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Abstract

The nucleon is introduced as a new allocation concept for non-negative cooperative n-
person transferable utility games. The nucleon may be viewed as the multiplicative ana-
logue of Schmeidler’s nucleolus. It is shown that the nucleon of (not necessarily bipartite)
matching games can be computed in polynomial time.
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1 Introduction

One of the central problems in cooperative game theory is to provide fair allocations to the
players in the game. The games that we consider here are cooperative n-person transferable
utility games in characteristic function form. Formally, the general setup can be described as
follows.

There is a finite set N = {1, . . . , n} of players. These players may form coalitions S ⊆ N in
an arbitrary way. Each coalition S can achieve a value v(S) ∈ < (assuming that the players
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in S “cooperate”). The value v(N) of the grand coalition N can thus be understood as the
total “profit” arising from the cooperation of all players. The pair (N, v) therefore represents
our game in characteristic form. An allocation is a vector x ∈ <N with component sum equal
to v(N). The allocations we seek should be fair in the sense that they assess the strength of
individual players relative to (N, v) in an acceptable way.

Many interesting examples of such games have been investigated where the value v(S) of a
coalition S ⊆ N is determined as the optimal value of a combinatorial optimization problem
the set S of players faces (see, e.g., Curiel [1988]).

In the matching game, for instance, we are given the complete graph Kn with N as the set of
nodes. A matching is a set M of edges such that no two edges in M have a node in common.
Each edge e in Kn is assigned a weight w(e) and the value v(S) of a coalition is equal to the
weight of a maximal matching in the subgraph induced by S. Here each individual player
i ∈ N has value v(i) = 0 while value v(N) > 0 may well be possible. How should the strength
of i ∈ N be assessed?

There are many notions of “fairness” for allocations (see, e.g., Shubik [1981]). In the following
we will only present a few of them.

The idea of the core of a game, which essentially goes back to von Neumann and Mor-
genstern [1944], approaches fairness from the point of view of coalitions. The allocation
x = (x1, . . . , xn) is said to be in the core of (N, v) if there is no coalition S ⊆ N such that

∑

i∈S
xi < v(S) .

Note that the vectors x in the core of (N, v) form a polyhedron in <N as they are determined
by the linear restrictions

∑

i∈N
xi = v(N) .

∑

i∈S
xi ≥ v(S) for all S ⊆ N

A game may have an empty core (e.g., the matching game on K3 with unit edge weights).
Therefore, relaxations of the concept of a core have received attention. For a given ε ∈ <,
Shapley and Shubik [1966] consider the modified game (N, vε), where

vε(S) =

{
v(S) if S ∈ {∅, N}
v(S)− ε otherwise.

The additive ε-core of the game (N, v) is defined to be the core of the game (N, vε).

Faigle and Kern [1993] propose an ε-correction relative to the value of a proper coalition and
arrive at the modified game (N, vε), where

vε(S) =

{
v(S) if S ∈ {∅, N}
(1− ε)v(S) otherwise.
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The multiplicative ε-core of (N, v) is then the core of the game (N, vε). (In the case where
each individual player i ∈ N has value v(i) = 0, the multiplicative ε-core coincides with the
ε-tax core of Tijs and Driessen [1986]).

There is always some ε yielding a non-empty additive ε-core. The same is true for the
multipicative ε-core whenever v(N) ≥ 0 (take, e.g., ε = 1). For both models, this observation
suggests to seek an ε that is as small as possible while still guaranteeing a non-empty ε-core
(see, e.g., Faigle and Kern [1993] and Faigle et al. [1994] for the multiplicative ε-core of some
combinatorial games).

The concept of the additive ε-core is refined by the notion of the nucleolus due to Schmeidler
[1969]. We want an allocation x that maximizes the excess

e(x, S) =
∑

i∈S
xi − v(S)

uniformly over all proper coalitions S, i.e., we solve the linear program

(LP1) max ε∑

i∈N
xi = v(N)

∑

i∈S
xi ≥ v(S) + ε for all S /∈ {∅, N}

Denoting by ε1 the optimal objective function value of (LP1), it follows that ε = −ε1 is the
minimal value admitting a non-empty additive ε-core.

