let Z:IN — IN be a function. A language L C {0,1}* is Z —bounded if each X € L
contains at most Z(|X|) zeros. L is bounded if it is Z —bounded for some constant function Z .

Recently Alt, Geffert, and Mehlhorn ([2]) and independently Szepietowski ([23]) have proved that
for the class of Z -bounded languages, where Z is a constant or a small growing function, the
closure under complement holds, that means in this case NSpace(S) = co-NSpace(S) even for
sublogarithmic bounds. Still, we conjecture that in general the above result does not hold. Towards
this direction we will prove in this paper that X;Space(S) is not closed under complementation for
any S € SUBLOG and all £ > 1.

Recall that for & > 1 the class X;Space(S) is defined as all languages that can be accepted by
alternating S space-bounded TMs making at most k — 1 alternations and starting in an existential
state. II;Space(S) denotes the set of languages accepted by the same kind of machines, except that
they start in a universal state. By definition X;Space(S) = NSpace(S). We will also consider ATMs
with a non-constant bound A for the number of alternations. In this case, the notation X 4Space(S)
and IT4Space(S) is used.

By standard techniques it follows from Immerman-Szelépcsenyi’s theorem that for S € Q(log) , and
forall £ >1
31 Space(S) = XpSpace(S) = IpSpace(S) .

Note that these techniques do not work for sublogarithmic space bounds. Recently, Chang et al. ([7])
have shown that there is a language in II;Space(llog) that does not belong to NSpace(o(log)) .
Clearly, this proves that for space bounds S in SUBLOG the alternating S -space hierarchy does not
collapse to the first level and that

Y1Space(S) C II,Space(S) .

It was left as an open problem whether the whole alternating hierarchy for sublogarithmic space is
strict. Here we will prove that the problem has a positive answer.

We develop techniques to investigate properties of sublogarithmic computations and then generalize
them to an inductive proof that the separation of the X;Space(S) and IIjSpace(S) classes holds
for all levels k. The base case is the existence of a language that separates IIsSpace(llog) from
Y9 Space(o(log)) . Its complement separates Yo Space(llog) from II3Space(o(log)) .

In [25, p.419] it is incorrectly cited that DSpace(S) C NSpace(S), for S € SUBLOG, thus the problem if
DSpace(S) = NSpace(S) is still open for any S € Q(llog) (see Remark 6.1 in [17]).

Inductively we will construct a sequence of languages Ly and Ly and prove that Ly can be
recognized by a ¥; TM with llog n space, but not by any II; TM that is o(log)—space bounded.
The corresponding claim interchanging ¥; and II; holds for Ly . For this purpose, for infinitely
many n we will explicitely pinpoint a pair of strings, one string in Ly and the other one in Ly ,
and show that any sublogarithmic space-bounded ¥; TM or II; TM will make an error on at least
one of these strings. Thus we obtain

Theorem 1 For all £ > 1 holds

Y Space(llog) \ ISpace(o(log)) # @ and
I, Space(llog) \ XgSpace(o(log)) # 0.

This result gives a complete and best possible separation for the sublogarithmic space world, except
for the first level k= 1. It is left open whether also X, Space(S) # II;Space(S) for S € SUBLOG.
The current techniques do not seem to be applicable to this case.

This separation implies that the sublogarithmic space hierarchy is an infinite one, contrary to the case
for logarithmic or larger space bounds.

Corollary 1 For any S € SUBLOG and all £ > 1 holds

YpSpace(S) C Xpy1Space(S)
I Space(S) C Igy1Space(S) .

Independently the existence of this strict hierarchy has been shown by von Braunmiihl with coauthors
[6]. Geffert [11] has announced similar results. (For a chronology of events see [24].)

Furthermore, we can generalize the separation to machines with an unbounded number of alternations.

Definition 2 A function A : IN — IN is computable in space S if there exists a DTM that for all
inputs of the form 1™ writes down the binary representation of A(n) on an extra output tape using
no more than S(n) work space. A is approzimable from below in space S if there exists a function
A" that is computable in space S with A'(n) < A(n) forall n € N and A'(n) = A(n) for infinitely
many n € IN.

The class of bounds that are approximable from below in space llog contains functions of logarithmic
and double-logarithmic growth and also polynomials of such functions. The iterated logarithm log*
belongs to this class, too. In section 3 we will discuss a specific example of logarithmic growth.

Theorem 2 For any pair of functions S € SUBLOG and A > 1 with A-S € o(log), where A is
approximable from below in space S, holds:

Y aSpace(S) \ 4Space(S) # 0,
ITaSpace(S) \ TaSpace(S) # 0.

Corollary 2 For any S and A as in the theorem above holds:
Y 4Space(S) C X ay1Space(S),
MaSpace(S) C Ilay1Space(S) .

Thus one obtains for space bounds S € Q(llog) and approximable functions A for example the
following relations:

1. Ugen ZxSpace(S) C Xiog+ Space(S) if SEO(IL—O;;).

2. X aSpace(S) C X y1Space(S) for A,S € O(log'/?7¢),

3. For kK € N let
ALSLF = AAlterSpace(llogF, llog) .

Then for any k holds ALSL* C ALSCH!.

Note that for logarithmic bounds the corresponding question is still open, i.e. for any k& it is unknown
whether
AAlterSpace(log®,log) C AAlterSpace(log"™!,log) ?

It is well known that for any function S the complexity class X;Space(S) is closed under union and
intersection (see e.g. [25]). However, it is still an open problem whether for S € SUBLOG the class
31 Space(S) is closed under complementation. More general, for arbitrary k the classes XjSpace(S)
are closed under union, and symmetrically the II;Space(S) are closed under intersection. In [14]
we have developed a technique showing that for S € SUBLOG and for k = 2,3, X;Space(S) and
[T Space(S) are not closed under complementation. Furthermore, ¥;Space(S) is not closed under
intersection, and II;Space(S) not under union. Combining these ideas with the separation results
above we get the same closure properties for all levels.

Theorem 3 For any S € SUBLOG and all k > 1 X;Space(S) and II;Space(S) are not closed
under complementation and concatenation. Moreover, XSpace(S) is not closed under intersection
and Ty Space(S) is not closed under union.

Note that non-closure under complementation for ¥; and II; classes is not trivially equivalent to
Theorem 1, which says that sublogarithmic X;Space and II;Space are distinct. Sublogarithmic
space-bounded machines do not have a counter, which could detect an infinite path of computation.
It is an interesting open problem whether IIpSpace(S) = co-XrSpace(S) for k = 1,2,... (see the
discussion in [14]). Here, we obtain the following partial solution generalizing Sipser’s result on halting
space-bound computation for sublogarithimic space bounded deterministic TMs [19]: For bounded
languages it can be shown that there exist equivalent ATMs that always halt. This implies

Theorem 4 Let S € SUBLOG be a space bound and Z be a function computable in space S with
Z <expS. Then for all k> 1 and for every Z -bounded language L C {0,1}* holds:

L € % Space(S) <= L € IySpace(S) .

Observe that for S > log the function Z can grow linearly and then Z does not put any restriction
on the structure of the strings in L. Thus, this theorem gives a smooth approximation of the fact
that for at least logarithmic space bounds ¥; and II; are complementary for arbitrary languages.
We conjecture that the computability of Z is needed in the claim above. Furthermore, there are some
indications that the theorem might not be true in general for bounds Z much larger than exp S .

Finally, we prove a logarithmic lower space bound for the recognition of context-free languages by
ATMs. We will show that the deterministic context-free language Ly := {1701™ | n # m} does
not belong to ASpace(o(log)) . It is interesting to note that this language — but not its complement
— can be recognized even by a deterministic machine in weak space llog .

Definition 3 We say that an ATM M is (strongly) S space-bounded if on every input X it only
enters configurations that use at most S(|X|) space. M is weakly S space-bounded if, for every
input X that is accepted, it has an accepting computation tree all of which configurations use
at most S(|X|) space. DSpace(S) denotes the class of languages accepted by S space-bounded
DTMs and weakDSpace(S) denotes the languages accepted by weakly S space-bounded DTMs. A
corresponding notation is used for NTMs and ATMs.

In this paper we consider only the more natural strong requirement for space complexity. For at least
logarithmic space bounds the two conditions do not make a difference, while in the sublogarithmic case
they obviously do. When studying the closure under complement of a language L and alternating
hierarchies built on this the weak measure is not appropriate. This is because for strings in L a
machine for L may use arbitrary much space, while a machine for L were required to be bounded.
The example above shows that with respect to the weak measure already for DTM weakD Space(llog)
contains languages that do not belong to co-weakDSpace(o(log)) .

In [7] Chang et al. stated as an open problem whether weak and strong sublogarithmic space-bounded
ATMs have the same power. Obviously, our lower space bound for recognizing L by ATMs proves
the following

Theorem 5 weakDSpace(llog) \ ASpace(o(log)) # 0 .
As consequences one obtains
Corollary 3 For any k> 1 and each S € SUBLOG

YrSpace(S) C weakXiSpace(S) and
I Space(S) C weakIlSpace(S).

Corollary 4 For each S € SUBLOG

ASpace(S) C weakASpace(S) .

We next generalize the specific lower bound above to arbitrary deterministic context-free languages,
which also improves a result for NTMs shown by Alt, Mehlhorn and Geffert [2]. Before stating the
result we need the following definition (see [20] and [12]). A language L is called strictly nonregular if
one can find strings u, v, w,z and y such that Ln{u}{v}*{w}{z}*{y} is context-free, but nonregular.

Theorem 6 Let L be a nonregular deterministic context-free, a strictly nonregular language, or a
nonregular context-free bounded language, then L ¢ |J,cn ZrSpace(o(log)) . Furthermore, for ATMs
without any bound on the number of alternations it is not possible that L and L both belong to
ASpace(o(log)) .

This paper is organised as follows. In the next section the necessary technical tools for sublogarithmic
space bounded ATMs will be developed. In section 3 we will define a sequence of pairs of languages
indexed by the level number k to prove the sublogarithmic space hierarchy. We then investigate
closure properties of sublogarithmic space classes. Section 5 is devoted to the lower space bounds for
context-free languages. The paper concludes with a discussion of the most interesting open problems
for sublogarithmic space classes remaining.

Preliminary versions of most of these results have been presented in [14] and [15].

2 Properties of Sublogarithmic Space-Bounded ATMs

The Turing machine model we consider is equipped with a two-way read-only input tape and a single
read-write work tape. The input word is stored on the input tape between end-markers $.

Definition 4 A memory state of a TM M is an ordered triple a = (g, u,7), where g is a state of
M, u a string over the work tape alphabet, and ¢ a position in u (the locaton of the work tape
head). A configuration of M on an input X is a pair («,j) consisting of a memory state a and
a position j with 0 < j < |X|+ 1 of the input head. j =0 or j = |X|+ 1 means that this head
scans the left, resp. the right end-marker. For a memory state a = (g, u,7) let |a| denote the length
of the memory inscription w.

