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Abstract

This paper proves that if strong pseudorandom number generators or one-way func-
tions exist, then the class of languages that have polynomial-sized circuits is not small
within exponential time, in terms of the resource-bounded measure theory of Lutz.
More precisely, if for some € > 0 there exist nonuniformly 27 -hard PSRGs, as is widely
believed, then P/poly does not have measure zero in EXP. Our results establish con-
nections between the measure theory and the “natural proofs” of Razborov and Rudich.
Our work is also motivated by Lutz’s hypothesis that NP does not have measure zero
in EXP; obtaining our results with NP in place of P/poly would show much more
far-reaching consequences from the existence of PSRGs than are currently known.

1. Introduction

The theory of resource-bounded measure, initiated by Lutz [14, 15, 16] and furthered in
[20, 12, 17, 18, 19, 13, 1, 21], has provided a useful framework that links many central
problems in complexity theory. Classes that have measure zero are small in a quantitative
sense described by Lutz in [16]. Lutz et al. [16, 12, 18] have advanced the hypothesis that
NP does not have measure zero within EXP, where EXP stands for DTIME[Q”O(I)], and
have shown that several striking and plausible consequences would follow: Besides NP # P,
there would be NP-complete languages under polynomial-time Turing reductions that are
not complete under many-one reductions, NP would contain immune and bi-immune sets
for P, and there would be NP search problems that do not reduce to their corresponding
decision problems.

We first prove that if NP # EXP, then either NP has measure zero or NP is not
measurable at all within EXP. Hence Lutz’s conjecture is really that NP is not measurable.
Up to now there have not been any general techniques for showing classes C to be non-
measurable. Our paper gives such a technique, based on the theory of pseudorandom
generators (PSRGs) ([5, 10, 8, 9]). PSRGs that have exponential hardness, meaning that for
some ¢ > 0 they are unbreakable by 2" -sized circuits, are widely believed to exist. Indeed,
the smallest circuits known to break PSRGs based on the discrete logarithm problem have
size just short of 27'? " Qur main theorem, however, is for C = P/poly, the class of all
languages having polynomial-sized circuits, rather than C = NP.
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Theorem 1. [f there exist PSRGSs of exponential hardness or one-way functions of expo-
nential security against non-uniform adversaries, then P /poly is not measurable in EXP.

This is interesting because ordinarily one thinks of P/poly as a tractable class, much
lower down than NP on the complexity scale. What our proof brings out is the large role
played by nonuniformity. It also follows from our results that if there is a pseudorandom
function generator [7] of exponential security in nonuniform NC', then nonuniform NC'
is not measurable in EXP. We also prove unconditionally that non-uniform ACY[2] is not
measurable under either of the measures defined by Allender and Strauss [2].

We prove our theorems by showing that the martingales used in defining Lutz’s measure
theory yield natural properties, as defined by Razborov and Rudich [26], of equivalent non-
uniform complexity that diagonalize against (or “are useful against”) the class C on which
the martingale succeeds. An improvement of theorems in [26] due to Razborov [25] yields
the conclusion. The main technical problem solved in our proof is that the martingales are
defined on “characteristic prefixes” that define membership in a language L of all strings
up to a given length n, whereas the natural properties concern length-n only. Our solution
appears to work only for non-uniform complexity.

The natural properties produced by the martingales have greater density—l/no(]) in
place of 1/20(”)—than that postulated by Razborov and Rudich. We note that the first
four main examples in [26] actually have density at least constant or 1 — o(1), and all of
them meet a stronger “a.e.” condition of diagonalizing against every L € C at all but finitely
many lengths, not just infinitely many lengths. In addressing the question of whether the
measure and natural-proof theories are equivalent, we prove the following:

Theorem 2.

(a) For every e > 0 and P /poly-computable martingale that succeeds on P /poly, there is
a P /poly-natural property of density 1/n'*T¢ that diagonalizes i.o. against P/poly.

(b) For every P /poly-natural property of density 1/n that diagonalizes a.e. against
P /poly, there is a P/poly-computable martingale that succeeds on P /poly.

These relationships hold for other well-behaved classes besides P/poly. Our results give
strong reasons to investigate further both the measure theory and the natural-proofs theory,
promising progress on important problems in complexity theory.

2. Preliminaries

The notation and conventions we use are essentially standard. All languages and functions
are assumed to be defined over the finite alphabet ¥ = {0,1}. The empty string is denoted
by A. We denote by F), the set of all Boolean functions in n variables. A Boolean function
fn € F, can be thought of as a binary string of length 2" that represents the truth table of
fn. For readability we often write N for 2”. We identify a language A with its characteristic
sequence Y4, and regard the latter also as a member of the set {0,1}* of infinite binary



strings. For all n > 0 we also identify A=" with the segment u, of x4 of length 2"
that represents the membership or nonmembership in A of all strings of length n, and
likewise identify AS™ with uguy - -+ u,. Note that each u, belongs to F,,. Then the cylinder
Cw = {7z € {0,1}* : w C z} contains A and all languages that agree with A on the
membership of strings up to the last one indexed by w, under the standard ordering of Y.*.

QP stands for DTIME[2P°I°8"] which is often called quasipolynomial time. QP /qpoly
stands for the class of languages accepted by quasipolynomial-sized circuits; equivalently, by
opolylogn_time hounded Turing machines that take 2P°Y1987 bits of advice. This is analogous
to P /poly but for quasipolynomial bounds. All logarithms in this paper are to the base 2.

2.1. Pseudorandom generators and one-way functions

A PSRG is formally a sequence {G, }, where each G, is a function from {0, 1} to {0, 1}4("),
and {(n) > n. Intuitively, G, is designed to “stretch” a sequence of n truly random bits
into a longer sequence of bits that appear random to resource-bounded adversaries.

Definition 1. For a PSRG G = {G,}, its hardness at n, H(G,), is defined to be the

largest integer S(n) such that for every {(n)-input circuit C' of size at most S(n),

1
yE{Oli)lr}"(“)[C(y) =1- xe{%}‘l}“[c(G”(x)) =1]| < S(n)’

G is said to be of hardness at least h(-) if for all but finitely many n, H(G,) > h(n).

A well-known “robustness” theorem (see [5, 9]) states that so long as £(n) = n®0),
H(G),) is invariant up to constant factors. As Razborov and Rudich do, we work with
PSRGs that stretch n bits to 2n bits.

We mention in-passing the results of Hastad, Impagliazzo, Levin, and Luby [9, 10, 8]

O(1) Qno(l)

proving that for any resource-bound class R between n and that is invariant under
polynomial scaling, there exists a PSRG of hardness greater than R iff there exists a one-way
function that is secure against R-bounded adversaries. The equivalence holds also in the
uniform case [8, 9], where the adversaries are time-bounded probabilistic Turing machines
(PTMs) and R bounds running time rather than circuit size. The transformations in [9]

yield the following, which we cite for later reference.

Theorem 3. ([9]) If for some constanty > 0, there exists a one-way function of security 2"
against non-uniform (resp. uniform) adversaries, then for some constant 6 > 0 there exists
a pseudorandom generator of hardness on’ against non-uniform (resp. uniform) adversaries.

2.2. Resource-bounded measure

The resource-bounded measure theory of Lutz [15, 16] is developed along the lines of classical
measure theory (see [23, 6, 24]). Languages are regarded as points in the topological space



whose basic open sets are the “cylinders” C,,, one for each w € {0,1}*, and complexity
classes are point sets. The general form of Lutz’s theory, expounded recently by Mayordomo
[21], defines conditions for a class C to be measurable by a function class A, and to have
measure e, written pa(C) = e, where 0 < e < 1. Since all complexity classes we discuss are
closed under finite variations, and by a form of the Kolmogorov zero-one law proved in [21]
have measure zero or one, we need only discuss conditions for classes to have measure zero.
This thesis and [15, 16] show that these measurability conditions can be defined in terms of
martingales of the kind studied earlier by Schnorr [29, 30, 31]. A martingale is a function d
from {0, 1}* into the nonnegative reals that satisfies the following “exact average law”: for
all w e {0,1}*,
d(w0) + d(wl)

d(w) = == (1)

Let D stand for the nonnegative dyadic rationals; i.e., those numbers of the form n/2" for
integers n,r > 0.