If (LP1) has a unique solution (ε1, x∗), then x∗ is the nucleolus of the game (N, v). Otherwise,
there is a unique collection S1 ⊂ 2N of coalitions S (6= ∅, N) for which the inequalities in
(LP1) become tight at ε = ε1.

Now, in a second step, we maximize the excess over all remaining coalitions:

(LP2) max ε∑

i∈N
xi = v(N)

∑

i∈S
xi = v(S) + ε1 for all S ∈ S1

∑

i∈S
xi ≥ v(S) + ε otherwise

Continuing in this way, we obtain a sequence

ε1 < ε2 < . . . < εk

until, finally, the optimal solution of (LPk) is unique with an allocation x∗, the nucleolus of
the game.

A more concise (and less algorithmic) description can be given as follows.
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With the allocation x we associate the excess vector e(x) ∈ <2n−2 as the vector of excesses
arranged in non-decreasing order. The nucleolus is then the unique vector x∗ that lexico-
graphically maximizes the excess vectors e(x) relative to the game (N, v).

General algorithms for the computation of the nucleolus have been investigated by several
researchers (see, e.g., Potters et al. [1994]). Relative to special classes of games, these
algorithms do generally not guarantee a polynomially bounded running time. On the other
hand, Solymosi and Raghavan [1994] could show that the nucleolus of a matching game can be
computed in polynomial time in the bipartite case, i.e., in the case where the edges of positive
weight in the underlying graph do not contain a circuit of odd length. The complexity status
of the computational problem for general matching games is open.

We suggest another approach to the allocation problem for general matching games. In Sec-
tion 2, we introduce the nucleon as the multiplicative analogue of the nucleolus for cooperative
games in a straightforward way. From a purely mathematical point of view, the nucleon is a
meaningful concept for general cooperative n-person games. From a conceptual point of view,
however, there might be difficulties in accepting the multiplicative analogue of the excess of
a coalition with negative value as an appropriate measure of its “satisfaction”. Therefore, we
will restrict ourselves to games with non-negative characteristic functions.

In the last section, we focus on general matching games and, as an application of our new
allocation concept, demonstrate that the nucleon of general matching games can be found in
polynomial time.

2 The Nucleon of a Game

Let (N, v) be a cooperative n-person game. We will throughout assume that v(∅) = 0 holds,
i.e., that (N, v) is normalized. We will, furthermore, restrict our attention to non-negative
games and thus assume that v(S) ≥ 0 holds for any coalition S ⊆ N .

To simplify the presentation, recall the (standard) notation relative to the vector x ∈ <N and
the coalition S ⊆ N

x(S) :=
∑

i∈S
xi .

Let S0 := {∅, N} and α ≥ 0. Consider the polyhedron P1(α) of all vectors x that satisfy the
following linear restrictions

P1(α) :: x(N) = v(N)
x(S) ≥ αv(S) (S /∈ S0)

Letting α0 := 0, we conclude from the non-negativity of v

P1(α0) = P1(0) 6= ∅ .
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Moreover, P1(1) is precisely the (usual) core of the game (N, v).

Let
α1 := max{α ∈ < | P1(α) 6= ∅}.

If α1 =∞, we have v(S) = 0 for all S /∈ S0. The nucleon P ∗ = P ∗(N, v) of the game (N, v)
is then defined to be the polyhedron

P ∗ := P1(α0) = {x ∈ <N | x(N) = v(N), x ≥ 0} .

Otherwise, i.e., if α1 < ∞, let S1 denote the set of coalitions S ⊂ N that correspond to
“forced equalities” at level α = α1, i.e.,

S1 := {S /∈ S0 | x(S) = α1v(S) for all x ∈ P1(α1)} .

Assume now that Pj(α), αj , and Sj have been defined for j = 1, . . . , i. Let then the polyhedron
Pi+1(α) be defined by the linear constraints

Pi+1(α) :: x(N) = v(N)
x(S) = α1v(S) (S ∈ S1)

...
x(S) = αiv(S) (S ∈ Si)
x(S) ≥ αv(S) (S /∈ S0 ∪ . . . ∪ Si)

and set
αi+1 := max{α ∈ < | Pi+1(α) 6= ∅} .