We may assume that for a successor (o, j') of a configuration («,j) always holds |&'| > |a|. The
state set of an ATM is partioned into subsets of existential, universal, accepting, and rejecting states.
We say that a configuration ((q,u,%),7) is existential (resp. universal, accepting, or rejecting) if ¢ has
the corresponding mode. All accepting and rejecting configurations C' are assumed to be terminating,
i.e. there are no more configurations that can be reached from C'.

Definition 5 Let

(i) Eux (8,7)
denote the property that the ATM M with X on its input tape has a computation path C; =
(a,1),Co,...,Ce = (B,7) -

(a,1) FEmx (8,9)

denotes the same fact, but with the following restriction: ¢ > 2 and the mode of the configurations
Cy,...,Ci_1 is the same as that of C; (i.e. if C; is existential then all C; for [=2,...,t —1 are
existential, otherwise they are all universal).

acck (a,i, X)

denotes the predicate saying that M starting in configuration («,4) with X on its input tape accepts
(i-e. has an accepting subtree), and on each computation path of that tree it makes at most &k — 1
alternations. Let

Spacep(a,i, X)

denote the maximum space used in configurations M can reach on input X starting in configuration
(a,i) and Spacep(X) := Spacep(ap,0,X), where (ap,0) is the initial configuration of M .
Similarly let

Altery(a,i, X)

denote the maximum number of alternations M can make on input X starting in configuration (a, %)
and Altery(X) = Alterp(ao,0,X).

2.1 Inputs of a Periodic Structure

In this section some properties of TM computations for binary inputs of the form ZWW ... W Z,
will be described. Let M be an ATM. Then for any integer b > 0 we define

My = #{a|ais amemory state of M with |a| < b} .

The following two Lemmata characterize ”short” computations i.e. computations restricted to sub-
strings WW ... W . The first one is a generalization of a result in [16].

Lemma 1 Assume that
X = Z1 W™ Zy

where Z;,W,Zy are arbitrary binary strings and n € IN. Moreover let b be an integer and (a, %)
and (8,7) configurations with |a| < |8| <b and |Z;| < ¢,j <|Zy W™|. Then the following holds:

o If M can go from (a,i) to (B,j) without any alternation and without moving the input head
out of the substring W™ then M can also do so such that the head never moves M? - |[W| or
more positions to the left of min(é,j) nor to the right of max(i, 7).

Proof. We only sketch the main idea. Assume ¢ < j and denote by imin and jmax the furthest
position to the left, resp. right of the input head in the computation path of M that starts in (a,%)
and ends in (3,7). Let M go from (a,i) to (8,j) moving the input head M?-|W| or more positions
to the right of j,i.e. jmax —j > M2 -|W|. By the pigeon hole principle there exist two positions j;
and jo, with j < j1 < j2 < Jmax , and two memory states ' and «” such that (¢/,71) and (¢, j2)
are the last configurations of the computation path from (a,?) to a configuration in which M was
at the position jpmax - Similarly, (a”,j1) and (&, j2) are the first configurations of the computation
from the position jmax to (8,7). Then removing the computation paths from (o/,71) to (¢, 52)
and from (o, j2) to (a’,71) one obtains a computation that starts in («,4) and ends in (8,7) with
the head never moving more than distance jmax — (j2 — 71) < Jmax to the right of position j .

Lemma 2 Let |i —j| > M2 (M, +1) - |W|. Assume that M can go from configuration (a,%) to
configuration (4, j)

& without alternating and without leaving the region between the input positions ¢ and j .
Then,

o there exists an integer ¢ € [1..M;] such that for all d € [1..M;] there is a computation
path satisfying (#) which starts in (a,¢) and ends in (8,5 —d-sgn(j —4) - c- |W|), where
sgn(z) := z/|z|.

e Moreover, there also exists a computation path satisfying (#) that starts in
(a,i+d-sgn(j —i)-c-|W]|) and ends in (5,7) .

Proof. In the folowing we will only discuss the case ¢ < 7 when considering the computation from
configuration («,4) to (8,7). Let |i —j| > MZ(My+1)-|W].

Define for integers p > 0 the function h(p) := i+ p-|W| and let ¢t := M. Partition integers in
[1...M3] into the t intervals [Li, R1],[La, Rs]...[Lt, R:] of equal length M, with boundaries

Ly = (s=1)Mp+1)+1

R, = Ls+ M.
For s € [1...t] consider all input positions h(p) with p € [Ls, Rs] and the last configuration of M

(before (8, 7)) that visits position h(p). Among these M+ 1 configurations there must exist a pair
with positions ps < ¢s € [Ls, Rs] and identical memory states a; .

Let (v1,41) Fi; (72,i2) denote the same property as (v1,41) FEwmx (72,%2), but with the
restriction that M going from (71,41) to (72,42) does not move the head to the left of 4 nor to the
right of j. Then we can write:

(i) FEij (b)) Eij (a,h(@)) Fag
(a2, h(p2)) Fij (a2,h(q2) Fij

(as, h(pe)) iy (s, hla) Fi; (8,7) -

Since there are t pairs (ps,qs) and the difference between any pair is at most M, , by the pigeon
hole principle there exists an integer ¢ € [1... M| and t/My = My pairs (Ps,,qs,)s (Pssy sz) - - -
with identical difference c, that means g5, — ps, = ¢ for £=1,2,..., My . Define §' := ¢-|W].

Let d be an arbitrary integer in [1...Mj;] and define o} := a,, and i := h(p,,) . Then we obtain:

(i) iy (04,0) i (0q,i0+6) i
(ag,i2) Fiy (ahia+46') =i

(ag,ia) Fij (dpia+0) Fij (gyriae1) = (8,4)

The input X contains a sequence of identical blocks W between the positions 7 and j. For any
te(l...d], M starting in (aj,i, + ') reaches (aj,,%e4+1) without moving the head to the left of
ig +0'. Therefore M making the same sequence of moves reaches (aj,,i¢t1 — £0') when starting
in (a},is+ (£ —1)¢") . Thus we obtain

(,1) Fiy (af,i1) Fi.j
(ay,i2 —&') Fi.j
(ayia—(d=1)8) iy (B5—dd"),

which proves that (a,i) [i; (8,5 —90) for 6 := d-c-|W|. In a similar way, one can show that
there exsists a computation path that starts in (a,i + 6) and ends in (8, 7). |

In the following M will always denote an arbitrary ATM and S a space bound in o(log) . Depending
on M and S, we choose a constant Nyss > 28 such that for all n > Nys

and)
S(n) < §logn —-2.

Remark: In this section all claims following hold for any integer n > Ny,s .

In [8] Geffert has shown that for sublogarithmic space bounded computations for any natural number
¢ the behavior of a nondeterministic TM on input 17+ is exactly the same as on 1™. The proof is
based on the so called “n — n + n! technique” developed by Stearns, Hartmanis, and Lewis in [21].
We will show that a corresponding property holds for ATMs and for all inputs of the form

X =2,W"Zy, and Y = Z Wrtintz,,
where Z;,Z5, W are arbitrary binary strings and £ € IN.

Since in the following we will often compare computations on such an input X and a pumped version
Y let us introduce a special notation for positions within these strings. If ¢ is a position within X
outside the pumped region W™, that means for the example above either in Z; or in Z;, then 7
denotes the corresponding position within Y . Thus

- i ifi < |7 ,
i+ Y= |X| ifi> |27

The main technical tools for the analysis of sublogarithmic space-bounded ATMs are stated in the
following Lemmata. Here, X and Y denote strings as defined above and M an arbitrary ATM. Note
that n now is not necessarily identical to the length of the input X . Actually, X will in general be
much larger than n. But by a repeated application of the following implications we can show that
any machine M still obeys a sublogarithmic bound with respect to n .

Lemma 3 (Pumping) Let «,3 be memory states with |a| < |3] < S(n), then for any 4,5 €
[0 |Z1|] U [|Z1 W"|+1 |X|+1] holds:
)

1. (Oé,’i) 'ZM,X (ﬂ:]) <~ (04,:&:) 'ZM,Y (ﬂ:.}
2. (a,1) Fix (8:9) — (@,9) Firy (8,9)

In the analysis below we will use the Pumping Lemma, in the following more general form:

Lemma 3' Let n and m be integers with Ny s <m < (n+ 1) and let o, 3 be memory states
with |a| <|8] < S(m). Thenforany i,j € [0 ... |Z1|] U [|Z1 W"|+1 ... |X|+1] the properties
1. and 2. above hold.

These claims can be proven using the method developed in [8] and the fact that /\/lg(m) <n.

2.2 Space and Alternation Bounds

Lemma 4 (Small Space Bound)

Spacep(X) < S(n) = Spacep(Y) = Spacep(X) .

Proof. Let Spacep(X) < S(n). Assume, to the contrary, that Spacep (V) # Spacep(X) . We will
show that Spacepn (Y) > Spacep(X) cannot occur. A similar contradiction can be obtained for the
case Spacep(Y) < Spacep(X) .

Assume that Spacep(Y) > Spacep(X). Hence, for Y there exists a computation path C that
starts in the initial configuration (ao,0) and ends in a configuration (a,j) with |a| = Spacep(X)
such that from («,j) M can reach a configuration (3,7') with |3| = Spacep(X)+ 1 in one step:

~

(a0,0) Fhry (@) Eiry (6,7 -
If j fulfills the condition j < |Zi1| or j > |Z1W™| of the Pumping Lemma then one can conclude

immediately:
(0{0,0) IZ?VI,X (Oé,j) 'ZRJ,X (/87]1) .

Otherwise, using a similar pumping argument one can show that M on input X can reach a configu-
ration (a, j),in which the input head is located on W™ and reads the same symbol as in (a, 7). Thus
it can also get to memory state 3 in one more step. We get a contradiction since |3| > Spacen(X) .

Lemma 5 (Small Alternation Bound)

Spacep(X) < S(n) and Alterpy(X) < expS(n) = Altery(Y) = Alterpy(X) .

Proof. Let 7 be an integer, with 1 € {|Z1|,|Z;W™| + 1} and let a be a memory state, with
Spacep(a,i,X) < S(n) and Alteryr(a,i,X) < expS(n) .
Assume that k is an arbitrary positive integer and let
o = k- Mj - (My +1)- W],
where b := S(n). We first show that for the input Y the following claim holds:

Claim 1: Let M starting in (a,7) alternate k — 1 time and never move the input head beyond
Wn+én! | Then there exists a computation of M with k — 1 alternations that also starts in (a, 2) ,
but in which the input head is never moved farther than §; positions to the right of 1 if 1 = |Z4],
resp. to the left of 4 if ¢ = |[Z; W™ 1.