Definition 2 (compare [15, 21]). Let A be a complexity class of functions. A class
C of languages is A-measurable and has A-measure zero, written pua(C) = 0, if there is a
martingale d : {0,1}* — D computable in A that succeeds on C, in the sense that C C 5*[d]
where

Seldl={A: iigrril d(w) = +o0}.

Put another way, the success class S°°[d] is the class of languages A that satisfy
(VK > 0)(3IN > 0)(Vw C A)[|w| > N = d(w) > K]. (2)

Intuitively, the martingale d is a “betting strategy” that starts with a capital sum d(X) > 0
and makes infinite profit along the characteristic strings of every A € §°°[d]. The purpose
of the theory is to analyze the complexity required for a martingale to succeed on every
language in certain subclasses C of a given class D. This provides a tool for analyzing the
internal structure of D.

If D is defined by a collection R of resource bounds that is closed under squaring, then
Lutz defines A(D) to be the class of martingales computable within the bound r(log N') for
some function (N ) € R. For any class C, Lutz writes u(C|D) = 0, read “C has measure
zero within D,” if [LA(D)(C N D) = 0. Two instances of particular importance are:

Mayordomo [21] proved that in these cases, the definition of u(C|DP) = 0 is robust under
certain changes to Definition 2, most notably under relaxing (1) to the inequality d(w) >
(d(w0) + d(wl))/2, and under relaxing the limit condition in (2) to a limsup; viz. for all
A€, (VK > 0)(dw C A)[d(w) > K]. Hence the above is equivalent to the formulations
originally used by Lutz in [15]. (We return to the robustness issue when discussing the
measures on D = P defined by Allender and Strauss [2].)



If u(C|D) = 0, then C N D is intuitively “small” as a subclass of D. If NP is small
within E [or within EXP], then there is a single [quasi-]polynomial time computable betting
strategy that succeeds simultaneously against every language in NP. With the feeling that
this is unlikely, Lutz advanced the conjecture that NP is not small in either class. The
striking consequences listed in the Introduction follow if NP is not small (in particular, the
consequences are shown in [12, 16, 18] to follow from —pup(NP) = 0, which is implied by
—uqr(NP) = 0).

The classical time-hierarchy theorems carry over to measure; in particular, P and QP
have measure zero in E, and E itself, indeed DTIME[2""] for any fixed ¢, has measure zero
in EXP. It is shown in [15, 16, 2] that classes of measure zero behave very much like null-
sets in classical measure theory. The complement (in D) of a measure-zero subclass C has
A(D) measure 1 (this is a definition in [15, 16] and a theorem in [21]). Finite unions, and
also “A(D)-bounded” countable unions, of measure-zero classes have measure zero. The
operation of symmetric difference on languages, namely AAB = (A\ B)U(B\ A), behaves
like an “affine translation” in preserving measure:

Proposition 4. Let D be a time complexity class for which A(D) is definable as above,
and given C C D and A € D, defineCAA={LAA:L ¢€C}. Then u(C|D) =0 <=
w(C A AD) = 0.

Proof. As a function of N = |w|, a A(D) machine M has enough time to simulate a
fixed D-machine M4 that accepts A on all the strings indexed by bits in w, forming the
length-N initial segment v of y4. Then letting d be the original martingale that succeeds
on C, M outputs d(w & v). O

(This result holds also for the Allender-Strauss measures, since M4 need be simulated only
on those z indexed by bits in the “dependency set” for d(w).)

Lutz [16] mentions that his hypothesis that NP is not small in EXP leaves open the
possibility that NP has measure 1 in EXP, or that NP is not uqp-measurable at all. The
following new result essentially removes one of these possibilities.

Theorem 5. With D as above, let C be a proper subclass of D that is closed under symmetric
difference, or under finite union and intersection. Then C does not have measure 1 in D.

Proof. Tf C has measure 1, then D\C has measure zero. Because D is a deterministic time
class, it is closed under all Boolean operations, and it follows that (D\ C) A X* = D\ co-C.
Hence by Proposition 4, co-C has measure 1in D. So does C' = CNco-C, since the intersection
of two measure-1 subclasses of D has measure 1. Now (' is closed under symmetric difference,

soif welet A € D\C',C'A Ais disjoint from C’. But D cannot contain two disjoint measure-
1 subclasses. O

Corollary 6. Let C denote any of NP, coNP, X7 TI¥, P/poly, nonuniform NC, BPP, PP,
or PSPACE. Then pu(C|[EXP) =1 <= C = EXP <= Cnco-C = EXP.



2.3. Natural Proofs

The technical concept at the heart of the paper by Razborov and Rudich [26] is the following.
For each n, let F,, denote the set of n-variable Boolean functions; i.e., functions from {0, 1}
to {0,1}. Then || F,|| = 2V, where N = 2". Define a combinatorial property to be a sequence
II = [11,,]52,, where each 1L, is a subset of F,,. A language A is drawn from 1L if for all
n, the Boolean function given by A=" belongs to Il,,. The property 1l diagonalizes over a
class C of languages, or “is useful against” C, if no language drawn from Il belongs to C.
When C is closed under finite variations, this is equivalent to diagonalizing i.0. against C:

(VB €C)(3*®n) B=" ¢ 11,,. (3)
We remark that all of the natural properties constructed in [26] satisfy the stronger condition
(VB €C)(Y*¥n) B=" ¢ 11,,. (4)

We call this diagonalizing a.e. against C. Indeed, the journal version [27] of their paper
adopts the “a.e.” definition, by inserting a clause “for all sufficiently large n” into the
conference version’s definition of “useful.” Both the “i.0.” and the “a.e.” conditions are
important in this paper, and our work below on going from natural proofs to martingales
brings out the significance of the difference.

The complexity of 1l is the complexity of the decision problem: given a Boolean function
fn € Fy,is f, € 11,7 Note that this complexity is measured as a function of N, not of n,
so it has the same “scaling” as Lutz’s martingales. Finally, the property is large if there
exists a polynomial p such that for all but finitely many n,

Ml o 1
I,)="——+—>——. 5
Put another way, the Boolean functions in II,, have non-negligible density in the space of
all Boolean functions.

Definition 3 (cf. [26]). Let C and D be complexity classes of languages. A combinatorial
property II is D-natural against C if 11 is large, belongs to D, and diagonalizes over C.

Rudich and Razborov show that several important separation results in complexity
use techniques that construct natural properties. Two of their main theorems point out
limitations of such techniques. The following two improvements of these theorems from
polynomial to quasipolynomial size bounds for D are noted by Razborov [25]:

Theorem 7.

(a) If there exists a combinatorial property that is QP /qpoly-natural against P /poly, then
PSRGs of exponential hardness against non-uniform adversaries do not exist.

(b) There does not exist a combinatorial property that is gAC°-natural against AC°[2],
where gAC® denotes the class of languages accepted by a quasipolynomial size circuit
family of constant depth.

(In Appendix 1, we sketch the needed changes to the proofs in [26], which are not given
by Razborov in [25], nor in [27]. These were discovered independently, but later, by us.)



3. Main Results

To prove our main theorem, we show that if u(P/poly|EXP) = 0, then one can build a
natural property that diagonalizes over P/poly. Since the measure on EXP involves QP-
computable martingales, we obtain a natural property that belongs to QP /qpoly, in fact to
quasipolynomial time with linear (in V) advice. OQur first lemma follows by an elementary
counting argument, using the fact that -, . 1yed(uv) = 2L d(u).