If αi+1 =∞, then the nucleon of (N, v) is defined to be

P ∗ := Pi(αi) = Pi+1(αi) .

Otherwise, i.e., if αi+1 <∞, set

Si+1 := {S /∈ S0 ∪ . . . ∪ Si | x(S) = αi+1v(S) for all x ∈ Pi+1(αi+1)}

and continue.

Apparently, this inductive procedure will stop after a finite number of steps with αk+1 =∞
as soon as

v(S) = 0 for all S /∈ S0 ∪ . . . ∪ Sk.

Summarizing, the nucleon is obtained by successively computing

5



0 = α0 < α1 < α2 < . . . < αk < αk+1 =∞

P0(0) ⊇ P1(α1) ⊇ P2(α2) ⊇ . . . ⊇ Pk(αk) = P ∗ .

Example. Let N = {1, 2}, v(N) = 1, and v(S) = 0 otherwise. (This is the simplest case of
a matching game on the complete graph K2 with unit edge weight). Then

P ∗ = {(x1, x2) ∈ <2 | x1 + x2 = 1, x1, x2 ≥ 0} .

The Example shows that the nucleon does not necessarily consist of a single vector x∗ ∈ <N+ .
However, if {i} ⊆ S0∪ . . .∪Sk holds for all i ∈ N , then the nucleon P ∗ is a singleton. Indeed,
in the latter case, the value xi = x({i}) is then prescribed at a fixed value for every x ∈ P ∗.
In particular, P ∗ will have cardinality one if v({i}) > 0 for every i ∈ N .

As is the case for the (additive) nucleolus, there is an alternative definition of the nucleon in
terms of “multiplicative excess vectors”.

Given a game (N, v) and a vector x ∈ <N+ with x(N) = v(N), define for every coalition S /∈ S0
the multiplicative excess via

α(x, S) :=

{
x(S)/v(S) if v(S) > 0
∞ if v(S) = 0.

The excess vector α(x) is obtained by ordering the 2n − 2 excess values α(x, S) in a non-
decreasing sequence.

Proposition 2.1 The nucleon of the non-negative game (N, v) is the set of all allocation
vectors x ∈ <N+ that lexicographically maximize the excess vector α(x).

We omit the straightforward proof of the proposition.

Note that our original “algorithmic” definition of the nucleon P ∗ does not provide an efficient
way of computing a vector in P ∗. Indeed, the sheer computation of α1 in the way suggested
by the definition means to solve a linear program with an exponential (in n) number of
constraints. The question, therefore, arises whether P ∗ can be efficiently determined at all
for interesting classes of games. We give a positive answer to this question for the special
class of matching games in Section 4.
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3 Computational Aspects

Recall that the nucleon P ∗ = Pk(αk) consists of all vectors x that satisfy the linear restrictions

Pk(αk) :: x(N) = v(N)
x(S) = α1v(S) (S ∈ S1)

...
x(S) = αkv(S) (S ∈ Sk)
x ≥ 0

The number k in the preceding definition of the nucleon P ∗ may, in general, be exponential
in n. Intuitively, this can happen when all “new” equations

x(S) = αiv(S) (S ∈ Si)

are already implied by the previous equations for S ∈ S0 ∪ . . . ∪ Si−1. Then αi > αi−1 while
dimPi(αi) = dimPi−1(αi−1). We want to derive an iterative computational procedure for P ∗

that avoids steps that are redundant in that sense. We will show that P ∗ can be found in at
most n iterations.

For any S ⊆ 2N , denote by < S > the span of S, i.e.,

< S > := {T ⊆ N | I|T ∈ lin(I|S | S ∈ S) },

where I|S denotes the incidence vector of S ⊆ N and lin(.) denotes the linear hull operator.