Proof. We show this claim for ¢ = |Z;|. The case ¢ = |Z;W""| + 1 can be treated similarly. Let
us note first that for integers k such that d; > n + fn! the claim holds trivially. Therefore in the
proof below we consider only k with & < n + fn!.

Let i’ be the smallest integer such that M starting in (a,2) makes k — 1 alternations with the
head never moving to the left of 4 nor to the right of i'. Assume, to the contrary that i’ > i+ oy .
Therefore by the pigeon hole principle there is an interval [L, R], with

i+M;-[W|<L<R<i and R-L>M-(My+1)-|W],

and a computation path C of k—1 alternations such that M with the head position in [L, R] does
not alternate.

Let C' be a subsequence of configurations of C of the maximal length such that all configurations
of C' have the head position greater or equal to L and there is a configuration in C' with the head
position i'. Note that the first configuration of C' equals (ar,L), for some memory state ap .
Moreover there is a configuration in C' with the head position R. Let (ag, R) denote the first such
configuration.

Below we show how to cut and paste C’' to obtain a computation path of the same number of
alternations but with the head never reaching the position ¢'. This yields a contradiction to the
assumption that ' >+ 6y, .

Let us consider first that C’' is a tail of C. By Lemma 2 there exists a constant ¢, with 1 < ¢ < M,
such that M starting in (ar,L) reaches (agr,R — c-|W|), with the head positions in [L,R]. If
additionally M startingin (ag, R—c-|W|) makes the same sequence of moves as in C’' when started
in (ag,R) then we obtain a computation for M with the same number of alternations as in C' but
with the head never moving to the right of i’ —c-|W|.

Assume now that C’ is not a tail of C. Then the last configuration of C’' has a form (a’,L), for
some memory state o} . Let (ay, R) be the last configuration in C’' with the head position R.
By Lemma 2 there exist constants cj,c¢a, with 1 < ¢;,¢5 < My such that M starting in (ag, L)
reaches (agr, R—cicy-|W|) and starting in (ay, R — c1c2 - |W]|) reaches (af,L). It is obvious that
M starting in (agr, R —cico - [W|) and making the same sequence of moves as between (ag,R) and
(a/g, R) in C', reaches (az, R—cico-|W|). Hence we obtain a computation path of the same number
of alternations as in C’ that starts and ends also in (ar,L) and (af,L), resp. but with the head
never moving to the right of i’ — cica - |W]. |

Note that by Claim 1 and the assumption that Alters(a,i, X) < exp S(n) it follows that if M with
Y on the input tape starts in (e, %) and makes k—1 alternations with the head never moved beyond
WnHn! then k —1 < expS(n). To see this assume the opposite. Then by Claim 1 M starting in
(o,7) makes k —1 = expS(n) + 1 alternations such that the head is never moved farther than &y
positions from 7. By the assumption that n > Ny s we conclude:

o = (25 £ 2) M2 My +1)- W] < zélogn.(M§+1).|W| < 2.0 2 W =n- W],

which means that M can make the same computation on X . We obtain a contradiction since
Alteryr(a,i, X) < exp S(n) . Hence our lemma follows from Claim 1 and from the following

Claim 2: For k£ —1 <expS(n) and for any memory state 8 and for j € {|Z1],|Z:W™| + 1} holds:

M starting in (@,%) with X on the input tape reaches (8,j) with k—1 alternations iff
M starting in (a,1) with the input Y reaches (8,7) with k—1 alternations.

Proof. We prove the claim for ¢ = |Z;| and j = |Z;W™|+ 1. In the other cases a similar proof can
be used.

Assume that on input X M reaches (8,j) from («,i) making k£ — 1 alternations. Since
k < expS(n)+1 < [vVn]/2,
there exist non-negative integers ni,ns and ns with
ni+mns+n3=n and [/n|<ny<n (i)

such that M alternates only on the prefix Z;W™ and on the suffix W™ Z,, but not on Wz,
Hence by Lemma 3', for ¢/,5' € [0...|Z W™ ||U[|ZyW™tm2| + 1. |X|+ 1], m' :==n, n’ := ny
and ¢ := In(n—1)...(ns +1)

(@,i) Fmx (85 = (1) Fay (6,5)

10

for any configurations (o',4’) and (8',;j') that are reachable by M on the computation path between
(a,i) and (B,7). Using this property one can easily obtain a (k — 1) —alternating path for input Y
that starts in (a,%) and ends in (8,7).

On the other hand if for integers ni,nq,ns fulfilling (i) there is a computation path for M on Y
which starts in (c,?) and ends in (3,7) and such that M does not alternate with the head position
in [|ZyW™| +1...|Z,Wmtn2t€n2!|] then, applying Lemma 3' in the same way as above, one can
construct a computation path for the input X which starts and ends in («,4) and (8,j), resp. and
has the same number of alternations. Therefore, to complete the proof we have to show that there
exists such a computation path for Y if we assume that M started in (a,f) reaches (,8,5) making
k — 1 alternations.

Let m be the largest integer such Athat for some nq,n3 € IN, with ny + m +n3 =n+¢n!, thereis a
computation path C between (a,¢) and (83,7) of k— 1 alternations such that M alternates only
on the prefix Z; W™ and suffix W™ Z; . Assume to the contrary that

m < [Vn] +[Vn]!,

where ¢ := In(n—1)...(|v/n] +1). Then either in W™ orin W™ there exists a substring of the
form W™ , with m’ > 2|+/n], such that M does not alternate on W™ | too. W.Lo.g. let W™ be
a substring of W™ . Then W = W™sW™ W73 for some integers nj and n4 . Below it is shown
that C can be cut and pasted such that in the new computation path obtained M does not alternate
when the input head visits W™*!. This yields a contradiction to the maximality of m .

Let us define the following head position bounds

L := |Z1Wn1| Ry := L1 + |Wm| +1,
Ly := |ZyWmitmtng| Ry = Ly + (WAl 41,

Not that from the assumption that m' > 2|/n] it follows that
Ry + WP < |z wnten!| (ii)

Let C' be a subsequence of computations of C which starts and ends with the head position in
{Li,R2}. We claim that C' can be modified to the computation path of the same number of alter-
nations, which starts and ends in the same configurations as C' and such that M does not alternate
with the head positions in [Li, Ry + |W|]. Only the case when C' starts and ends with the head
position L; and Rs, resp. will be described.

Let (a1,L;) be the first configuration of C' and (82, R2) the last one. Moreover let (81, R;) be the
first configuration in C’' with the head position R; and let (as,Ls) be the last one with the head
position Ly . Using a similar counting argument as in the proof of Lemma 2 one can show that

e el ... My] Vde[l ... My (a,L1) Emy (B1,R1+cadW]).
Moreover, by Lemma 2 we have:

Jep €1 ... My] Vdel ... My (o, Lo+ codW|) Emy (B2,R2) .
Therefore, for § := c;c2|W| holds:

(1, L) Ewmy (Bi,Ri+9),
(a2,La+98) FEumy (B2, Re) .
By (ii), M making the same moves as in C' between (81,R1) and (a2, L), reaches (az,Ls +)
when started in (81, R1 + 0) . Hence, there is a computation path that starts in (ay,L;) ends in

(B2, R2) of the same number of alternations as C' such that M does not alternate with the head
position in [Lq, Rz + |W|]. This completes the proof of the claim and the lemma. |

11

2.3 Fooling ATMs by Pumping the Input

Lemma 6 (1-Alternation) For any configuration («,7) with

o i<|Z| or i>|Z; W™ and
e Spacep(a,i, X) < S(n) and Space(a,i,Y) < S(n) holds:

acc3(a,i,X) = acci(a,i,Y) if (a,14) is existential, and

acc2/(a,2,Y) = acci (a,i,X) for universal (o).

Proof. Assume that («,) fulfils both conditions above. First, let this configuration be existential
and let acc?;(a,%,X) be satisfied. Then there exists a universal configuration (or if M does not
alternate a final accepting configuration) (8, h) with 0 < h < |X|+ 1, such that

(A) (ai) Emx (Bo,h), and
(B) each computation path C on input X that starts in (8o, h) is finite. In addition, along each
such C M does not alternate, and the final configuration of C is accepting.

We divide the string X according to h into three parts. Let n' := [n/2|. Define hy := |Z; W™ | if
h<|Z W™|, and hy :=|Z|, otherwise. Let hy := hy +|W™ |+ 1. Now let U denote the prefix
of X of length hy,ie. U :=Z; W™ if hy = | Z1 W"'| and U := Z;, otherwise. Moreover let V
denote the suffix of X of length |X|+1— hy, ie. if by = |Zy W"I| then V := W27 Z, else
V := W™ " Z, (note that V can be an empty word). Then, X =U W" V.

For such a partition of X , the head of M in memory state (8p,h) is located on string $U , if
h <|Zy W™| and on string V$, otherwise. Let a:= (n' +1)(n' +2)...n and let ¢ := fa. We will
show that M started in (a,3) with X' :=U W'+ v on its input tape accepts making at most
one alternation. This proves the lemma since

XI — an'—‘,-lln’! vV = Z1 Wn—‘,—l"n.'! Z2 — Z1 Wn—‘;—ﬂn! ZQ =Y.
Since Ny,s <n < (n'+1)? from Lemma 3' (for n := n’ and m := n) and by (A) it follows that

() Eumx (Bo,h)

where h := h if h <|Zy W™ | and h := h+ £'n'! otherwise. Our lemma follows from this property
and from the fact that .
acch, (Bo, h, X')

holds. Below we prove that this predicate is true.

Assume, to the contrary, that accl,(So, h, X') does not hold. We can distinguish two cases:

(a) (Bo,h) Emx (B,t) for some rejecting or existential configuration (8,t), or
(b) M starting in (8o, h) performs an infinite universal computation on X'.

From Lemma 3', it follows that the memory state 3 is reachable on X , too. We get a contradiction
since by condition (B) it must hold: if M reaches a non-universal memory state on X then it should
be accepting. Therefore case (a) cannot occur. Below we will prove that case (b) cannot occur, too.
More precisely, we will show that if (b) holds then there exists an infinite universal computation path
for input X which starts in (8o, h) , also yielding a contradiction to (B).

Let C be an infinite universal computation path for input X’ that starts in (8o,h). From C
we will construct an infinite computation path for input X that also starts in (ﬂo,ﬁ). Let hso
denote the index of the first symbol of the string V'$ on the input tape with input X', i.e. let
hhsy := hy + |W€I""| . Three cases have to be distinguished.

Case 1: The boundary between the prefic U and the string W'+ o the boundary between the
string W™ and the suffic V is crossed infinitely often in C (see the figure below).