Lemma 8. let d be a martingale. For any string u and any £ € N, b € R,

(v € 0,1} : d(uv) < (1 + %) d(u)}H > of (HLJ .

Our key lemma has the idea that given a martingale d that succeeds on P/poly, we
can build a combinatorial property that captures those Boolean functions on {0,1}" along
which d makes too little income to succeed. This property then diagonalizes i.o. against
the success class of the martingale, which contains P/poly. Since 11,,(1 4 1/n?) converges,
we can say that a return on capital of 1/n?%, let alone losing money along a branch, is “too
little income” for d. Lemma 8 will guarantee that the density of these poor branches is at
least 1/n% = 1/(log? N), a notably greater density than that called “large” in [26].

Lemma 9. If a QP martingale d succeeds on P /poly N EXP then for every polynomial q,
there exist infinitely many n and circuits C; of size at most (i), for 0 < i < n, such that
for all circuits C,, of size at most q(n),

1
d(ug ... u,) > (1 + 77_2> d(ug ... Up_1),

where u; is the 2-bit binary “characteristic string” that indicates the membership in L(C;)

of {0,1}".

Proof. Suppose not. Then there is a polynomial ¢ and constant ny € N such that for
all n > ng, for every sequence of circuits C; of size at most ¢(7), for 0 < i < n, there exists
a circuit C), of size at most ¢(n) such that d(ug...u,) < (1 + n%) d(ug...uy—1), where the
u;’s have the same meaning as in the statement of the lemma.

We will build a language I as follows: for strings of length less than ng, membership
in L will be an arbitrary but fixed sequence. Let a = d(uq...upn,—1). Clearly @ < oo. For
n > ng, we define L=" inductively. Let ug, ..., u,_1 be the result of the recursively applying
the construction to obtain L<": that is, u; = L='. By assumption, there exists a circuit C,
of size at most ¢(n) such that d(ug...u,) < (1 + 73—2) d(ug...up—1). Set u, = L(C*)=",
where C* is the lexicographically first C), that satisfies this inequality (under some fixed
encoding of circuits of size at most ¢(n)).

Clearly L € P/poly, since it can be accepted by the circuit family [C,]o2,. That
I € EXP is immediate from the fact that finding the lexicographically first C), takes time



at most 29(M+r(") where the running time to compute the martingale d determines p(n).
Finally,
lim d(L5") < a](141/n%) < o,

n—od

so d does not succeed on [, a contradiction. O

The remaining technical problem is to weave together the constructions in Lemma 9
for all polynomial bounds ¢g. We do not know of a uniform way to choose the circuits
Co,Ch,...,Cph_q1 promised by Lemma 9 over all ¢ and the infinitely-many n for each ¢, and
this is where nonuniformity enters into our results.

Lemma 10. If u(P/poly|EXP) = 0, then there is a QP /poly-natural property against
P/poly.

Proof. For each k, let T} be the infinite set of numbers n promised by Lemma 9 for the
bound ¢(n) = n*. Set T := UyT}. For all n € T, take the largest number k < n such that
n € Ty, take the lexicographically first Cy,...,C,_1 that works in Lemma 9, and define
Un—1 to be the concatenation of the corresponding ug,...,un—1. For n ¢ T, make some
arbitrary choice such as U,_; = 02"~'. Finally, for all n define

1, := {fn 2d(Up—1fn) < (1 + 771—2> d(Un_l)} .

Now, by Lemma 8, the property IT = {Il,,} is large; in fact, it has density 1/ poly(n),
not just 1/poly(2"). By the computability of the martingale d, II,, can be recognized in
quasi-polynomial time in 2", given the U,_1’s as advice. Equivalently, there is a family of
circuits of size quasi-polynomial in 2" that recognizes 1I,,. Let L be an arbitrary language
in P/poly, and let n* be a bound on the size of a family of circuits to recognize L. Clearly,
for all n € Ty, L=" ¢ 11,,. Therefore, property I diagonalizes i.0. over P/poly. O

Theorem 11. If u(P/poly|EXP) = 0, then for every family of pseudorandom generators
G = {G} : {0,1}*F = {0,1}2*} computable in P /poly, for every e > 0, for sufficiently large
values of k, H(G}) < 2%,

Proof. This follows from the above three lemmas and Theorem 7. O

Corollary 12. If for some v > 0 there exists a one-way function of security 2", then
P /poly is not measurable in EXP. O

Based on assumptions about the hardness of the subset-sum problem, Impagliazzo and
Naor [11] show how to construct a pseudorandom generator in NC'. Razborov and Rudich
note that if there is a pseudorandom function generator of exponential hardness in NC?,
there is no P/poly-natural proof against NC'. It follows from our results that:

Theorem 13. If there is a pseudorandom function generator of exponential hardness in
NC!, then nonuniform NC' is not measurable in EXP. O



3.1. Measure of AC°[2]

Allender and Strauss [2] define measures on the class P = P, imposing a restriction on the
corresponding martingale class that becomes vacuous for D = E or D = EXP, and can be
described as follows: Rather than give the Turing machines M computing martingale values
d(w) the string w as input, give them N = |w| in binary notation on their input tape, and
let them query individual bits of w. (Then M is formally the same as the machines used to
define the PCP classes in [4, 3, 32].) Measure time bounds in terms of n = [log, N| = |N
rather than N. Then the function d(-) belongs to I'(P) as defined in [2] if M runs in time
O and if every node N in the directed “dependency graph,” defined to have an edge
(m,N) if M on input N queries bit m of some w, has nP(1) predecessors. They write
p(C|P) = 0 if there is a I'(P) martingale that succeeds on C N P.

n

Allender and Strauss note that their measure is robust under either one of the relaxations
mentioned in section 2.2, but that relaxing both, i.e. allowing d(w) > (d(w0)+ d(w1))/2 in
place of (1) and using the “limsup” condition of success in place of (2), yields a different
measure. We write p5(C|P) = 0 to signify that C is one of the strictly-larger family of null
classes in their second measure. They show that the class of sparse sets in P is null in the
latter but not the former, and in particular that (P-uniform) AC® is not I'(P)-measurable.
But whether p3(ACY|P) = 0 is open. Using our methods, we show:

Theorem 14. Nonuniform AC°[2] does not have yy measure zero.

Proof Sketch. The main idea is that owing to the dependency-set restriction in defining
I'(P), the hypothesis uy(AC?[2]) = 0 yields a qAC°-natural property against AC°[2]. To
handle the fact that the notion of I'y(P) measure is defined using lim sup rather than the
limit, we use stronger versions of Lemmas 8 and 9. Theorem 7(b) then yields a contradiction.

O

(Appendix 2 contains a longer, more-detailed discussion of the Allender-Strauss measures
and a full proof of Theorem 14. It also remarks on the problem of strengthening this to
read: nonuniform AC°[2] is not measurable in P.)

4. The Uniform Case and Honest Martingales

The next interesting question is whether Theorem 11 can be made to work under the
hypothesis that for some v > 0 there is a one-way function of security 2" against uniform
adversaries. 'The main problem is that the natural property we construct in Proposition 10
is non-uniform, and this non-uniformity carries over to the statistical test constructed in
the theorem of Razborov and Rudich, drawing on [7]. That is, the property belongs to
QP /poly. We have not been able to obtain a QP-natural property under the hypothesis
(P /poly|EXP) = 0—the sticking point is that we have not been able to enforce any
“consistency” among the characteristic prefixes ug,...,u,_1 obtained in applications of
Lemma 9 to build the II; that are interleaved in the proof of Lemma 10.



Interest in this problem led us to define the following “prefix-invariance” restriction on
martingales, which also comes up naturally in the next section. We begin by formalizing
the associated concept of a betting strategy.