With this terminology, we may describe P ∗ equivalently via

P ∗ :: x(N) = v(N)
x(S) = α1v(S) (S ∈ S1\ < S0 >)

...
x(S) = αkv(S) (S ∈ Sk\ < S0 ∪ . . . ∪ Sk−1 >)
x ≥ 0

This representation of P ∗ suggests the following iterative computational procedure:

Let T0 := {∅, N} and define for β ≥ 0 the polyhedron Q1(β) via

Q1(β) :: x(N) = v(N)
x(T ) ≥ βv(T ) (T /∈ T0)

and set
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β1 := max{β ∈ < | Q1(β) 6= ∅} .

If β1 =∞, then

P ∗ = {x ∈ <N+ | x(N) = v(N)} .

If β1 < ∞, let T1 denote the set of coalitions that correspond to forced equalities at level
β = β1 (thus T1 = S1).

Assume now, inductively, that Qj(β), βj , and Tj have been defined for j = 1, . . . , i. Let then
the polyhedron Qi+1(β) be presented by the constraints

Qi+1(β) :: x(N) = v(N)
x(T ) = β1v(T ) (T ∈ T1)

...
x(T ) = βiv(T ) (T ∈ Ti)
x(T ) ≥ βv(T ) (T /∈< T0 ∪ . . . ∪ Ti >)

and set

βi+1 := max{β ∈ < | Qi+1(β) 6= ∅} .

If βi+1 =∞, then P ∗ = Qi(βi) and we stop. Otherwise, define Ti+1 to be the set of coalitions
T that become tight at level β = βi+1:

Ti+1 := {T /∈< T0 ∪ . . . ∪ Ti > | x(T ) = βi+1v(T ) for all x ∈ Qi+1(βi+1)} .

From the alternative description of P ∗ above, it is apparent that the sequence (Qi(βi)) is a
subsequence of (Pi(αi)) and that (βi) is a subsequence of (αi).

Note, moreover, that in each iterative step in the computation of the sequence (Qi(βi))
equality constraints are added that are independent from the previous equality constraints.
Hence we conclude for the dimension

dimQi+1(βi+1) < dimQi(βi) ,

which implies that P ∗ is determined after at most n iterations.

Because we are interested in efficient algorithms for the compution of the nucleon P ∗, we
also want to demonstrate that the parameters βi do not grow “too big” in the course of the
iterative procedure.
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Recall that the size � r � of a rational number r is defined to be the number of bits in a
binary representation of r. Then we observe

Proposition 3.1 Let β1 < . . . < βl and T1, . . . , Tl be given as above (l ≤ n), and let T :=
T0 ∪ . . . ∪ Tl. Then the size � βi � of each βi is bounded by a polynomial in n, |T |, and
maxT∈T � v(T )�.

Proof: It follows directly from the definition that (β1, . . . , βl) is the unique lexicographically
maximal vector (b1, . . . , bl) such that the linear system

x(N) = v(N)
x(T ) = b1v(T ) (T ∈ T1)

...
x(T ) = blv(T ) (T ∈ Tl)
x ≥ 0

has a solution x ∈ <N . Hence we can obtain (β1, . . . , βl) from the unique lexicographically
maximal solution (b∗1, . . . , b

∗
l , x
∗
1, . . . , x

∗
n) of the above system.

The latter, however, represents a vertex of the feasibility region. Standard results from linear
programming, therefore, imply that each component is polynomially bounded in the size of
the system (see, e.g., Grötschel, Lovász and Schrijver [1988]).

The size of the linear system is bounded by

O((n+ max
T∈T

� v(T )�) · | T |) ,

which proves the Proposition.

2

4 The Nucleon of a Matching Game

A matching game is defined on the graph G = (N,E) with an edge weighting w : E → <.
The characteristic function v is given for each coalition S ⊆ N via

v(S) = value of a maximal weighted matching in G|S ,

where G|S is the subgraph of G induced by S.
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Since a matching of maximal weight will never contain a negative edge we may assume w.l.o.g.
that the weighting w is non-negative. Adding edges with weight zero, if necessary, we can
similarly assume that G is the complete graph Kn.