12

Fig. 1

Let the boundary between the prefix U and the string W'+l be crossed infinitely many times.
Then there exists a memory state 8 such that the configuration (3,h1) occurs in C at least twice.
From Lemma 3' one can conclude that

(Bo,h) Emx (B k1) and
(ﬂahl) IZM,X (ﬂ)hl) -
So, we obtain that M starting in (8o,) makes an infinite universal loop on X . The subcase when

the boundary between the string W™ +¢""! and the suffix V is crossed infinitely many times in C is
similar to this one.

Case 2: There is an initial part C1 of C and an infinite rest C2 of C such that in Co M scans
only the input to the left of hy or to the right of hy (see the figure below).

j=Mh hs
l U Wn’—l—l’n’! vV |

Fig. 2

Let (8,7), for j = hy or j = Bg, be the last configuration of C;. From the Lemma 3’ we have
that (8,7) is reachable from (By,h) on X, too. Let C'y; denote a computation path from (8o, h)
to (8,j) for input X . Then C'1Cy is an infinite computation path for X .

Case 3: There is an initial part C; of C and an infinite rest C5 of C such that in Co M scans
only the string W™ 4™ (see the figure below).

J = hy h:z
| U Wn’—|—l’n’! V |
(/60, h) H H H

Let (8,7),for j=hy or j= hs , be the last configuration of C; . Without loss of generality, assume
that j = hy . Since C, is infinite there exsists hy < d < hy and a memory state v such that (v,d)
occurs on Cs at least twice. By assumption, all memory states on computation path between the
two instances of (v,d) use at most S(n) space. Lemma 1 implies that there exists a computation
path D such that D starts and ends in (v, d), and that the input head is never moved farther than
/\/l%(n) -|W| positions to the left nor to the right of d. Let Ci denote the part of Cy between (8, 7)

and the first (7,d) on Cs. Using Lemma 1 and 2 one can easily construct from Ci a computation
path D! such that

— D! startsin (8,7),

— D! endsin (v,d'), for some d' such that

d < 7+ Mé(n)(/\/ts(n) + 1) . |W| and d' > min(d,j + M?é(n) . |W|)
— the input head is never moved to the left of 7 nor to the right of

3+ My (Msmy +2) - [W| < j+n'- W],

Finally, let C{ denote a computation path for input X starting in (fo, iz) and ending in (8,7). By
Lemma 3’ such a path exists. M starting in (8p,h) and making the same sequence of moves as in
CiD*DDD... makes an infinite universal loop on X .

This completes the proof of the first implication of the lemma. Let us now assume that acc?;(a, 1, Y)
holds for a universal configuration (a,:) . If acc%;(a,%, X) is not true then there exists an existential
configuration (8o, h) such that: M starting in («,4) and working in universal states reaches (8o, h)
and each computation C of M on X started in (8o, h) is rejecting or along C M makes at least
one alternation. Using the similar methods as above one can show that acc?,(a, 1, Y) does not hold,
too — contradiction.

2.4 Fooling ATMs by Shifting the Input Head

In the following two lemmata we consider the influence of shifting the input head between identical
copies of a fixed string W . For this purpose let us denote the shift distance by A := |W|-n!.

Lemma 7 (Configuration Shift) Let X = Z; Wt W* W™ Z, be a binary string with s > 1
and let «,(be memory states with |a| < |8] < S(n). Then, for any ¢ with i < |Zy| or ¢ >
|Z, Wrtn! We W and any j,£ € [|Zy W™ +1 ... |Z; W™t W#|] holds:

1. (01,7:) ':M,X (ﬁ;]) <~ (aai) |:M,X (ﬁ;]_A)a

2. (aaj) ':M,X (ﬁaﬁ) <~ (an_A) ':M,X (/Bae_A)a

3. (a,4) Emx (B,1) = (.7 —A4) Emx (B,1).

Proof. First note that the conditions on j and ¢ guarantee that all positions 7, £, j — A, £ — A
considered are at least n blocks W away from the boundaries Z; and Z,. Define

X' = ZiWrWW" Z, and X" = Z, W' W° W™ 7,

Set 1:=i if i < |Z1]|, otherwise ii=i—A. Using the Pumping Lemma twice — first for the input
pair X, X’ and then for X', X" — we obtain:

(i) Emx (B,4) <= (i) BEux BJ—4) <= (ad) Euxr (B,5—A)
(.)) Emx (B,0) = (,j—A) Eux (B,L-A) = (a,j—A) Euxr (B,£—A)
(.)) Eux (B,) <= (0,j—A) Emx (B,4) <= (0,j—A) Emxr (B9)

14

The claim of the lemma follows because X" = X . |

In the inductive argument for the proof of Theorem 1 (Proposition 1 in section 3 below) we have to
guarantee a certain distance of the input head from the boundaries. For this purpose we define

Men = k- (n+nl).

Lemma 8 (Position Shift) Let k£ > 2, r,s,t be integers with r,t > ms, and s > 1, and let
Zy,Zy,W € {0,1}* be arbitrary strings. Then for X = Z; W™ W* W' Z5 and for any configuration
(a,1) fulfilling the requirements

1. |ZLW'| < i < |Z WrW?| and
2. Spacey(a,i,X) < S(n) and Spacepr(a,i — A, X) < S(n)

holds:

acch (o, i, X) = acch™l(a,i— A, X) .

Proof. Let input X and configuration (a,¢) be as above. We will only give a proof for
| k—=1l(.
accy; (a,4,X) = accy; (a,i—AX) .
A similar argument yields the opposite implication. Let
acch (e, i, X) (i)

be true. First we will show the following property for computations that start in (a,i — A). Call a
computation path of finite or infinite length universal if all its configurations are universal.

Claim 1 For a universal configuration («,7) of M on X any universal computation path that starts
in (a,i — A) is finite.

Proof. Let us assume, to the contrary, that there exists an infinite universal computation path that
starts in (a,¢ — A) . Hence there exists a universal configuration (83,7) such that

(i=A) Fux (8,5) and (8,5) Fmx (8:7) -
If |Z,W"| < j <|Z,Wrtstt=(+n)| then Lemma 7 (2.) implies

This means that in (a,4) M starts an infinite universal computation path with X on its input tape.
This yields a contradiction to acc¥ ! (a,i, X) .

On the other hand, if j < |Z;W"| or j > |Z;Wrts+t=(n+n)| then by Lemma 7 (3.)
(a,z) 'ZM,X (ﬂaj) -

Since (8,7) Em,x (B8,j) M also generates an infinite universal computation from («,). Note that
we can apply the Configuration-Shift-Lemma both to a@ and 8 because by the second assumption
|a| <|B| < S(n). This ends the proof of Claim 1. |

First we will solve the base case k¥ = 2 and consider an existential configuration (a,%). Because of
accl,(a,i,X) there exists an accepting (83,j) with

(a,1) E=mx (8,7) -

15

Using the Configuration-Shift-Lemma one can conclude that
(i=A) Eux Bj—4) H[ZW™<j<[ZW "] and
(,i—A) Eumx (8,9) otherwise.

Since f is accepting acch,(a,i — A, X) holds.

For universal configurations (a,%) it will be shown that any terminating configuration (3,7) with
(a,i—A) Emx (B,j) is accepting. Together with Claim 1 this proves that accl, (a,i — A, X)
holds. Let (8,7) with (a,i —A) Eum,x (8,7) be a final configuration. By Lemma, 7

(aai) IZM,X (ﬁa]+A)
if |Z,W"| < j < |ZWrtstt=(ntnh)) otherwise

(a,9) Fmx (B,7) -

Hence, if 8 is non-accepting then acc}, (a,i,X) does not hold — a contradiction.
) p g M

Now let k> 2 and consider an existential configurations («,). Since, by assumptions, M starting
in (a,i) with X on the input tape accepts there exists an existential computation path ending in a
universal configuration (8, j), with

(01,7:) IZM,X (/Ba]) ’ (11)
and
acch7?(8,5,X) . (iii)
(The trivial case that M accepts without alternations could be handled as above.) Let us divide the
input X =Z; W™ W?* W Z, into three regions A, B,C as follows:

A = Zgwrmintn
B = Wn!wnwswn ,
cC = Wt "Zz,.

According to j, the input head position in configuration (f,7), the following situations will be
distinguished:

Case 1. The input head is located in region A or C (see Fig. 4a), i.e. j < |A| or j > |AB].

A B C A B C
n! n+s+n n+s+n n!
ZWW e W Z, ZWW oo e W Z,
(aa /L) (a, 1 — A)

(8,7) (8,7)
a) (i) Fux (8,75) b) (a,i—A) Fux (6,5)

Fig. 4

16

From property (ii) and Lemma 7 (3.) —for Z; := A, and Z, := C — we obtain that

(vi—=4) Fux (8,9)
(see Fig. 4b). Therefore condition (iii) implies acch;!(a,i — A, X).

Case 2. The input head in (8, 7) visits region B (see Fig. 5), i.e. |A| <j <|AB].

A B C A B C
n! n! n+s+n n! n+s+n n!
lew T WZ2 Z1WW WZQ
(Ck, 7’) (O!, i — A)
\ \

(8,7) (8,5 —A)

a) (i) Fux (8,7) b) (wi—A) Fux (8,5 —4)

Fig. 5

In this case using property (ii) and Lemma 7 (2.) — for Z} := Zy Wr—2(n+n) 7! .— Wt=2n7, and

s' :=n!+n+s+n — we conclude that

(a,i—A) Eux (B,—4).

Now apply the induction hypothesis for k —1 with parameters ' :=r—(n+mn!), s’ and t':=t—n
to configuration (3, 7). By definition of the parameters my, , the requirements 1. and 2. are fulfilled.
Therefore (iii) implies

acc?\l_2(ﬁ7.j - A’X))
and hence accfw_l(a,i — A, X). This completes the proof for existential configurations.
For a universal (a,%), similar to the case k = 2, it will be shown that for any final or existential
configuration (f,j) that ends a universal computation path

(@,i—A) Fax (8,5) implies acch;?(8,5,X) -

Remember that because of Claim 1 only finite paths have to be considered. Let (8,j) be such a
configuration. Divide the input X into three regions A, B,C as above. Depending on which region
is visited by the input head in configuration (3,7), two cases are considered. If the input head is
in region A or C (as in Fig. 4b) then from Lemma 7 (3.) we obtain that (a,i) Eumx (8,7).

accl " (@i, X) thus implies acch; (4,5, X) .

17

A B C A B C

n+s+n n! n! n! n+s+n n!