Definition 4. A betting strategy is any function b:{0,1}* — [—1...+ 1]. The martingale
dy derived from b is defined by dp(A) = 1, and for all w € {0,1}*, dp(wl) = dp(w)(1+ b(w)),
dy(w0) = dp(w)(1 — b(w)).

For all w, let z,, stand for the string indexed by the bit ¢ in we, and let n,, be the
length of z,; i.e., n, = |logy(|w| + 1)]. Intuitively, b(w) is the signed proportion of
current capital bet on the event that z,, belongs to a given language L. A negative value
of b(w) indicates a bet that z,, ¢ L. Given a martingale d, one can regard the function
bg(w) := (d(wl) — d(w))/d(w) as the associated betting strategy, although it is undefined
when d(w) = 0. The possibility that d(w) = 0 for some w is actually ruled out by the
condition that the “success class” of d is closed under finite variations (or, it can be avoided
by a straightforward modification of d to have all values > %d(A)), but we have no difficulty
with this possibility being left open.

Definition 5. A martingale d : {0,1}* — R is honest if it is derived from a betting strategy
b:{0,1}* — R, such that for all w € {0,1}*, the computation of b(w) depends only on
those parts of w that index strings of length n,,.

Many of the martingales implicitly constructed by Lutz et al. are honest, ! and this
condition deserves further investigation. For honest martingales we immediately obtain a
stronger form of Lemma 9:

Lemma 15. [f an honest QP martingale d succeeds on P /[poly N EXP then for every poly-
nomial q, there exist infinitely many n such that for all circuits C,, of size at most q(n),
and all characteristic prefiz strings w € {0, 1}2n_1,

i) > 1+ ) d(w),

where u, is the binary characteristic string of length 2" that represents the strings accepted

and rejected by C,. [

Theorem 16. If a honest martingale computable in quasi-polynomial time succeeds on
P/poly N EXP, then one-way functions (and pseudorandom generators) of security 2%’
against uniform adversaries do not exist.

Proof. Let the honest QP-computable martingale d be given. For all n, let w,, be some
characteristic prefix of length N — 1 (indexing strings of lengths 0 through n — 1) such that

'Some exceptions are the “incompressibility theorem” of Juedes and Lutz [12], and theorems that build
martingales that “look back” in the input string for specific properties.

10



d(w,) > 0. Such w, can be found in quasipolynomial time by starting at the root A and
always taking branches along which d(-) does not decrease. (Or we can assume as remarked
above that d takes nonzero values and use w, = 0™V=1.) For all n, define

1
M, = {ue{0,1}":d(w,u) < (1+ ﬁ)d(wn)}
The corresponding property Il = {II,,} is large and belongs to QP. By Lemma 15, and
with the step of fixing “ug,...,u,_1” in the proof of Lemma 10 now rendered unnecessary,
it follows that 1T diagonalizes i.0. over P /poly.

It remains to verify that the statistical test constructed from 1l by Razborov and Rudich,
drawing on [7], is computable by a probabilistic Turing machine in time less than 2*". Let
d(w) be computable in time 20°81wD° on inputs w. Let a PSRG G : {0,1}* — {0,1}2k be
given. Given 7, take ¢ < v, and take n = k*/°. (In [26], with a P/poly-natural property,
they have ¢ = 1.) Recall the construction of “Gy(z)” in [26, 7], and of the pseudorandom
function generator defined by f.(y) = the first bit of G (2). Here |2| = k and |y| = n, and z
can be thought of as “advice” to compute the pseudorandom function f in time polynomial
in n.

Now by the proofs of Lemmas 9 and 10, for every polynomial ¢(n), there are infinitely
many n such that 11,, diagonalizes over all languages acceptable in time and advice ¢(n); we
take g(n) = n/*. Then for k = ¢(n), 11,, can be used as a statistical test against f, along
the lines laid out by Razborov and Rudich, using the tree-construction from [7]. The only
nonuniform step in their proof is the fixing of strings z,, for all roots v of subtrees that come
before the subtree being isolated (v;41 in the proof, with respect to the ordering used there),
via an “averaging argument.” When we have a probabilistic Turing machine M, however,
the averaging argument can be dispensed with: M flips coins to select 7, 1 < ¢ < 2", locates
v; and v;41, and then randomly assigns k-bit strings z,, to all nodes v; with j < . Then
the 27 leaves of the tree yield a bit-string of length N that is tested for membership in 11,,.
The verification that M obeys the required time bounds and achieves the necessary bias is
placed into Appendix 1. O

A slightly stronger result follows from the above: if there is a uniform P-natural or even
QP-natural proof against P/poly N EXP, not just against P/poly, then there are no PSRGs
of hardness 2" against uniform adversaries. This leads into a very sensitive point about
the interplay between uniformity and non-uniformity, deserving its own subsection.

4.1. Uniform and non-uniform results

The above results hold in a fairly general form:

Theorem 17. Let D be a uniform complexity class defined by a collection R of time bounds
on Turing machines that contains O(N) and is closed under squaring, with nonuniform-D
defined by bounds in R on circuit size. Then:
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(a) For every martingale d computable in non-uniform D, we can construct a natural
property 11 belonging to non-uniform D such that 11 has density at least 1/log*(N)
and diagonalizes i.0. against the success class S°°[d] of the martingale.

(b) If d is in D, and if d is honest, then Il belongs to D; i.e., Il is uniform.

Similar results apply, with technical modifications, for the polylog( N )-time I'y(P) measure
of Allender and Strauss.

Now consider the hypothesis of our main result, that there is a P- or QP-martingale that
succeeds on P/poly N EXP. Reading from part (a) of Theorem 17, we would conclude that
there is a P/poly- or QP /poly-natural property II that diagonalizes against P /poly N EXP.
But our key Lemma 9, combined with Lemma 10, actually yields a much stronger conclusion,
namely that the constructed II diagonalizes i.o. against all of P/poly. This is what is needed
for the Razborov-Rudich result.

It is precisely this kind of strengthening that we have been unable to obtain, on hypoth-
esis that there is a I'y(P) martingale that succeeds on AC"[2] N P, although Appendix 2
presents some ideas that make this plausible. What we have is that no I';(P) martingale
can succeed on all of (nonuniform) AC?[2].

This point is important because there does exist a P /poly-natural proof against P /polyn
EXP, indeed against any given recursively presentable class C. Let @1, @5, ... be a recursive
enumeration of C-machines. Given n, define

T, ={we F,: (I <n)w=L(Q;)~"},

and put Il,, := F, \ T,,. Then Il € P/poly (in fact, Il € P/log, etc.), because for strings of
length n, i.e. for w of length N = 2", we can “hard-wire” the n-many characteristic sequences
of how machines @)1, ..., @, behave at length n. Also each II,, has density 1 — n/QN, which
is huge. And II diagonalizes against C, in fact diagonalizing a.e.

This shows that having a natural proof that diagonalizes against P/poly N EXP does
not suffice for the Razborov-Rudich result. It follows from results in the next section that
this IT can be converted into a P/poly-martingale that succeeds on P/poly N EXP. Hence
it is important for our main theorem that the martingale in question is computable in a
uniform complexity class.

5. Are martingales and natural properties equivalent?

The underlying idea behind the concepts of martingales and natural properties is a strong
form of diagonalization, and it is natural to ask whether they are equivalent. In this section,
we prove a partial converse of Theorem 17. Our results emphasize that two parameters in the
definition of natural properties that are somewhat submerged in [26, 27] are very important:
the density p(11,,) of the property II, that is, ||I1,,||/|| F||, and whether TI diagonalizes i.o.
or a.e. (see Equations 3 and 4).