Recall from Section 3 the inductively defined polyhedra Qi(β):

Qi(β) :: x(N) = v(N)
x(T ) = β1v(T ) (T ∈ T1)

...
x(T ) = βi−1v(T ) (T ∈ Ti−1)
x(T ) ≥ βv(T ) (T /∈< T0 ∪ . . . ∪ Ti−1 >)

Our aim is to show that the defining equations and inequalities for Qi(β) can be replaced by
a polynomial number of equations and inequalities if we want to compute the nucleon of a
matching game. Essentially, it will turn out that we may restrict our attention to the value
an allocation x takes on one- and two-element coalitions.

Let Q ⊆ <N be a set of vectors. We say that Q fixes the set S ⊆ N if x(S) = y(S) holds for
all x, y ∈ Q.

With the terminology of Section 3, we define for i = 1, . . . , l,

Fi := {S ⊆ N | S is fixed by Qi(βi)} .

Lemma 4.1 For i = 1, . . . , l, Fi = < T0 ∪ . . . ∪ Ti > .

Proof: By definition, we have

Qi(βi) :: x(N) = v(N)
x(T ) = β1v(T ) (T ∈ T1)

...
x(T ) = βiv(T ) (T ∈ Ti)
x(T ) ≥ βiv(T ) (T /∈< T0 ∪ . . . ∪ Ti−1 >)

Moreover, each of the inequalities for x(T ), T /∈< T0 ∪ . . .∪Ti−1 >, can be made strict. Thus
the relative interior Qo

i (βi) is described by the constraints

Qoi (βi) :: x(N) = v(N)
x(T ) = β1v(T ) (T ∈ T1)

...
x(T ) = βiv(T ) (T ∈ Ti)
x(T ) > βiv(T ) (T /∈< T0 ∪ . . . ∪ Ti−1 >)
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It is now clear that the set of coalitions fixed by the relative interior Qo
i (βi) is precisely

< T0∪ . . .∪Ti > . Hence Fi ⊆ < T0∪ . . .∪Ti >. The converse containment is straightforward.

2

While Lemma 4.1 is valid for arbitrary games, we will from now on assume that v arises from
the matching game on G relative to the edge weighting w. We denote by Ni resp. Ei the one-
resp. two-element coalitions in Fi. We will usually think of Ni as a subset of N and of Ei as
a subset of E.

Proposition 4.1 For i = 1, . . . , l, Ti ⊆ < T0 ∪ Ei ∪Ni >.

Proof: Suppose that there exists some S ∈< T0 ∪ Ei ∪ Ni > so that S /∈ Ti. Choose such
an S with |S| minimal. Let M be a matching of maximal weight in G|S , i.e., v(S) = w(M).
Because G is a complete graph and w is non-negative, we can also assume that M is a
maximum cardinality matching, i.e., S = N(M) if |S| is even and S = {t} ∪N(M) for some
t ∈ N if |S| is odd. (For any set A of edges, we denote by N(A) the nodes of G covered by
A). We will derive a contradiction to the existence of such a coalition S.

Case 1: M ⊆ Ei.
If |S| is even, then S ∈< Ei >⊆< T0 ∪ Ei ∪Ni >, which contradicts the choice of S.

If |S| is odd, then S ∈ Fi and M ⊆ Fi imply {t} = S \N(M) ∈ Fi. So t ∈ Ni and, therefore,
S = t ∪N(M) ∈< T0 ∪ Ei ∪Ni >, again contradicting the choice of S.

Case 2: There exists some e ∈M \ Ei.

Consider S′ := S \e. If S′ ∈ Fi, then S ∈ Ti ⊆ Fi implies that also e ∈ Fi must hold, contrary
to our assumption on e. So S ′ /∈ Fi and, in particular, S ′ /∈< T0 ∪ . . . ∪ Ti−1 >.

By the definition of Qi(βi), we know for all x ∈ Qi(βi),

x(S′) ≥ βiv(S′) .

On the other hand, we have e /∈< T0 ∪ . . . ∪ Ti−1 > and, therefore, for all x ∈ Qi(βi),

x(e) ≥ βiw(e) .

Since S ∈ Ti, we furthermore know for all x ∈ Qi(βi), x(S) = βiv(S) .