............... W Z,

a) (a,i—A4) Eux (8,5) b) (i) Emx (B,7+4A)

Fig. 6

Otherwise the input head is located in B, i.e. |A| < j < |AB]| (see Fig. 6a). By Lemma 7 (2.), one
can deduce that (a,i) F=um,x (3,7 +A), which implies acck7?(8,j + A, X) . Using the induction
hypothesis for configuration (8,5 + A) and for k —1 with ' :==r—n, s :=n+s+n+n! and
t' :==t— (n+mn!) we obtain accﬁ/f_z(ﬂ,j, X) , which completes the proof. |

2.5 Halting Computations for ATMs

Let S and Z be functions such that Z is computable in space S and Z < expS. We say that a
binary string X is Z —bounded if it contains at most Z(|X|) zeros.

Lemma 9 For every S —space-bounded ATM M there exists an ATM M', which is also S —space-
bounded, such that for all Z —bounded strings X holds:

o M' accepts X iff M accepts X,

o Alter)p(X) < Altery(X),

o if Altery(X) < oo then every computation path of M' on X is finite.

Proof. Let M be an ATM and let X be a Z—bounded input. In the proof below, M; denotes
the number of memory states of M as defined in Section 2.1.

Let a crossing be any transition of M from a configuration, in which it reads an input symbol a
to a configuration reading an input symbol b # a, where a,b € {0,1} U {$}. A sequence C =
Cu,Cyt1,-..,C, of consecutive configurations of a computation path on X is a long turn if C does
not contain alternations, nor crossings, if in C, and C, the input head is at the same position ¢ for
some 1< < |X|, and within C

— either the input head visits position i + M3 , but never moves to the left of 7,

— or it visits position ¢ — M? , but never moves to the right of 7,
where b is the amount of space used in C, .

On the other hand, a sequence C without alternations or crossings is a long hop if the positions i
and j of the input head in C, , resp. C, are at least at a distance M7 + 1 apart and within C the
input head never leaves the region between these two positions.

18

Now we are ready to describe the behaviour of the machine M’ . It first computes the value Z(|X]|),
which by assumption can be done in space S(|X|), and then simulates M step by step. Let b; be
the amount of work space used by M by its ¢t—th step.

After having simulated step ¢ of M the machine M’ stops and rejects iff

al
a2
a3
ad

M rejects at this step, or
M has just finished a long turn that contains only existential configurations, or

since its last alternation M has executed 2(Z(|X|) + 1) - Mp, +1 many crossings, or

within the last 2./\/11‘1 + 1 steps M has not made any progress, that means performed an
alternation, a crossing, a long turn or a long hop.

M' stops and accepts iff

bl) M accepts, or

b2) M has just finished a long turn that contains only universal configurations.

To check these conditions one counter for the number of crossings, one counter for the number of steps
since the last progress and a sliding window for the most recent furtherst distance to the right or left,
which can also be realized by counters, suffice. The length of all counters is bounded by O(S(|X])) -
Thus, M' is O(S)—space bounded.

It is obvious that Alterpm(X) < Alterp(X). To see that all computations of M’ are finite, first
notice that if M does not make progress inifinitely often M’ will stop the simulation eventually.
Assume that M’ does not stop on some path. If Alter;(X) < oo this cannot be due to alternations
nor to crossings of M since there is also a finite bound set by M’. Thus it remains the case that
M within one block of identical input symbols performs infinitely many steps without an alternation.
M'" would stop if M makes a long turn, thus M has to make an unbounded number of long hops.
After a long hop to one side it cannot make a long hop to the other side, because this would result in
a long turn. Thus, M eventually has to reach the boundary of this block and performs a crossing, a
contradiction.

From Lemma 1 follows that M’ accepts the same set of Z -bounded strings as M . In case a2) there
is a shorter turn that brings M into a configuration identical to C, . Thus, if M has an accepting
subtree for configuration C, then it still has after chopping of that C, which is reached by the long
turn. The dual argument holds in case b2). Observe that in case a3) M must have gone through
a loop and one can stop the simulation. This is because there are at most 2(Z(|X|) + 1) different
positions on the input tape (counting both directions) to perform a crossing on a Z -bounded string
X . Hence, at some position a memory state must repeat. A similar argument holds in case a4) for
the at most M? many input positions that can be visited without performing a long turn or hop. |

Using this lemma we can show the following theorem that extends Sipser’s space-bounded halting
result to alternating TMs.

Theorem 7 Let S,A,Z be bounds with A < oo and Z <expS computable in space S. Then for
every S —space-bounded X4 TM M there exists a X4 TM M' of space complexity S such that for
all inputs X

o M' accepts X iff M accepts X and X is Z —bounded, and
e ewvery computation path of M' on X is finite.

The identity of Xy and co-II; for Z -bounded languages (Theorem 4) now follows easily.

19

3 Hierarchies

3.1 Technical Preliminaries

As a specific example of a function that can be computed in sublogarithmic space consider the following
function from [3]

F(n) := min{k € IN | k does not divide n} .
It is easy to see that F' € O(log) . Thus, on input 1™ a TM can simply try all candidate k= 2,3, ...
by counting the input length mod k& until the first nondivisor is found. Using the binary representation
this requires at most log F(n) < llog n + O(1) space.

Obviously, F' takes constant values like 2 or 3 infinitely often. We want to show that also the
logarithmic upper bound is achieved infinitely often. This would imply that there exists another
function G of logarithmic growth that can be approximated from below in space llog. Let p; <

p2 < ... be the standard enumeration of primes and define
|lo i k|
q)(k) = H pz ¢ ’
pi<k
& '(n) := min{k| ®(k) >n},
G(n) := min{f|¢> ® '(n) and £ is a prime power } .

The following properties can easily be derived.

1. & 4(®(k)) =k and ®(®~'(n)) >n.

2. F(®(k)) = G(®(k)), since any £ < k divides ®(k) and the first nondivisor in the sequence
k+1,k+2,... must be a prime power.

3. F(n) <G(n) for all n, which can be seen as follows: Let k= ®~1(n). Since we have already
considered the case n = ®(k) due to property 1. we may assume n < ®(k). By definition of ®

logr Kl that is not a divisor of n. Thus, F(n) <k < G(n).

i

there must exist a prime power p

4. B(k) = ekb+e).
The prime number theorem implies

H pi = ek(+o(1))
pi<k

Thus, ®(k) > e*(+°(1) | On the other hand,
B(k) < H piogp,- ko H pi < H k- H pi < eWVEInk+k)(1+o(1)) — ok(l4o(1)
pi<Vk VE<pi<k pi<VE pi<k
5. & 1(n) = Inn (1+o0(1)).
6. G(n) = @ 1(n)(1+o0(1)) = Inn (1+0(1)), since any interval [®~1(n),®~1(n)- (1 + o(1))]
is guaranteed to contain a prime.
Hence, the function G is of logarithmic growth and approximated from below by F'.
Let F be an infinite subset of the natural numbers with the following property:
(&) neF = n+nl¢F.
Using the function F we can give a simple example for such a set F (compare [7]):

F o= {n>2|VLe[3...n—1] F{)<F(n)}.

The following property of F will be needed in the lower bound proofs.

20

Lemma 10
1.) Every interval of the form [m,m?®] with m > 3 contains an element of F .
2.) For any integer n > 2 holds n+n! ¢ F.

Proof. Since the function F' is not bounded the set F is infinite. More specific, F contains all
numbers of the form ®(pi) because F(®(pr)) > pr and for all n < ®(pr) by the same argument as
in 3. above F(®(pr))) < pr . The first claim can be shown by estimating the density of the sequence
(®(Pr))k=1,2,... - Since pry1 < 2py for all k we get

llog,, pk+1] 1+ log, . pi]
i) = [o™ < I p T = e I po < 200)7

Pi <Pr+1 Pi <Pr+1 Pi <Pr+1

2.) follows easily from the equation F(n) = F(n +n!) . To see this equality note that any divisor of
n divides n + n!, too. Hence F(n) < F(n + n!). On the other hand from the definition of F we
know that

F(n) does not divide n

and, since F(n) < n, that
F(n) divides n! .

Therefore F'(n) does not divide n + n!, which means that F'(n+n!) < F(n). |

3.2 ATMs with a Constant Number of Alternations

With the help of sets F as defined above we construct a sequence of languages that separate the
different levels of the alternation hierarchy for sublogarithmic space-bounded ATMs.

Definition 6 For an infinite subset F of the natural numbers let Lx be the language over the single
letter alphabet {1} givenby 1" € Ly iff ne€ F.

Assume that F has property (#) and that Lz € II;Space(llog) and Lz € XySpace(llog) .
Then we define Lo := {1}, and for k>3 Ly := (Lx—1 {0})* . Furthermore,

Ly = Ly and Lyy:= {1}+ OZ]: s
Lyr = {wi0wq0...0w,0|p€eN, w; € Ly_; and i €[l..p] w; € Lgg—1},
Loy = {w10w20 .. .O’LUPO | pE]N, w; € Lp_1 and Vi€ [1...p] w; € Lgk_l} .

Note that Lys and Lpo are just complementary. For larger k the corresponding languages are
“almost” complementary, that means if restricting to strings with a syntactically correct division into
subwords by the 0-blocks (more formally Ly = Ly N Ly,).

Lemma 11 For the specific F defined above with the help of the function F' holds
Ly € TIySpace(llog) and Lz € XoSpace(llog) .
Proof. We describe llog space-bounded IIsTMs My and ¥2TMs My that recognize the language

L g, resp. the complement of Lz . The machine My verifies the condition V£ € [3 ... n—1] F({) <
F(n) as follows:

— deterministically it computes F(n) and writes down the binary representation of F(n) on the
tape;

— universally it guesses an integer £ € [3...n —1]:
it moves its input head to the right and stops ¢ positions from the right end of the string 17 ;

21

— existentially it guesses an integer k € [1...F(n) — 1] and then moving the input head to the
right, checks deterministically whether &k divides £.
My accepts if k£ does not divide £.

The complementary machine My, writes down on the work tape F(n) in binary and tests whether
32€[3...n—-1] Vke[l ... F(n)-1] k divides £.

Similarly as in Mp the input head position represents the integer £. The integer k is stored in
binary on the work tape. It is obvious that My recognizes Lx and that My recognizes Ly in
space O(llog) . |

Thus languages Lx as assumed in Definition 6 exist. For the base case of the following inductive
separation we also need the property that Lz ¢ YoSpace(o(log)) and symmetrically that Lr ¢
IIoSpace(o(log)) . This has been shown for the example above explicitely in [14]. Below we will
give a general argument showing that this property simply follows from the condition n € F and
n+nl¢F.

Lemma 12 For any k > 2 holds
Lyr € XiSpace(llog) ,

L, € IIpSpace(llog) .

The proof of these properties is straightforward using the fact that Lx € II;Space(llog) and Lz €
Y¥oSpace(llog) . The separation
Theorem 8 For any k& > 2 holds

Lsr ¢ HiSpace(o(log)) ,

Linr ¢ XiSpace(o(log)) .

We will define specific inputs that belong to Ly, and Ly and show that any sublogarithmic space-
bounded machine cannot work correctly on both inputs.