Our results here seem to need somewhat stronger closure properties of the class D.
Say a circuit class D is nice if it is closed under parallel evaluation of polynomially many
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functions in D, under finite composition, and under the operation of finding “majority.”
Clearly P /poly is a nice circuit class.

Theorem 18. Let D be a nice class, and let C be any class of languages. Then:

(a) If there is a natural property 1l € D of density 1/n = 1/(log N') that diagonalizes a.e.
against C, then there is a martingale computable in D that succeeds on C.

(b) If there is a natural property Tl € D of density (1 —1/n'*t%) = (1 —1/(log N)'*°) that
diagonalizes i.o. against C, then there is a D-martingale that succeeds on C.

In the case where D is a uniform complexity class, what the proof gives us is a martingale
computable in “randomized D” with bounded (i.e., vanishing) error probability.

Proof. Suppose we have a D-natural property 1l that diagonalizes a.e. over C, and let
A = {A,} denote the algorithm (family of circuits) that decides II. For every n, consider the
full binary tree T,, of depth N = 2" that has 2"V leaves in one-to-one correspondence with
the members of F},. Let T,, = F},\1I,,, and when 7 is fixed or understood, let o = || T,,||/2"
denote the density of T,,.

For each n, the property 1l,, C F), identifies a large subset of the leaves that are “avoided”
by languages in C. By the a.e. diagonalization condition, this means that for every L € C,
and all but finitely many n, L goes through a branch in T,, at length n. This is the only
property of C that is used in the proof; the martingale works only with the information
about II,, versus T,,. Given unit capital at the root of T,,, the martingale we construct will
adopt the following simple strategy: try to make profit along the paths to all leaves in T,,,
avoiding the leaves in II,,. By the restriction on information, we allow that there may be
no way for the martingale to distinguish among the leaves in T,,, so the best it can achieve
is to amass a capital of 2V/||T,|| = 1/0 at every leaf in T,,.

Suppose the martingale is at an interior node » of T},. Let Vo = {w € F,, | w J v0} and
Vi ={w € F, | w3 vl} denote the set of leaves in the subtrees v0 and v1, respectively.
Let po(v) = [|[Vo N Y[|/[|Voll, pr(w) = ||[Vi 0 Y|]/[|Va]|- If the martingale could calculate py(v)

and py(v) ezactly, then it could set d(v0) = 2d(v) (pozj}(-)m) and d(v1) = 2d(v) (pﬁ;p». This

would ensure that each leaf in T ends up with a capital of 1/0 (as per the “density systems”
idea of Lutz [15]).

The problem is that a martingale that runs in time poly(N ) cannot compute the mem-
bership in T, of all the 2V leaves. However, by taking polynomially many random samples
at each interior node, a randomized machine M can (with high probability) estimate the
values po(v) and p(v) to a high degree of accuracy. Then M can use these estimates in lieu
of the actual values, and still obey the condition (1) that defines a martingale. This strategy
is continued so long as the subtree below v has more than N? nodes; when the subtree has
atmost N? nodes, an exhaustive examination of all leaves is done and most of the capital
is diverted towards the leaves in T,,, leaving a tiny portion for the leaves in 1I,,. This tiny
amount is donated to ensure that leaves z € Il,, do not go to zero, so that the martingale
may eventually succeed on languages I, € C with 2z C 7. To simplify the description of
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M and the calculations below, we assume that if M discovers that small subtree with N2
nodes has no leaves that belongs to T, it chooses some leaf arbitrarily and directs profits
toward it. This “wastage” does not matter much to the profits on leaves that actually do
belong to T,,.

Let go(v) and ¢q1(v) denote, respectively, the estimates of po(v) and pi(v) that are ob-
tained by sampling. Via standard Chernoff-bound methods, one can show that upon taking
poly(N)-many samples (for a suitably large polynomial), with probability 1 —exp(—N), the
estimates are within an additive term of § = 1/ poly(V) of the true values. The martingale
will then adopt the policy that overestimation (by upto §) is harmless, but underestimation
is dangerous. More precisely, the martingale will pretend that ¢o(v) and ¢;(v) underesti-
mate po(v) and py(v), and will therefore use go(v)+ ¢ and ¢ (v)+ 6 as safer approximations
to the actual values. It follows that

d(v0) _ qgo(v)+ 6 d(vl) _5 n(v)+6
dv) (@) +8)+ (@) +8)"  dv)  (w(@)+8)+(n(v)+6)
and that d(v0) + d(v1) = 2d(v).

Let m = [2N/N?], let 7, 79,..., 7, denote the subtrees of T}, at height 2log N that
contain N? leaves each. For each i, let u; denote the root of 7;, and let p; denote the
probability ||leaves(r;) N Y||/N?. Let p; denote the density ||leaves(r;) N T||/||Y|]; it is

easy to see that p;, = The total value of d(-) at height 2log N is exactly
2N—210gN

pi
p1tp2+...+pm ’
= m, and the strategy works if for each 7, d(u;) = Q(p;m). We show:

Claim. For every i, d(u;) > 0.99p,m whp.

Wlog. let ¢ = 1, and focus on the first subtree 7 with N? leaves. Recall that by the
simplifying assumption made above, for all 7, p; > 1/N% The worst case for 7 is the
following: at every ancestor v of 7y, the subtree of v containing 71 had an underestimated
probability, and the other subtree of » had an overestimated probability. To wit: at the first
level, p; is underestimated to be p; — é, and p, is overestimated to be py + §; at the second
level, 2(p1 + p2) is underestimated to be £(p1 + p2) — 6, and (ps + p4) is overestimated to

be %(pg, + pa) + 6, and so on. When this happens,

pr—6+06 )
d(u > < 2d(parent(u
Y4l
= 2| —d
<p1 + p2 + 25) (parent(u1))
j4i1 p1+ P2 > , )
4 d(parent(parent(u
(pl +P2+25> <p1 +po+ps+pst46 (p (p (1))
>

m< P )( P+ P2 ) < Pr+ .ot Py )
PAp2+26) \pr+p2atpstpatad) T \pit. A pm+mé)
Multiplying and dividing the above by (p1 + ...+ p.m), and regrouping the terms,

() > m< P )( p1+ P2 ) < Pt ...+ pm )
- Pt o) \pi+p2a+20)  \pi4... P+ mb
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- ete) ()
= m - ). 1=
~ p1+ p2 + 26 P14 ..+ P+ mé

logm Y
2°6
> mpy H (1 — W) recalling that for all 4, p; > 1/N? =p
/=1
§ logm
= 1— —
nh < P+ 5)
1 N
> mpy (1 - NQ> setting § = 1/N*
= mpyet/N
> 0.99mp, for N > 100.

[ )

By standard arguments about converting high-probability algorithms into non-uniform
algorithms, this can be shown to give a D/ poly martingale that succeeds on C.

If the only information used by the martingale is the fact that for every L in C, L=" €
{0,1}N\ 11, (io/ae), then the factor of 1/ = 1/(1 — p(11,,)) is the best possible in stage n.
If II is a.e. diagonalizing, then a density of Q(1/n) = Q(1/log N) for 1I,, gives a factor of
Q(14 1/n) in stage n, which suffices for the martingale to succeed on C.

If II is merely i.o. diagonalizing, then the above factor seems insufficient. By a modifi-
cation of the Borel-Cantelli lemma as applied to martingales [15] (see also [28]), it can be
shown that if 3°, (1 — p(1l,,)) converges, then a successful martingale of equivalent nonuni-
form complexity can be constructed. For example, an i.o.-natural property Il of density
1- # for some ¢ > 0 against C would give a non-uniform martingale that succeeds on

C. O

5.1. Concluding Remarks

One of the original motivations for this research was to find a sufficient condition for Lutz’s
hypothesis ~pu(NP|EXP) = 0. We briefly analyze whether Theorem 11 can be made to
work with NP in place of P/poly. Our proof works by taking a hard PSRG G and a given
QP-computable martingale d, and constructing a language 1. € P/poly N EXP on which d
does not succeed. The languages I, involved are defined by non-uniform sequences of seeds
z for the “amplified generator” f, = G.(y) defined from G in [26, 7]. These seeds define the
circuits (), in our key Lemma 9. The selection of sequences ', in Lemma 9 is non-uniform,
however.