Summarizing, we conclude for all x ∈ Qi(βi), x(e) = βiw(e) , i.e., e ∈ Fi, contrary to the
choice of e.

2
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Proposition 4.1 calls our attention to the sequences

∅ = E0 ⊆ E1 ⊆ . . . ⊆ El
∅ = N0 ⊆ N1 ⊆ . . . ⊆ Nl

In each iterative step (i→ i+ 1) some edges e ∈ Ei+1 \Ei become fixed by Qi+1(βi+1) to some
non-negative value c(e), say, until eventually all edges with non-zero weight are fixed.

Similarly, some nodes t ∈ Ni+1 \ Ni are fixed at some value c(t) ≥ 0. The nucleon P ∗ is
determined by

P ∗ :: x(N) = v(N)
x(e) = c(e) (e ∈ El)
x(t) = c(t) (t ∈ Nl)
x ≥ 0

Furthermore, as a consequence of Proposition 4.1, we can describe Qi(β) via

Qi(β) :: x(N) = v(N)
x(e) = c(e) (e ∈ Ei−1)
x(t) = c(t) (t ∈ Ni−1)
x(T ) ≥ βv(T ) (T /∈< T0 ∪ Ei−1 ∪Ni−1 >)

Our next goal is to replace the exponentially many inequalities in the preceding description
of Qi(β) by polynomially many inequalities.

For i ≥ 1 and β ≥ 0, let Gi−1 = (N, Ei−1) be the subgraph containing only those edges that
are fixed after the iterative step i − 1. For e ∈ E, let Gi−1 \ e denote the graph obtained
from Gi−1 by removing the two endpoints of e and all incident edges. Similarly, for t ∈ N , let
Gi−1 \ t be the subgraph obtained from Gi−1 by removing t and all incident edges.

Relative to the original weighting w : E → < and the weighting c : El → <+, we define a new
weighting wβ : Ei−1 → < on Gi by

wβ(f) := βw(f)− c(f) .

For e ∈ E, let M e
β denote some fixed (possibly empty) matching in Gi−1 \e of maximal weight

with respect to the weighting wβ. Let Seβ := {e} ∪N(M e
β) be the associated coalition.

Similarly for t ∈ N , denote by M t
β some fixed matching of maximal weight with respect to

wβ in the graph Gi−1 \ t and let Stβ := {t} ∪N(M t
β) be the associated coalition.

Define the polyhedron Q∗i (β) by
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Q∗(β) :: x(N) = v(N)
x(e) = c(e) (e ∈ Ei−1)
x(t) = c(t) (t ∈ Ni−1)
x(Seβ)) ≥ βv(Seβ) (e /∈ Ei−1)
x(Stβ)) ≥ βv(Stβ) (t /∈ Ni−1)

Proposition 4.2 Qi(β) = Q∗i (β) for all β ≥ 0.

Proof: By the choice of M e
β , we have N(M e

β) ∈< Ei−1 >. So e /∈ Ei−1, i.e, e /∈ Fi−1, implies
Seβ /∈ Fi−1. In particular, e /∈ Ei−1 yields Seβ /∈< T0 ∪ Ei−1 ∪ Ni−1 >. Therefore, all the
inequalities occurring in the definition of Q∗i (β) also occur in the description of Qi(β). A
similar argument holds for t /∈ Ni−1. Thus

Qi(β) ⊆ Q∗i (β) for all β ≥ 0.

Conversely, let x ∈ Q∗i (β) be arbitrary and let S /∈< T0 ∪ Ei−1 ∪ Ni−1 > . We show that
x(S) ≥ βv(S) holds, which implies x ∈ Qi(β).

Let M be a matching of maximum weight relative to w in G|S . So v(S) = w(M). Assume
again that M is of maximal cardinality, i.e., S = N(M) or S = t ∪ N(M), depending on
whether |S| is even or odd.

Case 1: M ⊆ Ei−1.

Then S = t ∪ N(M) for some t /∈ Ni−1 (otherwise, we would have S ∈< Ei−1 ∪ Ni−1 >, a
contradiciton to our assumption on S). Since x ∈ Q∗i (β), we know that

x(Stβ) ≥ βv(Stβ) .