Let L = Ly be fixed. Recall that infinitely many n € IN exist with n € F, 1" € L and 1"t ¢ L.

Definition 7 For n € F define words

Wy, = 1" and W, = 1",
and for k>3
n n Mk,n n n Mk,n
Wy = [WEk—l O] Wite—1 0 [WEk—l 0] >
n n M, n n n M, n
Wi = [WEk—l O] W1 0 [WEk—l 0])

where the my,, are the parameters already used in the Position-Shift-Lemma.

From the definition follows easily

22

Lemma 13 For k£ > 2 and every n € F

ng (S LEk and ng ¢ LHk ,
WﬂLk € L, and WﬁLk ¢ Lyy. .

Let k£ > 2 and S € SUBLOG be a space bound. We will prove Theorem 8 by showing that if a ¥ TM
M accepts Lmi in space S then for sufficiently large n € F M accepts Wy, , too. Similarly, if
a II; TM M accepts Lsi in space S then for large n € F it accepts Wi, and hence makes a
mistake. Recall that Njyss denotes the constant defined for M and S in Section 2.

Proposition 1 Let S € o(log) and M be an ATM. Then for any k > 2, for all n > Ny,g, for all
strings U,V € {0,1}*, and for any configuration («,3) with

1. «<|U| or i>|UW}| and
2. Spacep(a,i, U Wi, V) < S(n) and Spacepr(a,i, U W, V) < S(n)

holds:
acck (a,i, UWH, V) = acck;(a,s,UWE, V) if (a,i) is existential,
acck (a,1, UWE, V) = acck (a,i,U W, V) if (e, 4) is universal.

Proof. Remember that 7 was defined as

s _ {z if i < |U|,
i+ (W | = Wil) if i > U Wi, |.

For k = 2 the implications above follow from the 1-Alternation Lemma.

To establish the proposition for £ > 2 we consider the first time when the machine M makes an
alternation and inductively use the corresponding properties for the strings W3, _; and W[, _; . The
argument concentrates only on the block in the middle of a W3, string, which is a WJ},_; word,
and analogously for W, strings with a W3, _;, word in the middle. The main technical difficulty
for the following argument is the possibility that in an accepting computation the machine may just
make its first alternation in the middle block, and therefore may notice the difference between the
W3, and WP, strings. But the Configuration- and Position-Shift-Lemmata imply that there also
exist accepting computations with the first alternation outside this critical region.

The details are as follows. Assume that the configuration («,:) fulfills properties 1. and 2. Let
n > Nu,s , and define

X = UWRLV = UWg_, V',

Y = UWZV = U Wp_, V', where
U= U W o]m’“'" and

Vo= 0 W, o]m'“'"v,

A = |Wg_, 0]-nl,

o {j ifj <|U'[,

T W = WD) iG> X = V.

Note that 7 is defined with respect to the partition of the inputs X,Y with the prefix U and the
suffix V, where j is taken with respect to the prefix U’ and suffix V'. Since

|WrTfk—1| - |W§k—1| = |W§k| - |WITILk|

23

whenever both values are defined. (i)

S8
I
.0

First we prove the following

Claim 1 For any memory state |a1| < |az| < S(n) and all ji,j» with
.02 € [0 U U U Wy [+ 1.0 X+ 1]

holds: ; ~
(1,51) Fmx (az,j2) Ao (1,01) BEmy (02,32) -

Proof. For suitable Z;,Z> € {0,1}* the words considered can be written as

Wg, = Z11"Z, and Wi, = Z; 1™ Z, if kis odd, and
Wsy = 2y 1"+ Z, and Wit Z1 1™ Zy for even k.

The claim then follows from the Pumping Lemma (Lemma 3). |

A.) First we consider existential configurations («,7). Assume that
acch (a,i, X)
is true. Hence there exists an existential computation path from («,?) to a final or universal config-
uration (f,j):
() Fmx (8,7) (i)
with the property

ach (,6,],). (iii)

We may assume that
JLWU or j> U Wy], (iv)

because if |U'| < j < |U" Wg,_,| then for Z; :=U, Zy ==V, W := W& _, 0, and s :=
2mpn +1—n— (n+n!) the Configuration-Shift-Lemma implies

(aai) IZM,X (ﬁ:J_A) .

Moreover, for r :=t:=my,,, and for s:=1, from the Position-Shift-Lemma we can deduce

ach (ﬂ j—AX).

Therefore, if |U'| < j < |U" Wg,_,| the configuration (8,j') with j' := j — A instead of (8,7)
satisfies properties (ii)-(iv).

Since ¢ =i according to (i), Claim 1 applied to (i) yields

(1) = (1) Fuy (8,9) -

A terminating configuration (3,) must be accepting because of (ii) and (iii), hence (3,7) is accepting

and acck, (a,1,Y) is true.

For a universal (3,j) we apply the induction hypothesis. Because of (iv) the requirements 1. and 2.
of the proposition are fulfilled for k¥ — 1 and 7 := j. Property (i) implies for this choice of i that
i = j . Therefore, in (iii) replacing j by 7 one can conclude

ach (ﬁ,z,X) = ach (ﬂ,z,Y) = ach (,B j, Y).

24

Hence, we can conclude that acc’fvf(a,%, Y) holds. This proves the proposition for existential config-
urations.

B.) Now let us consider universal configurations (i), for which acck,(a,7,Y) holds. We have to
show that acck,(a,i, X) is true.

Claim 2 For input X any universal computation path starting in («,:) is finite.

Proof. Assume, to the contrary, that there exists an infinite computation path which is universal
and starts in (a,¢). This means that there exists a universal configuration (3,j) such that

(i) Fux (B,4) Emx (B,7) - v)
We can assume that
J<U or j>|U Wil (vi)
because if |U'| < j <|U' Wg,_;| the Configuration-Shift-Lemma implies
(aai) ':M,X (ﬂa] _A) IZM,X (/8:.7 - A) :
Hence, (v) and (vi) are fulfilled for j' :=j — A. Form (i) and Claim 1 follows
(Oé,%) = (Oé,g) IZM,Y (1673) ':M,Y (/3;5) .
This means that for input Y there exists an ipﬁnite computation path, which is universal and starts
in (a,1). We get a contradiction to acck, (a,,Y). |
Now we want to show that for any final or existential configuration (3,7) that can be reached from
(a,7) on a universal computation path holds
aceyr (8,4, X) -
According to Claim 2 this proves acck,(a,i,X). Let (a,i) FEwmx (8,5). Two cases will be
distinguished.
Casel. j<|U'| or jF>|U W |
From Claim 1 it follows that . } 3
(aai) = (Oé,i) ':M,Y (55.7) :
The assumption acck (e,7,Y) implies
accy ' (6,7,Y) (vi)

For a final configuration (8, j) one can conclude from property (vii) that 8 must be accepting, hence
acc’fw_1 (8,7,X) holds.

For an existential (3,j) the same implication holds using the induction hypothesis.
Case 2. |U'|<j<|U" Wy _,|.
The Configuration-Shift-Lemma implies
(a,8) Fux (B,5-A4).
In the proof of Case 1 it was shown for the configuration (8,7 — A) that
acch (8,5 — A, X)

holds. Using the Position-Shift-Lemma we obtain acclfw_l(ﬂ, j,X). This completes the proof of
Proposition 1. |

Next, we will show that the second requirement of the proposition above is always fulfilled.

25

Proposition 2 Let k> 2 and M be an ATM of space complexity S with S € o(log) . Then there
exists a bound S’ € o(log) such that for all n > Ny o

Spaceps (W) < S'(n) and Spacepy (W) < S'(n) .

Proof. The idea of the proof is as follows. If in Wy, and Wy, all substrings generated in
the recursive construction which are multiplies of n!, are cancelled, then the remaining word has a
length pg(n), which is polynomial in n. Using the Small-Space-Bound-Lemma, which shows that a
sublogarithmic space-bounded machine M does not notice a difference when an arbitrary block of
the input is added n! times, it follows that A must obey a space bound S(px(n)) on Wy, and
W3, . If S grows sublogarithmically in n so does S(pi(n)) .

Below the technical details of this proof are outlined. Let

Va(n) :=1".
For d > 3 define
1 1 2dn+1
Vi) = [vimo]
and for 1 =2,...,d—1
i i1 2ma,ntl
Vit = [ViZl(m) 0]
Define also a sequence of polynomials pg(n) as follows:
pa(n) :=n andford>3 pg(n) := (2dn+1)-(pg—1(n)+1).

Obviously, for any d > 2 and for all n
pa(n) = V4 (n)] .

Let M be an ATM of space complexity S with S € o(log) . Define S'(n) := S(pr(n)). Obviously,
S' € o(log) . Let n be an integer with n > N5 .

Since M is S space-bounded
Spacen (Vi (n)) < S(pi(n)) = S'(n) . (i)
It is easy to check that for any n and for any ¢ € [1...k — 2] there are words Z;,Zs,...,Z, over the

alphabet {0}, where
k

r o= H 2myn + 1,
t=k—14+2

(for i =1 take r :=1), such that for W :=V;! .(n)0, a:=2n(k—i)+n+1 and b:=2(k—i+1):

Vin) = Woetr zywetn Zy. .. Z,_, Wt Z,.,
Vki-i-l (TL) — Wa+n+bn! Zl Wa+n+bn! Z2 . -Z'r—l Wa+n+bn! Z’r .

By the Small-Space-Bound-Lemma the following implications hold for ¢ =1,2,...,k — 2
Spacer (Vi(n)) < S'(n) = Spacerr (Vi (n)) < S'(n).
Therefore, by (i), we obtain that
Spacer (Vi () < S'(n) - (i)
Now let W32, denote a word Wy, where all substrings 1"*™ are reduced to 17 . Similarly, W, is

obtained from W, . Obviously, by the Small-Space-Bound-Lemma, Space M(ng) < S'(n) implies

26

Spacen(Wi,) < S'(n) and Spacen (Wi,) < S'(n) implies Spacear (Wi,) < S'(n) . The proposition
holds since . .
Wsp = W, = ka_l(n)

and by (ii) the space used by M on input V*~(n) is bounded by S’(n). |

Now we are ready to prove Theorem 8. Let us assume that M is a ¥ TM accepting L in
sublogarithmic space S. By Proposition 2 there exists a function S’ € o(log) such that for any
n > Nuy,s

Spacers(Wit,) < S'(n) and Spacepy (W) < S'(n) .

Let n with n € F be an integer larger than MNyrs: (such an n exists since F is infinite).
By Lemma 13 Wi, € Lni, hence M has to accept W[, , which means that acc’fvf(ao,O,Wﬁk)
is true, where (ag,0) is the initial configuration of M . From Proposition 1 we conclude that
acck (ap,0,W2,) holds, too, and hence M accepts W3, , which by Lemma 13 does not belong
to L — a contradiction.