We remark that Rudich [personal communication| has recently given evidence based on
other beliefs about PSRGs that there cannot be an NP-natural property against P /poly.
To use his new result to derive a contradiction from p(NP|EXP) = 0, one needs to find
a way to transfer nondeterminism from the class on which the martingale succeeds to the
martingale itself, trading non-determinism for non-uniformity in the class covered. We leave
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this as an interesting problem, and also leave the problem of whether the existence of secure
PSRGs implies that NP does not have measure zero in E.

We have shown that there is much ground for a deeper investigation into details of
the natural-proofs theory of [26], in terms of the size of the properties and whether the
diagonalization is i.o. or a.e. This may have further ramifications for the connections to
formal systems shown by Razborov [25]. Finally, the idea of “randomized martingales” used
to prove Theorem 18, and that of “honest” martingales that bypass the non-uniformity
problem, seem to merit further study in themselves.
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Appendix 1

Proof sketch of Theorem 7.

(This is only to bridge the gap between the result stated in [25] and the proof of the
weaker result given in [26].) For part (a), we first note the following, which is implicit in

[26].

Lemma 19. If a natural property 11 (of arbitrary complezxity) diagonalizes over P /poly,
then for every polynomial q, there exist infinitely many n such that for every circuit C,, of
size at most q(n), L(C,)™", treated as a 2"-bit string, does not belong to 11,,.

Proof. Suppose to the contrary that for some polynomial ¢ there exists ng > 0 such
that for all n > ng, there exists a circuit C,, of size ¢(n) such that L(C,)=" € Il,,. Define a
language L by letting L=" = L(C})=" for all n > ng, where C}; denotes the lexicographically
first circuit of size p(n) that satisfies L(C)=" € IL,. Clearly L € P/poly, yet II does not
diagonalize over L, a contradiction. O

Now for Theorem 7(a), let a PSRG G and an arbitrary ¢ > 0 be given. The goal is to
show that for infinitely many k, H(G}) < 2¥°. Let the natural property Il against P/poly
be such that each II,, has density 1/2(1"5]\7)C and circuit size 2008NV)° = 27° For any n, set
k = n°/s. Using G, one can build a pseudorandom function generator [7] f as follows: given
a seed z of size k, a (pseudorandom) Boolean function f, : {0,1}" — {0, 1} is defined such
that there is a circuit of size poly(n°/®) = poly(n) that computes f,(y) for all y € {0,1}".
Using this construction, every infinite sequence of seeds ¥ = 21,29, ... gives a language Lz,
and all such languages have circuit families of a fixed polynomial size, say ¢(n).

Now by Lemma 19, there are infinitely many n such that for every seed z, f, ¢ II,,. On
the other hand, by the largeness of II, it follows that a randomly chosen f € {0,1}?" belongs
to 1I,, with probability at least 1/20(”0). This shows that a circuit for 1I,, is a statistical test
of size 20("°) = 20(k%) that distinguishes f, from a truly random Boolean function f. The
remaining details are the same as in [26] drawing on [7]: Using this statistical test, one can
build a statistical test of the same size that distinguishes (with bias of the same order) the
output of G from a truly random string of length 2k. Since ¢ was chosen to be arbitrary,
the result follows. For the sake of completeness, we show how this conversion is done.

Claim. Suppose there is a circuit C),, of size 2°(") that achieves a bias of 27°) in
distinguishing between f, when z is chosen randomly from {0, 1}*, k = n°/* and a randomly
chosen 27-bit string. Then there is a circuit Dy of size 20("°) = 25° that achieves a bias
of 279(") = 9= in distinguishing between G(z) when z is chosen randomly from {0,1}*,
and a randomly chosen 2k-bit string.

Proof of Claim. Consider the full binary tree T of height n. Label the internal nodes of T" by

V1, 2,...,vn_ such that if »; is a child of »; then 7 < j. Note that 7" has 2" leaves; we will
associate the leaves in one-to-one correspondence with all strings of length n. Denote by T;
the union of subtrees of T’ consisting of the nodes vq, ..., v;, together with all leaves. For a
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leaf y of T let v;(y) be the root of the subtree in 7; containing y. For all leaves y, define G,
to be the identity function, and let G, denote the composition G, oGy, _, -- 'Gyn_h(i,y)+1'
Here h(i,y) denotes the height of y in 7j, or the distance between »;(y) and y. To each
internal node v of the tree T, assign a string z, chosen uniformly at random from {0, 1}*.
Next, define the random collection f; to be the collection of functions {f; .} described as
follows. Let z be a leaf of the tree. Define f;.(z) to be the first bit of G;.(7,,(,)). Note
that fy is just a random boolean function on n variables, and fon_; is just f, defined above.
We know that
IPHCo(fo) = 1] = PrlCa(fy) = 1]] > 2700,

Therefore, there must exist an index ¢ such that
[Pr[Co(f;) = 1] = Pr[C(fig1) = 1]| > 279007,

At this point, an averaging argument shows that we can fix all the random strings assigned to
the nodes of 7" except the children of v;41 while preserving the bias. (This might determine
many of the bits of f,.) Now there are two ways of assigning strings to the children of
vi+1: either assign them both independently chosen random strings from {0, l}k, or assign
a random string u to v;41 and assign to its two children the strings Go(u) and G1(u)
respectively. The crucial observation we make is that if these two nodes are assigned strings
in the first way, then the resulting boolean function induced on the leaves is precisely f;, and
if they are assigned strings in the second way, then the resulting boolean function induced
on the leaves is precisely f;41. To complete the proof, we will build a circuit D,, that takes
a string in {0,1}?* and computes the resulting boolean function at the leaves (which one of
fi or fix1) as described, and feeds the result (f; or fiy1) to C,. Note that computing f; or
fix1 can be done in time 2" - poly(n). Therefore, the size of D,, is bounded by 20(°) | Now,
C, has an advantage of at least 2-0(n) in distinguishing between f; and f;11, whence it
follows that H(G}) is bounded by 200+ = 20(+%), O

The adjustments required to prove part (b) use the fact that for any h, using Nisan’s
construction [22], one can build a pseudorandom function generator computable in ACY[2]
that is secure against depth h circuits of quasipolynomial size. O
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Appendix 2: On the measure of AC"[2]
(This is taken from a draft of October 1994, and will be shortened in journal copy.)

Allender and Strauss [1, 2] define two notions of measure on P. Let pr(p) denote either
notion of measure defined in their paper. Using the ideas in the proof of our main theorem
together with some improvements, we will show that if ,up(p)(ACO[Z]) = 0, then pseudo-
random generators of certain strength secure against depth 3 q-ACY circuits do not exist.
Here q-ACY denotes the class of languages recognized by a family of constant depth, quasi-
polynomial size circuits. However, Nisan [22] has shown that such a generator does exist,
and it follows that ﬁ(up(p)(ACO[Q]) = 0). As in case of P/poly, it is easy to see that one can
construct a q-AC%natural property against AC°[2] from a I'(P)-martingale that succeeds
on ACY[2].

Remark: The definitions for the I'(P) measures and the details of Nisan’s generator are
fairly technical. Moreover, the parameters we use for Nisan’s generator are not the same
as those used by [26]. For this reason, we will not prove our theorem by constructing the
natural property and appealing to [26]. Instead, we present a complete proof of the result
“<(ur@)(AC°[2]) = 0)” by supplying all the arguments in careful detail.