Hence

x(t) ≥ βv(Stβ) − x(M t
β)

≥ βw(M t
β) − x(M t

β)
= wβ(M t

β)
≥ wβ(M)
= βw(M) − x(M)
= βv(S) − x(M)

Thus
x(S) = x(t) + x(M) ≥ βv(S) .

Case 2: There exists some e ∈M \ Ei−1.

Observe first that x ≥ 0 holds for all x ∈ Q∗i (β). Thus it suffices to show that x(M) ≥ βw(M)
holds.
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Let U := M ∩ Ei−1 and V := M \ U . For each e ∈ V , we have x(Seβ) ≥ βv(Seβ). So

x(e) ≥ βv(Seβ) − x(M e
β)

≥ βw(e) + βw(M e
β) − x(M e

β)
= βw(e) + wβ(M e

β)

Summing up the above inequalities for all e ∈ V and using wβ(M e
β) ≥ 0 and wβ(M e

β) ≥ wβ(U),
we see

x(V ) ≥ βw(V ) + wβ(U) = βw(V ) + βw(U)− x(U) .

Thus
x(M) ≥ β(w(U) +w(V )) = βv(M) .

2

We have achieved our goal. Given β ≥ 0, we are able to represent Qi(β) = Q∗i (β) with
polynomially (in n) many equations and inequalities. Note that computing the coalitions S tβ
and Seβ amounts to solving maximum weight matching problems with respect to the weighting
wβ, which can be done in polynomial time (see, e.g., Lovász and Plummer [1986]), provided
the weights wβ have polynomial size.

One difficulty, however, remains. The coalitions of type Seβ and Stβ in the description of Q∗i (β)
very much depend on the value of β. The idea, therefore, is to compute

βi = max{β | Q∗i (β) 6= ∅}

by binary search.

Lemma 4.2 For i = 1, . . . , l,

1/n ≤ βi ≤ v(N)/wmin =: M ,

where wmin is the smallest non-zero weight w(e), e ∈ E.

Proof: By definition,

Q∗1(β) :: x(N) = v(N)
x(e) ≥ βw(e) (e ∈ E)

The vector x = (v(N)/n, . . . , v(N)/n) shows that Q∗1(1/n) is non-empty.

Hence 1/n ≤ β1 < . . . < βl. (In fact, one can show that 2/3 ≤ β1 holds (see Faigle and Kern
[1993])).

On the other hand, each Ti contains at least some coalition Ti, say, with v(Ti) > 0 (otherwise
βi =∞).
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But then x(Ti) = βiv(Ti) ≥ βiwmin implies

βi ≤ x(Ti)/wmin ≤ x(N)/wmin = M .

2

We are now in the position to state our main result.

Theorem 4.1 The nucleon P ∗ of a matching game on the graph G = (N,E) with edge
weighting w can be computed in time polynomial in n = |N | and the size � w � of w.

Proof: Let s := max{� w(e)� | e ∈ E}. We know from Proposition 3.1 that each � βi �
is polynomially bounded, say � βi � ≤ p(n, s), for some suitable polynomial p.

It remains to deal with the size of c : (El ∪Nl)→ <.

If e ∈ Ei \ Ei−1, then x(e) = c(e) is determined by the equation

x(Seβi) = βiv(Seβi) .

Therefore, the nucleon P ∗ may alternatively be described via

P ∗ :: x(N) = v(N)
x(Seβ1

) = β1v(Seβ1
) (e ∈ E1)

x(Stβ1
) = β1v(Stβ1

) (e ∈ N1)
...

x(Seβl) = βlv(Seβl) (e ∈ El)
x(Stβl) = βlv(Stβl) (e ∈ Nl)
x ≥ 0

This system has size polynomial in n and s. Consequently, any basic solution x of that system
has size polynomial in n and s. But each basic solution x fixes c(e) = x(e) and c(t) = x(t)
for every e ∈ El and t ∈ Nl. Therefore, the size � c� of c is polynomial.

The latter fact ensures that we can successively compute β1, . . . , βl in time polynomial in n
and s by applying binary search to determine βi in each iterative step.

2
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