In the same way one shows that if M is a Il TM that accepts Ly in space S then M accepts
Wg, . |

3.3 Unbounded Number of Alternations

Let us now consider ATMs with a nonconstant bounding function A for the number of alterna-
tions. The separating results for A -alternation-bounded space classes (Theorem 2) follow from the
propositions below.

Definition 8 Let A:IN — IN be a function with A(n) > 2 for all n and define
Lx(A) = {X|X=W0" forsomer € N and W € Ly; for some k < A(|X])},
Lp(4) = {X|X=W0" forsomer € N and W € L, for some k < A(|X|)} .
Lemma 14 For any S € SUBLOG and all functions A > 2 computable in space S holds:

Ly (A) € XaSpace(S),
Ln(A) € IIaSpace(S) .

Proof. On input X = WO0" the machine first computes a := A(]X|) and initializes a counter with
that value. It remains to check whether W € Ly, for some k < a. This can be done similarly as in
the case for fixed k, decrementing the counter each time an alternation has been performed. |

For functions A,B: IN — IN let A <, B denote that A(m) < B(m) for all m € IN with equality
for infinitely many m .

Proposition 3 For any S € SUBLOG and for all functions A and B with 1 < A <, B and
B - S € o(log) holds:

Ly (A) ¢ TgSpace(S),

Ln(A) & XpSpace(S) .

Proof. Let S € SUBLOG and let A,B be functions with 1 < A <, B and B- S € o(log) . These
assumptions imply that there exists a constant mg > expexp9 such that A(m) < }&gg’fn for all
m > myg . Define functions h and f as follows

exp (525
h(m) := 3 Am)
f(m) = max{l|Le FU{0}, £L<h(m)}.

27

For m > mo we can bound h by

=
g
A

1
exp (0g2m> = ml/?

exp llog m _ llog m

3logm / llogm 3

and hence f(m) € F. Moreover, from lemma 10 follows

1 1/3
fom) > hm)' > (5 llog m) . ()
Define the function S’ :IN — IN as follows
S'(n) = max({O} U {S(m) | f(m) :n}) .
Because f grows unboundedly S’(n) will always be a finite number.

Lemma 15 S’ € o(log) .

Proof. First we show that S € o(logof). By assumption,

SEO(I%) and logA < llogm < S.

This implies

SGO(IOTg—S) = o(lojg—logA) = o(logh) = o(log f) .

Thus, if n goes to oo

S(n)
— 0
log f(n)
and g g g
m _ o Sm) _ Sm)
logn {m|f(m)=n} logn {m|f(m)=n} log f(m)

If n goes to oo also m has to do this, and hence all quotients converge to 0. But this means that
S’ € o(log) . |

Consider the function ¢ defined by
t(m) = m—pam)(f(m))
where pg(n) has already been defined in the proof of Proposition 2, and note that
P (f(m)) < (3 A(m) f(m)*™ < m.
Thus, t(m) >0.

Now let M be an ATM that works in space S(]X|) and makes at most B(|X|)—1 alternations. Let
m be an integer with

m > max{mo, expexp3(Nu,s)*} and A(m)= B(m) (ii)
Such an m exists since A <, B. Then define
k:=A(m) and n:= f(m).

By (i) and (ii) n > Nar,s' . Moreover, n € F and M makes no more then k — 1 alternations on

any input of length m . Let
X = Vl(n) o™

28

with the word V;}(n) defined as in the proof of Proposition 2. Since the length of V;}(n) is p(k,n)
the string X is of length m . From the definition of S’ follows that

Spacep(X) < S(m) < max{S(m')| f(m')=n} = S'(n) and
Alterpy(X) < B(m)—1 < expS(m) < expS'(n) .

Hence, for the machine M and the function S’ the assumptions of the Small-Space-Bound-Lemma
and the Small-Alternation-Bound-Lemma are fulfilled. Using the Small-Space-Bound-Lemma for the
input X in the similar way as in the proof of Proposition 2 one can show that

Spacer (W, 01™) | Spacep (Wi, 08™) = Spacey (X) < S'(n) .
Similarly, by the Small-Alternation-Bound-Lemma one obtains that
Alterp (W, 01™) | Alter (Wi, 04™) = Alterpy(X)<B(m)—1=k—1.

Now we can finish the proof. Let us assume that M is a Xp TM accepting Lpi(A) in space S.
By Lemma 13 holds W, € Lmy, hence M has to accept W, 04™ . But this means that
acck (ap,0, W, 04™) is true, where (ap,0) is the initial configuration of M . From Proposi-
tion 1 we conclude that acck (ag,0, W, 0:(™) holds, too. Therefore M accepts W, 04™ | which
by Lemma 13 does not belong to L(A) — a contradiction.

In the same way, one can show that if M is a IIg TM that accepts Lx(A) in space S then M
accepts Wi, 04m) |

4 Closure Properties

In this section we discuss closure properties of X;Space(S) and IIySpace(S) classes for sublogarith-
mic bounds S. First for any integer k£ > 2 we define the languages

Asy =Ly {0} Lyy , Bsy:= Ly {0} Ly ,

and symmetrically
Amp := Lp {0} L , Bug := L {0} Ly .

It is easy to see that
Asg, By € XpSpace(llog) and Ang, Bor € I Space(llog) . (1)
Proposition 4 For all £ > 2 holds:

Asy N By € Ilpi1Space(llog) \ Tri1Space(o(log)) ,
Ank U B, € Xgg1Space(llog) \ Ig41Space(o(log)) .

Proof. It is well known that for any function S the classes X;Space(S) are closed under union,
and symmetrically the II;Space(S) are closed under intersection (see e.g. [25]). Hence by (i),
Asy N By € Hyy1Space(llog) and Amy U Bk € Xgy1Space(llog) . To prove that Asy N By ¢
Yk+1Space(o(log)) and Amr U Brg € i1 Space(o(log)) first we modify Proposition 2 in the fol-
lowing way:

Proposition 2’ Let k> 2 and M be an ATM of space complexity S with S € o(log) . Then there
exists a bound S” € o(log) such that for all n > Ny g» and words Wy, Wy € {Wg, , Wi, }

Space (W1 0Wsy) < S"(n) .

29

Proof. Let S"(n) := S(2pr(n)+1) , where pi is the polynomial specified in the proof of Proposition 2.
It is easy to check that the proof of Proposition 2 generalizes to this situation. |

Let us assume, to the contrary, that Axy N Byxg € Xp11Space(S), for some S € o(logn). Let M
be an S space-bounded X1 TM for Axi N By . Choose n € F sufficiently large. By Lemma 13
W € Ly hence M has to accept

X =W3, 0Ws,

which means that there exists an existential computation path starting in initial configuration (ayg,0)
and ending in a universal configuration (8, j), with

(a070) 'ZM,X (ﬂaj)a (11)

and
acchy (8,5, X) . ()

(The trivial case that M accepts X without alternation could be handled similarly.) Now let
Y := W2, 0W, and Ys := Wy}, 0WE, . By Proposition 2’ there exists S € o(logn) such that

Spacenr(X), Spacers (Y1), Spacep(Ya) < S"(n) .

Therefore, applying Claim 1 (from the Proof of Proposition 1) and Proposition 1 to (ii) and (iii), resp.,
we obtain

(060,0) IZM,Y1 (ﬂ:]) and accﬁl(ﬂLjaYl)
if j <|Wg, 0] and otherwise

(OA0,0) 'ZM,Yz (ﬁ:.}) a‘nd acc?\d(ﬂ:j:n):

where j = j + |Ya| — | X|. Hence M also accepts input Y; or Y5 . This yields a contradiction since,
by Lemma 13, Y7,Ys &€ Asy N Bsy .

Similarly, one can show that if a Iz TM accepts Ay U B within space S € o(logn) , then it has
to reject X , but it also rejects input Y; or Y5, which both belong to Ami U B — a contradiction!

This result can be applied to prove Theorem 3:
For all £ > 2 and any S € SUBLOG holds:
1. XiSpace(S) and II;Space(S) are not closed under complementation.
2. XSpace(S) is not closed under intersection,
3. IiSpace(S) is not closed under union.
4. YiSpace(S) and II;Space(S) are not closed under concatenation.
(1) follows immediately from Lemma 12, Theorem 8 and the following equations: Lyy = Lg N Lnr,

and Ligr = Lr N Ly , where Lj is the regular language introduced in Definition 6.

By (i) Ask,Bsi € ZpSpace(llog) and Ang,Bnr € IpSpace(llog). On the other hand, from
Proposition 4 Asxi N Bsi & Lir1Space(o(log)) and Amy U Brg & Hiy1Space(o(log)) . This proves
(2) and (3).

Property (4) for X, classes follows from the fact that for any k& > 2 Ly {0} Ly, = Asg N Bsy,
does not belong to X Space(o(log)), but Lxy € X Space(llog). To see that II;Space(S) is not
closed under concatenation define the languages

L; =L U{e}

30

where ¢ denotes the empty string and
Li = {’11}1011)20. - pro |p S]I\I, w; € Lk_]_ and wy € LHk—l} .
Obviously, both languages belong to IIjSpace(llog) , but from Theorem 8 follows

L; L = Ly, € I Space(o(log)) .

5 Lower Space Bounds for Context-Free Languages

Proposition 5 Lx = {1"01™:n #m} ¢ ASpace(o(log)) .

Proof. Let us assume, to the contrary, that L. is recognized by an S space-bounded ATM A for
some S € o(log). Let S'(n) := S(2n+1). Obviously, S’ € o(log) . Let 7 := N5 . Then by the
Small-Space-Bound-Lemma, for all &£,£> 0

Space 4(1701%) = Space 4 (17TF™ 017+47!) (i)
Let o
§ = Space4(17017). (i)

For this fixed 7 we define the following language L = {17*k7017+¢! . k ¢ € IN and k # ¢}, and
construct an automaton A that recognizes L. A performs the following algorithm:

Step 1. Check deterministically if the input X has the form 17+k7'017+¢! for some integers & and
Z; reject and stop if this condition does not hold;
Step 2. Move the head to the first symbol of the input and start to simulate the machine A .

It is obvious that A accepts an input X = 12+k2!012+7" if and only if A accepts X . Hence we
have L(A) = L. It is easy to see that step 1 can be performed within space O(log#!), which is a
constant. Moreover from (i) and (ii) it follows that step 2 also requires only constant space §. Hence
A recognizes L within constant space. We get a contradiction, since L is non-regular. |

Using a similar proof one can show that the language
L. := {1"01":n € N}
is not in ASpace(o(log)) , too.

The rest of this section is devoted to the lower space bounds for a large subset of nonregular context-
free languages.

The block structure of a bounded language L can equivalently be represented using a finite alphabet
{a1,...,a,}. Then L is a subset of {a1}*...{a,}*.