Before analyzing the notions of “measure within P” defined by Allender and Strauss, we
find it convenient to change the way machines computing martingales d(w) are described.
The new formalism is essentially the same as that for “holographic proofs” in [4, 3, 32] with
w playing the role of the “proof.” Namely, define a query machine M to have a standard TM
input tape, any number of standard worktapes, and a query tape that provides “random-
access” to bits of a string w given as an auxiliary input. M is given as input the length N
of w in standard dyadic notation, and is allowed to write integers ¢+ < N on its query tape,
receiving in answer the bit w;. The string N is the same as the string zy whose membership
or non-membership in languages with initial segment w is indexed by the last bit of w. The
main change is that now complexity bounds are expressed in terms of n = |zn| = [lg V]
rather than N. Thus Lutz’s martingales for EXP are exactly those computable in time 27
for some fixed ¢ > 0, and the P-martingales for measure in E are those in time 20(%).

Here we are interested in time polynomial in n, or equivalently, polylogarithmic in N.
Allender and Strauss [2] note that this alone may not yield a non-trivial measure on P, and
give reasons for adding the following restriction on “dependency set size.” In our scaling,
this becomes:

Definition 6 (cf. [2]). Let M be a query machine that computes a function f. For all
inputs N and auxiliary inputs w of length N, define

Y(w)={i:1<1i< N, M queries bit w; in the computation of f(w)}.

A set Sy C {1,..., N} is a dependency set for length N if for all K € Sy and all w of
length K, Y (w) C (SvN{l,...,K}). Finally, M is said to have polylogarithmic dependency
set size if there exists a polynomial p such that for all N, M has a dependency set Sy for
length N of size at most p(log V).
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As noted by Allender and Strauss, there is always a minimum dependency set Sy for
each N. Recalling that N = 27, the point is that the size of Sy is polynomial in n. We
also say that the functon f computed by M has polylogarithmic dependency set size.

Allender and Strauss [2] offer two notions of measure in terms of I'(P)-machines, and
we need to examine the following technicalities of resource-bounded measure theory to
appreciate them. The following should be contrasted with the conditions (1) and (2) in
Section 2.2.

Definition 7. A super-martingale is a function d from {0,1}* into the nonnegative reals
that satisfies the following “inexact average law”: for all w € {0,1}*,
d(w0) + d(w1)

d(w) > HEEE), (6)

Regarded as a betting strategy, a super-martingale is allowed to “throw away money” when
d(w) > (d(w0)+ d(w1))/2. The success class $*[d] of a super-martingale d is defined to be
the class of languages A such that lim sup,-4 d(w) = 400, or equivalently,

(VK > 0)(Fw)[wC A A d(w) > K]. (7)
Definition 8 ([2]). Allender and Strauss define the following notions of measure in P:

(a) Write urepy(C) = 0, and call C T'(P)-null if there is a I'(P)-machine that computes a
martingale d : {0,1}* — D such that C C $*[d].

rite p = 0 if there is a -machine that computes a super-martingale
b) Write jup. ) (C if there is a I'(P)-machine t} ingal
d:{0,1}* — D such that C C S*[d].

Also write u(C|P) = 0if ppp)(C N P) =0, and p(C|P) = 1if ure)((P\C)|P) = 0.

Allender and Strauss have shown (see [2]) that relaxing d in (a) to be a super-martingale,
or leaving d a martingale and allowing C C S*[d], does not change (a). They also show
robustness under adopting Lutz’s original terms of density systems d : N x {0,1}* — R
and approzimate computations of d. The one lack of robustness between the measures
pree) and Hrpy is shown graphically by the following proposition. A language [ is said
to be P-printable if there is a Turing Machine M that, on input 0™ outputs the list of all
strings in L N {0,1}". Note that P-printable languages are both polynomially sparse and
have P-uniform AC? circuits of depth two. (The following proposition is due to Allender
and Strauss [unpublished, personal communications 8/94—11/94]; parts (b) and (c) were
obtained independently by us.)

Proposition 20.

(a) There exists a I'(P)-computable super-martingale d such that every language of density
< 2"/n® belongs to S*[d]. In particular, u(SPARSE|P) = 0.
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(b) For every I'(P)-computable super-martingale d, there is a P-printable language A such
that A ¢ S*°[d]; i.e., on which d does not succeed in the sense of a limit.

(c) For every I'(P)-computable martingale d, there is a P-printable language A such that
A ¢ S°[d], that is, d does not succeed on A in the sense of a limit.

The proof idea of (a) is to divide each segment {0, 1}" into intervals of size n®, and assign
each interval I a “base value” e([) that decreases very slowly. The I'(P)-machine M only
queries bits in the interval containing its input N, so its dependency sets have size n3. On
all branches except the all-0 branch it outputs e(/), while on the all-0 branch it outputs
e(I —1)+[e(T—1)—e(I)]-2"~, where r is the distance from N to the left boundary of its
interval. Every language A of small density must fall into an all-0 branch of infinitely many
intervals, and careful choice of e(-) makes the values in these intervals unbounded. Strict
inequality in (6) holds at interval boundaries, and success is by lim sup.

Intuitively, the difference between the measure prp)y and the more-relaxed measure
Erpy is that, given a super-martingale d, attempting to enforce either the exact average
law or the limit success condition C C 5*[d] can blow up the dependency set size by an

amount exponential in n.

Allender and Strauss [2] show that P-uniform AC?is not measurable by I'(P) martingales
with the “limit” notion of success. Below, we show that non-uniform AC°[2], that is, the
class of languages recognized by a family of polynomial-sized, constant depth circuits using
{A,V,—, B}-gates, does not have I'(P) measure zero, even under the more liberal definition
of success by the upper limit. This also implies that non-uniform NC' does not have
I'(P) measure zero under the upper limit notion of success. Our intent is to combine the
technique of Section 3 with the strong pseudorandom generators for constant-depth circuits
constructed by Nisan [22].

Theorem 21 ([22]). Let ¢,h > 1 be fized integers; let a = 2(ch+ ¢+ 1). There is a family
of functions G = {G,, : {0,1}™" — {0,1}*"} such that for all n:

(1) there is a circuit of size poly(n®) and constant depth with {A,V,—, @ }-gates that, for
any seed s € {0,1}"" and any y € {0,1}", determines the bit of G,(s) indezxed by y.

(2) letting N = 2", for any circuit C' of size at most 20°8N)" = 27 depth h with {A,V,—}-
gates,

1 1
[PHC(Y) = 1] = PrC(GA(3)) = 1| € Sy = 50

where Y is a string chosen uniformly at random from {0,1}%", and s is a seed chosen
uniformly at random from {0,1}"".

Before we prove the theorem showing that non-uniform ACY[2] does not have T'(P)
measure zero under the upper limit definition for success, we need slightly improved versions
of Lemmas 8 and 9.

23



Lemma 22. Let d be a martingale. For any string v and any £ € N, b € R,

(o e 40,1 (v Eojd(uw) < (14 3 ) )| 2 2 (557

Proof. Tt follows from the definition of a martingale that Z d(uv) = 2° - d(u). Sup-

ve{0,1}4
pose by way of contradiction that for some u,/, and b, the inequality in the statement of

the lemma does not hold. This implies

{v€{0,1}": (Guw C v)d(uw) > (1 + %) d(u)}H > 9! (b—l—Ll) . (8)
Consider the complete binary tree 7" of depth £, and imagine that the root of the tree is
endowed with a capital sum of d(u). The interior nodes of T can be associated in one-to-one
correspondence with {0,1}<, and the leaves of 7" with {0, 1} in the obvious way; we will,
therefore, refer to the nodes of T directly as strings in {0,1}<*. Each node v in the tree
(leaves as well as interior nodes) will be annotated by the value d(uv). The annotations
describe the strategy of martingale d in the obvious way. Call an interior node w of T rich
if d(uw) > (14 1/b)d(u), and call a leaf v of T' prodigal if v is the descendant of some rich
interior node w. Then Equation 8 is the same as saying that the number of prodigal leaves
v is greater than 2°. (b/b+ 1).

For each prodigal leaf », mark the rich ancestor of » that is closest to the root. Beginning
at the root, perform a breadth-first traversal of T, visiting the interior nodes level by level
in a top-down fashion. Whenever a marked rich node w is visited during the traversal,
annotate the entire subtree of w by the value d(uw), and unmark any marked rich node in
this subtree, and call w frozen.

Let T’ denote the tree when the freeze-as-you-go traversal is complete. It is easy to see
that T’ represents a valid martingale strategy, since annotating the subtree of node w by
d(uw) corresponds to playing a safe strategy (without making any wager) on these strings.
More importantly, we claim that every leaf v that was labeled prodigal in T is rich in T".
To see this, note that if » was prodigal in I’, some rich ancestor w of » was marked. Now,
there are two cases. If there was no marked rich node on the path from the root to w, then
w continues to be rich in 7”. If there was at least one marked rich node on the path from
the root to w, then let z denote the one closest to the root. By the freezing policy, the
value of w in T equals the value of z on T, which, by definition, is sufficient to keep w rich.
Therefore, in either case, w is rich in 1”. Again by the freezing policy, v inherits all the
wealth of w (no richer, no poorer), so v is rich.

Let d’ denote the martingale that behaves exactly like d on all strings of length at most
|u|, and then adopts the strategy given by T’ on extensions of u. Under this strategy, the
number of rich leaves in 7" is at least 2°(b/b+ 1), and each rich leaf has an annotated value
of strictly greater than (14 1/b)d(u). Therefore, the total money that d’ has at the bottom
of 17, namely, 37, o1y¢ d(uv), exceeds 2. a contradiction. O
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Lemma 23. If a I'(P) martingale d succeeds on AC°[2], then for every polynomial ¢ and
constant h, there exist infinitely many n and {A,V, -, §}-circuits C; of size at most q(1)
and depth at most h, for 0 < i < n, such that for all {A,V, -, @}-circuits C,, of size at most
q(n) and depth at most h,

(Fu C uy,) [d(uo coau) > <1 + %) d(ug . . -‘Mn_1)] ,

where u; is the 2'-bit binary “characteristic string” that indicates the membership in L(C;)

of {0,1}".

Proof. Suppose not. Then there is a polynomial ¢ and constants h,ng € N such that
for all n > ng, for every sequence of {A,V,—, @& }-circuits C; of size at most ¢(7), depth at
most h, for 0 < i < n, there exists a {A,V, -, @ }-circuit C), of size at most ¢(n) and depth
at most h such that for every prefix u of u,, d(u;...u) < (1 + n1—2) d(uy...un—1), where
the u;’s have the same meaning as in the statement of the lemma.

We will build a language I as follows: for strings of length less than ng, membership
in L will be an arbitrary but fixed sequence. Let a = d(uy...up,—1). Clearly a < oc.
For n > ng, we define L=" inductively. Let uy,...,u,—1 be the result of the recursively
applying the construction to obtain L<"; that is, u; = L='. By assumption, there exists
a {A,V,—, @}-circuit C,, of size at most ¢(n) and depth at most h, such that for every
prefix u of u,, d(uy...u) < (1 + n1—2> d(uy ... up—1). Set u, = L(C*)=", where C* is the
lexicographically first C,, that satisfies this inequality (under some fixed encoding of circuits
of the appropriate size, depth and type).

Clearly I € AC°[2], since it can be accepted by the circuit family [C,,]22,. Finally,

lim sup d(L=") < aH(l +1/n%) < 0,

n—0od

so d does not succeed on [, a contradiction. O

Theorem 24. —(urp)(AC°[2]) = 0).

Proof Sketch. Suppose by way of contradiction that ur(P)(ACY[2]) = 0. Then there exists
a martingale d computable in I'(P) that succeeds on every language in AC°[2]. Let f(m) =
(log m)° bound the running time and the dependency set size of a Turing Machine M that
computes d.

Similar to the proof of Theorem 11, we can define a family {L} of pseudo-random lan-
guages in AC°[2] as the concatenation of the outputs of the pseudo-random generator on
seeds of the appropriate size. Since Nisan’s pseudo-random generator can perform an expo-
nential amount of stretching, we can get a characteristic string of length 2" (corresponding
to the membership of all strings of length n) from a seed of size polynomial in n. Let G be
the generator from Theorem 21 with parameter h = 3 and ¢ from the I'(P)-computability
of the martingale d. Let a = Q(Ch + e+ 1) = 8¢ + 2, as described in Theorem 21. For a
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sequence s = {s, € {0,1}™"} of seeds, we define L = L(s) by taking L=" to be G, (s, ).
By the computability of GG, it follows that I can be accepted by a family of circuits of size
p(n) and depth ¢, comprising {A, V, -, @ }-gates, for some fixed polynomial p and some fixed
constant ¢. In other words, every such language £(s) is in AC°[2].

By Lemma 23 and arguments similar to those of Theorem 11, it follows that we can
build a family of circuits for infinitely many n that acts as a statistical test against the
generator G. The discussion below is restricted to these “infinitely many n,” and the
strings u; have the same meaning as in Lemma 23. Recall that f(m) = (log m)° bounds the
running time and dependency set size of a Turing Machine that computes the martingale
d. On inputs of length 2", f(2") = n°. For each Y € {0,1}*" and each W C Y, we can pre-
compute the predicate “d(ug ... un,—1 W) < (141/n?)d(ug . . . up—1).” Since the computation
of d(ug . ..u,—1 W) depends on only n¢ bits of W, this predicate can be described by a truth
table of size 27" = 2(1°8N)° where, as usual, N = 2". By hardwiring this truth table as a
sum-of-products, we get a circuit ), of size 20((ogN)) and depth 2 using only {A,V,—}-
gates. Finally, the statistical test “(VYW C Y)[d(uo...un—1 W) < (1 +1/n)d(uo . . . up-1)]”
can be computed by taking the AND of each of the above 2" circuits. Moreover, the
statistical test achieves a bias of 1/0(n?) in distinguishing the output of the generator from a
truly random string. This contradicts Theorem 21, and it follows that —(ure)(AC°[2]) = 0).

O

Remarks. While our result is better than that of [2] in one sense (namely, lim sup versus
lim), it is inferior in that it deals with ACP[2] rather than ACY itself, and it lacks the
“in P” condition. All our result says is that for any I'(P)-computable martingale d, there
is a language L in non-uniform ACY[2] such that 1. & S*[d]. Equivalently, for any I'(P)-
computable super-martingale d, there is a language L in non-uniform ACY[2] such that

L ¢ 5°[d)

The above proof does not resolve the question of whether u(AC?[2]|P) = 0 in the
negative, since that would entail proving ,ur(p)(ACO[Q] NP) # 0. Compared to Theorem 11,
where we obtained the analogous “in KXP” condition, the problem is that while the language
L constructed in the proof of Lemma 9 was in EXP-uniform P/poly (C EXP), the language
L constructed here seems not to be in P-uniform ACY[2], nor in P. We suspect that it may
be possible to exploit the following two properties more fully to obtain this stronger result:

(1) The polylog-wise independence of Nisan’s generator: Given any set S of indices of the
N = 2" output bits of the generator, such that the size of S is polylog in N (i.e., is
polynomial in n), and given any desired setting of the bits indexed by 5, there exists
a seed string that realizes those bits, and s can be found in time polynomial in n by
solving linear equations.

(2) The polynomial-size dependency-set restriction in the py; measure. A closer analysis
may yield a stronger version of Lemma 23.
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