Definition 9 Let V(L) denote the set {(vi,...,v,) € IN" | a'...a¥ € L}. Sets of the form
{a+n1B1 + ... + ngBr|n1,...,nxg € N} with «,01,...,0;r € IN", are called linear sets. A finite
union of linear sets is a semilinear set. A language L is semilinear if L C {a1}*...{a,}* and V(L)
is a semilinear set.

Proposition 6 Let L C {a;}*...{a,}* be semilinear and let L,L € ASpace(S) for some S €
o(log) . Then L is regular.

31

Proof. For r =1 the proposition is true because every semilinear tally language is regular. Let us
assume that r > 1 and that the proposition holds for r — 1. Sets of the form

{a+gm+..-+ave | @, q € Ry}

with v1,...,7 € IN" are called cones (see [1]). Assume now, to the contrary, that L is nonregular.
To show that this cannot occur we first construct a semilinear language L € ASpace(S) that is also

nonregular and for which there exists an r-dimensional cone C such that V(L)NC = 0. To this
end, methods developed by Alt and Mehlhorn in [1], [4] will be used.

Lemma ([1]) There exists an r-dimensional cone C and a regular language R C {a1}*...{a.}*
with
V(L)nC = V(R)NC .

Let R and C be as in the lemma. Define L; := L\ R and Ly := R\ L. Obviously L; or L, is
nonregular since L is nonregular. We set L := L; if L; is nonregular and L := L, otherwise. The
language L is semilinear since the class of semilinear sets is closed under Boolean operations ([12]).
Moreover, L € ASpace(S), because L,L € ASpace(S) and V(L)NC = ® for the r-dimensional

cone C'.

Definition 10 Let us call a set K C IN" extended if there exists a € IN" and 3 € IN', such that

VkeN a+kBeK.

Remark: In [1] a different definition of extended set has been used. However it is easy to check that
both definitions are equivalent.

If V(L) is not extended then one can show similarly as in [1] that there there exists a nonregular
language in {a1}*...{a,_1}* fulfilling the assumptions of the proposition. Hence, by the inductive

hypothesis we obtain a contradiction. Therefore, we can assume that V(L) is extended. Let a =
(a1,.-.,0.) and B=(B1,...,0,) with aq,...,a, € N and f4,...,8, € Ny, be vectors such that

VkeN a+kBeV(L).

Moreover, let M be an ATM which recognizes L in space S . Define the function S’ by

S'(n) = S(iai +n iﬁz) .

Since S € o(log) also S’ € o(log) . Let 7 := Ny g . Then we define

R = {a;‘1+(ﬁ+llﬁ!)ﬁl-_ Wrt-(Atlrn!) By

T

b,....4, e N} and L := RnL.

. a
A contradiction will be obtained from the following claims
Claim 1 L can be recognized in constant space.
Claim 2 L is nonregular.

Proof of Claim 1: Using for every ¢ = 1,...,r f,;-times the Small-Space-Bound Lemma we
obtain that for any sequence of integers ¢; > 0
i = SpaceM(atlll-i-(ﬁ-i-hﬁ!),& o a:,q—i-(ﬁ—i-f,wﬁ!)ﬂr) — Sl(a?1+ﬁﬂ1 o agr—i-ﬁﬂ,,)) (1)

Let M be an ATM which performs the following algorithm:

32

Step 1. Check deterministically if the input X has the form a?ﬁ(ﬁulm)ﬁl af’*(ﬁu"m)m for
some integers f1,...,0, .
Reject and stop if this condition does not hold.

Step 2. Move the head to the first symbol of the input and start to simulate the machine M.

It is obvious that M accepts an input X = a‘leﬁHlm)ﬁl I GO ET: 2 Ve accepts X .

Hence, we have L(M) = L. It is easy to see that step 1 can be performed within space O(log#!),
which is a constant. Moreover from (i) it follows that step 2 also requires only constant space §.
Hence M recognizes L within constant space. |

Proof of Claim 2: A set of the form
{’7+(k}1(51,...,kT6T)|k‘1,...,k‘T €]N}

with v € N" and 4y,...,0, € IN is called a grid. We show that if L is regular then there exists an
r -dimensional grid in V(L) .

Assume that L is regular. Then, using the pumping lemma for regular languages one can show that
there exist integers £ > 0 and 6;1,...,6, > 0 such that for all ky,..., k. >0

a+ (A4)+ (kié, ..., k6.) € V(L) .

Hence, the r-dimensional grid G := {y+ (k161,...,k.0) | k1,...,k, € N} with v =a+ (A + £A!)S
is a subset of V(L), which implies G C V(L). From this and the property V(L)NC = @ shown
above we obtain that GNC = @ for the r -dimensional cone C'. This yields a contradiction to the
following result.

Lemma ([1]) Let G C IN" be an r-dimensional grid and let C' C IN" be an r-dimensional cone.
Then GNC #0. |

Recall that a language L is called strictly nonregular if there are strings u,v,w,z and y such that
Ln {u}{v}{w}{z}*{y} is context-free and nonregular. It was shown by Stearns ([20]) that every
nonregular deterministic context-free language is strictly nonregular. Therefore, from the proposition
above we obtain immediately that if L is a nonregular deterministic context-free, a strictly nonregular
language, or a nonregular context-free bounded language, then for ATMs without any bound on the
number of alternations it is not possible that L and L both belong to ASpace(o(log)) . Moreover,
from Theorem 7 it follows that the class of languages recognized by space-bounded ATMs with a
constant number of alternations is closed under complement. Hence it follows that the language L

does not belong to |J,cn ZrSpace(o(log)) . This completes the proof of Theorem 6.

6 Conclusions

The obvious question remaining is how X;Space(S) and II; Space(S) compare. It is somewhat
annoying that the techniques developed in this paper do not give any help for the case £k = 1. It
is not completely unrealistic to believe that both classes may be equal, which would give the novel
result that a hierarchy is infinite, although its first level collapses.

If one restricts to bounded languages X1 Space(S) is closed under complementation and both classes
are identical, which has been shown in [2] and [23]. But for k¥ = 2 the situation changes completely.
The languages Lyo and Lps are unary — the most stringent form of a bounded language — and
still separate XaSpace(S) from IIsSpace(S). Thus a separation of the first level would require a
syntatically more complex languages than the second level. For k > 2 the languages Ly and L
used in this paper to establish the separation are no longer bounded. But by Proposition 4 the third
level can also be separated using simple bounded languages Ays N Bss and Aps U Bz that both
are subsets of {1}*{0}{1}*.

33

Nothing seems to be known for level 4 and higher. Thus, the sublogartihmic space hierarchy for
bounded languages may be even more complex. We have made some observations leading to the
conjecture that for bounded languages this hierarchy might indeed consist of only a finite number of
distinct levels.

Finally, it would be nice to characterize the exact relationship between co- X4 Space(S) and II; Space(S)
for sublogarithmic space bounds S and the class of arbitrary languages.

34

References

1
2

10.

11.
12.
13.

14.

15.

16.

17.
18.

19.
20.
21.

22.

23.
24.

25

. H. Alt, Lower bounds on space complexity for context-free recognition, Acta Inform. 12, 1979, 33-61.

. H. Alt, V. Geffert, and K. Mehlhorn, A lower bound for the nondeterministic space complexity of context-
free recognition, Inform. Process. Lett. 42, 1992, 25-27.

. H. Alt, and K. Mehlhorn, A language over a one symbol alphabet requiring only O(log logn) space,
SIGACT Newsletter, 1975, 31-33.

. H. Alt, and K. Mehlhorn, Lower bounds for the space complexity of context free recognition, Proc. 3rd
ICALP, 1976, 339-354.

. B. von Braunmiihl, Alternation for two-way machines with sublogarithmic space, Proc. 10. STACS,
Wiirzburg, 1993, 5-15.

. B. von Braunmihl, R. Gengler, and R. Rettinger The alternation hierarchy for machines with subloga-
rithmic space is infinite, Research Report, Universitidt Bonn, January, 1993.

. J. Chang, O. Ibarra, B. Ravikumar, and L. Berman, Some observations concerning alternating Turing
machines using small space, Inform. Proc. Letters 25, 1987, 1-9.

. V. Geffert, Nondeterministic computations in sublogarithmic space and space constructability, SIAM
J. Comput. 20, 1991, 484-498.

. V. Geffert, Sublogarithmic X2 -space is not closed under complement and other separation results, Tech-
nical Report, University of Safarik, 1992.

V. Geftert, Tally version of the Savitch and Immerman-Szelepcsényi theorems for sublogarithmic space,
SIAM J. Comput. 22, 1993, 102-113.

V. Geffert, A hierarchy that does not collapse: alternations in low level space, manuscript.
S. Ginsburg, The mathematical theory of contezt-free languages, McGraw-Hill, 1972.

N. Immerman, Nondeterministic space is closed under complementation, STAM J. Comput. 17, 1988,
935-938.

M. Liskiewicz, and R. Reischuk, Separating the lower levels of the sublogarithmic space hierarchy, Tech-
nical Report, Technische Hochschule Darmstadt, Institut fiir Theoretische Informatik, 1992, see also
Proc. 10. STACS, Wiirzburg, 1993, 16-27.

M. Liskiewicz, and R. Reischuk, The sublogarithmic space hierarchy is infinite, Technical Report, Tech-
nische Hochschule Darmstadt, Institut fiir Theoretische Informatik, January 1993.

B. Litow, On efficient deterministic simulation of Turing machine computations below logspace, Math. Sys-
tems Theory 18, 1985, 11- 18.

P. Michel, A survey of space complexity, Theoret. Comput. Sci. 101, 1992, 99-132.

D. Ranjan, R. Chang, and J. Hartmanis, Space bounded computations: review and new separation results,
Theoret. Comput. Sci. 80, 1991, 289-302.

M. Sipser, Halting space-bounded computations, Theoret. Comput. Sci. 10, 1980, 335-338.
R. E. Stearns, A regularity test for pushdown-machines, Information and Control, 11, 1967, 323-340.

R. E. Stearns, J. Hartmanis, and P. M. Lewis, Hierarchies of memory limited computations, Proc. 1965
IEEE Conf. Record on Switching Circuit Theory and Logical Design, 1965, 179-190.

R. Szelépcsenyi, The method of forced enumeration for nondeterministic automata, Acta Informatica 26,
1988, 279-284.

A. Szepietowski, Turing machines with sublogarithmic space, unpublished manuscript.

K. Wagner, Editorial note: The alternation hierarchy for sublogarithmic space: an ezciting race to
STACS’93, Proc. 10. STACS, Wiirzburg, 1993, 2-4.

. K. Wagner, and G. Wechsung, Computational complezity, Reidel, Dordrech, 1986.

35

